1
|
Anger R, Pieulle L, Shahin M, Valette O, Le Guenno H, Kosta A, Pelicic V, Fronzes R. Structure of a heteropolymeric type 4 pilus from a monoderm bacterium. Nat Commun 2023; 14:7143. [PMID: 37932265 PMCID: PMC10628169 DOI: 10.1038/s41467-023-42872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
Type 4 pili (T4P) are important virulence factors, which belong to a superfamily of nanomachines ubiquitous in prokaryotes, called type 4 filaments (T4F). T4F are defined as helical polymers of type 4 pilins. Recent advances in cryo-electron microscopy (cryo-EM) led to structures of several T4F, revealing that the long N-terminal α-helix (α1) - the trademark of pilins - packs in the centre of the filaments to form a hydrophobic core. In diderm bacteria - all available bacterial T4F structures are from diderm species - a portion of α1 is melted (unfolded). Here we report that this architecture is conserved in phylogenetically distant monoderm species by determining the structure of Streptococcus sanguinis T4P. Our 3.7 Å resolution cryo-EM structure of S. sanguinis heteropolymeric T4P and the resulting full atomic model including all minor pilins highlight universal features of bacterial T4F and have widespread implications in understanding T4F biology.
Collapse
Affiliation(s)
- Robin Anger
- Institut Européen de Chimie et Biologie, Université de Bordeaux-CNRS (UMR 5234), Pessac, France
| | - Laetitia Pieulle
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS (UMR 7283), Marseille, France
| | - Meriam Shahin
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Odile Valette
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS (UMR 7283), Marseille, France
| | - Hugo Le Guenno
- Plateforme de Microscopie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, Marseille, France
| | - Artemis Kosta
- Plateforme de Microscopie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, Marseille, France
| | - Vladimir Pelicic
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS (UMR 7283), Marseille, France.
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.
| | - Rémi Fronzes
- Institut Européen de Chimie et Biologie, Université de Bordeaux-CNRS (UMR 5234), Pessac, France.
| |
Collapse
|
2
|
Pelicic V. Mechanism of assembly of type 4 filaments: everything you always wanted to know (but were afraid to ask). MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36947586 DOI: 10.1099/mic.0.001311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Type 4 filaments (T4F) are a superfamily of filamentous nanomachines - virtually ubiquitous in prokaryotes and functionally versatile - of which type 4 pili (T4P) are the defining member. T4F are polymers of type 4 pilins, assembled by conserved multi-protein machineries. They have long been an important topic for research because they are key virulence factors in numerous bacterial pathogens. Our poor understanding of the molecular mechanisms of T4F assembly is a serious hindrance to the design of anti-T4F therapeutics. This review attempts to shed light on the fundamental mechanistic principles at play in T4F assembly by focusing on similarities rather than differences between several (mostly bacterial) T4F. This holistic approach, complemented by the revolutionary ability of artificial intelligence to predict protein structures, led to an intriguing mechanistic model of T4F assembly.
Collapse
Affiliation(s)
- Vladimir Pelicic
- Laboratoire de Chimie Bactérienne, UMR 7283 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
3
|
Hounmanou YMG, Sit B, Fakoya B, Waldor MK, Dalsgaard A. Genomic and Phenotypic Insights for Toxigenic Clinical Vibrio cholerae O141. Emerg Infect Dis 2022; 28:617-624. [PMID: 35202520 PMCID: PMC8888207 DOI: 10.3201/eid2803.210715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Vibrio cholerae remains a major public health threat worldwide, causing millions of cholera cases each year. Although much is known about the evolution and pathogenicity of the O1/O139 serogroups of V. cholerae, information is lacking on the molecular epidemiology of non‒O1/O139 strains isolated from patients who have diarrheal illnesses. We performed whole-genome sequence analysis and in vivo infections to investigate characteristics of V. cholerae O141 isolated from sporadic diarrheal cases in 4 countries. The strains formed a distinct phylogenetic clade distinguishable from other serogroups and a unique multilocus sequence type 42, but interstrain variation suggests that O141 isolates are not clonal. These isolates encode virulence factors including cholera toxin and the toxin-coregulated pilus, as well as a type 3 secretion system. They had widely variable capacities for intestinal colonization in the infant mouse model. We propose that O141 isolates comprise a distinct clade of V. cholerae non‒O1/O139, and their continued surveillance is warranted.
Collapse
|
4
|
Kumar A, Das B, Kumar N. Vibrio Pathogenicity Island-1: The Master Determinant of Cholera Pathogenesis. Front Cell Infect Microbiol 2020; 10:561296. [PMID: 33123494 PMCID: PMC7574455 DOI: 10.3389/fcimb.2020.561296] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
Cholera is an acute secretory diarrhoeal disease caused by the bacterium Vibrio cholerae. The key determinants of cholera pathogenicity, cholera toxin (CT), and toxin co-regulated pilus (TCP) are part of the genome of two horizontally acquired Mobile Genetic Elements (MGEs), CTXΦ, and Vibrio pathogenicity island 1 (VPI-1), respectively. Besides, V. cholerae genome harbors several others MGEs that provide antimicrobial resistance, metabolic functions, and other fitness traits. VPI-1, one of the most well characterized genomic island (GI), deserved a special attention, because (i) it encodes many of the virulence factors that facilitate development of cholera (ii) it is essential for the acquisition of CTXΦ and production of CT, and (iii) it is crucial for colonization of V. cholerae in the host intestine. Nevertheless, VPI-1 is ubiquitously present in all the epidemic V. cholerae strains. Therefore, to understand the role of MGEs in the evolution of cholera pathogen from a natural aquatic habitat, it is important to understand the VPI-1 encoded functions, their acquisition and possible mode of dissemination. In this review, we have therefore discussed our present understanding of the different functions of VPI-1 those are associated with virulence, important for toxin production and essential for the disease development.
Collapse
Affiliation(s)
- Ashok Kumar
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
5
|
Saldaña-Ahuactzi Z, Rodea GE, Cruz-Córdova A, Rodríguez-Ramírez V, Espinosa-Mazariego K, González-Montalvo MA, Ochoa SA, González-Pedrajo B, Eslava-Campos CA, López-Villegas EO, Hernández-Castro R, Arellano-Galindo J, Patiño-López G, Xicohtencatl-Cortes J. Effects of lng Mutations on LngA Expression, Processing, and CS21 Assembly in Enterotoxigenic Escherichia coli E9034A. Front Microbiol 2016; 7:1201. [PMID: 27536289 PMCID: PMC4971541 DOI: 10.3389/fmicb.2016.01201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity in children under 5 years of age in low- and middle-income countries and a leading cause of traveler's diarrhea worldwide. The ability of ETEC to colonize the intestinal epithelium is mediated by fimbrial adhesins, such as CS21 (Longus). This adhesin is a type IVb pilus involved in adherence to intestinal cells in vitro and bacterial self-aggregation. Fourteen open reading frames have been proposed to be involved in CS21 assembly, hitherto only the lngA and lngB genes, coding for the major (LngA) and minor (LngB) structural subunit, have been characterized. In this study, we investigated the role of the LngA, LngB, LngC, LngD, LngH, and LngP proteins in the assembly of CS21 in ETEC strain E9034A. The deletion of the lngA, lngB, lngC, lngD, lngH, or lngP genes, abolished CS21 assembly in ETEC strain E9034A and the adherence to HT-29 cells was reduced 90%, compared to wild-type strain. Subcellular localization prediction of CS21 proteins was similar to other well-known type IV pili homologs. We showed that LngP is the prepilin peptidase of LngA, and that ETEC strain E9034A has another peptidase capable of processing LngA, although with less efficiency. Additionally, we present immuno-electron microscopy images to show that the LngB protein could be localized at the tip of CS21. In conclusion, our results demonstrate that the LngA, LngB, LngC, LngD, LngH, and LngP proteins are essential for CS21 assembly, as well as for bacterial aggregation and adherence to HT-29 cells.
Collapse
Affiliation(s)
- Zeus Saldaña-Ahuactzi
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico; Instituto de Fisiología Celular at the Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - Gerardo E Rodea
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico; Instituto de Fisiología Celular at the Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Viridiana Rodríguez-Ramírez
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Karina Espinosa-Mazariego
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Martín A González-Montalvo
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Carlos A Eslava-Campos
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Edgar O López-Villegas
- Laboratorio Central de Microscopía, Departamento de Investigación-SEPI, Instituto Politecnico Nacional Ciudad de México, Mexico
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González" Ciudad de México, Mexico
| | - José Arellano-Galindo
- Departamento de Infectología, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Genaro Patiño-López
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| |
Collapse
|
6
|
Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems. PLoS Pathog 2015; 11:e1005232. [PMID: 26506097 PMCID: PMC4624772 DOI: 10.1371/journal.ppat.1005232] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/25/2015] [Indexed: 11/30/2022] Open
Abstract
Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates a variety of complex processes through a diverse set of c-di-GMP receptor proteins. We have utilized a systematic approach to identify c-di-GMP receptors from the pathogen Vibrio cholerae using the Differential Radial Capillary Action of Ligand Assay (DRaCALA). The DRaCALA screen identified a majority of known c-di-GMP binding proteins in V. cholerae and revealed a novel c-di-GMP binding protein, MshE (VC0405), an ATPase associated with the mannose sensitive hemagglutinin (MSHA) type IV pilus. The known c-di-GMP binding proteins identified by DRaCALA include diguanylate cyclases, phosphodiesterases, PilZ domain proteins and transcription factors VpsT and VpsR, indicating that the DRaCALA-based screen of open reading frame libraries is a feasible approach to uncover novel receptors of small molecule ligands. Since MshE lacks the canonical c-di-GMP-binding motifs, a truncation analysis was utilized to locate the c-di-GMP binding activity to the N-terminal T2SSE_N domain. Alignment of MshE homologs revealed candidate conserved residues responsible for c-di-GMP binding. Site-directed mutagenesis of these candidate residues revealed that the Arg9 residue is required for c-di-GMP binding. The ability of c-di-GMP binding to MshE to regulate MSHA dependent processes was evaluated. The R9A allele, in contrast to the wild type MshE, was unable to complement the ΔmshE mutant for the production of extracellular MshA to the cell surface, reduction in flagella swimming motility, attachment to surfaces and formation of biofilms. Testing homologs of MshE for binding to c-di-GMP identified the type II secretion ATPase of Pseudomonas aeruginosa (PA14_29490) as a c-di-GMP receptor, indicating that type II secretion and type IV pili are both regulated by c-di-GMP. Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates important bacterial functions, including virulence, antibiotic resistance, biofilm formation and cell division. The list of known c-di-GMP receptors is clearly incomplete. Here we utilized a systematic and unbiased biochemical approach to identify c-di-GMP receptors from the 3,812 genes of the Vibrio cholerae genome. Results from this analysis identified most known c-di-GMP receptors as well as MshE, a protein not known to interact with c-di-GMP. The c-di-GMP binding site was identified at the N-terminus of MshE and requires a conserved arginine residue in the 9th position. MshE is the ATPase that powers the secretion of the MshA pili onto the surface of the bacteria. We show that c-di-GMP binding to MshE is required for MshA export and the function of the pili in attachment and biofilm formation. ATPases responsible for related processes such as type IV pili and type II secretion were also tested for c-di-GMP binding, which identified the P. aeruginosa ATPase PA14_29490 as another c-di-GMP binding protein. These findings reveal a new class of c-di-GMP receptor and raise the possibility that c-di-GMP regulate membrane complexes through direct interaction with related type II secretion and type IV pili ATPases.
Collapse
|
7
|
Kolappan S, Ng D, Yang G, Harn T, Craig L. Crystal Structure of the Minor Pilin CofB, the Initiator of CFA/III Pilus Assembly in Enterotoxigenic Escherichia coli. J Biol Chem 2015; 290:25805-18. [PMID: 26324721 DOI: 10.1074/jbc.m115.676106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 01/04/2023] Open
Abstract
Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system.
Collapse
Affiliation(s)
- Subramania Kolappan
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Dixon Ng
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Guixiang Yang
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Tony Harn
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lisa Craig
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
8
|
Affiliation(s)
- Alain Filloux
- Alain Filloux, MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; E-mail:
| |
Collapse
|
9
|
Berry JL, Pelicic V. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol Rev 2014; 39:134-54. [PMID: 25793961 PMCID: PMC4471445 DOI: 10.1093/femsre/fuu001] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Prokaryotes have engineered sophisticated surface nanomachines that have allowed them to colonize Earth and thrive even in extreme environments. Filamentous machineries composed of type IV pilins, which are associated with an amazing array of properties ranging from motility to electric conductance, are arguably the most widespread since distinctive proteins dedicated to their biogenesis are found in most known species of prokaryotes. Several decades of investigations, starting with type IV pili and then a variety of related systems both in bacteria and archaea, have outlined common molecular and structural bases for these nanomachines. Using type IV pili as a paradigm, we will highlight in this review common aspects and key biological differences of this group of filamentous structures. Using type IV pili as a paradigm, we review common genetic, structural and mechanistic features (many) as well as differences (few) of the exceptionally widespread and functionally versatile prokaryotic nano-machines composed of type IV pilins.
Collapse
Affiliation(s)
- Jamie-Lee Berry
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Vladimir Pelicic
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
10
|
Yuen ASW, Kolappan S, Ng D, Craig L. Structure and secretion of CofJ, a putative colonization factor of enterotoxigenic Escherichia coli. Mol Microbiol 2013; 90:898-918. [PMID: 24106767 DOI: 10.1111/mmi.12407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2013] [Indexed: 01/19/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) colonize the human gut, causing severe cholera-like diarrhoea. ETEC utilize a diverse array of pili and fimbriae for host colonization, including the Type IVb pilus CFA/III. The CFA/III pilus machinery is encoded on the cof operon, which is similar in gene sequence and synteny to the tcp operon that encodes another Type IVb pilus, the Vibrio cholerae toxin co-regulated pilus (TCP). Both pilus operons possess a syntenic gene encoding a protein of unknown function. In V. cholerae, this protein, TcpF, is a critical colonization factor secreted by the TCP apparatus. Here we show that the corresponding ETEC protein, CofJ, is a soluble protein secreted via the CFA/III apparatus. We present a 2.6 Å resolution crystal structure of CofJ, revealing a large β-sandwich protein that bears no sequence or structural homology to TcpF. CofJ has a cluster of exposed hydrophobic side-chains at one end and structural homology to the pore-forming proteins perfringolysin O and α-haemolysin. CofJ binds to lipid vesicles and epithelial cells, suggesting a role in membrane attachment during ETEC colonization.
Collapse
Affiliation(s)
- Alex S W Yuen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | | | | | | |
Collapse
|
11
|
Kolappan S, Craig L. Structure of the cytoplasmic domain of TcpE, the inner membrane core protein required for assembly of the Vibrio cholerae toxin-coregulated pilus. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:513-9. [PMID: 23519659 DOI: 10.1107/s0907444912050330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/10/2012] [Indexed: 11/10/2022]
Abstract
Type IV pili are long thin surface-displayed polymers of the pilin subunit that are present in a diverse group of bacteria. These multifunctional filaments are critical to virulence for pathogens such as Vibrio cholerae, which use them to form microcolonies and to secrete the colonization factor TcpF. The type IV pili are assembled from pilin subunits by a complex inner membrane machinery. The core component of the type IV pilus-assembly platform is an integral inner membrane protein belonging to the GspF superfamily of secretion proteins. These proteins somehow convert chemical energy from ATP hydrolysis by an assembly ATPase on the cytoplasmic side of the inner membrane to mechanical energy for extrusion of the growing pilus filament out of the inner membrane. Most GspF-family inner membrane core proteins are predicted to have N-terminal and central cytoplasmic domains, cyto1 and cyto2, and three transmembrane segments, TM1, TM2 and TM3. Cyto2 and TM3 represent an internal repeat of cyto1 and TM1. Here, the 1.88 Å resolution crystal structure of the cyto1 domain of V. cholerae TcpE, which is required for assembly of the toxin-coregulated pilus, is reported. This domain folds as a monomeric six-helix bundle with a positively charged membrane-interaction face at one end and a hydrophobic groove at the other end that may serve as a binding site for partner proteins in the pilus-assembly complex.
Collapse
|
12
|
Aagesen AM, Häse CC. Sequence analyses of type IV pili from Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. MICROBIAL ECOLOGY 2012; 64:509-524. [PMID: 22383120 DOI: 10.1007/s00248-012-0021-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
Bacterial surface structures called pili have been studied extensively for their role as possible colonization factors. Most sequenced Vibrio genomes predict a variety of pili genes in these organisms, including several types of type IV pili. In particular, the mannose-sensitive hemagglutinin (MSHA) and the PilA pili, also known as the chitin-regulated pilus (ChiRP), are type IVa pili commonly found in Vibrio genomes and have been shown to play a role in the colonization of Vibrio species in the environment and/or host tissue. Here, we report sequence comparisons of two type IVa pilin subunit genes, mshA and pilA, and their corresponding amino acid sequences, for several strains from the three main human pathogenic Vibrio species, V. cholerae, V. parahaemolyticus, and V. vulnificus. We identified specific groupings of these two genes in V. cholerae, whereas V. parahaemolyticus and V. vulnificus strains had no apparent allelic clusters, and these genes were strikingly divergent. These results were compared with other genes from the MSHA and PilA operons as well as another Vibrio pili from the type IVb group, the toxin co-regulated pilus (TCP) from V. cholerae. Our data suggest that a selective pressure exists to cause these strains to vary their MSHA and PilA pilin subunits. Interestingly, V. cholerae strains possessing TCP have the same allele for both mshA and pilA. In contrast, V. cholerae isolates without TCP have polymorphisms in their mshA and pilA sequences similar to what was observed for both V. parahaemolyticus and V. vulnificus. This data suggests a possible linkage between host interactions and maintaining a highly conserved type IV pili sequence in V. cholerae. Although the mechanism underlying this intriguing diversity has yet to be elucidated, our analyses are an important first step towards gaining insights into the various aspects of Vibrio ecology.
Collapse
Affiliation(s)
- Alisha M Aagesen
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
13
|
Li J, Egelman EH, Craig L. Structure of the Vibrio cholerae Type IVb Pilus and stability comparison with the Neisseria gonorrhoeae type IVa pilus. J Mol Biol 2012; 418:47-64. [PMID: 22361030 DOI: 10.1016/j.jmb.2012.02.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 01/08/2023]
Abstract
Type IV pili are multifunctional filaments displayed on many bacterial pathogens. Members of the Type IVa pilus subclass are found on a diverse group of human pathogens, whereas Type IVb pili are found almost exclusively on enteric bacteria. The Type IVa and IVb subclasses are distinguished by differences in the pilin subunits, including the fold of the globular domain. To understand the implications of the distinct pilin folds, we compared the stabilities of pilin subunits and pilus filaments for the Type IVa GC pilus from Neisseria gonorrhoeae and the Type IVb toxin-coregulated pilus (TCP) from Vibrio cholerae. We show that while recombinant TCP pilin is more stable than GC pilin, the GC pili are more resistant to proteolysis, heat and chemical denaturation than TCP, remaining intact in 8 M urea. To understand these differences, we determined the TCP structure by electron microscopy and three-dimensional image reconstruction. TCP have an architecture similar to that of GC pili, with subunits arranged in a right-handed 1-start helix and related by an 8.4-Å axial rise and a 96.8° azimuthal rotation. However, the TCP subunits are not as tightly packed as GC pilins, and the distinct Type IVb pilin fold exposes a segment of the α-helical core of TCP. Hydrophobic interactions dominate for both pilus subtypes, but base stacking by aromatic residues conserved among the Type IVa pilins may contribute to GC pilus stability. The extraordinary stability of GC pili may represent an adaptation of the Type IVa pili to harsh environments and the need to retract against external forces.
Collapse
Affiliation(s)
- Juliana Li
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | | | |
Collapse
|
14
|
Archaeal type IV pilus-like structures—evolutionarily conserved prokaryotic surface organelles. Curr Opin Microbiol 2011; 14:357-63. [DOI: 10.1016/j.mib.2011.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
|
15
|
Hsiao A, Toscano K, Zhu J. Post-transcriptional cross-talk between pro- and anti-colonization pili biosynthesis systems in Vibrio cholerae. Mol Microbiol 2007; 67:849-60. [PMID: 18179420 DOI: 10.1111/j.1365-2958.2007.06091.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pathogen Vibrio cholerae modulates the expression of many genes in order to transition from its environmental reservoir to its niche in the human host. Among these are genes encoding two related Type IV pili, the mannose-sensitive haemagglutinin (MSHA) pilus, which aids V. cholerae persistence in aquatic environments but causes clearance of bacteria by host immune defences, and the toxin co-regulated pilus (TCP) required for colonization. These antagonistic effects are resolved transcriptionally by the regulator ToxT, which represses msh genes while activating tcp genes during infection. We show that these two pili systems are also intertwined post-transcriptionally through the ToxT-regulated pre-pilin peptidase TcpJ. We found that the major MSHA pilin, MshA, was degraded in V. cholerae in a TcpJ-dependent fashion. In a heterologous Escherichia coli system, TcpJ can recognize both MshA and its cognate substrate, the TCP subunit TcpA, but that processing by TcpJ causes the degradation of MshA. Through site-directed mutagenesis and chimeric pilin analysis, we show that this process targets a combination of MshA N-terminal motifs and depends on the proteolytic activity of TcpJ. Moreover, overexpression of tcpJ partially restored the ability of bacteria unable to transcriptionally downregulate msh genes to colonize infant mice. These findings describe co-ordinated proteolysis as a regulatory mechanism in V. cholerae and illustrate this organism's adaptability in the face of dramatic environmental changes.
Collapse
Affiliation(s)
- Ansel Hsiao
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
16
|
Tomich M, Fine DH, Figurski DH. The TadV protein of Actinobacillus actinomycetemcomitans is a novel aspartic acid prepilin peptidase required for maturation of the Flp1 pilin and TadE and TadF pseudopilins. J Bacteriol 2006; 188:6899-914. [PMID: 16980493 PMCID: PMC1595517 DOI: 10.1128/jb.00690-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The tad locus of Actinobacillus actinomycetemcomitans encodes genes for the biogenesis of Flp pili, which allow the bacterium to adhere tenaciously to surfaces and form strong biofilms. Although tad (tight adherence) loci are widespread among bacterial and archaeal species, very little is known about the functions of the individual components of the Tad secretion apparatus. Here we characterize the mechanism by which the pre-Flp1 prepilin is processed to the mature pilus subunit. We demonstrate that the tadV gene encodes a prepilin peptidase that is both necessary and sufficient for proteolytic maturation of Flp1. TadV was also found to be required for maturation of the TadE and TadF pilin-like proteins, which we term pseudopilins. Using site-directed mutagenesis, we show that processing of pre-Flp1, pre-TadE, and pre-TadF is required for biofilm formation. Mutation of a highly conserved glutamic acid residue at position +5 of Flp1, relative to the cleavage site, resulted in a processed pilin that was blocked in assembly. In contrast, identical mutations in TadE or TadF had no effect on biofilm formation, indicating that the mechanisms by which Flp1 pilin and the pseudopilins function are distinct. We also determined that two conserved aspartic acid residues in TadV are critical for function of the prepilin peptidase. Together, our results indicate that the A. actinomycetemcomitans TadV protein is a member of a novel subclass of nonmethylating aspartic acid prepilin peptidases.
Collapse
Affiliation(s)
- Mladen Tomich
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 1516 HHSC, 701 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
17
|
de Bentzmann S, Aurouze M, Ball G, Filloux A. FppA, a novel Pseudomonas aeruginosa prepilin peptidase involved in assembly of type IVb pili. J Bacteriol 2006; 188:4851-60. [PMID: 16788194 PMCID: PMC1483019 DOI: 10.1128/jb.00345-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several subclasses of type IV pili have been described according to the characteristics of the structural prepilin subunit. Whereas molecular mechanisms of type IVa pilus assembly have been well documented for Pseudomonas aeruginosa and involve the PilD prepilin peptidase, no type IVb pili have been described in this microorganism. One subclass of type IVb prepilins has been identified as the Flp prepilin subfamily. Long and bundled Flp pili involved in tight adherence have been identified in Actinobacillus actinomycetemcomitans, for which assembly was due to a dedicated machinery encoded by the tad-rcp locus. A similar flp-tad-rcp locus containing flp, tad, and rcp gene homologues was identified in the P. aeruginosa genome. The function of these genes has been investigated, which revealed their involvement in the formation of extracellular Flp appendages. We also identified a gene (designated by open reading frame PA4295) outside the flp-tad-rcp locus, that we named fppA, encoding a novel prepilin peptidase. This is the second enzyme of this kind found in P. aeruginosa; however, it appears to be truncated and is similar to the C-terminal domain of the previously characterized PilD peptidase. In this study, we show that FppA is responsible for the maturation of the Flp prepilin and belongs to the aspartic acid protease family. We also demonstrate that FppA is required for the assembly of cell surface appendages that we called Flp pili. Finally, we observed an Flp-dependent bacterial aggregation process on the epithelial cell surface and an increased biofilm phenotype linked to Flp pilus assembly.
Collapse
Affiliation(s)
- Sophie de Bentzmann
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-IBSM-UPR9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
18
|
Filloux A. The underlying mechanisms of type II protein secretion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:163-79. [DOI: 10.1016/j.bbamcr.2004.05.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
|
19
|
Kirn TJ, Bose N, Taylor RK. Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol Microbiol 2003; 49:81-92. [PMID: 12823812 DOI: 10.1046/j.1365-2958.2003.03546.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Colonization of the human small intestine by Vibrio cholerae requires the type 4 toxin co-regulated pilus (TCP). Genes encoding the structure and biogenesis functions of TCP are organized within an operon located on the Vibrio Pathogenicity Island (VPI). In an effort to elucidate the functions of proteins involved in TCP biogenesis, in frame deletions of all of the genes within the tcp operon coding for putative pilus biogenesis proteins have been constructed and the resulting mutants characterized with respect to the assembly and function of TCP. As a result of this analysis, we have identified the product of one of these genes, tcpF, as a novel secreted colonization factor. Chromosomal deletion of tcpF yields a mutant that retains in vitro phenotypes associated with the assembly of functional TCP yet is severely attenuated for colonization of the infant mouse intestine. Furthermore, we have determined that the mechanism by which TcpF is translocated across the bacterial outer membrane requires the TCP biogenesis machinery and is independent of the type II extracellular protein secretion (EPS) system. These results suggest a dual role for the TCP biogenesis apparatus in V. cholerae pathogenesis and a novel mechanism of intestinal colonization mediated by a soluble factor.
Collapse
Affiliation(s)
- Thomas J Kirn
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, NH 03755, USA
| | | | | |
Collapse
|
20
|
Townsend SM, Kramer NE, Edwards R, Baker S, Hamlin N, Simmonds M, Stevens K, Maloy S, Parkhill J, Dougan G, Bäumler AJ. Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun 2001; 69:2894-901. [PMID: 11292704 PMCID: PMC98240 DOI: 10.1128/iai.69.5.2894-2901.2001] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2000] [Accepted: 01/29/2001] [Indexed: 12/21/2022] Open
Abstract
Salmonella enterica serotype Typhi differs from nontyphoidal Salmonella serotypes by its strict host adaptation to humans and higher primates. Since fimbriae have been implicated in host adaptation, we investigated whether the serotype Typhi genome contains fimbrial operons which are unique to this pathogen or restricted to typhoidal Salmonella serotypes. This study established for the first time the total number of fimbrial operons present in an individual Salmonella serotype. The serotype Typhi CT18 genome, which has been sequenced by the Typhi Sequencing Group at the Sanger Centre, contained a type IV fimbrial operon, an orthologue of the agf operon, and 12 putative fimbrial operons of the chaperone-usher assembly class. In addition to sef, fim, saf, and tcf, which had been described previously in serotype Typhi, we identified eight new putative chaperone-usher-dependent fimbrial operons, which were termed bcf, sta, stb, ste, std, stc, stg, and sth. Hybridization analysis performed with 16 strains of Salmonella reference collection C and 22 strains of Salmonella reference collection B showed that all eight putative fimbrial operons of serotype Typhi were also present in a number of nontyphoidal Salmonella serotypes. Thus, a simple correlation between host range and the presence of a single fimbrial operon seems at present unlikely. However, the serotype Typhi genome differed from that of all other Salmonella serotypes investigated in that it contained a unique combination of putative fimbrial operons.
Collapse
Affiliation(s)
- S M Townsend
- Department of Medical Microbiology and Immunology, College of Medicine, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Thomas NA, Bardy SL, Jarrell KF. The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol Rev 2001; 25:147-74. [PMID: 11250034 DOI: 10.1111/j.1574-6976.2001.tb00575.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The archaeal flagellum is a unique motility apparatus distinct in composition and likely in assembly from the bacterial flagellum. Gene families comprised of multiple flagellin genes co-transcribed with a number of conserved, archaeal-specific accessory genes have been identified in several archaea. However, no homologues of any bacterial genes involved in flagella structure have yet been identified in any archaeon, including those archaea in which the complete genome sequence has been published. Archaeal flagellins possess a highly conserved hydrophobic N-terminal sequence that is similar to that of type IV pilins and clearly unlike that of bacterial flagellins. Also unlike bacterial flagellins but similar to type IV pilins, archaeal flagellins are initially synthesized with a short leader peptide that is cleaved by a membrane-located peptidase. With recent advances in genetic transfer systems in archaea, knockouts have been reported in several genes involved in flagellation in different archaea. In addition, techniques to isolate flagella with attached hook and anchoring structures have been developed. Analysis of these preparations is under way to identify minor structural components of archaeal flagella. This and the continued isolation and characterization of flagella mutants should lead to significant advances in our knowledge of the composition and assembly of archaeal flagella.
Collapse
Affiliation(s)
- N A Thomas
- Department of Microbiology and Immunology, Queen's University, Kingston, Ont. K7L 3N6, Canada
| | | | | |
Collapse
|
22
|
Ffrench-Constant RH, Waterfield N, Burland V, Perna NT, Daborn PJ, Bowen D, Blattner FR. A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence. Appl Environ Microbiol 2000; 66:3310-29. [PMID: 10919786 PMCID: PMC92150 DOI: 10.1128/aem.66.8.3310-3329.2000] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Photorhabdus luminescens is a pathogenic bacterium that lives in the guts of insect-pathogenic nematodes. After invasion of an insect host by a nematode, bacteria are released from the nematode gut and help kill the insect, in which both the bacteria and the nematodes subsequently replicate. However, the bacterial virulence factors associated with this "symbiosis of pathogens" remain largely obscure. In order to identify genes encoding potential virulence factors, we performed approximately 2,000 random sequencing reads from a P. luminescens W14 genomic library. We then compared the sequences obtained to sequences in existing gene databases and to the Escherichia coli K-12 genome sequence. Here we describe the different classes of potential virulence factors found. These factors include genes that putatively encode Tc insecticidal toxin complexes, Rtx-like toxins, proteases and lipases, colicin and pyocins, and various antibiotics. They also include a diverse array of secretion (e.g., type III), iron uptake, and lipopolysaccharide production systems. We speculate on the potential functions of each of these gene classes in insect infection and also examine the extent to which the invertebrate pathogen P. luminescens shares potential antivertebrate virulence factors. The implications for understanding both the biology of this insect pathogen and links between the evolution of vertebrate virulence factors and the evolution of invertebrate virulence factors are discussed.
Collapse
|
23
|
Stathopoulos C, Hendrixson DR, Thanassi DG, Hultgren SJ, St Geme JW, Curtiss R. Secretion of virulence determinants by the general secretory pathway in gram-negative pathogens: an evolving story. Microbes Infect 2000; 2:1061-72. [PMID: 10967286 DOI: 10.1016/s1286-4579(00)01260-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Secretion of proteins by the general secretory pathway (GSP) is a two-step process requiring the Sec translocase in the inner membrane and a separate substrate-specific secretion apparatus for translocation across the outer membrane. Gram-negative bacteria with pathogenic potential use the GSP to deliver virulence factors into the extracellular environment for interaction with the host. Well-studied examples of virulence determinants using the GSP for secretion include extracellular toxins, pili, curli, autotransporters, and crystaline S-layers. This article reviews our current understanding of the GSP and discusses examples of terminal branches of the GSP which are utilized by factors implicated in bacterial virulence.
Collapse
Affiliation(s)
- C Stathopoulos
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
24
|
McNamara BP, Donnenberg MS. Evidence for specificity in type 4 pilus biogenesis by enteropathogenic Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 3):719-729. [PMID: 10746776 DOI: 10.1099/00221287-146-3-719] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Type 4 fimbriae (pili) are surface appendages that are expressed by many species of Gram-negative bacteria. Previous studies have demonstrated that Pseudomonas aeruginosa can express and assemble pilin subunits from several unrelated species, indicating a common mechanism for biogenesis of type 4 pili whereby structural subunits from one system may be interchanged with those of another. In this study, an isogenic mutant of enteropathogenic Escherichia coli (EPEC) was constructed containing the entire tcpA gene from Vibrio cholerae 0395, which encodes the major structural subunit of the toxin-coregulated pilus (TCP), in place of bfpA, which encodes the major structural subunit of the bundle-forming pilus (BFP). Surprisingly, expression of type 4 pilin structures and the associated phenotype of bacterial autoaggregation in culture media were not observed for cells of the EPEC strain containing tcpA nor for those containing an additional mutation in bfpF, which otherwise is associated with a hyperfimbriate phenotype. In addition, cells of a bfpA mutant EPEC strain containing plasmids designed to express either of two different chimeric type 4 pilin subunits containing segments of BfpA and TcpA also failed to form bacterial aggregates and express type 4 pilin structures. Collectively, these results indicate that the type 4 pilin assembly system of EPEC exhibits specificity with regard to pilin subunit recognition and assembly.
Collapse
Affiliation(s)
- Barry P McNamara
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, 10 South Pine Street, Room 900, Baltimore, MD 21201, USA1
| | - Michael S Donnenberg
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, 10 South Pine Street, Room 900, Baltimore, MD 21201, USA1
| |
Collapse
|
25
|
LaPointe CF, Taylor RK. The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. J Biol Chem 2000; 275:1502-10. [PMID: 10625704 DOI: 10.1074/jbc.275.2.1502] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type 4 prepilins or prepilin-like-proteins are secreted by a wide range of bacterial species and are required for a variety of functions including type 4 pilus formation, toxin and other enzyme secretion, gene transfer, and biofilm formation. A distinctive feature of these proteins is the presence of a specialized leader peptide that is cleaved off by a cognate membrane-bound type 4 prepilin peptidase (TFPP) during the process of secretion. In this report we show that the TFPPs represent a novel family of bilobed aspartate proteases that is unlike any other protease. The active site pairs of aspartic acids of the two TFPPs in Vibrio cholerae are found at positions 125 and 189 of TcpJ and 147 and 212 of VcpD. Corresponding aspartate residues are completely conserved throughout this extensive peptidase family.
Collapse
Affiliation(s)
- C F LaPointe
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
26
|
Taniguchi T, Yasuda Y, Tochikubo K, Yamamoto K, Honda T. The gene encoding the prepilin peptidase involved in biosynthesis of pilus colonization factor antigen III (CFA/III) of human enterotoxigenic Escherichia coli. Microbiol Immunol 1999; 43:853-61. [PMID: 10553678 DOI: 10.1111/j.1348-0421.1999.tb01220.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The assembly of pilus colonization factor antigen III (CFA/III) of human enterotoxigenic Escherichia coli requires the processing of CFA/III major pilin (CofA) by a peptidase, likely another type IV pilus formation system. Western blot analysis of CofA reveals that CofA is produced initially as a 26.5-kDa preform pilin (prepilin) and then processed to 20.5-kDa mature pilin by a prepilin peptidase. This processing is essential for exportation of the CofA from the cytoplasm to the periplasm. In this experiment, the structural gene, cofP, encoding CFA/III prepilin peptidase which cleavages at the Gly-30-Met-31 junction of CofA was identified, and the nucleotide sequence of the gene was determined. CofP consists of 819 bp encoding a 273-amino acid protein with a relative molecular mass of 30,533 Da. CofP is predicted to be localized in the inner membrane based on its hydropathy index. The amino acid sequence of CofP shows a high degree of homology with other prepilin peptidases which play a role in the assembly of type IV pili in several gram-negative bacteria.
Collapse
Affiliation(s)
- T Taniguchi
- Department of Microbiology, Nagoya City University Medical School, Nagoya, Aichi, Japan
| | | | | | | | | |
Collapse
|
27
|
Abstract
Type IV pili (Tfp) mediate the movement of bacteria over surfaces without the use of flagella. These movements are known as social gliding in Myxococcus xanthus and twitching in organisms such as Pseudomonas aeruginosa and Neisseria gonorrhoeae. Tfp are localized polarly. Type IV pilins have a signature N-terminal domain, which forms a coiled-coil with other monomer units to polymerize a pilus fibre. At least 10 more proteins at the base of the fibre are conserved; they are related to the type II secretion system. Movements produced by Tfp range from short, jerky displacements to lengthy, smooth ones. Tfp also participate in cell-cell interactions, pathogenesis, biofilm formation, natural DNA uptake, auto-aggregation of cells and development. What is the means by which Tfp bring about the movement of cells?
Collapse
Affiliation(s)
- D Wall
- Department of Biochemistry, Stanford University School of Medicine, CA 94305, USA.
| | | |
Collapse
|
28
|
Fullner KJ, Mekalanos JJ. Genetic characterization of a new type IV-A pilus gene cluster found in both classical and El Tor biotypes of Vibrio cholerae. Infect Immun 1999; 67:1393-404. [PMID: 10024587 PMCID: PMC96473 DOI: 10.1128/iai.67.3.1393-1404.1999] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Vibrio cholerae genome contains a 5.4-kb pil gene cluster that resembles the Aeromonas hydrophila tap gene cluster and other type IV-A pilus assembly operons. The region consists of five complete open reading frames designated pilABCD and yacE, based on the nomenclature of related genes from Pseudomonas aeruginosa and Escherichia coli K-12. This cluster is present in both classical and El Tor biotypes, and the pilA and pilD genes are 100% conserved. The pilA gene encodes a putative type IV pilus subunit. However, deletion of pilA had no effect on either colonization of infant mice or adherence to HEp-2 cells, demonstrating that pilA does not encode the primary subunit of a pilus essential for these processes. The pilD gene product is similar to other type IV prepilin peptidases, proteins that process type IV signal sequences. Mutational analysis of the pilD gene showed that pilD is essential for secretion of cholera toxin and hemagglutinin-protease, mannose-sensitive hemagglutination (MSHA), production of toxin-coregulated pili, and colonization of infant mice. Defects in these functions are likely due to the lack of processing of N termini of four Eps secretion proteins, four proteins of the MSHA cluster, and TcpB, all of which contain type IV-A leader sequences. Some pilD mutants also showed reduced adherence to HEp-2 cells, but this defect could not be complemented in trans, indicating that the defect may not be directly due to a loss of pilD. Taken together, these data demonstrate the effectiveness of the V. cholerae genome project for rapid identification and characterization of potential virulence factors.
Collapse
Affiliation(s)
- K J Fullner
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
29
|
Liles MR, Edelstein PH, Cianciotto NP. The prepilin peptidase is required for protein secretion by and the virulence of the intracellular pathogen Legionella pneumophila. Mol Microbiol 1999; 31:959-70. [PMID: 10048038 DOI: 10.1046/j.1365-2958.1999.01239.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prepilin peptidases cleave, among other substrates, the leader sequences from prepilin-like proteins that are required for type II protein secretion in Gram-negative bacteria. To begin to assess the importance of type II secretion for the virulence of an intracellular pathogen, we examined the effect of inactivating the prepilin peptidase (pilD) gene of Legionella pneumophila. Although the pilD mutant and its parent grew similarly in bacteriological media, they did differ in colony attributes and recoverability from late stationary phase. Moreover, at least three proteins were absent from the mutant's supernatant, indicating that PilD is necessary for the secretion of Legionella proteins. The absence of both the major secreted protein and a haemolytic activity from the mutant signalled that the L. pneumophila zinc metalloprotease is excreted via type II secretion. Most interestingly, the pilD mutant was greatly impaired in its ability to grow within Hartmannella vermiformis amoebae and the human macrophage-like U937 cells. As reintroduction of pilD into the mutant restored inefectivity and as a mutant lacking type IV pilin replicated like wild type, these data suggested that the intracellular growth of L. pneumophila is promoted by proteins secreted via a type II pathway. Intratracheal inoculation of guinea pigs revealed that the LD50 for the pilD mutant is at least 100-fold greater than that for its parent, and the culturing of bacteria from infected animals showed a rapid clearance of the mutant from the lungs. This is the first study to indicate a role for PilD and type II secretion in intracellular parasitism.
Collapse
Affiliation(s)
- M R Liles
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
30
|
Marsh JW, Taylor RK. Identification of the Vibrio cholerae type 4 prepilin peptidase required for cholera toxin secretion and pilus formation. Mol Microbiol 1998; 29:1481-92. [PMID: 9781884 DOI: 10.1046/j.1365-2958.1998.01031.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cholera toxin secretion is dependent upon the extracellular protein secretion apparatus encoded by the eps gene locus of Vibrio cholerae. Although the eps gene locus encodes several type four prepilin-like proteins, the peptidase responsible for processing these proteins has not been identified. This report describes the identification of a prepilin peptidase from the V. cholerae genomic database by virtue of its homology with the PilD prepilin peptidase of Pseudomonas aeruginosa. Plasmid disruption or deletion of this peptidase gene in either EI Tor or classical V. cholerae O1 biotype strains results in a dramatic decrease in cholera toxin secretion. In the case of the EI Tor biotype mutants, surface expression of the type 4 pilus responsible for mannose-sensitive haemagglutination is abolished. The cloned V. cholerae peptidase processes either EpsI or MshA preproteins when co-expressed in E. coli. Mutation of the V. cholerae peptidase gene also results in a defect in virulence and decreased levels of OmpU. The V. cholerae peptidase gene sequence shows 80% homology with the Vibrio vulnificus VvpD type 4 prepilin peptidase required for pilus assembly and cytolysin secretion in V. vulnificus. Accordingly, the V. cholerae type 4 prepilin peptidase required for pilus assembly and cholera toxin secretion has been designated VcpD.
Collapse
Affiliation(s)
- J W Marsh
- Dartmouth Medical School, Department of Microbiology, Hanover, NH 03755, USA
| | | |
Collapse
|
31
|
Russel M. Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J Mol Biol 1998; 279:485-99. [PMID: 9641973 DOI: 10.1006/jmbi.1998.1791] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A decade ago, Pugsley and colleagues reported the existence of a large region of Klebsiella DNA, distinct from the Klebsiella gene encoding pullulanase, which was necessary for secretion of this enzyme to the cell surface in Escherichia coli (d'Enfert et al., 1987a,b). The pul genes it contained proved to be the tip of an iceberg. The sequences reported before 1992 (d'Enfert et al., 1987a,b; d'Enfert & Pugsley, 1989; Pugsley & Reyss, 1990; Reyss & Pugsley, 1990) included only one gene (pulD) that matched any sequence in the data base; a 220 amino acid residue segment of PulD was 32% identical with a portion of the filamentous phage-encoded protein, pIV. But by the time the sequence of the 18.8 kb DNA fragment that contained the pul genes had been completed (Possot et al., 1992), reports of sets of homologous genes in several species of Gram-negative plant and animal pathogens had appeared. For the most part, these gene clusters were cloned by their ability to complement mutants that produced, but failed to secrete, proteins normally found in the extracellular milieu; when tested, the mutants showed reduced pathogenicity or were totally avirulent. The secreted proteins included hydrolytic enzymes such as cellulase and pectinase from plant pathogens, and proteases and toxins from animal pathogens. The multi-gene family necessary for secretion of these enzymes is now known as the type II system or the main terminal branch (MTB) of the general secretion pathway (GSP). As summarized by Pugsley et al. (1997), the current tally includes type II systems from Klebsiella oxytoca (pul), Erwinia chrysanthemi and carotovora (out), Xanthomonas campestris (xps), Pseudomonas aeruginosa (xcp), Aeromonas hydrophila (exe), and Vibrio cholerae (eps). A second type II system (sps) necessary for deposition of the S-layer on the cell surface in A. hydrophila is more similar to the X. campestris than A. hydrophila genes (Thomas & Trust, 1995). The biggest surprise has been the discovery of a complete set of type II secretion genes in E. coli K12. The E. coli genes are not expressed under normal growth conditions, and a search is underway to find inducing conditions and secretion substrates (Francetic & Pugsley, 1996). Impressive progress has already been made in defining components of the pathway. What remains to be understood in mechanistic detail is how this protein secretion system functions.
Collapse
Affiliation(s)
- M Russel
- Rockefeller University, New York, NY 10021, USA
| |
Collapse
|
32
|
Abstract
Escherichia coli K-12 strains grown at 37 degrees C or 42 degrees C, but not at 30 degrees C, process the precursors of the Neisseria gonorrhoeae type IV pilin PilE and the Klebsiella oxytoca type IV pseudopilin PulG in a manner reminiscent of the prepilin peptidase-dependent processing of these proteins that occurs in these bacteria. Processing of prePulG in Escherichia coli requires a glycine at position -1, as does processing by the cognate prepilin peptidase (PulO), and is unaffected by mutations that inactivate several non-specific proteases. These data suggested that E. coli K-12 has a functional prepilin peptidase, despite the fact that it does not itself appear to express either type IV pilin or pseudopilin genes under the conditions that allow prePilE and prePulG processing. The E. coli K-12 genome contains two genes encoding proteins with significant sequence similarity to prepilin peptidases: gspO at minute 74.5 and pppA (f310c) at minute 67 on the genetic map. We have previously obtained evidence that gspO encodes an active enzyme but is not transcribed. pppA was cloned and shown to code for a functional prepilin peptidase capable of processing typical prepilin peptidase substrates. Inactivation of pppA eliminated the endogenous, thermoinducible prepilin peptidase activity. PppA was able to replace PulO prepilin peptidase in a pullulanase secretion system reconstituted in E. coli when expressed from high-copy-number plasmids but not when present in a single chromosomal copy. The analysis of pppA-lacZ fusions indicated that pppA expression was very low and regulated by the growth temperature at the level of translation, in agreement with the observed temperature dependence of PppA activity. Polymerase chain reaction and Southern hybridization analyses revealed the presence of the pppA gene in 12 out of 15 E. coli isolates.
Collapse
Affiliation(s)
- O Francetić
- Unité de Génétique Moléculaire, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
33
|
Johnston JL, Billington SJ, Haring V, Rood JI. Complementation analysis of the Dichelobacter nodosus fimN, fimO, and fimP genes in Pseudomonas aeruginosa and transcriptional analysis of the fimNOP gene region. Infect Immun 1998; 66:297-304. [PMID: 9423871 PMCID: PMC107890 DOI: 10.1128/iai.66.1.297-304.1998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1997] [Accepted: 10/27/1997] [Indexed: 02/05/2023] Open
Abstract
The causative agent of ovine footrot, the gram-negative anaerobe Dichelobacter nodosus, produces polar type IV fimbriae, which are the major protective antigens. The D. nodosus genes fimN, fimO, and fimP are homologs of the Pseudomonas aeruginosa fimbrial assembly genes, pilB, pilC, and pilD, respectively. Both the pilD and fimP genes encode prepilin peptidases that are responsible for cleavage of the leader sequence from the immature fimbrial subunit. To investigate the functional similarity of the fimbrial biogenesis systems from these organisms, the D. nodosus genes were introduced into P. aeruginosa strains carrying mutations in the homologous genes. Analysis of the resultant derivatives showed that the fimP gene complemented a pilD mutant of P. aeruginosa for both fimbrial assembly and protein secretion. However, the fimN and fimO genes did not complement pilB or pilC mutants, respectively. These results suggest that although the PilD prepilin peptidase can be functionally replaced by the heterologous FimP protein, the function of the PilB and PilC proteins may require binding or catalytic domains specific for the P. aeruginosa fimbrial assembly system. The transcriptional organization and regulation of the fimNOP gene region were also examined. The results of reverse transcriptase PCR and primer extension analysis suggested that these genes form an operon transcribed from two sigma70-type promoters located upstream of ORFM, an open reading frame proximal to fimN. Transcription of the D. nodosus fimbrial subunit was found to increase in cells grown on solid media, and it was postulated that this regulatory effect may be of significance in the infected footrot lesion.
Collapse
MESH Headings
- Amino Acid Sequence
- Artificial Gene Fusion
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Bacteroides/genetics
- Bacteroides/metabolism
- Base Sequence
- Chromosome Mapping
- Cloning, Molecular
- Conjugation, Genetic
- Endopeptidases
- Fimbriae Proteins
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/metabolism
- Fimbriae, Bacterial/ultrastructure
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/physiology
- Genetic Complementation Test
- Microscopy, Electron
- Molecular Sequence Data
- Open Reading Frames
- Operon
- Oxidoreductases
- Plasmids
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Sorting Signals/genetics
- Pseudomonas aeruginosa/genetics
- Pseudomonas aeruginosa/metabolism
- Pseudomonas aeruginosa/ultrastructure
- RNA, Bacterial/analysis
- RNA, Bacterial/isolation & purification
- Recombination, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- J L Johnston
- Department of Microbiology, Monash University, Clayton, Australia
| | | | | | | |
Collapse
|
34
|
Sandkvist M, Michel LO, Hough LP, Morales VM, Bagdasarian M, Koomey M, DiRita VJ, Bagdasarian M. General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J Bacteriol 1997; 179:6994-7003. [PMID: 9371445 PMCID: PMC179639 DOI: 10.1128/jb.179.22.6994-7003.1997] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The general secretion pathway (GSP) of Vibrio cholerae is required for secretion of proteins including chitinase, enterotoxin, and protease through the outer membrane. In this study, we report the cloning and sequencing of a DNA fragment from V. cholerae, containing 12 open reading frames, epsC to -N, which are similar to GSP genes of Aeromonas, Erwinia, Klebsiella, Pseudomonas, and Xanthomonas spp. In addition to the two previously described genes, epsE and epsM (M. Sandkvist, V. Morales, and M. Bagdasarian, Gene 123: 81-86, 1993; L. J. Overbye, M. Sandkvist, and M. Bagdasarian, Gene 132:101-106, 1993), it is shown here that epsC, epsF, epsG, and epsL also encode proteins essential for GSP function. Mutations in the eps genes result in aberrant outer membrane protein profiles, which indicates that the GSP, or at least some of its components, is required not only for secretion of soluble proteins but also for proper outer membrane assembly. Several of the Eps proteins have been identified by use of the T7 polymerase-promoter system in Escherichia coli. One of them, a pilin-like protein, EpsG, was analyzed also in V. cholerae and found to migrate as two bands on polyacrylamide gels, suggesting that in this organism it might be processed or otherwise modified by a prepilin peptidase. We believe that TcpJ prepilin peptidase, which processes the subunit of the toxin-coregulated pilus, TcpA, is not involved in this event. This is supported by the observations that apparent processing of EpsG occurs in a tcpJ mutant of V. cholerae and that, when coexpressed in E. coli, TcpJ cannot process EpsG although the PilD peptidase from Neisseria gonorrhoeae can.
Collapse
Affiliation(s)
- M Sandkvist
- Oral Infection and Immunity Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892-4350, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lory S, Strom MS. Structure-function relationship of type-IV prepilin peptidase of Pseudomonas aeruginosa--a review. Gene X 1997; 192:117-21. [PMID: 9224881 DOI: 10.1016/s0378-1119(96)00830-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The bifunctional enzyme prepilin peptidase (PilD) from Pseudomonas aeruginosa is a key determinant in both type-IV pilus biogenesis and extracellular protein secretion, in its roles as a leader peptidase and MTase. It is responsible for endopeptidic cleavage of the unique leader peptides that characterize type-IV pilin precursors, as well as proteins with homologous leader sequences that are essential components of the general secretion pathway found in a variety of Gram-negative pathogens. Following removal of the leader peptides, the same enzyme is responsible for the second posttranslational modification that characterizes the type-IV pilins and their homologues, namely N-methylation of the newly exposed N-terminal amino acid residue. This review discusses some of the work begun in order to answer questions regarding the structure-function relationships of the active sites of this unique enzyme.
Collapse
Affiliation(s)
- S Lory
- Department of Microbiology, University of Washington, Seattle 98195, USA.
| | | |
Collapse
|
36
|
Abstract
The toxin co-regulated pilus (TCP) has been identified as a critical colonization factor in both animal models and humans for Vibrio cholerae O1. The major pilin subunit, TcpA (and also TcpB), is similar to type-4 pilins but TCP probably more appropriately belongs to a sub-class which includes the bundle-forming pilus of enteropathogenic Escherichia coli. The genes for TCP biosynthesis and assembly are clustered with the exception of housekeeping functions such as TcpG (=DsbA, a periplasmic disulfide bond epimerase). The nt sequences from El Tor and classical strains show only minor differences corresponding to the major regulatory regions and in TcpA itself. These differences are thought to account for the alternate conditions required for expression of TCP by the two biotypes and the antigenic variation and lack of cross-protection. Aside from the TcpA only a few of the proteins have had their roles in TCP biogenesis defined. Regulation of TCP is controlled by the ToxR regulon via ToxT with a possible involvement of TcpP and the cAMP-CRP system. Experiments using the infant mouse cholera model have now shown that TCP is a colonization factor and protective antigen for both classical and El Tor O1 strains and in the O139 Bengal serotype and that the mannose-sensitive haemagglutinin pilus does not appear to play a comparable role.
Collapse
Affiliation(s)
- P A Manning
- Department of Microbiology and Immunology, University of Adelaide, Australia.
| |
Collapse
|
37
|
Iredell JR, Manning PA. Outer membrane translocation arrest of the TcpA pilin subunit in rfb mutants of Vibrio cholerae O1 strain 569B. J Bacteriol 1997; 179:2038-46. [PMID: 9068652 PMCID: PMC178930 DOI: 10.1128/jb.179.6.2038-2046.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The toxin-coregulated pilus (TCP) of Vibrio cholerae is a type 4-related fimbrial adhesin and a useful model for the study of type 4 pilus biogenesis and related bacterial macromolecular transport pathways. Transposon mutagenesis of the putative perosamine biosynthesis genes in the rfb operon of V. cholerae 569B eliminates lipopolysaccharide (LPS) O-antigen biosynthesis but also leads to a specific defect in TCP export. Localization of TcpA is made difficult by the hydrophobic nature of this bundle-forming pilin, which floats anomalously in sucrose density gradients, but the processed form of TcpA can be found in membrane and periplasmic fractions prepared from these strains. While TcpA cannot be detected by surface immunogold labelling in transmission electron microscope preparations, EDTA pretreatment facilitates immunofluorescent antibody labelling of whole cells, and ultrathin cryosectioning techniques confirm membrane and periplasmic accumulation of TcpA. Salt and detergent extraction, protease accessibility, and chemical cross-linking experiments suggest that although TcpA has not been assembled on the cell surface, subunit interactions are otherwise identical to those within TCP. In addition, TcpA-mediated fucose-resistant hemagglutination of murine erythrocytes is preserved in whole-cell lysates, suggesting that TcpA has obtained its mature conformation. These data localize a stage of type 4 pilin translocation to the outer membrane, at which stage export failure leads to the accumulation of pilin subunits in a configuration similar to that within the mature fiber. Possible candidates for the outer membrane defect are discussed.
Collapse
Affiliation(s)
- J R Iredell
- Department of Microbiology and Immunology, University of Adelaide, Australia
| | | |
Collapse
|
38
|
Sohel I, Puente JL, Ramer SW, Bieber D, Wu CY, Schoolnik GK. Enteropathogenic Escherichia coli: identification of a gene cluster coding for bundle-forming pilus morphogenesis. J Bacteriol 1996; 178:2613-28. [PMID: 8626330 PMCID: PMC177987 DOI: 10.1128/jb.178.9.2613-2628.1996] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Sequence flanking the bfpA locus on the enteroadherent factor plasmid of the enteropathogenic Escherichia coli (EPEC) strain B171-8 (O111:NM) was obtained to identify genes that might be required for bundle-forming pilus (BFP) biosynthesis. Deletion experiments led to the identification of a contiguous cluster of at least 12 open reading frames, including bfpA, that could direct the synthesis of a morphologically normal BFP filament. Within the bfp gene cluster, we identified open reading frames that share homology with other type IV pilus accessory genes and with genes required for transformation competence and protein secretion. Immediately upstream of the bfp gene cluster, we identified a potential replication origin including genes that are predicted to encode proteins homologous with replicase and resolvase. Restriction fragment length polymorphism analysis of DNA from six additional EPEC serotypes showed that the organization of the bfp gene cluster and its juxtaposition with a potential plasmid origin of replication are highly conserved features of the EPEC biotype.
Collapse
Affiliation(s)
- I Sohel
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | |
Collapse
|
39
|
Ogierman MA, Voss E, Meaney C, Faast R, Attridge SR, Manning PA. Comparison of the promoter proximal regions of the toxin-co-regulated tcp gene cluster in classical and El Tor strains of Vibrio cholerae O1. Gene 1996; 170:9-16. [PMID: 8621096 DOI: 10.1016/0378-1119(95)00744-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A physical map has been constructed of the 5-kb XbaI fragment encoding the promoter proximal of region the tcp gene cluster encoding the toxin-coregulated pilus (TCP) of Vibrio cholerae. This fragment contains the major regulatory regions for TCP. Comparison of the nucleotide (nt) sequences from strains of the classical and El Tor biotypes demonstrates that the regions are essentially identical, with several notable exceptions. The intergenic regions, between tcpI and tcpP, and between tcpH and tcpA, show significant sequence divergence which may account for the biotype-related differences in TCP, since this is the location of the major promoter sequences. The C-terminal coding regions of the major pilin subunit, TcpA, also differ. Southern hybridization analyses suggest that the tcpA nt sequence is conserved within a biotype, and Western blot analysis suggests that the two forms of TcpA are antigenically different, but related. Besides tcpA, tcpB, tcpH and tcpI, the genes encoding two additional proteins, TcpP and TcpQ, but not previously defined, were also identified. TcpH and TcpI have been previously suggested to be regulatory proteins but homology data imply that TcpI is a methyl-accepting chemotaxis protein (MCP), as recently reported [Harkey et al., Infect. Immun. 62 (1994) 2669-2678], and TcpH is predicted to be a periplasmic or exported protein. TcpP is thought to be a trans-cytoplasmic membrane (CM) protein which may have a regulatory role.
Collapse
Affiliation(s)
- M A Ogierman
- Department of Microbiology and Immunology, University of Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Stone KD, Zhang HZ, Carlson LK, Donnenberg MS. A cluster of fourteen genes from enteropathogenic Escherichia coli is sufficient for the biogenesis of a type IV pilus. Mol Microbiol 1996; 20:325-37. [PMID: 8733231 DOI: 10.1111/j.1365-2958.1996.tb02620.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) adhere to epithelial cells in microcolonies, a pattern termed localized adherence (LA). LA is dependent upon the presence of 50-70 MDa plasmids, termed EPEC adherence factor (EAF) plasmids. Expression of an EAF plasmid-encoded type IV fimbria, the bundle-forming pilus (BFP), is associated with the LA phenotype. TnphoA insertions in bfpA, the gene encoding the major structural subunit of the BFP, abolish LA. While bfpA::TnphoA mutants cannot be complemented for LA by plasmids carrying the bfpA gene alone in trans, this work shows that they can be complemented by plasmids carrying the bfpA gene, as well as approximately 10 kb of downstream sequence, suggesting that such mutations have polar effects on downstream genes. The identification and characterization of a cluster of 13 genes immediately downstream of bfpA are described. The introduction into a laboratory Escherichia coli strain of a plasmid containing these 14 bfp gene cluster genes, along with pJPN14, a plasmid containing another fragment derived from the EAF plasmid, confers LA ability and BFP biogenesis. However, when a mutation is introduced into the last gene of the bfp cluster, neither LA nor BFP biogenesis is conferred. This work also provides evidence to show that the fragment cloned in pJPN14 encodes a factor(s) which results in increased levels of the pilin protein. Finally, it is shown that expression of the 14 genes in the bfp cluster from an IPTG-inducible promoter, in the absence of pJPN14, is sufficient to reconstitute BFP biogenesis in a laboratory E. coli strain, but is insufficient for LA. This is the first report demonstrating the reconstitution of a type IV pilus in a laboratory E. coli strain with a defined set of genes. The BFP system should prove to be a useful model for studying the molecular mechanisms of type IV pilus biogenesis.
Collapse
Affiliation(s)
- K D Stone
- Graduate Program in Molecular and Cell Biology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | |
Collapse
|
41
|
Brentjens RJ, Ketterer M, Apicella MA, Spinola SM. Fine tangled pili expressed by Haemophilus ducreyi are a novel class of pili. J Bacteriol 1996; 178:808-16. [PMID: 8550517 PMCID: PMC177729 DOI: 10.1128/jb.178.3.808-816.1996] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Haemophilus ducreyi synthesizes fine, tangled pili composed predominantly of a protein whose apparent molecular weight is 24,000 (24K). A hybridoma, 2D8, produced a monoclonal antibody (MAb) that bound to a 24K protein in H. ducreyi strains isolated from diverse geographic locations. A lambda gt11 H. ducreyi library was screened with MAb 2D8. A 3.5-kb chromosomal insert from one reactive plaque was amplified and ligated into the pCRII vector. The recombinant plasmid, designated pHD24, expressed a 24K protein in Escherichia coli INV alpha F that bound MAb 2D8. The coding sequence of the 24K gene was localized by exonuclease III digestion. The insert contained a 570-bp open reading frame, designated ftpA (fine, tangled pili). Translation of ftpA predicted a polypeptide with a molecular weight of 21.1K. The predicted N-terminal amino acid sequence of the polypeptide encoded by ftpA was identical to the N-terminal amino acid sequence of purified pilin and lacked a cleavable signal sequence. Primer extension analysis of ftpA confirmed the lack of a leader peptide. The predicted amino acid sequence lacked homology to known pilin sequences but shared homology with the sequences of E. coli Dps and Treponema pallidum antigen TpF1 or 4D, proteins which associate to form ordered rings. An isogenic pilin mutant, H. ducreyi 35000ftpA::mTn3(Cm), was constructed by shuttle mutagenesis and did not contain pili when examined by electron microscopy. We conclude that H. ducreyi synthesizes fine, tangled pili that are composed of a unique major subunit, which may be exported by a signal sequence independent mechanism.
Collapse
Affiliation(s)
- R J Brentjens
- Department of Microbiology, State University of New York at Buffalo, School of Medicine 14214, USA
| | | | | | | |
Collapse
|
42
|
Johnston JL, Billington SJ, Haring V, Rood JI. Identification of fimbrial assembly genes from Dichelobacter nodosus: evidence that fimP encodes the type-IV prepilin peptidase. Gene X 1995; 161:21-6. [PMID: 7642131 DOI: 10.1016/0378-1119(95)00264-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dichelobacter nodosus (Dn) is the causative agent of footrot, an economically significant disease of sheep. One of the factors believed to be involved in the virulence of this organism is its ability to produce type-IV fimbriae, which are the major protective antigens. To investigate the process of fimbrial biogenesis in Dn, gene probes were constructed from pilus biogenesis genes of Pseudomonas aeruginosa (Pa) and used to isolate homologues from Dn. A homologue, designated fimP, of the Pa prepilin peptidase-encoding gene, pilD, was cloned using this approach. The fimP gene product was shown to possess endopeptidase activity when produced in Escherichia coli. Two other fimbrial biogenesis genes fimN and fimO, whose products show similarity to the Pa PilB and PilC proteins, respectively, were identified because of their linkage to fimP. The arrangement of fimN, fimO and fimP in Dn closely resembles the arrangement of pilB, pilC and pilD in Pa.
Collapse
Affiliation(s)
- J L Johnston
- Department of Microbiology, Monash University, Clayton, Australia
| | | | | | | |
Collapse
|
43
|
Abstract
The toxin coregulated pilus (TCP) is required for Vibrio cholerae to colonize the human intestine. The expression of the pilin gene, tcpA, is dependent upon ToxR and upon ToxT. The toxT gene was recently mapped within the TCP biogenesis gene cluster and shown to be capable of activating a tcpA::TnphoA fusion when cloned in Escherichia coli. In this study, we determined that ToxR/ToxT activation occurs at the level of tcpA transcription. ToxT expressed in E. coli could activate a tcp operon fusion, while ToxR, ToxR with ToxS, or a ToxR-PhoA fusion failed to activate the tcp operon fusion and we could not demonstrate binding of a ToxR extract to the tcpA promoter region in DNA mobility-shift assays. The start site for the regulated promoter was shown by primer extension to lie 75 bp upstream of the first codon of tcpA. An 800-base tcpA message was identified, by Northern analysis, that correlates by size to the distance between the transcriptional start and a hairpin-loop sequence between tcpA and tcpB. The more-sensitive assay of RNase protection analysis demonstrated that a regulated transcript probably extends through the rest of the downstream tcp genes, including toxT and the adjacent accessory colonization factor (acf) genes. An in-frame tcpA deletion, but not a polar tcpA::TnphoA fusion, could be complemented for pilus surface expression by providing tcpA in trans. This evidence suggests that the tcp genes, including toxT, are organized in an operon directly activated by ToxT in a ToxR-dependent manner. Most of the toxT expression under induced conditions requires transcription of the tcpA promoter. Further investigation of how tcp::TnphoA insertions that are polar on toxT expression retain regulation showed that a low basal level of toxT expression is present in toxR and tcp::TnphoA strains. Overall, these observations support the ToxR/ToxT cascade of regulation for tcp. Once induced, toxT expression becomes autoregulatory via the tcp promoter, linking tcp expression to that of additional colonization factors, exotoxin production, and genes of unknown function in cholera pathogenesis.
Collapse
Affiliation(s)
- R C Brown
- University of Tennessee, Health Science Center, Department of Microbiology and Immunology, Memphis 38163, USA
| | | |
Collapse
|
44
|
Freitag NE, Seifert HS, Koomey M. Characterization of the pilF-pilD pilus-assembly locus of Neisseria gonorrhoeae. Mol Microbiol 1995; 16:575-86. [PMID: 7565116 DOI: 10.1111/j.1365-2958.1995.tb02420.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Expression of Type IV pili by the bacterial pathogen Neisseria gonorrhoeae appears to be essential for colonization of the human host. Several N. gonorrhoeae gene products have been recently identified which bear homology to proteins involved in pilus assembly and protein export in other bacterial systems. We report here the isolation and characterization of transposon insertion mutants in N. gonorrhoeae whose phenotypes indicate that the N. gonorrhoeae pilF and pilD gene products are required for gonoccocal pilus biogenesis. Mutants lacking the pilD gene product, a pre-pilin peptidase, were unable to process the pre-pilin subunit into pilin and thus were non-piliated. pilF mutants processed pilin but did not assemble the mature subunit. Both classes of mutants released S-pilin, a soluble, truncated form of the pilin subunit previously correlated with defects in pilus assembly. In addition, mutants containing transposon insertions in pilD or in a downstream gene, orfX, exhibited a severely restricted growth phenotype. Deletion analysis of pilD indicated that the poor growth phenotype observed for the pilD transposon mutants was a result of polar effects of the insertions on orfX expression. orfX encodes a predicted polypeptide of 23 kDa which contains a consensus nucleotide-binding domain and has apparent homologues in Pseudomonas aeruginosa, Pseudomonas putida, Thermus thermophilus, and the eukaryote Caenorhabditis elegans. Although expression of orfX and pilD appears to be transcriptionally coupled, mutants containing transposon insertions in orfX expressed pili. Unlike either pilF or pilD mutants, orfX mutants were also competent for DNA transformation.
Collapse
Affiliation(s)
- N E Freitag
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | |
Collapse
|
45
|
Whitchurch CB, Mattick JS. Escherichia coli contains a set of genes homologous to those involved in protein secretion, DNA uptake and the assembly of type-4 fimbriae in other bacteria. Gene 1994; 150:9-15. [PMID: 7959070 DOI: 10.1016/0378-1119(94)90851-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A specialised system involved in a diverse array of functions, including the biogenesis of fimbriae, protein secretion and DNA uptake, has recently been found to be widespread in the eubacteria. These systems have in common several sets of related genes, including those encoding proteins containing leader sequences homologous to that of the type-4 fimbrial subunit (prepilin), a prepilin-type leader peptidase, a cytoplasmic nucleotide-binding protein, and other proteins located in the inner and outer membranes [Hobbs, M. and Mattick, J.S., Mol Microbiol. 10 (1993) 233-243]. Here, we show that Escherichia coli contains at least nine homologs of this system, and present complete sequence data for five of the genes involved (ppdD. hopB, hopC, hopD and pshM), as well as for an adjacent gene (nadC), which encodes quinolic acid phosphoribosyltransferase. Insertional mutagenesis of hopB and hopD failed to reveal any obvious effects on cell viability, morphogenesis of M13 phage, conjugative transfer of the F plasmid, or protein secretion.
Collapse
Affiliation(s)
- C B Whitchurch
- Centre for Molecular Biology and Biotechnology, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
46
|
Zhang HZ, Lory S, Donnenberg MS. A plasmid-encoded prepilin peptidase gene from enteropathogenic Escherichia coli. J Bacteriol 1994; 176:6885-91. [PMID: 7961448 PMCID: PMC197057 DOI: 10.1128/jb.176.22.6885-6891.1994] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Enteropathogenic Escherichia coli, a leading agent of infantile diarrhea worldwide, adheres to tissue culture cells in a pattern called "localized adherence." Localized adherence is associated with bundle-forming pili encoded by the plasmid bfpA gene, the product of which is homologous with the major structural subunit proteins of type IV fimbriae in other bacteria. Several of these proteins have been shown to be processed from a precursor by a specific prepilin peptidase. We cloned restriction fragments downstream of the bfpA gene into an E. coli-Pseudomonas aeruginosa shuttle vector and mobilized them into a P. aeruginosa prepilin peptidase (pilD) mutant. A plasmid containing a 1.3-kb PstI-BamHI fragment was able to complement the pilD mutation, as demonstrated by restoration of sensitivity to the pilus-specific bacteriophage PO4. The DNA sequence of this fragment revealed an open reading frame, designated bfpP, the predicted product of which is homologous to other prepilin peptidases, including TcpJ of Vibrio cholerae (30% identical amino acids), PulO of Klebsiella oxytoca (29%), and PilD of P. aeruginosa (28%). A bfpA::TnphoA mutant complemented with a bfpA-containing DNA fragment only partially processes the BfpA protein. When complemented with a larger fragment containing bfpP as well as bfpA, the mutant expresses the fully processed BfpA protein. P. aeruginosa PAK, but not a pilD mutant of PAK, expresses mature BfpA protein when the bfpA gene is mobilized into this strain. Thus, as in other type IV fimbria systems, enteropathogenic E. coli utilizes a specific prepilin peptidase to process the major subunit of the bundle-forming pilus. This prepilin petidase contains sequence and reciprocal functional homologies with the PilD protein of P. aeruginosa.
Collapse
Affiliation(s)
- H Z Zhang
- Department of Medicine, University of Maryland at Baltimore
| | | | | |
Collapse
|
47
|
Higgins DE, DiRita VJ. Transcriptional control of toxT, a regulatory gene in the ToxR regulon of Vibrio cholerae. Mol Microbiol 1994; 14:17-29. [PMID: 7830555 DOI: 10.1111/j.1365-2958.1994.tb01263.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Co-ordinate expression of many virulence genes in Vibrio cholerae is under the control of the ToxR and ToxT proteins. These proteins function in a regulatory cascade in which ToxR is required to activate toxT, and ToxT activates virulence genes. The precise mechanism for ToxR activation of toxT is unknown, but data presented in this report suggest a direct involvement of ToxR. Primer extension and gene fusion analyses identified a ToxR-regulated promoter directly upstream of toxT, immediately following a region of inverted repeats capable of terminating transcription. Gel mobility shift studies indicate that ToxR binds DNA within the inverted repeat region, yet preliminary evidence suggests that ToxR binding alone is not sufficient for activation of toxT. Possible mechanisms of ToxR-dependent toxT expression are discussed.
Collapse
Affiliation(s)
- D E Higgins
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109
| | | |
Collapse
|
48
|
Everiss KD, Hughes KJ, Kovach ME, Peterson KM. The Vibrio cholerae acfB colonization determinant encodes an inner membrane protein that is related to a family of signal-transducing proteins. Infect Immun 1994; 62:3289-98. [PMID: 8039900 PMCID: PMC302958 DOI: 10.1128/iai.62.8.3289-3298.1994] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Vibrio cholerae accessory colonization factor genes (acfA, B, C, and D) are required for efficient intestinal colonization. Expression of acf genes is under the control of a regulatory cascade that also directs the synthesis of cholera toxin and proteins involved in the biogenesis of the toxin-coregulated pilus. The gene for acfB was cloned by using an acfB::TnphoA fusion junction to probe a V. cholerae O395 bacteriophage lambda library. DNA sequence analysis revealed that acfB is predicted to encode a 626-amino-acid protein related to the V. cholerae HlyB and TcpI proteins. These three Vibrio proteins have amino acid sequence similarity in a region highly conserved among bacterial methyl-accepting chemotaxis proteins. Analysis of the predicted AcfB amino acid sequence suggests that this colonization determinant possesses a membrane topology and domain organization similar to those of methyl-accepting chemotaxis proteins. Heterologous expression of acfB in Escherichia coli generates four polypeptide species with apparent molecular masses of 34, 35, 74, and 75 kDa. The 74- and 75-kDa proteins appear to represent modified forms of the full-length AcfB protein. The 34- and 35-kDa polypeptide species most likely correspond to a C-terminal 274-amino-acid polypeptide that results from internal translation initiation of acfB mRNA. Localization studies with AcfB-PhoA hybrid proteins indicate that AcfB resides in the V. cholerae inner membrane. V. cholerae acfB::TnphoA mutants display an altered motility phenotype in semisolid agar. The relationship between AcfB and Vibrio motility and the amino acid similarities between AcfB and chemotaxis signal-transducing proteins suggest that AcfB may interact with the V. cholerae chemotaxis machinery. The data presented in this report provide preliminary evidence that acfB encodes an environmental sensor/signal-transducing protein involved in V. cholerae colonization.
Collapse
Affiliation(s)
- K D Everiss
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130
| | | | | | | |
Collapse
|
49
|
Harkey CW, Everiss KD, Peterson KM. The Vibrio cholerae toxin-coregulated-pilus gene tcpI encodes a homolog of methyl-accepting chemotaxis proteins. Infect Immun 1994; 62:2669-78. [PMID: 8005659 PMCID: PMC302867 DOI: 10.1128/iai.62.7.2669-2678.1994] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Virulence gene activation in Vibrio cholerae is under the control of the ToxR-ToxT regulatory cascade. The ToxR regulon consists of genes required for toxin-coregulated-pilus (TCP) biogenesis, accessory colonization factor genes, cholera toxin genes, and ToxR-activated genes (tag) of unknown function. The tagB gene was isolated by using a tagB::TnphoA fusion junction to probe a V. cholerae )395 bacteriophage lambda library. Nucleotide sequence analysis revealed that tagB is identical to tcpI, a gene which encodes a protein that negatively regulates the synthesis of the major pilin subunit of TCP (TcpA). Our results show that the tcpI gene encodes a 620-amino-acid protein that shares extensive sequence similarity with the highly conserved signaling domain in methyl-accepting chemotaxis proteins. Expression of tcpI in Escherichia coli results in the synthesis of a 71-kDa polypeptide that becomes localized to the inner membrane. Similarly, TcpI-PhoA alkaline phosphatase activity is enriched in V. cholerae inner membrane preparations. Colonies of V. cholerae tcpI::TnphoA mutant cells display increased swarming on solid media when compared with those of the parental V. cholerae O395. Taken together, these observations suggest that TcpI may play a dual role in promoting vibrio colonization of the small bowel. In response to the appropriate environmental signal(s), TcpI permits maximum expression of tcpA while simultaneously reducing vibrio chemotaxis-directed motility. We believe coordinate regulation of colonization and motility determinants, in such a fashion, facilitates efficient V. cholerae microcolony formation.
Collapse
Affiliation(s)
- C W Harkey
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130
| | | | | |
Collapse
|
50
|
Jonson G, Lebens M, Holmgren J. Cloning and sequencing of Vibrio cholerae mannose-sensitive haemagglutinin pilin gene: localization of mshA within a cluster of type 4 pilin genes. Mol Microbiol 1994; 13:109-18. [PMID: 7984085 DOI: 10.1111/j.1365-2958.1994.tb00406.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mannose-sensitive haemagglutinin (MSHA) pilus that is associated with Vibrio cholerae strains of El Tor biotype has been shown to be a potential colonization factor and protective antigen. The gene encoding the structural subunit of MSHA pili was cloned from size-fractionated SacI-cleaved chromosomal DNA in the expression phage vector lambda ZAPII. Positive clones carried a c. 5.3 kb SacI fragment and were identified on the basis of MSHA expression and hybridization with a synthetic oligonucleotide probe based upon the N-terminus of MshA, the structural subunit of MSHA. The mshA gene was localized to a 2.6 kb SalI-EcoRI fragment, which was subcloned and shown to express MshA from its own promoter in Escherichia coli. Nucleotide sequencing of the entire fragment revealed six open reading frames (ORFs) of which four were complete. The mshA gene encodes an 18,094 Da prepilin protein, which in its mature form has a size of 17,436 Da. MshA is a type 4 (N-MePhe) pilin protein that is more homologous to pilins produced by Pseudomonas aeruginosa and Neisseria gonorrhoeae than to TcpA, the structural subunit of the toxin-coregulated pilus of V. cholerae. The protein seems to be directly involved in receptor binding, as an in-frame mutation in the mshA gene was found to abolish both D-mannose-dependent haemagglutination and binding of V. cholerae bacteria to D-mannose-containing agarose beads. Three additional ORFs, all in the same transcriptional orientation as mshA, were found to encode type 4 pilin-like proteins. A potential promoter with a sequence homologous to that of cAMP-CRP-activated promoters in E. coli was identified upstream of ORF3, the gene preceding mshA.
Collapse
Affiliation(s)
- G Jonson
- Department of Medical Microbiology and Immunology, Göteborg University, Sweden
| | | | | |
Collapse
|