1
|
Lemma RB, Fuglerud BM, Frampton J, Gabrielsen OS. MYB: A Key Transcription Factor in the Hematopoietic System Subject to Many Levels of Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:3-29. [PMID: 39017837 DOI: 10.1007/978-3-031-62731-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | - Jon Frampton
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
2
|
Lemma RB, Ledsaak M, Fuglerud BM, Rodríguez-Castañeda F, Eskeland R, Gabrielsen OS. MYB regulates the SUMO protease SENP1 and its novel interaction partner UXT, modulating MYB target genes and the SUMO landscape. J Biol Chem 2023; 299:105062. [PMID: 37468105 PMCID: PMC10463205 DOI: 10.1016/j.jbc.2023.105062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
SUMOylation is a post-translational modification frequently found on nuclear proteins, including transcription factors (TFs) and coactivators. By controlling the activity of several TFs, SUMOylation may have far-reaching effects. MYB is an example of a developmental TF subjected to SUMO-mediated regulation, through both SUMO conjugation and SUMO binding. How SUMO affects MYB target genes is unknown. Here, we explored the global effect of reduced SUMOylation of MYB on its downstream gene programs. RNA-Seq in K562 cells after MYB knockdown and rescue with mutants having an altered SUMO status revealed a number of differentially regulated genes and distinct gene ontology term enrichments. Clearly, the SUMO status of MYB both quantitatively and qualitatively affects its regulome. The transcriptome data further revealed that MYB upregulates the SUMO protease SENP1, a key enzyme that removes SUMO conjugation from SUMOylated proteins. Given this role of SENP1 in the MYB regulome, we expanded the analysis, mapped interaction partners of SENP1, and identified UXT as a novel player affecting the SUMO system by acting as a repressor of SENP1. MYB inhibits the expression of UXT suggesting that MYB is able not only to control a specific gene program directly but also indirectly by affecting the SUMO landscape through SENP1 and UXT. These findings suggest an autoactivation loop whereby MYB, through enhancing SENP1 and reducing UXT, is itself being activated by a reduced level of repressive SUMOylation. We propose that overexpressed MYB, seen in multiple cancers, may drive this autoactivation loop and contribute to oncogenic activation of MYB.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Department of Biosciences, University of Oslo, Oslo, Norway; Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway.
| | - Marit Ledsaak
- Department of Biosciences, University of Oslo, Oslo, Norway; Faculty of Medicine, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | - Ragnhild Eskeland
- Department of Biosciences, University of Oslo, Oslo, Norway; Faculty of Medicine, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Faculty of Medicine, Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
3
|
A Novel Epigenetic Regulator ZRF1: Insight into Its Functions in Plants. Genes (Basel) 2021; 12:genes12081245. [PMID: 34440419 PMCID: PMC8393682 DOI: 10.3390/genes12081245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022] Open
Abstract
Recently, Zuotin-related factor 1 (ZRF1), an epigenetic regulator, was found to be involved in transcriptional regulation. In animals and humans, ZRF1 specifically binds to monoubiquitinated histone H2A through a ubiquitin-binding domain and derepresses Polycomb target genes at the beginning of cellular differentiation. In addition, ZRF1 can work as a tumor suppressor. According to bioinformatics analysis, ZRF1 homologs are widely found in plants. However, the current studies on ZRF1 in higher plants are limited and few in-depth studies of its functions have been reported. In this review, we aim to summarize the key role of AtZRF1a/b in Arabidopsis thaliana growth and development, as well as the research progress in this field in recent years.
Collapse
|
4
|
Lemma RB, Ledsaak M, Fuglerud BM, Sandve GK, Eskeland R, Gabrielsen OS. Chromatin occupancy and target genes of the haematopoietic master transcription factor MYB. Sci Rep 2021; 11:9008. [PMID: 33903675 PMCID: PMC8076236 DOI: 10.1038/s41598-021-88516-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/13/2021] [Indexed: 02/02/2023] Open
Abstract
The transcription factor MYB is a master regulator in haematopoietic progenitor cells and a pioneer factor affecting differentiation and proliferation of these cells. Leukaemic transformation may be promoted by high MYB levels. Despite much accumulated molecular knowledge of MYB, we still lack a comprehensive understanding of its target genes and its chromatin action. In the present work, we performed a ChIP-seq analysis of MYB in K562 cells accompanied by detailed bioinformatics analyses. We found that MYB occupies both promoters and enhancers. Five clusters (C1-C5) were found when we classified MYB peaks according to epigenetic profiles. C1 was enriched for promoters and C2 dominated by enhancers. C2-linked genes were connected to hematopoietic specific functions and had GATA factor motifs as second in frequency. C1 had in addition to MYB-motifs a significant frequency of ETS-related motifs. Combining ChIP-seq data with RNA-seq data allowed us to identify direct MYB target genes. We also compared ChIP-seq data with digital genomic footprinting. MYB is occupying nearly a third of the super-enhancers in K562. Finally, we concluded that MYB cooperates with a subset of the other highly expressed TFs in this cell line, as expected for a master regulator.
Collapse
Affiliation(s)
- Roza B Lemma
- Department of Biosciences, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318, Oslo, Norway
| | - Marit Ledsaak
- Department of Biosciences, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
| | - Bettina M Fuglerud
- Department of Biosciences, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, Blindern, PO Box 1080, 0371, Oslo, Norway
| | - Ragnhild Eskeland
- Department of Biosciences, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Odd S Gabrielsen
- Department of Biosciences, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway.
| |
Collapse
|
5
|
Bucholc K, Skrajna A, Adamska K, Yang XC, Krajewski K, Poznański J, Dadlez M, Domiński Z, Zhukov I. Structural Analysis of the SANT/Myb Domain of FLASH and YARP Proteins and Their Complex with the C-Terminal Fragment of NPAT by NMR Spectroscopy and Computer Simulations. Int J Mol Sci 2020; 21:ijms21155268. [PMID: 32722282 PMCID: PMC7432317 DOI: 10.3390/ijms21155268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
FLICE-associated huge protein (FLASH), Yin Yang 1-Associated Protein-Related Protein (YARP) and Nuclear Protein, Ataxia-Telangiectasia Locus (NPAT) localize to discrete nuclear structures called histone locus bodies (HLBs) where they control various steps in histone gene expression. Near the C-terminus, FLASH and YARP contain a highly homologous domain that interacts with the C-terminal region of NPAT. Structural aspects of the FLASH-NPAT and YARP-NPAT complexes and their role in histone gene expression remain largely unknown. In this study, we used multidimensional NMR spectroscopy and in silico modeling to analyze the C-terminal domain in FLASH and YARP in an unbound form and in a complex with the last 31 amino acids of NPAT. Our results demonstrate that FLASH and YARP domains share the same fold of a triple α -helical bundle that resembles the DNA binding domain of Myb transcriptional factors and the SANT domain found in chromatin-modifying and remodeling complexes. The NPAT peptide contains a single α -helix that makes multiple contacts with α -helices I and III of the FLASH and YARP domains. Surprisingly, in spite of sharing a significant amino acid similarity, each domain likely binds NPAT using a unique network of interactions, yielding two distinct complexes. In silico modeling suggests that both complexes are structurally compatible with DNA binding, raising the possibility that they may function in identifying specific sequences within histone gene clusters, hence initiating the assembly of HLBs and regulating histone gene expression during cell cycle progression.
Collapse
Affiliation(s)
- Katarzyna Bucholc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Aleksandra Skrajna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Kinga Adamska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Zbigniew Domiński
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Correspondence: (Z.D.); (I.Z.); Tel.: +48-22-592-2038 (I.Z.)
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
- Correspondence: (Z.D.); (I.Z.); Tel.: +48-22-592-2038 (I.Z.)
| |
Collapse
|
6
|
Reynolds JA. Noncoding RNA Regulation of Dormant States in Evolutionarily Diverse Animals. THE BIOLOGICAL BULLETIN 2019; 237:192-209. [PMID: 31714856 DOI: 10.1086/705484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dormancy is evolutionarily widespread and can take many forms, including diapause, dauer formation, estivation, and hibernation. Each type of dormancy is characterized by distinct features; but accumulating evidence suggests that each is regulated by some common processes, often referred to as a common "toolkit" of regulatory mechanisms, that likely include noncoding RNAs that regulate gene expression. Noncoding RNAs, especially microRNAs, are well-known regulators of biological processes associated with numerous dormancy-related processes, including cell cycle progression, cell growth and proliferation, developmental timing, metabolism, and environmental stress tolerance. This review provides a summary of our current understanding of noncoding RNAs and their involvement in regulating dormancy.
Collapse
|
7
|
Weaver TM, Liu J, Connelly KE, Coble C, Varzavand K, Dykhuizen EC, Musselman CA. The EZH2 SANT1 domain is a histone reader providing sensitivity to the modification state of the H4 tail. Sci Rep 2019; 9:987. [PMID: 30700785 PMCID: PMC6353875 DOI: 10.1038/s41598-018-37699-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
SANT domains are found in a number of chromatin regulators. They contain approximately 50 amino acids and have high similarity to the DNA binding domain of Myb related proteins. Though some SANT domains associate with DNA others have been found to bind unmodified histone tails. There are two SANT domains in Enhancer of Zeste 2 (EZH2), the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2), of unknown function. Here we show that the first SANT domain (SANT1) of EZH2 is a histone binding domain with specificity for the histone H4 N-terminal tail. Using NMR spectroscopy, mutagenesis, and molecular modeling we structurally characterize the SANT1 domain and determine the molecular mechanism of binding to the H4 tail. Though not important for histone binding, we find that the adjacent stimulation response motif (SRM) stabilizes SANT1 and transiently samples its active form in solution. Acetylation of H4K16 (H4K16ac) or acetylation or methylation of H4K20 (H4K20ac and H4K20me3) are seen to abrogate binding of SANT1 to H4, which is consistent with these modifications being anti-correlated with H3K27me3 in-vivo. Our results provide significant insight into this important regulatory region of EZH2 and the first characterization of the molecular mechanism of SANT domain histone binding.
Collapse
Affiliation(s)
- Tyler M Weaver
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jiachen Liu
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Katelyn E Connelly
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chris Coble
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Katayoun Varzavand
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
8
|
Weaver TM, Morrison EA, Musselman CA. Reading More than Histones: The Prevalence of Nucleic Acid Binding among Reader Domains. Molecules 2018; 23:molecules23102614. [PMID: 30322003 PMCID: PMC6222470 DOI: 10.3390/molecules23102614] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 01/09/2023] Open
Abstract
The eukaryotic genome is packaged into the cell nucleus in the form of chromatin, a complex of genomic DNA and histone proteins. Chromatin structure regulation is critical for all DNA templated processes and involves, among many things, extensive post-translational modification of the histone proteins. These modifications can be “read out” by histone binding subdomains known as histone reader domains. A large number of reader domains have been identified and found to selectively recognize an array of histone post-translational modifications in order to target, retain, or regulate chromatin-modifying and remodeling complexes at their substrates. Interestingly, an increasing number of these histone reader domains are being identified as also harboring nucleic acid binding activity. In this review, we present a summary of the histone reader domains currently known to bind nucleic acids, with a focus on the molecular mechanisms of binding and the interplay between DNA and histone recognition. Additionally, we highlight the functional implications of nucleic acid binding in chromatin association and regulation. We propose that nucleic acid binding is as functionally important as histone binding, and that a significant portion of the as yet untested reader domains will emerge to have nucleic acid binding capabilities.
Collapse
Affiliation(s)
- Tyler M Weaver
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Emma A Morrison
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
9
|
Fuglerud BM, Ledsaak M, Rogne M, Eskeland R, Gabrielsen OS. The pioneer factor activity of c-Myb involves recruitment of p300 and induction of histone acetylation followed by acetylation-induced chromatin dissociation. Epigenetics Chromatin 2018; 11:35. [PMID: 29954426 PMCID: PMC6022509 DOI: 10.1186/s13072-018-0208-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
Background The concept of pioneer transcription factors is emerging as an essential part of the epigenetic regulation, taking place during cell development and differentiation. However, the precise molecular mechanism underlying pioneer factor activity remains poorly understood. We recently reported that the transcription factor c-Myb acts as a pioneer factor in haematopoiesis, and a point mutation in its DNA binding domain, D152V, is able to abrogate this function. Results Here, we show that specific histone modifications, including H3K27ac, prevent binding of c-Myb to histone tails, representing a novel effect of histone modifications, namely restricting binding of a pioneer factor to chromatin. Furthermore, we have taken advantage of the pioneer-defect D152V mutant to investigate mechanisms of c-Myb’s pioneer factor activity. We show that c-Myb-dependent transcriptional activation of a gene in inaccessible chromatin relies on c-Myb binding to histones, as well as on c-Myb interacting with the histone acetyltransferase p300. ChIP assays show that both wild type and the D152V mutant of c-Myb bind to a selected target gene at its promoter and enhancer, but only wild-type c-Myb causes opening and activation of the locus. Enhancement of histone acetylation restores activation of the same gene in the absence of c-Myb, suggesting that facilitating histone acetylation is a crucial part of the pioneer factor function of c-Myb. Conclusions We suggest a pioneer factor model in which c-Myb binds to regions of closed chromatin and then recruits histone acetyltransferases. By binding to histones, c-Myb facilitates histone acetylation, acting as a cofactor for p300 at c-Myb bound sites. The resulting H3K27ac leads to chromatin opening and detachment of c-Myb from the acetylated chromatin. We propose that the latter phenomenon, acetylation-induced chromatin dissociation, represents a mechanism for controlling the dynamics of pioneer factor binding to chromatin. Electronic supplementary material The online version of this article (10.1186/s13072-018-0208-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bettina M Fuglerud
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316, Blindern, Oslo, Norway
| | - Marit Ledsaak
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316, Blindern, Oslo, Norway
| | - Marie Rogne
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316, Blindern, Oslo, Norway
| | - Ragnhild Eskeland
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316, Blindern, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway
| | - Odd S Gabrielsen
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316, Blindern, Oslo, Norway.
| |
Collapse
|
10
|
Ahmed M, Streit A. Lsd1 interacts with cMyb to demethylate repressive histone marks and maintain inner ear progenitor identity. Development 2018; 145:dev.160325. [PMID: 29437831 DOI: 10.1242/dev.160325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/20/2018] [Indexed: 01/30/2023]
Abstract
During development, multipotent progenitor cells must maintain their identity while retaining the competence to respond to new signalling cues that drive cell fate decisions. This depends on both DNA-bound transcription factors and surrounding histone modifications. Here, we identify the histone demethylase Lsd1 as a crucial component of the molecular machinery that preserves progenitor identity in the developing ear prior to lineage commitment. Although Lsd1 is mainly associated with repressive complexes, we show that, in ear precursors, it is required to maintain active transcription of otic genes. We reveal a novel interaction between Lsd1 and the transcription factor cMyb, which in turn recruits Lsd1 to the promoters of key ear transcription factors. Here, Lsd1 prevents the accumulation of repressive H3K9me2, while allowing H3K9 acetylation. Loss of Lsd1 function causes rapid silencing of active promoters and loss of ear progenitor genes, and shuts down the entire ear developmental programme. Our data suggest that Lsd1-cMyb acts as a co-activator complex that maintains a regulatory module at the top of the inner ear gene network.
Collapse
Affiliation(s)
- Mohi Ahmed
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy's Hospital, Dental Institute, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy's Hospital, Dental Institute, King's College London, London SE1 9RT, UK
| |
Collapse
|
11
|
Fuglerud BM, Lemma RB, Wanichawan P, Sundaram AYM, Eskeland R, Gabrielsen OS. A c-Myb mutant causes deregulated differentiation due to impaired histone binding and abrogated pioneer factor function. Nucleic Acids Res 2017; 45:7681-7696. [PMID: 28472346 PMCID: PMC5570105 DOI: 10.1093/nar/gkx364] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
The transcription factor c-Myb is involved in early differentiation and proliferation of haematopoietic cells, where it operates as a regulator of self-renewal and multi-lineage differentiation. Deregulated c-Myb plays critical roles in leukaemias and other human cancers. Due to its role as a master regulator, we hypothesized it might function as a pioneer transcription factor. Our approach to test this was to analyse a mutant of c-Myb, D152V, previously reported to cause haematopoietic defects in mice by an unknown mechanism. Our transcriptome data from K562 cells indicates that this mutation specifically affects c-Myb's ability to regulate genes involved in differentiation, causing failure in c-Myb's ability to block differentiation. Furthermore, we see a major effect of this mutation in assays where chromatin opening is involved. We show that each repeat in the minimal DNA-binding domain of c-Myb binds to histones and that D152V disrupts histone binding of the third repeat. ATAC-seq data indicates this mutation impairs the ability of c-Myb to cause chromatin opening at specific sites. Taken together, our findings support that c-Myb acts as a pioneer factor and show that D152V impairs this function. The D152V mutant is the first mutant of a transcription factor specifically destroying pioneer factor function.
Collapse
Affiliation(s)
- Bettina M Fuglerud
- Department of Biosciences, University of Oslo, P.O.Box 1066 Blindern, N-0316 Oslo, Norway
| | - Roza B Lemma
- Department of Biosciences, University of Oslo, P.O.Box 1066 Blindern, N-0316 Oslo, Norway
| | - Pimthanya Wanichawan
- Department of Biosciences, University of Oslo, P.O.Box 1066 Blindern, N-0316 Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, P.O.Box 4956 Nydalen, N-0424 Oslo, Norway.,Center for Heart Failure Research, Oslo University Hospital and University of Oslo, P.O.Box 4956 Nydalen, N-0424 Oslo, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, P.O.Box 4950 Nydalen, N-0424 Oslo, Norway
| | - Ragnhild Eskeland
- Department of Biosciences, University of Oslo, P.O.Box 1066 Blindern, N-0316 Oslo, Norway.,Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, P.O.Box 1112 Blindern, N-0317 Oslo, Norway
| | - Odd S Gabrielsen
- Department of Biosciences, University of Oslo, P.O.Box 1066 Blindern, N-0316 Oslo, Norway
| |
Collapse
|
12
|
Markova DN, Mason-Gamer RJ. Transcriptional activity of PIF and Pong-like Class II transposable elements in Triticeae. BMC Evol Biol 2017; 17:178. [PMID: 28774284 PMCID: PMC5543537 DOI: 10.1186/s12862-017-1028-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 07/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background Transposable elements are major contributors to genome size and variability, accounting for approximately 70–80% of the maize, barley, and wheat genomes. PIF and Pong-like elements belong to two closely-related element families within the PIF/Harbinger superfamily of Class II (DNA) transposons. Both elements contain two open reading frames; one encodes a transposase (ORF2) that catalyzes transposition of the functional elements and their related non-autonomous elements, while the function of the second is still debated. In this work, we surveyed for PIF- and Pong-related transcriptional activity in 13 diploid Triticeae species, all of which have been previously shown to harbor extensive within-genome diversity of both groups of elements. Results The results revealed that PIF elements have considerable transcriptional activity in Triticeae, suggesting that they can escape the initial levels of plant cell control and are regulated at the post-transcriptional level. Phylogenetic analysis of 156 PIF cDNA transposase fragments along with 240 genomic partial transposase sequences showed that most, if not all, PIF clades are transcriptionally competent, and that multiple transposases coexisting within a single genome have the potential to act simultaneously. In contrast, we did not detect any transcriptional activity of Pong elements in any sample. Conclusions The lack of Pong element transcription shows that even closely related transposon families can exhibit wide variation in their transposase transcriptional activity within the same genome. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1028-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dragomira N Markova
- Department of Biological Sciences, University of Illinois at Chicago, M/C 067 840 West Taylor Street, Chicago, IL, 60607, USA. .,Present address: Department of Plant Sciences (mail stop 3), 151 Asmundson Hall, University of California, Davis, CA, 95616, USA.
| | - Roberta J Mason-Gamer
- Department of Biological Sciences, University of Illinois at Chicago, M/C 067 840 West Taylor Street, Chicago, IL, 60607, USA
| |
Collapse
|
13
|
Romney AL, Podrabsky JE. Transcriptomic analysis of maternally provisioned cues for phenotypic plasticity in the annual killifish, Austrofundulus limnaeus. EvoDevo 2017; 8:6. [PMID: 28439397 PMCID: PMC5401559 DOI: 10.1186/s13227-017-0069-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/14/2017] [Indexed: 12/20/2022] Open
Abstract
Background Genotype and environment can interact during development to produce novel adaptive traits that support life in extreme conditions. The development of the annual killifish Austrofundulus limnaeus is unique among vertebrates because the embryos have distinct cell movements that separate epiboly from axis formation during early development, can enter into a state of metabolic dormancy known as diapause and can survive extreme environmental conditions. The ability to enter into diapause can be maternally programmed, with young females producing embryos that do not enter into diapause. Alternately, embryos can be programmed to “escape” from diapause and develop directly by both maternal factors and embryonic incubation conditions. Thus, maternally packaged gene products are hypothesized to regulate developmental trajectory and perhaps the other unique developmental characters in this species. Results Using high-throughput RNA sequencing, we generated transcriptomic profiles of mRNAs, long non-coding RNAs and small non-coding RNAs (sncRNAs) in 1–2 cell stage embryos of A. limnaeus. Transcriptomic analyses suggest maternal programming of embryos through alternatively spliced mRNAs and antisense sncRNAs. Comparison of these results to those of comparable studies on zebrafish and other fishes reveals a surprisingly high abundance of transcripts involved in the cellular response to stress and a relatively lower expression of genes required for rapid transition through the cell cycle. Conclusions Maternal programming of developmental trajectory is unlikely accomplished by differential expression of diapause-specific genes. Rather, evidence suggests a role for trajectory-specific splice variants of genes expressed in both phenotypes. In addition, based on comparative studies with zebrafish, the A. limnaeus 1–2 cell stage transcriptome is unique in ways that are consistent with their unique life history. These results not only impact our understanding of the genetic mechanisms that regulate entrance into diapause, but also provide insight into the epigenetic regulation of gene expression during development. Electronic supplementary material The online version of this article (doi:10.1186/s13227-017-0069-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amie L Romney
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207 USA
| | - Jason E Podrabsky
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207 USA
| |
Collapse
|
14
|
Functional Characterization of Cotton GaMYB62L, a Novel R2R3 TF in Transgenic Arabidopsis. PLoS One 2017; 12:e0170578. [PMID: 28125637 PMCID: PMC5268478 DOI: 10.1371/journal.pone.0170578] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/06/2017] [Indexed: 11/19/2022] Open
Abstract
Drought stress can trigger the production of ABA in plants, in response to adverse conditions, which induces the transcript of stress-related marker genes. The R2R3 MYB TFs are implicated in regulation of various plants developmental, metabolic and multiple environmental stress responses. Here, a R2R3-MYB cloned gene, GaMYB62L, was transformed in Arabidopsis and was functionally characterized. The GaMYB62L protein contains two SANT domains with a conserved R2R3 imperfect repeats. The GaMYB62L cDNA is 1,017 bp with a CDS of 879, encodes a 292-residue polypeptide with MW of 38.78 kD and a pI value of 8.91. Overexpressed GaMYB62L transgenic Arabidopsis have increased proline and chlorophyll content, superior seed germination rate under salt and osmotic stress, less water loss rate with reduced stomatal apertures, high drought avoidance as compared to WT on water deprivation and also significant plant survival rates at low temperature. In addition, overexpressed GaMYB62L lines were more sensitive to ABA mediated germination and root elongation assay. Moreover, ABA induced GaMYB62L overexpression, enhanced the expression of ABA stress related marker genes like RD22, COR15A, ADH1, and RD29A. Together, overexpression of GaMYB62L suggested having developed better drought, salt and cold tolerance in transgenic Arabidopsis and thus presented it as a prospective candidate gene to achieve better abiotic stress tolerance in cotton crop.
Collapse
|
15
|
Markova DN, Mason-Gamer RJ. The Role of Vertical and Horizontal Transfer in the Evolutionary Dynamics of PIF-Like Transposable Elements in Triticeae. PLoS One 2015; 10:e0137648. [PMID: 26355747 PMCID: PMC4565680 DOI: 10.1371/journal.pone.0137648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/20/2015] [Indexed: 11/19/2022] Open
Abstract
PIF-like transposable elements are members of the PIF/Harbinger superfamily of DNA transposons found in the genomes of many plants, animals, and fungi. The evolution of the gene that encodes the transposase responsible for mobilizing PIF-like elements has been studied in both plants and animals, but the elements' history in flowering plants remains poorly known. In this work, we describe the phylogenetic distribution and evolution of PIF-like elements in the genomes of 21 diploid species from the wheat tribe, Triticeae, and we present the first convincing evidence of horizontal transfer of PIF elements in plant genomes. A phylogenetic analysis of 240 PIF sequences based on the conserved region of the transposase domain revealed at least four main transposase lineages. Their complex evolutionary history can be best explained by a combination of vertical transmission with differential evolutionary success among lineages, and occasional horizontal transfer between phylogenetically distant Triticeae genera. In addition, we identified 127 potentially functional transposase sequences indicating possible recent activity of PIF.
Collapse
Affiliation(s)
- Dragomira N. Markova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Roberta J. Mason-Gamer
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
16
|
Situational awareness: regulation of the myb transcription factor in differentiation, the cell cycle and oncogenesis. Cancers (Basel) 2014; 6:2049-71. [PMID: 25279451 PMCID: PMC4276956 DOI: 10.3390/cancers6042049] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/11/2014] [Accepted: 09/26/2014] [Indexed: 12/02/2022] Open
Abstract
This review summarizes the mechanisms that control the activity of the c-Myb transcription factor in normal cells and tumors, and discusses how c-Myb plays a role in the regulation of the cell cycle. Oncogenic versions of c-Myb contribute to the development of leukemias and solid tumors such as adenoid cystic carcinoma, breast cancer and colon cancer. The activity and specificity of the c-Myb protein seems to be controlled through changes in protein-protein interactions, so understanding how it is regulated could lead to the development of novel therapeutic strategies.
Collapse
|
17
|
Fourati M, Mnif M, Kharrat N, Charfi N, Kammoun M, Fendri N, Sessi S, Abid M, Rebai A, Fakhfakh F. Association between Leptin gene polymorphisms and plasma leptin level in three consanguineous families with obesity. Gene 2013; 527:75-81. [PMID: 23751306 DOI: 10.1016/j.gene.2013.05.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 05/27/2013] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Leptin (LEP) gene is one of the most promising candidate genes for obesity. Previous studies have tested the association of polymorphisms in LEP gene with obesity and obesity-related metabolic biomarkers (anthropometric variables, glucose, insulin level, leptin level and lipid profile). However, the results of these studies were still controversial. To determine whether LEP gene is associated with obesity in Tunisian population, we performed a family-based association study between LEP polymorphisms and obesity and obesity-related metabolic biomarkers. METHODS Seven single nucleotide polymorphisms (SNPs) in 5' region of LEP gene were genotyped in three consanguineous families including 33 individuals. The previously reported LEP SNPs (H1328084, H1328082, rs10487506, H1328081, H1328080, G-2548A and A19G) were evaluated by PCR-RFLP and direct sequencing methods. Single SNP association and haplotype association analyses were performed using the family-based association test (FBAT). To determine allele frequencies of these SNPs in general population, 52 unrelated individuals from the general Tunisian population were also analyzed. RESULTS Two SNPs showed significant associations with plasma leptin level (H1328084: A>G, Z=2.058, p=0.039; A19G: G>A, Z=2.058, p=0.039). When haplotypes were constructed with these two-markers, the risk AA haplotype (frequency 57.1%) was positively associated with plasma leptin level (Z=2.058, p=0.039). Moreover, SNPs H1328084 and A19G are predicted to modify transcription-factor binding sites. CONCLUSIONS Our study provided that two functional variants in 5' regulatory region of LEP gene are associated with plasma leptin level as a quantitative trait. It suggested that H1328084 and A19G have an important role in regulating plasma leptin level.
Collapse
Affiliation(s)
- Mouna Fourati
- Laboratory of Human Molecular Genetics, Faculty of Medicine, University of Sfax, Tunisia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Arratia J, Aguirre J. Los factores de transcripción tipo Myb, una familia de reguladores de la diferenciación celular conservada en los organismos eucariontes. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2013. [DOI: 10.1016/s1405-888x(13)72081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Myb and the Regulation of Stem Cells in the Intestine and Brain: A Tale of Two Niches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:353-68. [DOI: 10.1007/978-94-007-6621-1_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Leutz A, Pless O, Lappe M, Dittmar G, Kowenz-Leutz E. Crosstalk between phosphorylation and multi-site arginine/lysine methylation in C/EBPs. Transcription 2012; 2:3-8. [PMID: 21326902 DOI: 10.4161/trns.2.1.13510] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 12/24/2022] Open
Abstract
C/EBPs are implied in an amazing number of cellular functions: C/EBPs regulate tissue and cell type specific gene expression, proliferation, and differentiation control. C/EBPs assist in energy metabolism, female reproduction, innate immunity, inflammation, senescence, and the development of neoplasms. How can C/EBPs fulfill so many functions? Here we discuss that C/EBPs are extensively modified by methylation of arginine and lysine side chains and that regulated methylation profoundly affects the activity of C/EBPs.
Collapse
Affiliation(s)
- Achim Leutz
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany.
| | | | | | | | | |
Collapse
|
21
|
Huang YC, Saito S, Yokoyama KK. Histone chaperone Jun dimerization protein 2 (JDP2): role in cellular senescence and aging. Kaohsiung J Med Sci 2012; 26:515-31. [PMID: 20950777 DOI: 10.1016/s1607-551x(10)70081-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/22/2010] [Indexed: 01/12/2023] Open
Abstract
Transcription factor Jun dimerization protein 2 (JDP2) binds directly to histones and DNA, and inhibits p300-mediated acetylation of core histones and reconstituted nucleosomes that contain JDP2-recognition DNA sequences. The region of JDP2 that encompasses its histone-binding domain and DNA-binding region is essential to inhibit histone acetylation by histone acetyltransferases. Moreover, assays of nucleosome assembly in vitro demonstrate that JDP2 also has histone-chaperone activity. The mutation of the region responsible for inhibition of histone acetyltransferase activity within JDP2 eliminates repression of transcription from the c-jun promoter by JDP2, as well as JDP2-mediated inhibition of retinoic-acid-induced differentiation. Thus JDP2 plays a key role as a repressor of cell differentiation by regulating the expression of genes with an activator protein 1 (AP-1) site via inhibition of histone acetylation and/or assembly and disassembly of nucleosomes. Senescent cells show a series of alterations, including flatten and enlarged morphology, increase in nonspecific acidic β-galactosidase activity, chromatin condensation, and changes in gene expression patterns. The onset and maintenance of senescence are regulated by two tumor suppressors, p53 and retinoblastoma proteins. The expression of p53 and retinoblastoma proteins is regulated by two distinct proteins, p16(Ink4a) and Arf, respectively, which are encoded by cdkn2a. JDP2 inhibits recruitment of the polycomb repressive complexes 1 and 2 (PRC-1 and PRC-2) to the promoter of the gene that encodes p16(Ink4a) and inhibits the methylation of lysine 27 of histone H3 (H3K27). The PRCs associate with the p16(Ink4a)/Arf locus in young proliferating cells and dissociate from it in senescent cells. Therefore, it seems that chromatin-remodeling factors that regulate association and dissociation of PRCs, and are controlled by JDP2, might play an important role in the senescence program. The molecular mechanisms that underlie the action of JDP2 in cellular aging and replicative senescence by mediating the dissociation of PRCs from the p16(Ink4a)/Arf locus are discussed.
Collapse
Affiliation(s)
- Yu-Chang Huang
- Center of Excellence for Environmental Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
22
|
Overexpression of the c-Myb but not its leukemogenic mutant DNA-binding domain increased adipogenic differentiation in mesenchymal stem cells. Biochem Biophys Res Commun 2011; 407:202-6. [DOI: 10.1016/j.bbrc.2011.02.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 02/28/2011] [Indexed: 01/24/2023]
|
23
|
Lu P, Hankel IL, Hostager BS, Swartzendruber JA, Friedman AD, Brenton JL, Rothman PB, Colgan JD. The developmental regulator protein Gon4l associates with protein YY1, co-repressor Sin3a, and histone deacetylase 1 and mediates transcriptional repression. J Biol Chem 2011; 286:18311-9. [PMID: 21454521 DOI: 10.1074/jbc.m110.133603] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetic studies involving zebrafish and mice have demonstrated that the protein Gon4l (Gon4-like) is essential for hematopoiesis. These studies also suggested that Gon4l regulates gene expression during hematopoietic development, yet the biochemical function of Gon4l has not been defined. Here, we describe the identification of factors that interact with Gon4l and may cooperate with this protein to regulate gene expression. As predicted by polypeptide sequence conservation, Gon4l interacted and co-localized with the DNA-binding protein YY1 (Yin Yang 1). Density gradient sedimentation analysis of protein lysates from mouse M12 B cells showed that Gon4l and YY1 co-sediment with the transcriptional co-repressor Sin3a and its functional partner histone deacetylase (HDAC) 1. Consistent with these results, immunoprecipitation studies showed that Gon4l associates with Sin3a, HDAC1, and YY1 as a part of complexes that form in M12 cells. Sequential immunoprecipitation studies demonstrated that Gon4l, YY1, Sin3a, and HDAC1 could all associate as components of a single complex and that a conserved domain spanning the central portion of Gon4l was required for formation of this complex. When targeted to DNA, Gon4l repressed the activity of a nearby promoter, which correlated with the ability to interact with Sin3a and HDAC1. Our data suggest that Sin3a, HDAC1, and YY1 are co-factors for Gon4l and that Gon4l may function as a platform for the assembly of complexes that regulate gene expression.
Collapse
Affiliation(s)
- Ping Lu
- Interdisciplinary Immunology Graduate Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Quintana AM, Zhou YE, Pena JJ, O'Rourke JP, Ness SA. Dramatic repositioning of c-Myb to different promoters during the cell cycle observed by combining cell sorting with chromatin immunoprecipitation. PLoS One 2011; 6:e17362. [PMID: 21364958 PMCID: PMC3043100 DOI: 10.1371/journal.pone.0017362] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 02/01/2011] [Indexed: 02/05/2023] Open
Abstract
The c-Myb transcription factor is a critical regulator of proliferation and stem cell differentiation, and mutated alleles of c-Myb are oncogenic, but little is known about changes in c-Myb activity during the cell cycle. To map the association of c-Myb with specific target genes during the cell cycle, we developed a novel Fix-Sort-ChIP approach, in which asynchronously growing cells were fixed with formaldehyde, stained with Hoechst 33342 and separated into different cell cycle fractions by flow sorting, then processed for chromatin immunoprecipitation (ChIP) assays. We found that c-Myb actively repositions, binding to some genes only in specific cell cycle phases. In addition, the specificity of c-Myb is dramatically different in small subpopulations of cells, for example cells in the G2/M phase of the cell cycle, than in the bulk population. The repositioning of c-Myb during the cell cycle is not due to changes in its expression and also occurs with ectopically expressed, epitope-tagged versions of c-Myb. The repositioning occurs in established cell lines, in primary human CD34+ hematopoietic progenitors and in primary human acute myeloid leukemia cells. The combination of fixation, sorting and ChIP analysis sheds new light on the dynamic nature of gene regulation during the cell cycle and provides a new type of tool for the analysis of gene regulation in small subsets of cells, such as cells in a specific phase of the cell cycle.
Collapse
Affiliation(s)
- Anita M. Quintana
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Ye E. Zhou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Janeth J. Pena
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - John P. O'Rourke
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Scott A. Ness
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
25
|
Costa IG, Roider HG, do Rego TG, de Carvalho FDAT. Predicting gene expression in T cell differentiation from histone modifications and transcription factor binding affinities by linear mixture models. BMC Bioinformatics 2011; 12 Suppl 1:S29. [PMID: 21342559 PMCID: PMC3044284 DOI: 10.1186/1471-2105-12-s1-s29] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The differentiation process from stem cells to fully differentiated cell types is controlled by the interplay of chromatin modifications and transcription factor activity. Histone modifications or transcription factors frequently act in a multi-functional manner, with a given DNA motif or histone modification conveying both transcriptional repression and activation depending on its location in the promoter and other regulatory signals surrounding it. RESULTS To account for the possible multi functionality of regulatory signals, we model the observed gene expression patterns by a mixture of linear regression models. We apply the approach to identify the underlying histone modifications and transcription factors guiding gene expression of differentiated CD4+ T cells. The method improves the gene expression prediction in relation to the use of a single linear model, as often used by previous approaches. Moreover, it recovered the known role of the modifications H3K4me3 and H3K27me3 in activating cell specific genes and of some transcription factors related to CD4+ T differentiation.
Collapse
Affiliation(s)
- Ivan G Costa
- Center of Informatics, Federal University of Pernambuco, Recife, Brazil.
| | | | | | | |
Collapse
|
26
|
MYB transcriptionally regulates the miR-155 host gene in chronic lymphocytic leukemia. Blood 2011; 117:3816-25. [PMID: 21296997 DOI: 10.1182/blood-2010-05-285064] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elevated levels of microRNA miR-155 represent a candidate pathogenic factor in chronic B-lymphocytic leukemia (B-CLL). In this study, we present evidence that MYB (v-myb myeloblastosis viral oncogene homolog) is overexpressed in a subset of B-CLL patients. MYB physically associates with the promoter of miR-155 host gene (MIR155HG, also known as BIC, B-cell integration cluster) and stimulates its transcription. This coincides with the hypermethylated histone H3K4 residue and spread hyperacetylation of H3K9 at MIR155HG promoter. Our data provide evidence of oncogenic activities of MYB in B-CLL that include its stimulatory role in MIR155HG transcription.
Collapse
|
27
|
Zhou Y, Ness SA. Myb proteins: angels and demons in normal and transformed cells. Front Biosci (Landmark Ed) 2011; 16:1109-31. [PMID: 21196221 DOI: 10.2741/3738] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A key regulator of proliferation, differentiation and cell fate, the c-Myb transcription factor regulates the expression of hundreds of genes and is in turn regulated by numerous pathways and protein interactions. However, the most unique feature of c-Myb is that it can be converted into an oncogenic transforming protein through a few mutations that completely change its activity and specificity. The c-Myb protein is a myriad of interactions and activities rolled up in a protein that controls proliferation and differentiation in many different cell types. Here we discuss the background and recent progress that have led to a better understanding of this complex protein, and outline the questions that have yet to be answered.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
28
|
Jun dimerization protein 2 controls senescence and differentiation via regulating histone modification. J Biomed Biotechnol 2010; 2011:569034. [PMID: 21197464 PMCID: PMC3005813 DOI: 10.1155/2011/569034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 09/08/2010] [Indexed: 01/23/2023] Open
Abstract
Transcription factor, Jun dimerization protein 2 (JDP2), binds directly to histones and DNAs and then inhibits the p300-mediated acetylation both of core histones and of reconstituted nucleosomes that contain JDP2 recognition DNA sequences. JDP2 plays a key role as a repressor of adipocyte differentiation by regulation of the expression of the gene
C/EBPδ
via inhibition of histone acetylation. Moreover, JDP2-deficient mouse embryonic fibroblasts (JDP2−/− MEFs)
are resistant to replicative senescence. JDP2 inhibits the recruitment of polycomb repressive complexes (PRC1 and PRC2) to the promoter
of the gene encoding p16Ink4a, resulting from the inhibition of methylation of lysine 27 of histone H3 (H3K27). Therefore, it seems that chromatin-remodeling factors, including the PRC complex controlled by JDP2, may be important players in the senescence program. The novel mechanisms that underline the action of JDP2 in inducing cellular senescence and suppressing adipocyte differentiation are reviewed.
Collapse
|
29
|
Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood 2010; 116:3564-71. [PMID: 20498303 DOI: 10.1182/blood-2009-09-240978] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is commonly associated with alterations in transcription factors because of altered expression or gene mutations. These changes might induce leukemia-specific patterns of histone modifications. We used chromatin-immunoprecipitation on microarray to analyze histone 3 lysine 9 trimethylation (H3K9me3) patterns in primary AML (n = 108), acute lymphoid leukemia (n = 28), CD34(+) cells (n = 21) and white blood cells (n = 15) specimens. Hundreds of promoter regions in AML showed significant alterations in H3K9me3 levels. H3K9me3 deregulation in AML occurred preferentially as a decrease in H3K9me3 levels at core promoter regions. The altered genomic regions showed an overrepresentation of cis-binding sites for ETS and cyclic adenosine monophosphate response elements (CREs) for transcription factors of the CREB/CREM/ATF1 family. The decrease in H3K9me3 levels at CREs was associated with increased CRE-driven promoter activity in AML blasts in vivo. AML-specific H3K9me3 patterns were not associated with known cytogenetic abnormalities. But a signature derived from H3K9me3 patterns predicted event-free survival in AML patients. When the H3K9me3 signature was combined with established clinical prognostic markers, it outperformed prognosis prediction based on clinical parameters alone. These findings demonstrate widespread changes of H3K9me3 levels at gene promoters in AML. Signatures of histone modification patterns are associated with patient prognosis in AML.
Collapse
|
30
|
Jin S, Zhao H, Yi Y, Nakata Y, Kalota A, Gewirtz AM. c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis. J Clin Invest 2010; 120:593-606. [PMID: 20093773 DOI: 10.1172/jci38030] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 11/23/2009] [Indexed: 01/01/2023] Open
Abstract
Mixed-lineage leukemia (MLL) is a proto-oncogene frequently involved in chromosomal translocations associated with acute leukemia. These chromosomal translocations commonly result in MLL fusion proteins that dysregulate transcription. Recent data suggest that the MYB proto-oncogene, which is an important regulator of hematopoietic cell development, has a role in leukemogenesis driven by the MLL-ENL fusion protein, but exactly how is unclear. Here we have demonstrated that c-Myb is recruited to the MLL histone methyl transferase complex by menin, a protein important for MLL-associated leukemic transformation, and that it contributes substantially to MLL-mediated methylation of histone H3 at lysine 4 (H3K4). Silencing MYB in human leukemic cell lines and primary patient material evoked a global decrease in H3K4 methylation, an unexpected decrease in HOXA9 and MEIS1 gene expression, and decreased MLL and menin occupancy in the HOXA9 gene locus. This decreased occupancy was associated with a diminished ability of an MLL-ENL fusion protein to transform normal mouse hematopoietic cells. Previous studies have shown that MYB expression is regulated by Hoxa9 and Meis1, indicating the existence of an autoregulatory feedback loop. The finding that c-Myb has the ability to direct epigenetic marks, along with its participation in an autoregulatory feedback loop with genes known to transform hematopoietic cells, lends mechanistic and translationally relevant insight into its role in MLL-associated leukemogenesis.
Collapse
Affiliation(s)
- Shenghao Jin
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
31
|
Wilczek C, Chayka O, Plachetka A, Klempnauer KH. Myb-induced chromatin remodeling at a dual enhancer/promoter element involves non-coding rna transcription and is disrupted by oncogenic mutations of v-myb. J Biol Chem 2010; 284:35314-24. [PMID: 19841477 DOI: 10.1074/jbc.m109.066175] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The oncogene v-myb of avian myeloblastosis virus (AMV) encodes a transcription factor (v-Myb) that transforms myelomonocytic cells by deregulating the expression of specific target genes. v-myb has acquired its oncogenic potential by truncation as well as by a number of point mutations of its cellular progenitor c-myb. As a result of these changes, the target gene spectrum v-Myb differs from that of c-Myb. We recently showed that the chicken mim-1 gene, a c-Myb target gene that is not activated by v-Myb harbors a powerful cell type-specific and Myb-inducible enhancer in addition to a Myb-responsive promoter. We now show that Myb-dependent activation of the mim-1 gene is accompanied by extensive remodeling of the nucleosomal architecture at the enhancer. We found that the mim-1 enhancer region also harbors a promoter whose activity is stimulated by Myb and which directs the transcription of an apparently non-coding RNA. Furthermore, our data show that the oncogenic mutations of AMV have disrupted the ability of v-Myb to induce remodeling of chromatin structure at the mim-1 enhancer. Together, our results demonstrate for the first time directly that Myb induces alterations of the nucleosomal organization at a relevant target site and provide new insight into the functional consequences of the oncogenic amino acid substitutions.
Collapse
Affiliation(s)
- Carola Wilczek
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
32
|
New Insights into the Roles of Molecular Chaperones in Chlamydomonas and Volvox. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:75-113. [DOI: 10.1016/b978-0-12-381047-2.00002-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Pattabiraman DR, Sun J, Dowhan DH, Ishii S, Gonda TJ. Mutations in Multiple Domains of c-Myb Disrupt Interaction with CBP/p300 and Abrogate Myeloid Transforming Ability. Mol Cancer Res 2009; 7:1477-86. [DOI: 10.1158/1541-7786.mcr-09-0070] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Baker AM, Fu Q, Hayward W, Lindsay SM, Fletcher TM. The Myb/SANT domain of the telomere-binding protein TRF2 alters chromatin structure. Nucleic Acids Res 2009; 37:5019-31. [PMID: 19531742 PMCID: PMC2731900 DOI: 10.1093/nar/gkp515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 01/30/2023] Open
Abstract
Eukaryotic DNA is packaged into chromatin, which regulates genome activities such as telomere maintenance. This study focuses on the interactions of a myb/SANT DNA-binding domain from the telomere-binding protein, TRF2, with reconstituted telomeric nucleosomal array fibers. Biophysical characteristics of the factor-bound nucleosomal arrays were determined by analytical agarose gel electrophoresis (AAGE) and single molecules were visualized by atomic force microscopy (AFM). The TRF2 DNA-binding domain (TRF2 DBD) neutralized more negative charge on the surface of nucleosomal arrays than histone-free DNA. Binding of TRF2 DBD at lower concentrations increased the radius and conformational flexibility, suggesting a distortion of the fiber structure. Additional loading of TRF2 DBD onto the nucleosomal arrays reduced the flexibility and strongly blocked access of micrococcal nuclease as contour lengths shortened, consistent with formation of a unique, more compact higher-order structure. Mirroring the structural results, TRF2 DBD stimulated a strand invasion-like reaction, associated with telomeric t-loops, at lower concentrations while inhibiting the reaction at higher concentrations. Full-length TRF2 was even more effective at stimulating this reaction. The TRF2 DBD had less effect on histone-free DNA structure and did not stimulate the t-loop reaction with this substrate, highlighting the influence of chromatin structure on the activities of DNA-binding proteins.
Collapse
Affiliation(s)
- Asmaa M. Baker
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33101-6129 and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Qiang Fu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33101-6129 and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - William Hayward
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33101-6129 and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Stuart M. Lindsay
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33101-6129 and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Terace M. Fletcher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33101-6129 and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
35
|
Pappas V, Miller SM. Functional analysis of the Volvox carteri asymmetric division protein GlsA. Mech Dev 2009; 126:842-51. [PMID: 19646527 DOI: 10.1016/j.mod.2009.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 07/17/2009] [Accepted: 07/23/2009] [Indexed: 12/19/2022]
Abstract
The Zuotin-family J protein chaperone GlsA is essential for the asymmetric divisions that establish germ and somatic cell initials during embryogenesis in the green alga Volvox carteri, but it is not known on what cellular process GlsA acts to carry out this function. Most GlsA protein is nuclear, and GlsA possesses two SANT domains, suggesting that GlsA may function as a transcriptional regulator. On the other hand, close homologs from yeast and mice are ribosome-associated factors that regulate translation fidelity, implying GlsA might also regulate translation. Here we set out to gain additional evidence regarding the function of GlsA, specifically with respect to its possible involvement in transcription and translation. We found that like zuotin mutants, glsA mutants are ultrasensitive to both cold and to the ribosome-binding aminoglycoside antibiotic paromomycin, so some fraction of GlsA is likely to be ribosome associated. We also found that GlsA co-immunoprecipitates with histones and that this interaction is dependent on the presence of intact SANT domains. Through rescue experiments using transgenes that encode GlsA variants, we determined that the growth and asymmetric division defects of the glsA mutant are separable-a GlsA variant that rescued the growth defects did not completely rescue the asymmetric division phenotype. Considered in total, our results suggest that GlsA acts both at the level of translation and transcription, but the function that is essential for tolerance to paromomycin and cold is not sufficient for asymmetric cell division.
Collapse
Affiliation(s)
- Valeria Pappas
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | |
Collapse
|
36
|
Transcription factor C/EBPbeta isoform ratio regulates osteoclastogenesis through MafB. EMBO J 2009; 28:1769-81. [PMID: 19440205 PMCID: PMC2685610 DOI: 10.1038/emboj.2009.127] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/03/2009] [Indexed: 01/06/2023] Open
Abstract
Disequilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts is central to many bone diseases. Here, we show that dysregulated expression of translationally controlled isoforms of CCAAT/enhancer-binding protein β (C/EBPβ) differentially affect bone mass. Alternative translation initiation that is controlled by the mammalian target of rapamycin (mTOR) pathway generates long transactivating (LAP*, LAP) and a short repressive (LIP) isoforms from a single C/EBPβ transcript. Rapamycin, an inhibitor of mTOR signalling increases the ratio of LAP over LIP and inhibits osteoclastogenesis in wild type (WT) but not in C/EBPβ null (c/ebpβ−/−) or in LIP knock-in (L/L) osteoclast precursors. C/EBPβ mutant mouse strains exhibit increased bone resorption and attenuated expression of MafB, a negative regulator of osteoclastogenesis. Ectopic expression of LAP and LIP in monocytes differentially affect the MafB promoter activity, MafB gene expression and dramatically affect osteoclastogenesis. These data show that mTOR regulates osteoclast formation by modulating the C/EBPβ isoform ratio, which in turn affects osteoclastogenesis by regulating MafB expression.
Collapse
|
37
|
Nucleosome remodeling and transcriptional repression are distinct functions of Isw1 in Saccharomyces cerevisiae. Mol Cell Biol 2009; 29:2419-30. [PMID: 19273607 DOI: 10.1128/mcb.01050-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SANT domain is a nucleosome recognition module found in transcriptional regulatory proteins, including chromatin-modifying enzymes. It shows high functional degeneracy between species, varying in sequence and copy number. Here, we investigate functions in vivo associated with two SANT motifs, SANT and SLIDE, in the Saccharomyces cerevisiae Isw1 chromatin-remodeling ATPase. We show that differences in the primary structures of the SANT and SLIDE domains in yeast and Drosophila melanogaster reflect their different functions. In yeast, the SLIDE domain is required for histone interactions, while this is a function of the SANT domain in flies. In yeast, both motifs are required for optimal association with chromatin and for formation of the Isw1b complex (Isw1, Ioc2, and Ioc4). Moreover, nucleosome remodeling at the MET16 locus is defective in strains lacking the SANT or SLIDE domain. In contrast, the SANT domain is dispensable for the interaction between Isw1 and Ioc3 in the Isw1a complex. We show that, although defective in nucleosome remodeling, Isw1 lacking the SANT domain is able to repress transcription initiation at the MET16 promoter. Thus, chromatin remodeling and transcriptional repression are distinct activities of Isw1.
Collapse
|
38
|
Houseley J, Rubbi L, Grunstein M, Tollervey D, Vogelauer M. A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol Cell 2009; 32:685-95. [PMID: 19061643 DOI: 10.1016/j.molcel.2008.09.027] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 09/03/2008] [Accepted: 11/14/2008] [Indexed: 01/22/2023]
Abstract
The extensively studied yeast GAL1-10 gene cluster is tightly regulated by environmental sugar availability. Unexpectedly, under repressive conditions the 3' region of the GAL10 coding sequence is trimethylated by Set1 on histone H3 K4, normally characteristic of 5' regions of actively transcribed genes. This reflects transcription of a long noncoding RNA (GAL10-ncRNA) that is reciprocal to GAL1 and GAL10 mRNAs and driven by the DNA-binding protein Reb1. Point mutations in predicted Reb1-binding sites abolished Reb1 binding and ncRNA synthesis. The GAL10-ncRNA is transcribed approximately once every 50 min and targeted for degradation by the TRAMP and exosome complexes, resulting in low steady-state levels (approximately one molecule per 14 cells). GAL10-ncRNA transcription recruits the methyltransferase Set2 and histone deacetylation activities in cis, leading to stable changes in chromatin structure. These chromatin modifications act principally through the Rpd3S complex to aid glucose repression of GAL1-10 at physiologically relevant sugar concentrations.
Collapse
Affiliation(s)
- Jonathan Houseley
- Wellcome Trust Centre for Cell Biology, Institute for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | | | |
Collapse
|
39
|
The double-histone-acetyltransferase complex ATAC is essential for mammalian development. Mol Cell Biol 2008; 29:1176-88. [PMID: 19103755 DOI: 10.1128/mcb.01599-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acetylation of the histone tails, catalyzed by histone acetyltransferases (HATs), is a well-studied process that contributes to transcriptionally active chromatin states. Here we report the characterization of a novel mammalian HAT complex, which contains the two acetyltransferases GCN5 and ATAC2 as well as other proteins linked to chromatin metabolism. This multisubunit complex has a similar but distinct subunit composition to that of the Drosophila ADA2A-containing complex (ATAC). Recombinant ATAC2 has a weak HAT activity directed to histone H4. Moreover, depletion of ATAC2 results in the disassembly of the complex, indicating that ATAC2 not only carries out an enzymatic function but also plays an architectural role in the stability of mammalian ATAC. By targeted disruption of the Atac2 locus in mice, we demonstrate for the first time the essential role of the ATAC complex in mammalian development, histone acetylation, cell cycle progression, and prevention of apoptosis during embryogenesis.
Collapse
|
40
|
Ko ER, Ko D, Chen C, Lipsick JS. A conserved acidic patch in the Myb domain is required for activation of an endogenous target gene and for chromatin binding. Mol Cancer 2008; 7:77. [PMID: 18840288 PMCID: PMC2572630 DOI: 10.1186/1476-4598-7-77] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 10/07/2008] [Indexed: 01/02/2023] Open
Abstract
The c-Myb protein is a transcriptional regulator initially identified by homology to the v-Myb oncoprotein, and has since been implicated in human cancer. The most highly conserved portion of the c-Myb protein is the DNA-binding domain which consists of three imperfect repeats. Many other proteins contain one or more Myb-related domains, including a number of proteins that do not bind directly to DNA. We performed a phylogenetic analysis of diverse classes of Myb-related domains and discovered a highly conserved patch of acidic residues common to all Myb-related domains. These acidic residues are positioned in the first of three alpha-helices within each of the three repeats that comprise the c-Myb DNA-binding domain. Interestingly, these conserved acidic residues are present on a surface of the protein which is distinct from that which binds to DNA. Alanine mutagenesis revealed that the acidic patch of the third c-Myb repeat is essential for transcriptional activity, but neither for nuclear localization nor DNA-binding. Instead, these acidic residues are required for efficient chromatin binding and interaction with the histone H4 N-terminal tail.
Collapse
Affiliation(s)
- Emily Ray Ko
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA.
| | | | | | | |
Collapse
|
41
|
Mechanistic insights into replication termination as revealed by investigations of the Reb1-Ter3 complex of Schizosaccharomyces pombe. Mol Cell Biol 2008; 28:6844-57. [PMID: 18794373 DOI: 10.1128/mcb.01235-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Relatively little is known about the interaction of eukaryotic replication terminator proteins with the cognate termini and the replication termination mechanism. Here, we report a biochemical analysis of the interaction of the Reb1 terminator protein of Schizosaccharomyces pombe, which binds to the Ter3 site present in the nontranscribed spacers of ribosomal DNA, located in chromosome III. We show that Reb1 is a dimeric protein and that the N-terminal dimerization domain of the protein is dispensable for replication termination. Unlike its mammalian counterpart Ttf1, Reb1 did not need an accessory protein to bind to Ter3. The two myb/SANT domains and an adjacent, N-terminal 154-amino-acid-long segment (called the myb-associated domain) were both necessary and sufficient for optimal DNA binding in vitro and fork arrest in vivo. The protein and its binding site Ter3 were unable to arrest forks initiated in vivo from ars of Saccharomyces cerevisiae in the cell milieu of the latter despite the facts that the protein retained the proper affinity of binding, was located in vivo at the Ter site, and apparently was not displaced by the "sweepase" Rrm3. These observations suggest that replication fork arrest is not an intrinsic property of the Reb1-Ter3 complex.
Collapse
|
42
|
Acetylation of EKLF is essential for epigenetic modification and transcriptional activation of the beta-globin locus. Mol Cell Biol 2008; 28:6160-70. [PMID: 18710946 DOI: 10.1128/mcb.00919-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Posttranslational modifications of transcription factors provide alternate protein interaction platforms that lead to varied downstream effects. We have investigated how the acetylation of EKLF plays a role in its ability to alter the beta-like globin locus chromatin structure and activate transcription of the adult beta-globin gene. By establishing an EKLF-null erythroid line whose closed beta-locus chromatin structure and silent beta-globin gene status can be rescued by retroviral infection of EKLF, we demonstrate the importance of EKLF acetylation at lysine 288 in the recruitment of CBP to the locus, modification of histone H3, occupancy by EKLF, opening of the chromatin structure, and transcription of adult beta-globin. We also find that EKLF helps to coordinate this process by the specific association of its zinc finger domain with the histone H3 amino terminus. Although EKLF interacts equally well with H3.1 and H3.3, we find that only H3.3 is enriched at the adult beta-globin promoter. These data emphasize the critical nature of lysine acetylation in transcription factor activity and enable us to propose a model of how modified EKLF integrates coactivators, chromatin remodelers, and nucleosomal components to alter epigenetic chromatin structure and stimulate transcription.
Collapse
|
43
|
Effects of the SANT domain of tension-induced/inhibited proteins (TIPs), novel partners of the histone acetyltransferase p300, on p300 activity and TIP-6-induced adipogenesis. Mol Cell Biol 2008; 28:6358-72. [PMID: 18710950 DOI: 10.1128/mcb.00333-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously identified a set of transcription regulators, referred to as TIPs (tension-induced/inhibited proteins), with a role in myogenic versus adipogenic differentiation. Here we report that the TIP family comprises eight isoforms, all bearing a SANT (switching-defective protein 3, adaptor 2, nuclear receptor corepressor, and transcription factor IIIB) domain and some of them presenting S-adenosyl-l-methionine (SAM) and nuclear receptor box (NRB) motifs, all characteristic of histone-modifying enzymatic complexes. TIPs have SANT-dependent, p300-mediated histone acetyltransferase (HAT) activity. Ectopic TIP-6 (SANT(+) SAM(-) NRB(-)) but not TIP-6DeltaSANT induced de novo PPARgamma2-mediated adipogenic gene expression in NIH 3T3 cells and promoted preadipocyte differentiation into fat cells. TIP-6 was also involved in mediating hormonally/biochemically induced adipogenic differentiation of 3T3-L1 cells. Furthermore, TIP-6 was identified in adipose tissue in vivo. TIP-6 bound directly and indirectly to p300 and histone H4 (H4). Deletion of the SANT domain did not abolish TIP-6 interaction with p300 and H4 but eliminated direct TIP-6 binding to p300. Chromatin immunoprecipitation assays showed the recruitment of TIP-6, TIP-6DeltaSANT, and p300 to the PPARgamma2 promoter, but H3/H4 acetylation occurred only when p300 was directly associated with TIP-6. These studies demonstrated the importance of TIPs in the recruitment of p300 to specific promoters and in the regulation of p300 HAT activity through the involvement of the SANT domain. Furthermore, we identified TIP-6 as a new member of the adipogenic cascade.
Collapse
|
44
|
Greig KT, Carotta S, Nutt SL. Critical roles for c-Myb in hematopoietic progenitor cells. Semin Immunol 2008; 20:247-56. [PMID: 18585056 DOI: 10.1016/j.smim.2008.05.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Accepted: 05/14/2008] [Indexed: 11/16/2022]
Abstract
While it has long been known that the transcription factor c-Myb is an essential regulator of hematopoiesis, its precise molecular targets have remained elusive. Cell line studies suggest that c-Myb promotes proliferation and at the same time inhibits differentiation, however the early lethality of c-Myb deficient embryos precluded analysis of its role in adult hematopoiesis. Here we review insights derived from recently developed mouse models of c-Myb deficiency that are viable as adults. These studies reveal a complex array of functions for c-Myb in multiple hematopoietic cell types that will redefine our understanding of this crucial transcription factor.
Collapse
Affiliation(s)
- Kylie T Greig
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | |
Collapse
|
45
|
Ivanova O, Braas D, Klempnauer KH. Oncogenic point mutations in the Myb DNA-binding domain alter the DNA-binding properties of Myb at a physiological target gene. Nucleic Acids Res 2007; 35:7237-47. [PMID: 17959653 PMCID: PMC2175353 DOI: 10.1093/nar/gkm675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The oncoprotein v-Myb of avian myeloblastosis virus (AMV) transforms myelomonocytic cells by deregulating specific target genes. Previous work has shown that the oncogenic potential of v-Myb was activated by truncation of N- and C-terminal sequences of c-Myb and was further increased by amino acid substitutions in the DNA-binding domain and other parts of the protein. We have analyzed the activation of the chicken lysozyme gene which is strongly activated by c-Myb but not by its oncogenic counterpart v-Myb. We report that Myb acts on two different cis-regulatory elements, the promoter and an enhancer located upstream of the gene. Interestingly, the activation of the enhancer was abolished by the oncogenic amino acid substitutions. We demonstrated that a single Myb-binding site is responsible for the activation of the lysozyme enhancer by Myb and showed that the v-Myb protein of AMV was unable to bind to this site. Our data demonstrate for the first time that oncogenic activation of Myb alters its DNA-binding specificity at a physiological Myb target gene.
Collapse
Affiliation(s)
- Olga Ivanova
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 2, D-48149 Münster, Germany
| | | | | |
Collapse
|
46
|
Hooper J, Maurice D, Argent-Katwala MJG, Weston K. Myb proteins regulate expression of histone variant H2A.Z during thymocyte development. Immunology 2007; 123:282-9. [PMID: 17931383 DOI: 10.1111/j.1365-2567.2007.02697.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The c-myb gene encodes a transcription factor required for the normal development of T cells in the thymus, and for subsequent peripheral T-cell activation and survival. However, the profile of genes known to be transcriptionally regulated by c-Myb in T cells does not adequately explain the pleiotrophic nature of the effects of c-Myb. We present here a detailed molecular characterization of the regulation of a novel target gene, the histone variant H2A.Z. We show that c-Myb is able to bind to and activate the H2A.Z promoter in T cells both in vitro and in vivo, and present evidence that perturbation of Myb activity during T-cell development results in reduced H2A.Z expression. As H2A.Z is absolutely required for the early stages of mammalian development, and plays essential roles in the regulation of chromatin structure in gene promoters in yeast, its regulation by c-Myb is likely to be of some importance during T-cell development.
Collapse
Affiliation(s)
- Joel Hooper
- Institute of Cancer Research, CRUK Centre for Cell and Molecular Biology, London, UK
| | | | | | | |
Collapse
|
47
|
Dang W, Bartholomew B. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol Cell Biol 2007; 27:8306-17. [PMID: 17908792 PMCID: PMC2169183 DOI: 10.1128/mcb.01351-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATP-dependent chromatin remodeling has an important role in the regulation of cellular differentiation and development. For the first time, a topological view of one of these complexes has been revealed, by mapping the interactions of the catalytic subunit Isw2 with nucleosomal and extranucleosomal DNA in the complex with all four subunits of ISW2 bound to nucleosomes. Different domains of Isw2 were shown to interact with the nucleosome near the dyad axis, another near the entry site of the nucleosome, and another with extranucleosomal DNA. The conserved DEXD or ATPase domain was found to contact the superhelical location 2 (SHL2) of the nucleosome, providing a direct physical connection of ATP hydrolysis with this region of nucleosomes. The C terminus of Isw2, comprising the SLIDE (SANT-like domain) and HAND domains, was found to be associated with extranucleosomal DNA and the entry site of nucleosomes. It is thus proposed that the C-terminal domains of Isw2 are involved in anchoring the complex to nucleosomes through their interactions with linker DNA and that they facilitate the movement of DNA along the surface of nucleosomes.
Collapse
Affiliation(s)
- Weiwei Dang
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901-4413, USA
| | | |
Collapse
|
48
|
Iyer LM, Anantharaman V, Wolf MY, Aravind L. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int J Parasitol 2007; 38:1-31. [PMID: 17949725 DOI: 10.1016/j.ijpara.2007.07.018] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/26/2007] [Accepted: 07/30/2007] [Indexed: 11/18/2022]
Abstract
Comparative genomics of parasitic protists and their free-living relatives are profoundly impacting our understanding of the regulatory systems involved in transcription and chromatin dynamics. While some parts of these systems are highly conserved, other parts are rapidly evolving, thereby providing the molecular basis for the variety in the regulatory adaptations of eukaryotes. The gross number of specific transcription factors and chromatin proteins are positively correlated with proteome size in eukaryotes. However, the individual types of specific transcription factors show an enormous variety across different eukaryotic lineages. The dominant families of specific transcription factors even differ between sister lineages, and have been shaped by gene loss and lineage-specific expansions. Recognition of this principle has helped in identifying the hitherto unknown, major specific transcription factors of several parasites, such as apicomplexans, Entamoeba histolytica, Trichomonas vaginalis, Phytophthora and ciliates. Comparative analysis of predicted chromatin proteins from protists allows reconstruction of the early evolutionary history of histone and DNA modification, nucleosome assembly and chromatin-remodeling systems. Many key catalytic, peptide-binding and DNA-binding domains in these systems ultimately had bacterial precursors, but were put together into distinctive regulatory complexes that are unique to the eukaryotes. In the case of histone methylases, histone demethylases and SWI2/SNF2 ATPases, proliferation of paralogous families followed by acquisition of novel domain architectures, seem to have played a major role in producing a diverse set of enzymes that create and respond to an epigenetic code of modified histones. The diversification of histone acetylases and DNA methylases appears to have proceeded via repeated emergence of new versions, most probably via transfers from bacteria to different eukaryotic lineages, again resulting in lineage-specific diversity in epigenetic signals. Even though the key histone modifications are universal to eukaryotes, domain architectures of proteins binding post-translationally modified-histones vary considerably across eukaryotes. This indicates that the histone code might be "interpreted" differently from model organisms in parasitic protists and their relatives. The complexity of domain architectures of chromatin proteins appears to have increased during eukaryotic evolution. Thus, Trichomonas, Giardia, Naegleria and kinetoplastids have relatively simple domain architectures, whereas apicomplexans and oomycetes have more complex architectures. RNA-dependent post-transcriptional silencing systems, which interact with chromatin-level regulatory systems, show considerable variability across parasitic protists, with complete loss in many apicomplexans and partial loss in Trichomonas vaginalis. This evolutionary synthesis offers a robust scaffold for future investigation of transcription and chromatin structure in parasitic protists.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
49
|
Horton JR, Elgar SJ, Khan SI, Zhang X, Wade PA, Cheng X. Structure of the SANT domain from the Xenopus chromatin remodeling factor ISWI. Proteins 2007; 67:1198-202. [PMID: 17377988 PMCID: PMC2688785 DOI: 10.1002/prot.21352] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- John R. Horton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Stuart J. Elgar
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| | - Seema I. Khan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Paul A. Wade
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Correspondence to: Xiaodong Cheng, Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA. E-mail:
| |
Collapse
|
50
|
Saether T, Berge T, Ledsaak M, Matre V, Alm-Kristiansen AH, Dahle O, Aubry F, Gabrielsen OS. The chromatin remodeling factor Mi-2alpha acts as a novel co-activator for human c-Myb. J Biol Chem 2007; 282:13994-4005. [PMID: 17344210 DOI: 10.1074/jbc.m700755200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The c-Myb protein belongs to a group of early hematopoietic transcription factors that are important for progenitor generation and proliferation. These factors have been hypothesized to participate in establishing chromatin patterns specific for hematopoietic genes. In a two-hybrid screening we identified the chromatin remodeling factor Mi-2alpha as an interaction partner for human c-Myb. The main interacting domains were mapped to the N-terminal region of Mi-2alpha and the DNA-binding domain of c-Myb. Surprisingly, functional analysis revealed that Mi-2alpha, previously studied as a subunit in the NuRD co-repressor complex, enhanced c-Myb-dependent reporter activation. Consistently, knock-down of endogenous Mi-2alpha in c-Myb-expressing K562 cells, led to down-regulation of the c-Myb target genes NMU and ADA. When wild-type and helicase-dead Mi-2alpha were compared, the Myb-Mi-2alpha co-activation appeared to be independent of the ATPase/DNA helicase activity of Mi-2alpha. The rationale for the unexpected co-activator function seems to lie in a dual function of Mi-2alpha, by which this factor is able to repress transcription in a helicase-dependent and activate in a helicase-independent fashion, as revealed by Gal4-tethering experiments. Interestingly, desumoylation of c-Myb potentiated the Myb-Mi-2alpha transactivational co-operation, as did co-transfection with p300.
Collapse
Affiliation(s)
- Thomas Saether
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|