1
|
Liu C, Xie Q, Hu Q, Xiang B, Zhao K, Chen X, Zheng F. Identification of biallelic mutations in MCM3AP and comprehensive literature analysis. Front Genet 2024; 15:1405644. [PMID: 39228414 PMCID: PMC11368841 DOI: 10.3389/fgene.2024.1405644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Background Minichromosome maintenance complex component 3 associated protein (MCM3AP) is a gene in which mutations can result in autosomal recessive peripheral neuropathy with or without impaired intellectual development. The MCM3AP genotype-phenotype correlation and prognosis remain unclear. The aim of this study was to explore the genotype-phenotype correlations pertaining to MCM3AP. Methods Whole-exome sequencing (WES) combined with copy number variation sequencing (CNV-seq) were performed on the genomic DNA isolated from a Chinese family, and Sanger sequencing, quantitative PCR and cDNA analyses were performed to examine the mutations. The retrospective study was conducted on 28 individuals with biallelic MCM3AP mutation-related diseases, including features such as mutations, motor development impairment, intellectual disability, weakness/atrophy, and cerebral magnetic resonance imaging abnormalities. Results Sequencing identified novel compound heterozygous mutations in MCM3AP, namely, a paternal variant c.1_5426del (loss of exons 1-25) and a maternal splicing variant c.1858 + 3A>G. Functional studies revealed that the variant c.1858 + 3A>G resulted in the heterozygous deletion of exon 5, thereby affecting splicing functionality. Furthermore, the compound heterozygous mutation may affect the functionality of the protein domain. Retrospective analysis revealed different genotype-phenotype correlations for the pathogenic variants in biallelic MCM3AP: all individuals (100%) with mutations outside the Sac3 domain exhibited early-onset symptoms, motor developmental delays, and cognitive abnormalities, conversely, the proportions of individuals carrying mutations within the domain were 26.7% (motor delays) and 46.7% (cognitive abnormalities). Conclusion Our findings further expand the genetic mutation spectrum of biallelic MCM3AP and highlight the genotype-phenotype associations. Additionally, we elaborate on the importance of rehabilitation intervention.
Collapse
Affiliation(s)
- Chan Liu
- Department of Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingfeng Xie
- Department of Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Quan Hu
- Department of Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingwu Xiang
- Department of Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaiyi Zhao
- Department of Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang Chen
- Department of Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feixia Zheng
- Department of Pediatrics Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Kurshakova MM, Yakusheva YA, Georgieva SG. TREX-2-ORC Complex of D. melanogaster Participates in Nuclear Export of Histone mRNA. DOKL BIOCHEM BIOPHYS 2024; 514:11-15. [PMID: 38189888 PMCID: PMC11021305 DOI: 10.1134/s160767292370059x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 01/09/2024]
Abstract
The TREX-2-ORC protein complex of D. melanogaster is necessary for the export of the bulk of synthesized poly(A)-containing mRNA molecules from the nucleus to the cytoplasm through the nuclear pores. However, the role of this complex in the export of other types of RNA remains unknown. We have shown that TREX-2-ORC participates in the nuclear export of histone mRNAs: it associates with histone mRNPs, binds to histone H3 mRNA at the 3'-terminal part of the coding region, and participates in the export of histone mRNAs from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- M M Kurshakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Y A Yakusheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - S G Georgieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Vdovina YA, Georgieva SG, Kopytova DV. Interaction of mRNA with the C-Terminal Domain of PCID2, a Subunit of the TREX-2 Complex, Is Required for Its Export from the Nucleus to the Cytoplasm in Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2023; 513:328-331. [PMID: 38066318 PMCID: PMC10810031 DOI: 10.1134/s1607672923700527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 01/26/2024]
Abstract
Following the transcription step, the newly synthesized mRNA is exported from the nucleus to the cytoplasm and further to the translation site. The TREX-2 complex is involved in the step of mRNA export from the nucleus to the cytoplasm. This complex in Drosophila melanogaster consists of four proteins: Xmas-2, PCID2, ENY2, and Sem1p. In our work, we have shown that deletion of the C-terminal sequence of PCID2 leads to a decrease in the interaction of the protein with RNA and to impaired mRNA export from the nucleus to the cytoplasm in D. melanogaster.
Collapse
Affiliation(s)
- Yu A Vdovina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - S G Georgieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - D V Kopytova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
4
|
Vdovina YA, Kurshakova MM, Georgieva SG, Kopytova DV. PCID2 Subunit of the Drosophila TREX-2 Complex Has Two RNA-Binding Regions. Curr Issues Mol Biol 2023; 45:5662-5676. [PMID: 37504273 PMCID: PMC10378293 DOI: 10.3390/cimb45070357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Drosophila PCID2 is a subunit of the TREX-2 mRNA nuclear export complex. Although the complex has long been studied in eukaryotes, it is still unclear how TREX-2 interacts with mRNA in multicellular organisms. Here, the interaction between Drosophila PCID2 and the ras2 RNA was studied by EMSA. We show that the C-terminal region of the WH domain of PCID2 specifically binds the 3'-noncoding region of the ras2 RNA. While the same region of PCID2 interacts with the Xmas-2 subunit of the TREX-2 complex, PCID2 interacts with RNA independently of Xmas-2. An additional RNA-binding region (M region) was identified in the N-terminal part of the PCI domain and found to bind RNA nonspecifically. Point mutations of evolutionarily conserved amino acid residues in this region completely abolish the PCID2-RNA interaction, while a deletion of the C-terminal domain only partly decreases it. Thus, the specific interaction of PCID2 with RNA requires nonspecific PCID2-RNA binding.
Collapse
Affiliation(s)
- Yulia A Vdovina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria M Kurshakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sofia G Georgieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Daria V Kopytova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Šimon M, Mikec Š, Morton NM, Atanur SS, Konc J, Horvat S, Kunej T. Genome-wide screening for genetic variants in polyadenylation signal (PAS) sites in mouse selection lines for fatness and leanness. Mamm Genome 2023; 34:12-31. [PMID: 36414820 PMCID: PMC9684942 DOI: 10.1007/s00335-022-09967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
Alternative polyadenylation (APA) determines mRNA stability, localisation, translation and protein function. Several diseases, including obesity, have been linked to APA. Studies have shown that single nucleotide polymorphisms in polyadenylation signals (PAS-SNPs) can influence APA and affect phenotype and disease susceptibility. However, these studies focussed on associations between single PAS-SNP alleles with very large effects and phenotype. Therefore, we performed a genome-wide screening for PAS-SNPs in the polygenic mouse selection lines for fatness and leanness by whole-genome sequencing. The genetic variants identified in the two lines were overlapped with locations of PAS sites obtained from the PolyASite 2.0 database. Expression data for selected genes were extracted from the microarray expression experiment performed on multiple tissue samples. In total, 682 PAS-SNPs were identified within 583 genes involved in various biological processes, including transport, protein modifications and degradation, cell adhesion and immune response. Moreover, 63 of the 583 orthologous genes in human have been previously associated with human diseases, such as nervous system and physical disorders, and immune, endocrine, and metabolic diseases. In both lines, PAS-SNPs have also been identified in genes broadly involved in APA, such as Polr2c, Eif3e and Ints11. Five PAS-SNPs within 5 genes (Car, Col4a1, Itga7, Lat, Nmnat1) were prioritised as potential functional variants and could contribute to the phenotypic disparity between the two selection lines. The developed PAS-SNPs catalogue presents a key resource for planning functional studies to uncover the role of PAS-SNPs in APA, disease susceptibility and fat deposition.
Collapse
Affiliation(s)
- Martin Šimon
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domžale, Slovenia
| | - Špela Mikec
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domžale, Slovenia
| | - Nicholas M. Morton
- grid.511172.10000 0004 0613 128XUniversity of Edinburgh, The Queen’s Medical Research Institute, Centre for Cardiovascular Science, Edinburgh, UK
| | - Santosh S. Atanur
- grid.7445.20000 0001 2113 8111Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- grid.4305.20000 0004 1936 7988Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Janez Konc
- grid.454324.00000 0001 0661 0844Laboratory for Molecular Modeling, National Institute of Chemistry, Ljubljana, Slovenia
| | - Simon Horvat
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domžale, Slovenia
| | - Tanja Kunej
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domžale, Slovenia
| |
Collapse
|
6
|
Nikolenko JV, Georgieva SG, Kopytova DV. Diversity of MLE Helicase Functions in the Regulation of Gene Expression in Higher Eukaryotes. Mol Biol 2023. [DOI: 10.1134/s0026893323010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
7
|
Nikolenko JV, Vdovina YA, Fefelova EI, Glukhova AA, Nabirochkina EN, Kopytova DV. The SAGA Deubiquitinilation (DUB) Module Participates in Pol III-Dependent Transcription. Mol Biol 2021. [DOI: 10.1134/s0026893321020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Duan Z, Yuan C, Han Y, Zhou L, Zhao J, Ruan Y, Chen J, Ni M, Ji X. TMT-based quantitative proteomics analysis reveals the attenuated replication mechanism of Newcastle disease virus caused by nuclear localization signal mutation in viral matrix protein. Virulence 2021; 11:607-635. [PMID: 32420802 PMCID: PMC7549962 DOI: 10.1080/21505594.2020.1770482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nuclear localization of cytoplasmic RNA virus proteins mediated by intrinsic nuclear localization signal (NLS) plays essential roles in successful virus replication. We previously reported that NLS mutation in the matrix (M) protein obviously attenuates the replication and pathogenicity of Newcastle disease virus (NDV), but the attenuated replication mechanism remains unclear. In this study, we showed that M/NLS mutation not only disrupted M's nucleocytoplasmic trafficking characteristic but also impaired viral RNA synthesis and transcription. Using TMT-based quantitative proteomics analysis of BSR-T7/5 cells infected with the parental NDV rSS1GFP and the mutant NDV rSS1GFP-M/NLSm harboring M/NLS mutation, we found that rSS1GFP infection stimulated much greater quantities and more expression changes of differentially expressed proteins involved in host cell transcription, ribosomal structure, posttranslational modification, and intracellular trafficking than rSS1GFP-M/NLSm infection. Further in-depth analysis revealed that the dominant nuclear accumulation of M protein inhibited host cell transcription, RNA processing and modification, protein synthesis, posttranscriptional modification and transport; and this kind of inhibition could be weakened when most of M protein was confined outside the nucleus. More importantly, we found that the function of M protein in the cytoplasm effected the inhibition of TIFA expression in a dose-dependent manner, and promoted NDV replication by down-regulating TIFA/TRAF6/NF-κB-mediated production of cytokines. It was the first report about the involvement of M protein in NDV immune evasion. Taken together, our findings demonstrate that NDV replication is closely related to the nucleocytoplasmic trafficking of M protein, which accelerates our understanding of the molecular functions of NDV M protein.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University , Guiyang, China.,College of Animal Science, Guizhou University , Guiyang, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University , Guiyang, China.,College of Animal Science, Guizhou University , Guiyang, China
| | - Yifan Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University , Guiyang, China.,College of Animal Science, Guizhou University , Guiyang, China
| | - Lei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University , Guiyang, China.,College of Animal Science, Guizhou University , Guiyang, China
| | - Jiafu Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University , Guiyang, China.,College of Animal Science, Guizhou University , Guiyang, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University , Guiyang, China.,College of Animal Science, Guizhou University , Guiyang, China
| | - Jiaqi Chen
- College of Animal Science, Guizhou University , Guiyang, China
| | - Mengmeng Ni
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University , Guiyang, China.,College of Animal Science, Guizhou University , Guiyang, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University , Guiyang, China
| |
Collapse
|
9
|
Nuño-Cabanes C, Rodríguez-Navarro S. The promiscuity of the SAGA complex subunits: Multifunctional or moonlighting proteins? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194607. [PMID: 32712338 DOI: 10.1016/j.bbagrm.2020.194607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Gene expression, the decoding of DNA information into accessible instructions for protein synthesis, is a complex process in which multiple steps, including transcription, mRNA processing and mRNA export, are regulated by different factors. One of the first steps in this process involves chemical and structural changes in chromatin to allow transcription. For such changes to occur, histone tail and DNA epigenetic modifications foster the binding of transcription factors to promoter regions. The SAGA coactivator complex plays a crucial role in this process by mediating histone acetylation through Gcn5, and histone deubiquitination through Ubp8 enzymes. However, most SAGA subunits interact physically with other proteins beyond the SAGA complex. These interactions could represent SAGA-independent functions or a mechanism to widen SAGA multifunctionality. Among the different mechanisms to perform more than one function, protein moonlighting defines unrelated molecular activities for the same polypeptide sequence. Unlike pleiotropy, where a single gene can affect different phenotypes, moonlighting necessarily involves separate functions of a protein at the molecular level. In this review we describe in detail some of the alternative physical interactions of several SAGA subunits. In some cases, the alternative role constitutes a clear moonlighting function, whereas in most of them the lack of molecular evidence means that we can only define these interactions as promiscuous that require further work to verify if these are moonlighting functions.
Collapse
Affiliation(s)
- Carme Nuño-Cabanes
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC), Jaume Roig, 11, E-46010 Valencia, Spain
| | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC), Jaume Roig, 11, E-46010 Valencia, Spain.
| |
Collapse
|
10
|
Woldegebriel R, Kvist J, Andersson N, Õunap K, Reinson K, Wojcik MH, Bijlsma EK, Hoffer MJV, Ryan MM, Stark Z, Walsh M, Cuppen I, van den Boogaard MJH, Bharucha-Goebel D, Donkervoort S, Winchester S, Zori R, Bönnemann CG, Maroofian R, O’Connor E, Houlden H, Zhao F, Carpén O, White M, Sreedharan J, Stewart M, Ylikallio E, Tyynismaa H. Distinct effects on mRNA export factor GANP underlie neurological disease phenotypes and alter gene expression depending on intron content. Hum Mol Genet 2020; 29:1426-1439. [PMID: 32202298 PMCID: PMC7297229 DOI: 10.1093/hmg/ddaa051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 11/15/2022] Open
Abstract
Defects in the mRNA export scaffold protein GANP, encoded by the MCM3AP gene, cause autosomal recessive early-onset peripheral neuropathy with or without intellectual disability. We extend here the phenotypic range associated with MCM3AP variants, by describing a severely hypotonic child and a sibling pair with a progressive encephalopathic syndrome. In addition, our analysis of skin fibroblasts from affected individuals from seven unrelated families indicates that disease variants result in depletion of GANP except when they alter critical residues in the Sac3 mRNA binding domain. GANP depletion was associated with more severe phenotypes compared with the Sac3 variants. Patient fibroblasts showed transcriptome alterations that suggested intron content-dependent regulation of gene expression. For example, all differentially expressed intronless genes were downregulated, including ATXN7L3B, which couples mRNA export to transcription activation by association with the TREX-2 and SAGA complexes. Our results provide insight into the molecular basis behind genotype-phenotype correlations in MCM3AP-associated disease and suggest mechanisms by which GANP defects might alter RNA metabolism.
Collapse
Affiliation(s)
- Rosa Woldegebriel
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, 00290 Helsinki, Finland
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, 00290 Helsinki, Finland
| | - Noora Andersson
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Monica H Wojcik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Genomics and Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Monique M Ryan
- Murdoch Children’s Research Institute, Melbourne 3052, Australia
- Royal Children’s Hospital, Melbourne 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne 3052, Australia
| | - Zornitza Stark
- Murdoch Children’s Research Institute, Melbourne 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne 3052, Australia
| | - Maie Walsh
- Murdoch Children’s Research Institute, Melbourne 3052, Australia
| | - Inge Cuppen
- Department of Pediatric Neurology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Diana Bharucha-Goebel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Division of Neurology, Children's National Health System, Washington, DC, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sara Winchester
- Child Neurology Center of Northwest Florida, Pensacola, FL, USA
| | - Roberto Zori
- Division of Genetics and Metabolism, University of Florida, Gainesville, FL, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Emer O’Connor
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Fang Zhao
- Department of Pathology and Genetics, HUSLAB Laboratories, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Olli Carpén
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Matthew White
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jemeen Sreedharan
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, 00290 Helsinki, Finland
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, 00290 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00290 Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Kordyukova M, Sokolova O, Morgunova V, Ryazansky S, Akulenko N, Glukhov S, Kalmykova A. Nuclear Ccr4-Not mediates the degradation of telomeric and transposon transcripts at chromatin in the Drosophila germline. Nucleic Acids Res 2020; 48:141-156. [PMID: 31724732 PMCID: PMC7145718 DOI: 10.1093/nar/gkz1072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 01/05/2023] Open
Abstract
Ccr4-Not is a highly conserved complex involved in cotranscriptional RNA surveillance pathways in yeast. In Drosophila, Ccr4-Not is linked to the translational repression of miRNA targets and the posttranscriptional control of maternal mRNAs during oogenesis and embryonic development. Here, we describe a new role for the Ccr4-Not complex in nuclear RNA metabolism in the Drosophila germline. Ccr4 depletion results in the accumulation of transposable and telomeric repeat transcripts in the fraction of chromatin-associated RNA; however, it does not affect small RNA levels or the heterochromatin state of the target loci. Nuclear targets of Ccr4 mainly comprise active full-length transposable elements (TEs) and telomeric and subtelomeric repeats. Moreover, Ccr4-Not foci localize at telomeres in a Piwi-dependent manner, suggesting a functional relationship between these pathways. Indeed, we detected interactions between the components of the Ccr4-Not complex and piRNA machinery, which indicates that these pathways cooperate in the nucleus to recognize and degrade TE transcripts at transcription sites. These data reveal a new layer of transposon control in the germline, which is critical for the maintenance of genome integrity.
Collapse
Affiliation(s)
- Maria Kordyukova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Olesya Sokolova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Valeriya Morgunova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Sergei Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Sergey Glukhov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Alla Kalmykova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| |
Collapse
|
12
|
Nikolenko JV, Kurshakova MM, Krasnov AN. Multifunctional ENY2 Protein Interacts with RNA Helicase MLE. DOKL BIOCHEM BIOPHYS 2020; 489:407-410. [DOI: 10.1134/s1607672919060140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 11/23/2022]
|
13
|
Nabirochkina EN, Kurshakova MM, Georgieva SG, Kopytova DV. The role of SAGA in the transcription and export of mRNA. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
SAGA/TFTC, which is a histone acetyltransferase complex, plays an important role in the regulation of transcription. We have identified that the metazoan TFTC/STAGA complexes had histone H2A and H2B deubiquitinase activity that is carried out by a DUBm (deubiquitination module). We studied the DUBm of SAGA in Drosophila melanogaster and identified Drosophila homologs of yeast DUBm components. Two subunits of DUBm (Sus1/ENY2 and Sgf11) were shown to have functions separate from DUBm function. Thus, Sus1/ENY2 was shown to be present in several different complexes. Sgf11 was found to be associated with the cap-binding complex (CBC) and recruited onto growing messenger ribonucleic acid (mRNA). Also, we have shown that Sgf11 interacted with the TREX-2/AMEX mRNA export complex and was essential for mRNA export from the nucleus. Immunostaining of the polytene chromosomes of Drosophila larvae revealed that Sgf11 is present at the sites of localization of snRNA genes. It was also found in immunostaining experiments that dPbp45, the subunit of the PBP complex, the key player in the snRNA transcription process, is associated not only with the snRNA gene localization sites, but with other sites of active transcription by PolII. We also revealed that Sgf11 was present at many active transcription sites in interbands and puffs on polytene chromosomes, Sgf11 was localized at all Brf1 (the component of the RNA polymerase III basal transcription complex) sites. We concluded that SAGA coactivated transcription of both the PolII and PolIII-dependent snRNA genes.
Collapse
|
14
|
Zhang H, Fu Y, Guo H, Zhang L, Wang C, Song W, Yan Z, Wang Y, Ji W. Transcriptome and Proteome-Based Network Analysis Reveals a Model of Gene Activation in Wheat Resistance to Stripe Rust. Int J Mol Sci 2019; 20:ijms20051106. [PMID: 30836695 PMCID: PMC6429138 DOI: 10.3390/ijms20051106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/24/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Stripe rust, caused by the pathogen Puccinia striiformis f. sp. tritici (Pst), is an important fungal foliar disease of wheat (Triticum aestivum). To study the mechanism underlying the defense of wheat to Pst, we used the next-generation sequencing and isobaric tags for relative and absolute quantification (iTRAQ) technologies to generate transcriptomic and proteomic profiles of seedling leaves at different stages under conditions of pathogen stress. By conducting comparative proteomic analysis using iTRAQ, we identified 2050, 2190, and 2258 differentially accumulated protein species at 24, 48, and 72 h post-inoculation (hpi). Using pairwise comparisons and weighted gene co-expression network analysis (WGCNA) of the transcriptome, we identified a stress stage-specific module enriching in transcription regulator genes. The homologs of several regulators, including splicing and transcription factors, were similarly identified as hub genes operating in the Pst-induced response network. Moreover, the Hsp70 protein were predicted as a key point in protein–protein interaction (PPI) networks from STRING database. Taking the genetics resistance gene locus into consideration, we identified 32 induced proteins in chromosome 1BS as potential candidates involved in Pst resistance. This study indicated that the transcriptional regulation model plays an important role in activating resistance-related genes in wheat responding to Pst stress.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Shaanxi 712100, China.
| | - Ying Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Shaanxi 712100, China.
| | - Huan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Shaanxi 712100, China.
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Shaanxi 712100, China.
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Shaanxi 712100, China.
| | - Weining Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Shaanxi 712100, China.
| | - Zhaogui Yan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Shaanxi 712100, China.
- Shaanxi Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture, Shaanxi 712100, China.
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Shaanxi 712100, China.
- Shaanxi Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture, Shaanxi 712100, China.
| |
Collapse
|
15
|
Kachaev ZM, Lebedeva LA, Kozlov EN, Toropygin IY, Schedl P, Shidlovskii YV. Paip2 is localized to active promoters and loaded onto nascent mRNA in Drosophila. Cell Cycle 2018; 17:1708-1720. [PMID: 29995569 DOI: 10.1080/15384101.2018.1496738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Paip2 (Poly(A)-binding protein - interacting protein 2) is a conserved metazoan-specific protein that has been implicated in regulating the translation and stability of mRNAs. However, we have found that Paip2 is not restricted to the cytoplasm but is also found in the nucleus in Drosophila embryos, salivary glands, testes, and tissue culture cells. Nuclear Paip2 is associated with chromatin, and in chromatin immunoprecipitation experiments it maps to the promoter regions of active genes. However, this chromatin association is indirect, as it is RNA-dependent. Thus, Paip2 is one more item in the growing list of translation factors that are recruited to mRNAs co-transcriptionally.
Collapse
Affiliation(s)
- Zaur M Kachaev
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Lyubov A Lebedeva
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Eugene N Kozlov
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Ilya Y Toropygin
- d Center of Common Use "Human Proteome" , V.I. Orekhovich Research Institute of Biomedical Chemistry , Moscow , Russia
| | - Paul Schedl
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,b Department of Molecular Biology , Princeton University , Princeton , NJ , USA
| | - Yulii V Shidlovskii
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,c Department of Biology and General Genetics , I.M. Sechenov First Moscow State Medical University , Moscow , Russia
| |
Collapse
|
16
|
Fursova NA, Nikolenko JV, Soshnikova NV, Mazina MY, Vorobyova NE, Krasnov AN. Zinc Finger Protein CG9890 - New Component of ENY2-Containing Complexes of Drosophila. Acta Naturae 2018; 10:110-114. [PMID: 30713769 PMCID: PMC6351030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In previous studies, we showed that the insulator protein Su(Hw) containing zinc finger domains interacts with the ENY2 protein and recruits the ENY2-containing complexes on Su(Hw)-dependent insulators, participating in the regulation of transcription and in the positioning of replication origins. Here, we found interaction between ENY2 and CG9890 protein, which also contains zinc finger domains. The interaction between ENY2 and CG9890 was confirmed. It was established that CG9890 protein is localized in the nucleus and interacts with the SAGA, ORC, dSWI/SNF, TFIID, and THO protein complexes.
Collapse
Affiliation(s)
- N. A. Fursova
- Institute of Gene Biology Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334, Russia
| | - J. V. Nikolenko
- Institute of Gene Biology Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334, Russia
| | - N. V. Soshnikova
- Institute of Gene Biology Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334, Russia
| | - M. Y. Mazina
- Institute of Gene Biology Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334, Russia
| | - N. E. Vorobyova
- Institute of Gene Biology Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334, Russia
| | - A. N. Krasnov
- Institute of Gene Biology Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334, Russia
| |
Collapse
|
17
|
Ilyin AA, Ryazansky SS, Doronin SA, Olenkina OM, Mikhaleva EA, Yakushev EY, Abramov YA, Belyakin SN, Ivankin AV, Pindyurin AV, Gvozdev VA, Klenov MS, Shevelyov YY. Piwi interacts with chromatin at nuclear pores and promiscuously binds nuclear transcripts in Drosophila ovarian somatic cells. Nucleic Acids Res 2017; 45:7666-7680. [PMID: 28472469 PMCID: PMC5570135 DOI: 10.1093/nar/gkx355] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/20/2017] [Indexed: 12/26/2022] Open
Abstract
Piwi in a complex with Piwi-interacting RNAs (piRNAs) triggers transcriptional silencing of transposable elements (TEs) in Drosophila ovaries, thus ensuring genome stability. To do this, Piwi must scan the nascent transcripts of genes and TEs for complementarity to piRNAs. The mechanism of this scanning is currently unknown. Here we report the DamID-seq mapping of multiple Piwi-interacting chromosomal domains in somatic cells of Drosophila ovaries. These domains significantly overlap with genomic regions tethered to Nuclear Pore Complexes (NPCs). Accordingly, Piwi was coimmunoprecipitated with the component of NPCs Elys and with the Xmas-2 subunit of RNA transcription and export complex, known to interact with NPCs. However, only a small Piwi fraction has transient access to DNA at nuclear pores. Importantly, although 36% of the protein-coding genes overlap with Piwi-interacting domains and RNA-immunoprecipitation results demonstrate promiscuous Piwi binding to numerous genic and TE nuclear transcripts, according to available data Piwi does not silence these genes, likely due to the absence of perfect base-pairing between piRNAs and their transcripts.
Collapse
Affiliation(s)
- Artem A Ilyin
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Sergei S Ryazansky
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Semen A Doronin
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Oxana M Olenkina
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Elena A Mikhaleva
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Evgeny Y Yakushev
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Yuri A Abramov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Stepan N Belyakin
- Department of Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Laboratory of Structural, Functional and Comparative Genomics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anton V Ivankin
- Department of Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey V Pindyurin
- Department of Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Laboratory of Structural, Functional and Comparative Genomics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vladimir A Gvozdev
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Mikhail S Klenov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Yuri Y Shevelyov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| |
Collapse
|
18
|
Lomaev D, Mikhailova A, Erokhin M, Shaposhnikov AV, Moresco JJ, Blokhina T, Wolle D, Aoki T, Ryabykh V, Yates JR, Shidlovskii YV, Georgiev P, Schedl P, Chetverina D. The GAGA factor regulatory network: Identification of GAGA factor associated proteins. PLoS One 2017; 12:e0173602. [PMID: 28296955 PMCID: PMC5351981 DOI: 10.1371/journal.pone.0173602] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/23/2017] [Indexed: 11/24/2022] Open
Abstract
The Drosophila GAGA factor (GAF) has an extraordinarily diverse set of functions that include the activation and silencing of gene expression, nucleosome organization and remodeling, higher order chromosome architecture and mitosis. One hypothesis that could account for these diverse activities is that GAF is able to interact with partners that have specific and dedicated functions. To test this possibility we used affinity purification coupled with high throughput mass spectrometry to identify GAF associated partners. Consistent with this hypothesis the GAF interacting network includes a large collection of factors and complexes that have been implicated in many different aspects of gene activity, chromosome structure and function. Moreover, we show that GAF interactions with a small subset of partners is direct; however for many others the interactions could be indirect, and depend upon intermediates that serve to diversify the functional capabilities of the GAF protein.
Collapse
Affiliation(s)
- Dmitry Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Mikhailova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - James J. Moresco
- Department of Chemical Physiology, SR302B, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tatiana Blokhina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Wolle
- Department of Molecular Biology Princeton University, Princeton, NJ, United States of America
| | - Tsutomu Aoki
- Department of Molecular Biology Princeton University, Princeton, NJ, United States of America
| | - Vladimir Ryabykh
- Institute of Animal Physiology, Biochemistry and Nutrition, Borovsk, Russia
| | - John R. Yates
- Department of Chemical Physiology, SR302B, The Scripps Research Institute, La Jolla, California, United States of America
| | | | - Pavel Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (DC); (PS); (PG)
| | - Paul Schedl
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology Princeton University, Princeton, NJ, United States of America
- * E-mail: (DC); (PS); (PG)
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (DC); (PS); (PG)
| |
Collapse
|
19
|
Mazina MY, Derevyanko PK, Kocheryzhkina EV, Nikolenko YV, Krasnov AN, Vorobyeva NE. Coactivator complexes participate in different stages of the Drosophila melanogaster hsp70 gene transcription. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Shaposhnikov AV, Lebedeva LA, Chernioglo ES, Kachaev ZM, Abdrakhmanov A, Shidlovskii YV. Preparation and analysis of nuclear protein extract from Drosophila melanogaster embryos for studying transcription factors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162016060108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Popova VV, Glukhova AA, Georgieva SG, Kopytova DV. Interactions of the TREX-2 complex with mRNP particle of β-tubulin 56D gene. Mol Biol 2016. [DOI: 10.1134/s0026893316060157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Kurshakova MM, Georgieva SG, Kopytova DV. Protein complexes coordinating mRNA export from the nucleus into the cytoplasm. Mol Biol 2016. [DOI: 10.1134/s0026893316050095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Mazina MY, Nikolenko JV, Fursova NA, Nedil'ko PN, Krasnov AN, Vorobyeva NE. Early-late genes of the ecdysone cascade as models for transcriptional studies. Cell Cycle 2016; 14:3593-601. [PMID: 26506480 DOI: 10.1080/15384101.2015.1100772] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The DHR3 and Hr4 early-late genes of the ecdysone cascade are described as models for transcriptional studies in Drosophila cells. In a set of experiments, it became clear that these genes are a convenient and versatile system for research into the physiological conditions upon 20-hydroxyecdysone induction. DHR3 and Hr4 gene transcription is characterized by fast activation kinetics, which enables transcriptional studies without the influence of indirect effects. A limited number of activated genes (only 73 genes are induced one hour after treatment) promote the selectivity of transcriptional studies via 20-hydroxyecdysone induction. DHR3 and Hr4 gene expression is dose dependent, is completely controlled by the hormone titer and decreases within hours of 20-hydroxyecdysone withdrawal. The DHR3 and Hr4 gene promoters become functional within 20 minutes after induction, which makes them useful tools for investigation if the early activation process. Their transcription is controlled by the RNA polymerase II pausing mechanism, which is widespread in the genome of Drosophila melanogaster but is still underinvestigated. Uniform expression activation of the DHR3 and Hr4 genes in a cell population was confirmed at both the RNA and protein levels. Homogeneity of the transcription response makes DHR3/Hr4 system valuable for investigation of the protein dynamics during transcription induction.
Collapse
Affiliation(s)
- Marina Yu Mazina
- a Department of Transcription Regulation and Chromatin Dynamic ; Institute of Gene Biology , Russian Academy of Sciences ; Moscow , Russia
| | - Julia V Nikolenko
- a Department of Transcription Regulation and Chromatin Dynamic ; Institute of Gene Biology , Russian Academy of Sciences ; Moscow , Russia
| | - Nadezda A Fursova
- a Department of Transcription Regulation and Chromatin Dynamic ; Institute of Gene Biology , Russian Academy of Sciences ; Moscow , Russia
| | - Petr N Nedil'ko
- a Department of Transcription Regulation and Chromatin Dynamic ; Institute of Gene Biology , Russian Academy of Sciences ; Moscow , Russia
| | - Aleksey N Krasnov
- a Department of Transcription Regulation and Chromatin Dynamic ; Institute of Gene Biology , Russian Academy of Sciences ; Moscow , Russia
| | - Nadezhda E Vorobyeva
- a Department of Transcription Regulation and Chromatin Dynamic ; Institute of Gene Biology , Russian Academy of Sciences ; Moscow , Russia
| |
Collapse
|
24
|
Hur JK, Luo Y, Moon S, Ninova M, Marinov GK, Chung YD, Aravin AA. Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila. Genes Dev 2016; 30:840-55. [PMID: 27036967 PMCID: PMC4826399 DOI: 10.1101/gad.276030.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/07/2016] [Indexed: 11/25/2022]
Abstract
In this study, Hur et al. identified a novel function for the TREX complex, which is critical for pre-mRNA processing and mRNA nuclear export. They found that Thoc5 and other TREX components are essential for the biogenesis of noncoding RNA and delineate a novel mechanism for TREX loading on nascent RNA. The conserved THO/TREX (transcription/export) complex is critical for pre-mRNA processing and mRNA nuclear export. In metazoa, TREX is loaded on nascent RNA transcribed by RNA polymerase II in a splicing-dependent fashion; however, how TREX functions is poorly understood. Here we show that Thoc5 and other TREX components are essential for the biogenesis of piRNA, a distinct class of small noncoding RNAs that control expression of transposable elements (TEs) in the Drosophila germline. Mutations in TREX lead to defects in piRNA biogenesis, resulting in derepression of multiple TE families, gametogenesis defects, and sterility. TREX components are enriched on piRNA precursors transcribed from dual-strand piRNA clusters and colocalize in distinct nuclear foci that overlap with sites of piRNA transcription. The localization of TREX in nuclear foci and its loading on piRNA precursor transcripts depend on Cutoff, a protein associated with chromatin of piRNA clusters. Finally, we show that TREX is required for accumulation of nascent piRNA precursors. Our study reveals a novel splicing-independent mechanism for TREX loading on nascent RNA and its importance in piRNA biogenesis.
Collapse
Affiliation(s)
- Junho K Hur
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yicheng Luo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Sungjin Moon
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | - Maria Ninova
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Georgi K Marinov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yun D Chung
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | - Alexei A Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
25
|
Dukhanina EA, Portseva TN, Pankratova EV, Soshnikova NV, Stepchenko AG, Dukhanin AS, Georgieva SG. Oct-1 modifies S100A4 exchange between intra- and extracellular compartments in Namalwa cells and increases their sensitivity to glucocorticoids. Cell Cycle 2016; 15:1471-8. [PMID: 27096393 DOI: 10.1080/15384101.2016.1175260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
S100A4, a small intra- and extracellular Ca(2+)-binding protein, is involved in tumor progression and metastasis with S100A4 level shown to be correlated with tumor cells metastatic potential. Simultaneously, Octamer transcription factor 1 (Oct-1) regulates a wide range of genes and participates in tumor cell progression with high Oct-1 level associated with a poor prognosis for different tumors. In this study, following the establishment of Oct-1 binding site, we used Burkit lymphoma B cells (Namalwa cells) which express different isoforms of Oct-1 (Oct-1A, Oct-1L and Oct-1X) to investigate the role of Oct-1 in S100A4 expression and sustaining intra- and extra-cellular S100A4 levels. As antitumor agents, we used dexamethasone which effect is mediated by the activation of intracellular glucocorticoid receptors and camptothecin which molecular target is nuclear DNA topoisomerase I (TOP1). We established that, firstly, the most significant increase in S100A4 gene expression has been demonstrated in the cells transfected with Oct-1A. Secondly, we have established that high level of Oct-1 and decreased intracellular S100A4 level decline the survival of Namalwa cells under dexamethasone treatment. Thirdly, we have shown that the tumor cells transformation by different Oct-1 isoforms retained those cells' sensitivity to the antitumor effect of combined dexamethasone and camptothecin. In contrast, in the non-transformed Namalwa cells, dexamethasone decreased the camptothecin effect on the cells survivorship, thus, emphasizing Oct-1 role in the regulation of cell response to different antitumor agents. The results identify a necessity to consider Oct-1 level for combined chemotherapeutic drug treatment.
Collapse
Affiliation(s)
- Elena A Dukhanina
- a Department of Transcription Factors , Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| | - Tatiana N Portseva
- a Department of Transcription Factors , Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| | - Elizaveta V Pankratova
- a Department of Transcription Factors , Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| | - Natalia V Soshnikova
- a Department of Transcription Factors , Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| | - Alexander G Stepchenko
- a Department of Transcription Factors , Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| | - Alexander S Dukhanin
- b Department of Molecular Pharmacology and Radiobiology , Pirogov Russian National Research Medical University , Moscow , Russia
| | - Sofia G Georgieva
- a Department of Transcription Factors , Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
26
|
Kopytova D, Popova V, Kurshakova M, Shidlovskii Y, Nabirochkina E, Brechalov A, Georgiev G, Georgieva S. ORC interacts with THSC/TREX-2 and its subunits promote Nxf1 association with mRNP and mRNA export in Drosophila. Nucleic Acids Res 2016; 44:4920-33. [PMID: 27016737 PMCID: PMC4889942 DOI: 10.1093/nar/gkw192] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/11/2016] [Indexed: 12/20/2022] Open
Abstract
The origin recognition complex (ORC) of eukaryotes associates with the replication origins and initiates the pre-replication complex assembly. In the literature, there are several reports of interaction of ORC with different RNAs. Here, we demonstrate for the first time a direct interaction of ORC with the THSC/TREX-2 mRNA nuclear export complex. The THSC/TREX-2 was purified from the Drosophila embryonic extract and found to bind with a fraction of the ORC. This interaction occurred via several subunits and was essential for Drosophila viability. Also, ORC was associated with mRNP, which was facilitated by TREX-2. ORC subunits interacted with the Nxf1 receptor mediating the bulk mRNA export. The knockdown of Orc5 led to a drop in the Nxf1 association with mRNP, while Orc3 knockdown increased the level of mRNP-bound Nxf1. The knockdown of Orc5, Orc3 and several other ORC subunits led to an accumulation of mRNA in the nucleus, suggesting that ORC participates in the regulation of the mRNP export.
Collapse
Affiliation(s)
- Daria Kopytova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Varvara Popova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Maria Kurshakova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Yulii Shidlovskii
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Elena Nabirochkina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander Brechalov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Georgii Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Sofia Georgieva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
27
|
Georgiev G. Discovery of Nuclear DNA-like RNA (dRNA, hnRNA) and Ribonucleoproteins Particles Containing hnRNA. Acta Naturae 2016; 8:6-12. [PMID: 27099780 PMCID: PMC4837567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
On August 9-11, 2014, Cold Spring Harbor (USA) hosted a special symposium dedicated to the discovery of messenger or informational RNA and the main events in the subsequent studies of its synthesis, regulation of synthesis, maturation, and transport. The existence of mRNA in bacteria was first suggested in 1961 by Jacob and Monod, based on genetic studies [1]. The same year, Brenner et al. confirmed the hypothesis [2]. Our laboratory played a key role in the discovery of messenger RNA in eukaryotes, as well as in the discovery of the nuclear ribonucleoproteins that contain it and in the elucidation of their structural organization. Therefore, I was invited to represent Russia at the Symposium and deliver a speech on these topics. However, my visa had only been issued after the end of the Symposium, and, therefore, the presentation was delivered by my former colleague G.N. Yenikolopov, who works at Cold Spring Harbor Laboratory. The transcript of the lecture is presented below.
Collapse
Affiliation(s)
- G.P. Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334, Russia
| |
Collapse
|
28
|
van Vugt JJFA, Hoedjes KM, van de Geest HC, Schijlen EWGM, Vet LEM, Smid HM. Differentially expressed genes linked to natural variation in long-term memory formation in Cotesia parasitic wasps. Front Behav Neurosci 2015; 9:255. [PMID: 26557061 PMCID: PMC4617343 DOI: 10.3389/fnbeh.2015.00255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022] Open
Abstract
Even though learning and memory are universal traits in the Animal Kingdom, closely related species reveal substantial variation in learning rate and memory dynamics. To determine the genetic background of this natural variation, we studied two congeneric parasitic wasp species, Cotesia glomerata and C. rubecula, which lay their eggs in caterpillars of the large and small cabbage white butterfly. A successful egg laying event serves as an unconditioned stimulus (US) in a classical conditioning paradigm, where plant odors become associated with the encounter of a suitable host caterpillar. Depending on the host species, the number of conditioning trials and the parasitic wasp species, three different types of transcription-dependent long-term memory (LTM) and one type of transcription-independent, anesthesia-resistant memory (ARM) can be distinguished. To identify transcripts underlying these differences in memory formation, we isolated mRNA from parasitic wasp heads at three different time points between induction and consolidation of each of the four memory types, and for each sample three biological replicates, where after strand-specific paired-end 100 bp deep sequencing. Transcriptomes were assembled de novo and differential expression was determined for each memory type and time point after conditioning, compared to unconditioned wasps. Most differentially expressed (DE) genes and antisense transcripts were only DE in one of the LTM types. Among the DE genes that were DE in two or more LTM types, were many protein kinases and phosphatases, small GTPases, receptors and ion channels. Some genes were DE in opposing directions between any of the LTM memory types and ARM, suggesting that ARM in Cotesia requires the transcription of genes inhibiting LTM or vice versa. We discuss our findings in the context of neuronal functioning, including RNA splicing and transport, epigenetic regulation, neurotransmitter/peptide synthesis and antisense transcription. In conclusion, these brain transcriptomes provide candidate genes that may be involved in the observed natural variation in LTM in closely related Cotesia parasitic wasp species.
Collapse
Affiliation(s)
- Joke J F A van Vugt
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | - Katja M Hoedjes
- Laboratory of Entomology, Wageningen University Wageningen, Netherlands
| | | | - Elio W G M Schijlen
- Applied Bioinformatics, Plant Research International Wageningen, Netherlands
| | - Louise E M Vet
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands ; Laboratory of Entomology, Wageningen University Wageningen, Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University Wageningen, Netherlands
| |
Collapse
|
29
|
|
30
|
RNA Export through the NPC in Eukaryotes. Genes (Basel) 2015; 6:124-49. [PMID: 25802992 PMCID: PMC4377836 DOI: 10.3390/genes6010124] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/27/2015] [Accepted: 03/10/2015] [Indexed: 02/08/2023] Open
Abstract
In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.
Collapse
|
31
|
Sumoylation is Required for the Cytoplasmic Accumulation of a Subset of mRNAs. Genes (Basel) 2014; 5:982-1000. [PMID: 25333844 PMCID: PMC4276922 DOI: 10.3390/genes5040982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/26/2014] [Accepted: 10/04/2014] [Indexed: 12/17/2022] Open
Abstract
In order to discover novel proteins that promote the nuclear export of newly synthesized mRNAs in mammalian cells, we carried out a limited RNAi screen for proteins required for the proper cytoplasmic distribution of a model intronless mRNA. From this screen we obtained two hits, Ubc9 (SUMO-conjugating E2 enzyme) and GANP (germinal center-associated nuclear protein). Depletion of Ubc9 inhibited the proper cytoplasmic distribution of certain overexpressed intronless mRNAs, while depletion of GANP affected all tested mRNAs. Depletion of Sae1, which is also required for sumoylation, partially inhibited the cytoplasmic distribution of our model mRNA. Interestingly, the block in cytoplasmic accumulation in Ubc9-depleted cells could be overcome if an intron was incorporated into the mRNA. Surprisingly, Ubc9-depleted cells had normal nuclear export of newly synthesized intronless mRNAs, indicating that the observed accumulation of the model mRNA in the nuclei of transfected cells was likely due to some more general perturbation. Indeed, depletion of Ubc9, coupled with the overexpression of the intronless mRNAs, caused the redistribution of the nuclear speckle protein SC35 to cytoplasmic foci. Our results suggest that sumoylation may play a role in the proper assembly of mRNPs and/or the distribution of key RNA binding proteins, and may thus contribute to general protein expression patterns.
Collapse
|
32
|
Maksimenko O, Kyrchanova O, Bonchuk A, Stakhov V, Parshikov A, Georgiev P. Highly conserved ENY2/Sus1 protein binds to Drosophila CTCF and is required for barrier activity. Epigenetics 2014; 9:1261-70. [PMID: 25147918 DOI: 10.4161/epi.32086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers for the spreading of repressive chromatin. Drosophila insulator protein dCTCF marks active promoters and boundaries of many histone H3K27 trimethylation domains associated with repressed chromatin. In particular, dCTCF binds to such boundaries between the parasegment-specific regulatory domains of the Bithorax complex. Here we demonstrate that the evolutionarily conserved protein ENY2 is recruited to the zinc-finger domain of dCTCF and is required for the barrier activity of dCTCF-dependent insulators in transgenic lines. Inactivation of ENY2 by RNAi in BG3 cells leads to the spreading of H3K27 trimethylation and Pc protein at several dCTCF boundaries. The results suggest that evolutionarily conserved ENY2 is responsible for barrier activity mediated by the dCTCF protein.
Collapse
Affiliation(s)
- Oksana Maksimenko
- Laboratory of Gene Expression Regulation in Development; Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia
| | - Olga Kyrchanova
- Group of Transcriptional Regulation; Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia
| | - Artem Bonchuk
- Group of Transcriptional Regulation; Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia
| | - Viacheslav Stakhov
- Laboratory of Gene Expression Regulation in Development; Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia
| | - Alexander Parshikov
- Department of the Control of Genetic Processes; Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes; Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia
| |
Collapse
|
33
|
Gurskiy DY, Kopytova DV, Georgieva SG, Nabirochkina EN. SAGA complex: Role in viability and development. Mol Biol 2013. [DOI: 10.1134/s0026893313060071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Gurskiy DY, Nabirochkina EN, Kopytova DV. Role of multifunctional coactivator complex SAGA in regulation of eukaryotic gene expression. Mol Biol 2013. [DOI: 10.1134/s002689331306006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Saran S, Tran DDH, Klebba-Färber S, Moran-Losada P, Wiehlmann L, Koch A, Chopra H, Pabst O, Hoffmann A, Klopfleisch R, Tamura T. THOC5, a member of the mRNA export complex, contributes to processing of a subset of wingless/integrated (Wnt) target mRNAs and integrity of the gut epithelial barrier. BMC Cell Biol 2013; 14:51. [PMID: 24267292 PMCID: PMC4222586 DOI: 10.1186/1471-2121-14-51] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/19/2013] [Indexed: 11/26/2022] Open
Abstract
Background THO (Suppressors of the transcriptional defects of hpr1 delta by overexpression) complex 5 (THOC5), an mRNA export protein, is involved in the expression of only 1% of all genes. Using an interferon inducible knockout mouse system, we have previously shown that THOC5 is an essential element in the maintenance of hematopoietic stem cells and cytokine-mediated hematopoiesis in adult mice. Here we interrogate THOC5 function in cell differentiation beyond the hematopoietic system and study pathological changes caused by THOC5 deficiency. Results To examine whether THOC5 plays a role in general differentiation processes, we generated tamoxifen inducible THOC5 knockout mice. We show here that the depletion of THOC5 impaired not only hematopoietic differentiation, but also differentiation and self renewal of the gut epithelium. Depletion of the THOC5 gene did not cause pathological alterations in liver or kidney. We further show that THOC5 is indispensable for processing of mRNAs induced by Wnt (wingless/integrated) signaling which play key roles in epithelial cell differentiation/proliferation. A subset of Wnt target mRNAs, SRY-box containing gene 9 (Sox9), and achaete-scute complex homolog 2 (Ascl2), but not Fibronectin 1 (Fn1), were down-regulated in THOC5 knockout intestinal cells. The down-regulated Wnt target mRNAs were able to bind to THOC5. Furthermore, pathological alterations in the gastrointestinal tract induced translocation of intestinal bacteria and caused sepsis in mice. The bacteria translocation may cause Toll-like receptor activation. We identified one of the Toll-like receptor inducible genes, prostaglandin-endoperoxidase synthase 2 (Ptgs2 or COX2) transcript as THOC5 target mRNA. Conclusion THOC5 is indispensable for processing of only a subset of mRNAs, but plays a key role in processing of mRNAs inducible by Wnt signals. Furthermore, THOC5 is dispensable for general mRNA export in terminally differentiated organs, indicating that multiple mRNA export pathways exist. These data imply that THOC5 may be a useful tool for studying intestinal stem cells, for modifying the differentiation processes and for cancer therapy.
Collapse
Affiliation(s)
- Shashank Saran
- Institut fuer Biochemie, Medizinische Hochschule Hannover, OE4310 Carl-Neuberg-Str, 1, Hannover D-30623, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tran DDH, Saran S, Dittrich-Breiholz O, Williamson AJK, Klebba-Färber S, Koch A, Kracht M, Whetton AD, Tamura T. Transcriptional regulation of immediate-early gene response by THOC5, a member of mRNA export complex, contributes to the M-CSF-induced macrophage differentiation. Cell Death Dis 2013; 4:e879. [PMID: 24157873 PMCID: PMC3920956 DOI: 10.1038/cddis.2013.409] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 12/12/2022]
Abstract
Hematopoiesis and commitment to a restricted lineage are guided by a timely expressed set of cytokine receptors and their downstream transcription factors. A member of the mRNA export complex, THOC5 (suppressors of the transcriptional defects of hpr1 delta by overexpression complex 5) is a substrate for several tyrosine kinases such as macrophage colony-stimulating factor (M-CSF) receptor and various leukemogenic tyrosine kinases, such as Bcr-Abl, or NPM-ALK. THOC5 tyrosine phosphorylation is elevated in stem cells from patients with chronic myeloid leukemia, suggesting that THOC5 may be involved in leukemia development. THOC5 is also an essential element in the maintenance of hematopoiesis in adult mice. In this report, we show that THOC5 is located in the nuclear speckles, and that it is translocated from the nucleus to cytoplasm during M-CSF-induced bone marrow-derived macrophage differentiation. Furthermore, we have identified THOC5 target genes by trancriptome analysis, using tamoxifen-inducible THOC5 knockout macrophages. Although only 99 genes were downregulated in THOC5-depleted macrophages, half of the genes are involved in differentiation and/or migration. These include well-known regulators of myeloid differentiation inhibitor of DNA binding (Id)1, Id3, Smad family member 6 (Smad6) and Homeobox (Hox)A1. In addition, a subset of M-CSF-inducible genes, such as Ets family mRNAs are THOC5 target mRNAs. Upon depletion of THOC5, unspliced v-ets erythroblastosis virus E26 oncogene homolog (Ets1) mRNA was accumulated in the nucleus. Furthermore, THOC5 was recruited to chromatin where Ets1 was transcribed and bound to unspliced and spliced Ets1 transcripts, indicating that THOC5 has a role in processing/export of M-CSF-inducible genes. In conclusion, regulation of immediate-early gene response by THOC5, a member of mRNA export complex contributes to the M-CSF-induced macrophage differentiation.
Collapse
Affiliation(s)
- D D H Tran
- Institut fuer Biochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Street 1, Hannover D-30623, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shaposhnikov AV, Kryndushkin AS, Nikolenko YV, Panov VV, Nabirochkina EN, Lebedeva LA, Shidlovskii YV. Activation of JAK/STAT signaling pathway in Drosophila melanogaster S2 cell culture. Mol Biol 2013. [DOI: 10.1134/s0026893313030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Katahira J, Okuzaki D, Inoue H, Yoneda Y, Maehara K, Ohkawa Y. Human TREX component Thoc5 affects alternative polyadenylation site choice by recruiting mammalian cleavage factor I. Nucleic Acids Res 2013; 41:7060-72. [PMID: 23685434 PMCID: PMC3737531 DOI: 10.1093/nar/gkt414] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The transcription-export complex (TREX) couples mRNA transcription, processing and nuclear export. We found that CFIm68, a large subunit of a heterotetrameric protein complex mammalian cleavage factor I (CFIm), which is implicated in alternative polyadenylation site choice, co-purified with Thoc5, a component of human TREX. Immunoprecipitation using antibodies against different components of TREX indicated that most likely both complexes interact via an interaction between Thoc5 and CFIm68. Microarray analysis using human HeLa cells revealed that a subset of genes was differentially expressed on Thoc5 knockdown. Notably, the depletion of Thoc5 selectively attenuated the expression of mRNAs polyadenylated at distal, but not proximal, polyadenylation sites, which phenocopied the depletion of CFIm68. Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) indicated that CFIm68 preferentially associated with the 5′ regions of genes; strikingly, the 5′ peak of CFIm68 was significantly and globally reduced on Thoc5 knockdown. We suggest a model in which human Thoc5 controls polyadenylation site choice through the co-transcriptional loading of CFIm68 onto target genes.
Collapse
Affiliation(s)
- Jun Katahira
- Biomolecular Networks Laboratories, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Rohner S, Kalck V, Wang X, Ikegami K, Lieb JD, Gasser SM, Meister P. Promoter- and RNA polymerase II-dependent hsp-16 gene association with nuclear pores in Caenorhabditis elegans. ACTA ACUST UNITED AC 2013; 200:589-604. [PMID: 23460676 PMCID: PMC3587839 DOI: 10.1083/jcb.201207024] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hsp-16.2 promoter is sufficient for recruitment of hsp-16.2 to nuclear pore complexes in a manner dependent on RNA pol II and ENY-2, but not on full-length mRNA production. Some inducible yeast genes relocate to nuclear pores upon activation, but the general relevance of this phenomenon has remained largely unexplored. Here we show that the bidirectional hsp-16.2/41 promoter interacts with the nuclear pore complex upon activation by heat shock in the nematode Caenorhabditis elegans. Direct pore association was confirmed by both super-resolution microscopy and chromatin immunoprecipitation. The hsp-16.2 promoter was sufficient to mediate perinuclear positioning under basal level conditions of expression, both in integrated transgenes carrying from 1 to 74 copies of the promoter and in a single-copy genomic insertion. Perinuclear localization of the uninduced gene depended on promoter elements essential for induction and required the heat-shock transcription factor HSF-1, RNA polymerase II, and ENY-2, a factor that binds both SAGA and the THO/TREX mRNA export complex. After induction, colocalization with nuclear pores increased significantly at the promoter and along the coding sequence, dependent on the same promoter-associated factors, including active RNA polymerase II, and correlated with nascent transcripts.
Collapse
Affiliation(s)
- Sabine Rohner
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
40
|
Moon S, Chung YD. p53 and PI3K/AKT signalings are up-regulated in flies with defects in the THO complex. Mol Cells 2013; 35:261-8. [PMID: 23475424 PMCID: PMC3887910 DOI: 10.1007/s10059-013-0009-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 12/11/2022] Open
Abstract
The THO complex (THO) is an evolutionary conserved protein required for the formation of export-competent mRNP. The growing evidence indicates that the metazoan THO plays important roles in cell differentiation and cellular stress response. But the underlying mechanisms are poorly understood. Herein we examined the relevance of THO to cellular signaling pathways involved in cell differentiation and cellular stress response. When we examined the endogenous p53 level in the testis, it was sustained much longer during spermatogenesis in the THO mutant compared to that of wild-type. In flies with impaired THO, overexpression of p53 by eye-specific GAL4 not only enhanced p53-mediated retinal degeneration, but p53 level was also elevated compared to the control flies. Since the body size of the THO mutant flies was significantly larger than control flies, we also examined whether the PI3K/AKT signaling is enhanced in the mutant flies. The results showed that the endogenous level of phosphorylated AKT, which is the active form, was highly elevated in the THO mutants. Taken together our results suggested that both p53 and PI3K/AKT signalings are up-regulated in the flies with impaired THO.
Collapse
Affiliation(s)
- Sungjin Moon
- Department of Life Science, University of Seoul, Seoul 130–743,
Korea
| | - Yun Doo Chung
- Department of Life Science, University of Seoul, Seoul 130–743,
Korea
| |
Collapse
|
41
|
Lee KM, Tarn WY. Coupling pre-mRNA processing to transcription on the RNA factory assembly line. RNA Biol 2013; 10:380-90. [PMID: 23392244 DOI: 10.4161/rna.23697] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression.
Collapse
Affiliation(s)
- Kuo-Ming Lee
- Institute of Biomedical Sciences; Academia Sinica; Taipei, Taiwan
| | | |
Collapse
|
42
|
Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat Rev Mol Cell Biol 2013; 13:687-99. [PMID: 23090414 DOI: 10.1038/nrm3461] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nuclear pore complexes (NPCs) are multiprotein aqueous channels that penetrate the nuclear envelope connecting the nucleus and the cytoplasm. NPCs consist of multiple copies of roughly 30 different proteins known as nucleoporins (NUPs). Due to their essential role in controlling nucleocytoplasmic transport, NPCs have traditionally been considered as structures of ubiquitous composition. The overall structure of the NPC is indeed conserved in all cells, but new evidence suggests that the protein composition of NPCs varies among cell types and tissues. Moreover, mutations in various nucleoporins result in tissue-specific diseases. These findings point towards a heterogeneity in NPC composition and function. This unexpected heterogeneity suggests that cells use a combination of different nucleoporins to assemble NPCs with distinct properties and specialized functions.
Collapse
|
43
|
Tian G, Lu Q, Kohalmi SE, Rothstein SJ, Cui Y. Evidence that the Arabidopsis Ubiquitin C-terminal Hydrolases 1 and 2 associate with the 26S proteasome and the TREX-2 complex. PLANT SIGNALING & BEHAVIOR 2012; 7:1415-9. [PMID: 22951400 PMCID: PMC3548861 DOI: 10.4161/psb.21899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The 26S proteasome interacts with a number of different proteins, while the TREX-2 complex is an important component of the mRNA export machinery. In animals and yeast, members of the Ubiquitin C-terminal Hydrolase 37 (UCH37) family are found to associate with the 26S proteasome, but this has not been demonstrated in plants. The Arabidopsis UCH1 and UCH2 are orthologous to UCH37. Here, we show that UCH1 and UCH2 interact with the 26S proteasome lid subunits. In addition, the two UCHs also interact with TREX-2 components. Our data suggest that Arabidopsis UCHs may serve as a link between the 26S proteasome lid complex and the TREX-2 complex.
Collapse
Affiliation(s)
- Gang Tian
- Agriculture and Agri-Food Canada; Southern Crop Protection and Food Research Centre; London, ON Canada
- Department of Biology; Western University; London, ON Canada
| | - Qing Lu
- Agriculture and Agri-Food Canada; Southern Crop Protection and Food Research Centre; London, ON Canada
- Department of Molecular and Cellular Biology; University of Guelph; Guelph, ON Canada
| | | | - Steven J. Rothstein
- Department of Molecular and Cellular Biology; University of Guelph; Guelph, ON Canada
| | - Yuhai Cui
- Agriculture and Agri-Food Canada; Southern Crop Protection and Food Research Centre; London, ON Canada
- Department of Biology; Western University; London, ON Canada
- Correspondence to: Yuhai Cui,
| |
Collapse
|
44
|
Galán A, Rodríguez-Navarro S. Sus1/ENY2: a multitasking protein in eukaryotic gene expression. Crit Rev Biochem Mol Biol 2012; 47:556-68. [PMID: 23057668 DOI: 10.3109/10409238.2012.730498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The purpose of this review is to provide a complete overview on the functions of the transcription/export factor Sus1. Sus1 is a tiny conserved factor in sequence and functions through the eukaryotic kingdom. Although it was discovered recently, research done to address the role of Sus1/ENY2 has provided in deep description of different mechanisms influencing gene expression. Initially found to interact with the transcription and mRNA export machinery in yeast, it is now clear that it has a broad role in mRNA biogenesis. Sus1 is necessary for histone H2B deubiquitination, mRNA export and gene gating. Moreover, interesting observations also suggest a link with the cytoplasmatic mRNP fate. Although the role of Sus1 in human cells is largely unknown, preliminary results suggest interesting links to pathological states that range from rare diseases to diabetes. We will describe what is known about Sus1/ENY2 in yeast and other eukaryotes and discuss some exciting open questions to be solved in the future.
Collapse
Affiliation(s)
- Amparo Galán
- Centro de Investigación Príncipe Felipe, CIPF. Gene Expression coupled to RNA Transport Laboratory, Eduardo Primo Yúfera, Valencia, Spain
| | | |
Collapse
|
45
|
Gurskiy D, Orlova A, Vorobyeva N, Nabirochkina E, Krasnov A, Shidlovskii Y, Georgieva S, Kopytova D. The DUBm subunit Sgf11 is required for mRNA export and interacts with Cbp80 in Drosophila. Nucleic Acids Res 2012; 40:10689-700. [PMID: 22989713 PMCID: PMC3510517 DOI: 10.1093/nar/gks857] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
SAGA/TFTC is a histone acetyltransferase complex that has a second enzymatic activity because of the presence of a deubiquitination module (DUBm). Drosophila DUBm consists of Sgf11, ENY2 and Nonstop proteins. We show that Sgf11 has other DUBm-independent functions. It associates with Cbp80 component of the cap-binding complex and is thereby recruited onto growing messenger ribonucleic acid (mRNA); it also interacts with the AMEX mRNA export complex and is essential for hsp70 mRNA export, as well as for general mRNA export from the nucleus. Thus, Sgf11 functions as a component of both SAGA DUBm and the mRNA biogenesis machinery.
Collapse
Affiliation(s)
- Dmitriy Gurskiy
- Department of Regulation of Gene Expression, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Larochelle M, Lemay JF, Bachand F. The THO complex cooperates with the nuclear RNA surveillance machinery to control small nucleolar RNA expression. Nucleic Acids Res 2012; 40:10240-53. [PMID: 22965128 PMCID: PMC3488260 DOI: 10.1093/nar/gks838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
THO is a multi-protein complex that promotes coupling between transcription and mRNA processing. In contrast to its role in mRNA biogenesis, we show here that the fission yeast THO complex negatively controls the expression of non-coding small nucleolar (sno) RNAs. Accordingly, the deletion of genes encoding subunits of the evolutionarily conserved THO complex results in increased levels of mature snoRNAs. We also show physical and functional connections between THO and components of the TRAMP polyadenylation complex, whose loss of function also results in snoRNA accumulation. Consistent with a role in snoRNA expression, we demonstrate that THO and TRAMP complexes are recruited to snoRNA genes, and that a functional THO complex is required to maintain TRAMP occupancy at sites of snoRNA transcription. Our findings suggest that THO promotes exosome-mediated degradation of snoRNA precursors by ensuring the presence of the TRAMP complex at snoRNA genes. This study unveils an unexpected role for THO in the control of snoRNA expression and provides a new link between transcription and nuclear RNA decay.
Collapse
Affiliation(s)
- Marc Larochelle
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | |
Collapse
|
47
|
Suppression of the nuclear factor Eny2 increases insulin secretion in poorly functioning INS-1E insulinoma cells. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:460869. [PMID: 22649445 PMCID: PMC3357931 DOI: 10.1155/2012/460869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/18/2012] [Accepted: 02/21/2012] [Indexed: 01/01/2023]
Abstract
Eny2, the mammalian ortholog of yeast Sus1 and drosophila E(y)2, is a nuclear factor that participates in several steps of gene transcription and in mRNA export. We had previously found that Eny2 expression changes in mouse pancreatic islets during the metabolic adaptation to pregnancy. We therefore hypothesized that the protein contributes to the regulation of islet endocrine cell function and tested this hypothesis in rat INS-1E insulinoma cells. Overexpression of Eny2 had no effect but siRNA-mediated knockdown of Eny2 resulted in markedly increased glucose and exendin-4-induced insulin secretion from otherwise poorly glucose-responsive INS-1E cells. Insulin content, cellular viability, and the expression levels of several key components of glucose sensing remained unchanged; however glucose-dependent cellular metabolism was higher after Eny2 knockdown. Suppression of Eny2 enhanced the intracellular incretin signal downstream of cAMP. The use of specific cAMP analogues and pathway inhibitors primarily implicated the PKA and to a lesser extent the EPAC pathway. In summary, we identified a potential link between the nuclear protein Eny2 and insulin secretion. Suppression of Eny2 resulted in increased glucose and incretin-induced insulin release from a poorly glucose-responsive INS-1E subline. Whether these findings extend to other experimental conditions or to in vivo physiology needs to be determined in further studies.
Collapse
|
48
|
Oeffinger M, Zenklusen D. To the pore and through the pore: a story of mRNA export kinetics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:494-506. [PMID: 22387213 DOI: 10.1016/j.bbagrm.2012.02.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 12/26/2022]
Abstract
The evolutionary 'decision' to store genetic information away from the place of protein synthesis, in a separate compartment, has forced eukaryotic cells to establish a system to transport mRNAs from the nucleus to the cytoplasm for translation. To ensure export to be fast and efficient, cells have evolved a complex molecular interplay that is tightly regulated. Over the last few decades, many of the individual players in this process have been described, starting with the composition of the nuclear pore complex to proteins that modulate co-transcriptional events required to prepare an mRNP for export to the cytoplasm. How the interplay between all the factors and processes results in the efficient and selective export of mRNAs from the nucleus and how the export process itself is executed within cells, however, is still not fully understood. Recent advances in using proteomic and single molecule microscopy approaches have provided important insights into the process and its kinetics. This review summarizes these recent advances and how they led to the current view on how cells orchestrate the export of mRNAs. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Marlene Oeffinger
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, Canada.
| | | |
Collapse
|
49
|
Nuclear export as a key arbiter of "mRNA identity" in eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:566-77. [PMID: 22248619 DOI: 10.1016/j.bbagrm.2011.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/23/2011] [Accepted: 12/29/2011] [Indexed: 01/15/2023]
Abstract
Over the past decade, various studies have indicated that most of the eukaryotic genome is transcribed at some level. The pervasiveness of transcription might seem surprising when one considers that only a quarter of the human genome comprises genes (including exons and introns) and less than 2% codes for protein. This conundrum is partially explained by the unique evolutionary pressures that are imposed on species with small population sizes, such as eukaryotes. These conditions promote the expansion of introns and non-functional intergenic DNA, and the accumulation of cryptic transcriptional start sites. As a result, the eukaryotic gene expression machinery must effectively evaluate whether or not a transcript has all the hallmarks of a protein-coding mRNA. If a transcript contains these features, then positive feedback loops are activated to further stimulate its transcription, processing, nuclear export and ultimately, translation. However if a transcript lacks features associated with "mRNA identity", then the RNA is degraded and/or used to inhibit further transcription and translation of the gene. Here we discuss how mRNA identity is assessed by the nuclear export machinery in order to extract meaningful information from the eukaryotic genome. In the process, we provide an explanation of why certain sequences that are enriched in protein-coding genes, such as the signal sequence coding region, promote mRNA nuclear export in vertebrates. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
|
50
|
Sarkar P, Collier TS, Randall SM, Muddiman DC, Rao BM. The subcellular proteome of undifferentiated human embryonic stem cells. Proteomics 2012; 12:421-30. [DOI: 10.1002/pmic.201100507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/31/2011] [Accepted: 11/14/2011] [Indexed: 11/11/2022]
|