1
|
Bai L, Tani T, Kobayashi T, Nouda R, Kanai Y, Sano Y, Takami K, Tomita H, Sugano E, Ozaki T, Kiyono T, Fukuda T. Establishment of immortalized Egyptian Rousettus bat cell lines. FEBS Open Bio 2024; 14:598-612. [PMID: 38373743 PMCID: PMC10988675 DOI: 10.1002/2211-5463.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
The Egyptian Rousettus bat (Rousettus aegyptiacus) is a common fruit bat species that is distributed mainly in Africa and the Middle East. Bats serve as reservoir hosts for numerous pathogens. Human activities, such as hunting bats for food, managing vermin, and causing habitat loss, elevate the likelihood of transmission of bat pathogens to humans and other animals. Consequently, bat cell lines play a crucial role as research materials for investigating viral pathogens. However, the inherent limitation of finite cell division in primary cells necessitates the use of immortalized cells derived from various bat tissues. Herein, we successfully established six fibroblast cell lines derived from an infant bat heart and lungs and an elderly bat heart. Three of the six cell lines, called K4DT cells, were transduced by a combination of cell cycle regulators, mutant cyclin-dependent kinase 4, cyclin D1, and human telomerase reverse transcriptase. The other three cell lines, named SV40 cells, were transfected with simian virus 40 large T antigen. Transgene protein expression was detected in the transduced cells. All three K4DT cell lines and one lung-derived SV40 cell line were virtually immortalized and nearly maintained the normal diploid karyotypes. However, the two other heart-derived SV40 cell lines had aberrant karyotypes and the young bat-derived cell line stopped proliferating at approximately 40 population doublings. These bat cell lines are valuable for studying pathogen genomics and biology.
Collapse
Affiliation(s)
- Lanlan Bai
- Graduate School of Science and EngineeringIwate UniversityJapan
| | - Tetsuya Tani
- Laboratory of Animal Reproduction, Department of AgricultureKindai UniversityNaraJapan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial DiseasesOsaka UniversityJapan
| | - Ryotaro Nouda
- Department of Virology, Research Institute for Microbial DiseasesOsaka UniversityJapan
| | - Yuta Kanai
- Department of Virology, Research Institute for Microbial DiseasesOsaka UniversityJapan
| | - Yusuke Sano
- Local Independent Administrative Agency Tennoji Zoological GardensOsakaJapan
| | - Kazutoshi Takami
- Osaka Municipal Tennoji Zoological GardensJapan
- Present address:
*Toyohashi Zoo and Botanical ParkToyohashiJapan
| | - Hiroshi Tomita
- Graduate School of Science and EngineeringIwate UniversityJapan
| | - Eriko Sugano
- Graduate School of Science and EngineeringIwate UniversityJapan
| | - Taku Ozaki
- Graduate School of Science and EngineeringIwate UniversityJapan
| | - Tohru Kiyono
- Exploratory Oncology Research & Clinical Trial CenterNational Cancer CenterChibaJapan
| | - Tomokazu Fukuda
- Graduate School of Science and EngineeringIwate UniversityJapan
| |
Collapse
|
2
|
Melnik BC. Acne Transcriptomics: Fundamentals of Acne Pathogenesis and Isotretinoin Treatment. Cells 2023; 12:2600. [PMID: 37998335 PMCID: PMC10670572 DOI: 10.3390/cells12222600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
This review on acne transcriptomics allows for deeper insights into the pathogenesis of acne and isotretinoin's mode of action. Puberty-induced insulin-like growth factor 1 (IGF-1), insulin and androgen signaling activate the kinase AKT and mechanistic target of rapamycin complex 1 (mTORC1). A Western diet (hyperglycemic carbohydrates and milk/dairy products) also co-stimulates AKT/mTORC1 signaling. The AKT-mediated phosphorylation of nuclear FoxO1 and FoxO3 results in their extrusion into the cytoplasm, a critical switch which enhances the transactivation of lipogenic and proinflammatory transcription factors, including androgen receptor (AR), sterol regulatory element-binding transcription factor 1 (SREBF1), peroxisome proliferator-activated receptor γ (PPARγ) and signal transducer and activator of transcription 3 (STAT3), but reduces the FoxO1-dependent expression of GATA binding protein 6 (GATA6), the key transcription factor for infundibular keratinocyte homeostasis. The AKT-mediated phosphorylation of the p53-binding protein MDM2 promotes the degradation of p53. In contrast, isotretinoin enhances the expression of p53, FoxO1 and FoxO3 in the sebaceous glands of acne patients. The overexpression of these proapoptotic transcription factors explains isotretinoin's desirable sebum-suppressive effect via the induction of sebocyte apoptosis and the depletion of BLIMP1(+) sebocyte progenitor cells; it also explains its adverse effects, including teratogenicity (neural crest cell apoptosis), a reduced ovarian reserve (granulosa cell apoptosis), the risk of depression (the apoptosis of hypothalamic neurons), VLDL hyperlipidemia, intracranial hypertension and dry skin.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
3
|
Łasut-Szyszka B, Rusin M. The Wheel of p53 Helps to Drive the Immune System. Int J Mol Sci 2023; 24:ijms24087645. [PMID: 37108808 PMCID: PMC10143509 DOI: 10.3390/ijms24087645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The p53 tumor suppressor protein is best known as an inhibitor of the cell cycle and an inducer of apoptosis. Unexpectedly, these functions of p53 are not required for its tumor suppressive activity in animal models. High-throughput transcriptomic investigations as well as individual studies have demonstrated that p53 stimulates expression of many genes involved in immunity. Probably to interfere with its immunostimulatory role, many viruses code for proteins that inactivate p53. Judging by the activities of immunity-related p53-regulated genes it can be concluded that p53 is involved in detection of danger signals, inflammasome formation and activation, antigen presentation, activation of natural killer cells and other effectors of immunity, stimulation of interferon production, direct inhibition of virus replication, secretion of extracellular signaling molecules, production of antibacterial proteins, negative feedback loops in immunity-related signaling pathways, and immunologic tolerance. Many of these p53 functions have barely been studied and require further, more detailed investigations. Some of them appear to be cell-type specific. The results of transcriptomic studies have generated many new hypotheses on the mechanisms utilized by p53 to impact on the immune system. In the future, these mechanisms may be harnessed to fight cancer and infectious diseases.
Collapse
Affiliation(s)
- Barbara Łasut-Szyszka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| |
Collapse
|
4
|
Deciphering the Role of p53 and TAp73 in Neuroblastoma: From Pathogenesis to Treatment. Cancers (Basel) 2022; 14:cancers14246212. [PMID: 36551697 PMCID: PMC9777536 DOI: 10.3390/cancers14246212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma (NB) is an embryonic cancer that develops from neural crest stem cells, being one of the most common malignancies in children. The clinical manifestation of this disease is highly variable, ranging from spontaneous regression to increased aggressiveness, which makes it a major therapeutic challenge in pediatric oncology. The p53 family proteins p53 and TAp73 play a key role in protecting cells against genomic instability and malignant transformation. However, in NB, their activities are commonly inhibited by interacting proteins such as murine double minute (MDM)2 and MDMX, mutant p53, ΔNp73, Itch, and Aurora kinase A. The interplay between the p53/TAp73 pathway and N-MYC, a known biomarker of poor prognosis and drug resistance in NB, also proves to be decisive in the pathogenesis of this tumor. More recently, a strong crosstalk between microRNAs (miRNAs) and p53/TAp73 has been established, which has been the focused of great attention because of its potential for developing new therapeutic strategies. Collectively, this review provides an updated overview about the critical role of the p53/TAp73 pathway in the pathogenesis of NB, highlighting encouraging clues for the advance of alternative NB targeted therapies.
Collapse
|
5
|
Harford JB, Kim SS, Pirollo KF, Chang EH. TP53 Gene Therapy as a Potential Treatment for Patients with COVID-19. Viruses 2022; 14:v14040739. [PMID: 35458469 PMCID: PMC9027273 DOI: 10.3390/v14040739] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
SGT-53 is a novel investigational agent that comprises an immunoliposome carrying a plasmid vector driving expression of the human TP53 gene that encodes wild-type human p53. SGT-53 is currently in phase II human trials for advanced pancreatic cancer. Although p53 is best known as a tumor suppressor, its participation in both innate and adaptive immune responses is well documented. It is now clear that p53 is an important component of the host response to various viral infections. To facilitate their viral life cycles, viruses have developed a diverse repertoire of strategies for counteracting the antiviral activities of host immune system by manipulating p53-dependent pathways in host cells. Coronaviruses reduce endogenous p53 levels in the cells they infect by enhancing the degradation of p53 in proteasomes. Thus, interference with p53 function is an important component in viral pathogenesis. Transfection of cells by SGT-53 has been shown to transiently produce exogenous p53 that is active as a pleiotropic transcription factor. We herein summarize the rationale for repurposing SGT-53 as a therapy for infection by SARS-CoV-2, the pathogen responsible for the COVID-19 pandemic. Because p53 regulation was found to play a crucial role in different infection stages of a wide variety of viruses, it is rational to believe that restoring p53 function based on SGT-53 treatment may lead to beneficial therapeutic outcomes for infectious disease at large including heretofore unknown viral pathogens that may emerge in the future.
Collapse
Affiliation(s)
- Joe B. Harford
- SynerGene Therapeutics, Inc., Potomac, MD 20854, USA;
- Correspondence:
| | - Sang Soo Kim
- SynerGene Therapeutics, Inc., Potomac, MD 20854, USA;
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA; (K.F.P.); (E.H.C.)
| | - Kathleen F. Pirollo
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA; (K.F.P.); (E.H.C.)
| | - Esther H. Chang
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA; (K.F.P.); (E.H.C.)
| |
Collapse
|
6
|
Porcine pancreatic ductal epithelial cells transformed with KRAS G12D and SV40T are tumorigenic. Sci Rep 2021; 11:13436. [PMID: 34183736 PMCID: PMC8238942 DOI: 10.1038/s41598-021-92852-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
We describe our initial studies in the development of an orthotopic, genetically defined, large animal model of pancreatic cancer. Primary pancreatic epithelial cells were isolated from pancreatic duct of domestic pigs. A transformed cell line was generated from these primary cells with oncogenic KRAS and SV40T. The transformed cell lines outperformed the primary and SV40T immortalized cells in terms of proliferation, population doubling time, soft agar growth, transwell migration and invasion. The transformed cell line grew tumors when injected subcutaneously in nude mice, forming glandular structures and staining for epithelial markers. Future work will include implantation studies of these tumorigenic porcine pancreatic cell lines into the pancreas of allogeneic and autologous pigs. The resultant large animal model of pancreatic cancer could be utilized for preclinical research on diagnostic, interventional, and therapeutic technologies.
Collapse
|
7
|
Shapira S, Boustanai I, Kazanov D, Ben Shimon M, Fokra A, Arber N. Innovative dual system approach for selective eradication of cancer cells using viral-based delivery of natural bacterial toxin-antitoxin system. Oncogene 2021; 40:4967-4979. [PMID: 34172933 PMCID: PMC8342310 DOI: 10.1038/s41388-021-01792-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 01/20/2023]
Abstract
The inactivation of p53, a tumor suppressor, and the activation of the RAS oncogene are the most frequent genetic alterations in cancer. We have shown that a unique E. coli MazF-MazE toxin–antitoxin (TA) system can be used for selective and effective eradication of RAS-mutated cancer cells. This out of the box strategy holds great promise for effective cancer treatment and management. We provide proof of concept for a novel platform to selectively eradicate cancer cells using an adenoviral delivery system based on the adjusted natural bacterial system. We generated adenoviral vectors carrying the mazF toxin (pAdEasy-Py4-SV40mP-mCherry-MazF) and the antitoxin mazE (pAdEasy-RGC-SV40mP-MazE-IRES-GFP) under the regulation of RAS and p53, resp. The control vector carries the toxin without the RAS-responsive element (pAdEasy-ΔPy4-SV40mP-mCherry-MazF). In vitro, the mazF-mazE TA system (Py4-SV40mP-mCherry-MazF+RGC-SV40mP-MazE-IRES-GFP) induced massive, dose-dependent cell death, at 69% compared to 19% for the control vector, in a co-infected HCT116 cell line. In vivo, the system caused significant tumor growth inhibition of HCT116 (KRASmut/p53mut) tumors at 73 and 65% compared to PBS and ΔPY4 control groups, resp. In addition, we demonstrate 65% tumor growth inhibition in HCT116 (KRASmut/p53wt) cells, compared to the other two control groups, indicating a contribution of the antitoxin in blocking system leakage in WT RAS cells. These data provide evidence of the feasibility of using mutations in the p53 and RAS pathway to efficiently kill cancer cells. The platform, through its combination of the antitoxin (mazE) with the toxin (mazF), provides effective protection of normal cells from basal low activity or leakage of mazF.
Collapse
Affiliation(s)
- Shiran Shapira
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilana Boustanai
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dina Kazanov
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Marina Ben Shimon
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Ahmad Fokra
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nadir Arber
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Iarovaia OV, Ioudinkova ES, Velichko AK, Razin SV. Manipulation of Cellular Processes via Nucleolus Hijaking in the Course of Viral Infection in Mammals. Cells 2021; 10:cells10071597. [PMID: 34202380 PMCID: PMC8303250 DOI: 10.3390/cells10071597] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Due to their exceptional simplicity of organization, viruses rely on the resources, molecular mechanisms, macromolecular complexes, regulatory pathways, and functional compartments of the host cell for an effective infection process. The nucleolus plays an important role in the process of interaction between the virus and the infected cell. The interactions of viral proteins and nucleic acids with the nucleolus during the infection process are universal phenomena and have been described for almost all taxonomic groups. During infection, proteins of the nucleolus in association with viral components can be directly used for the processes of replication and transcription of viral nucleic acids and the assembly and transport of viral particles. In the course of a viral infection, the usurpation of the nucleolus functions occurs and the usurpation is accompanied by profound changes in ribosome biogenesis. Recent studies have demonstrated that the nucleolus is a multifunctional and dynamic compartment. In addition to the biogenesis of ribosomes, it is involved in regulating the cell cycle and apoptosis, responding to cellular stress, repairing DNA, and transcribing RNA polymerase II-dependent genes. A viral infection can be accompanied by targeted transport of viral proteins to the nucleolus, massive release of resident proteins of the nucleolus into the nucleoplasm and cytoplasm, the movement of non-nucleolar proteins into the nucleolar compartment, and the temporary localization of viral nucleic acids in the nucleolus. The interaction of viral and nucleolar proteins interferes with canonical and non-canonical functions of the nucleolus and results in a change in the physiology of the host cell: cell cycle arrest, intensification or arrest of ribosome biogenesis, induction or inhibition of apoptosis, and the modification of signaling cascades involved in the stress response. The nucleolus is, therefore, an important target during viral infection. In this review, we discuss the functional impact of viral proteins and nucleic acid interaction with the nucleolus during infection.
Collapse
|
9
|
An P, Cantalupo PG, Zheng W, Sáenz-Robles MT, Duray AM, Weitz D, Pipas JM. Single-Cell Transcriptomics Reveals a Heterogeneous Cellular Response to BK Virus Infection. J Virol 2021; 95:e02237-20. [PMID: 33361432 PMCID: PMC8094954 DOI: 10.1128/jvi.02237-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
BK virus (BKV) is a human polyomavirus that is generally harmless but can cause devastating disease in immunosuppressed individuals. BKV infection of renal cells is a common problem for kidney transplant patients undergoing immunosuppressive therapy. In cultured primary human renal proximal tubule epithelial (RPTE) cells, BKV undergoes a productive infection. The BKV-encoded large T antigen (LT) induces cell cycle entry, resulting in the upregulation of numerous genes associated with cell proliferation. Consistently, microarray and transcriptome sequencing (RNA-seq) experiments performed on bulk infected cell populations identified several proliferation-related pathways that are upregulated by BKV. These studies revealed few genes that are downregulated. In this study, we analyzed viral and cellular transcripts in single mock- or BKV-infected cells. We found that the levels of viral mRNAs vary widely among infected cells, resulting in different levels of LT and viral capsid protein expression. Cells expressing the highest levels of viral transcripts account for approximately 20% of the culture and have a gene expression pattern that is distinct from that of cells expressing lower levels of viral mRNAs. Surprisingly, cells expressing low levels of viral mRNA do not progress with time to high expression, suggesting that the two cellular responses are determined prior to or shortly following infection. Finally, comparison of cellular gene expression patterns of cells expressing high levels of viral mRNA with those of mock-infected cells or cells expressing low levels of viral mRNA revealed previously unidentified pathways that are downregulated by BKV. Among these are pathways associated with drug metabolism and detoxification, tumor necrosis factor (TNF) signaling, energy metabolism, and translation.IMPORTANCE The outcome of viral infection is determined by the ability of the virus to redirect cellular systems toward progeny production countered by the ability of the cell to block these viral actions. Thus, an infected culture consists of thousands of cells, each fighting its own individual battle. Bulk measurements, such as PCR or RNA-seq, measure the average of these individual responses to infection. Single-cell transcriptomics provides a window to the one-on-one battle between BKV and each cell. Our studies reveal that only a minority of infected cells are overwhelmed by the virus and produce large amounts of BKV mRNAs and proteins, while the infection appears to be restricted in the remaining cells. Correlation of viral transcript levels with cellular gene expression patterns reveals pathways manipulated by BKV that may play a role in limiting infection.
Collapse
Affiliation(s)
- Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul G Cantalupo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wenshan Zheng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Alexis M Duray
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
A Comprehensive Proteomics Analysis of the JC Virus (JCV) Large and Small Tumor Antigen Interacting Proteins: Large T Primarily Targets the Host Protein Complexes with V-ATPase and Ubiquitin Ligase Activities While Small t Mostly Associates with Those Having Phosphatase and Chromatin-Remodeling Functions. Viruses 2020; 12:v12101192. [PMID: 33092197 PMCID: PMC7594058 DOI: 10.3390/v12101192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The oncogenic potential of both the polyomavirus large (LT-Ag) and small (Sm t-Ag) tumor antigens has been previously demonstrated in both tissue culture and animal models. Even the contribution of the MCPyV tumor antigens to the development of an aggressive human skin cancer, Merkel cell carcinoma, has been recently established. To date, the known primary targets of these tumor antigens include several tumor suppressors such as pRb, p53, and PP2A. However, a comprehensive list of the host proteins targeted by these proteins remains largely unknown. Here, we report the first interactome of JCV LT-Ag and Sm t-Ag by employing two independent “affinity purification/mass spectroscopy” (AP/MS) assays. The proteomics data identified novel targets for both tumor antigens while confirming some of the previously reported interactions. LT-Ag was found to primarily target the protein complexes with ATPase (v-ATPase and Smc5/6 complex), phosphatase (PP4 and PP1), and ligase (E3-ubiquitin) activities. In contrast, the major targets of Sm t-Ag were identified as Smarca1/6, AIFM1, SdhA/B, PP2A, and p53. The interactions between “LT-Ag and SdhB”, “Sm t-Ag and Smarca5”, and “Sm t-Ag and SDH” were further validated by biochemical assays. Interestingly, perturbations in some of the LT-Ag and Sm t-Ag targets identified in this study were previously shown to be associated with oncogenesis, suggesting new roles for both tumor antigens in novel oncogenic pathways. This comprehensive data establishes new foundations to further unravel the new roles for JCV tumor antigens in oncogenesis and the viral life cycle.
Collapse
|
11
|
Koba R, Suzuki S, Sato G, Sato S, Suzuki K, Maruyama S, Tohya Y. Identification and characterization of a novel bat polyomavirus in Japan. Virus Genes 2020; 56:772-776. [PMID: 32816186 PMCID: PMC7439235 DOI: 10.1007/s11262-020-01789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/13/2020] [Indexed: 11/28/2022]
Abstract
A novel polyomavirus (PyV) was identified in the intestinal contents of Japanese eastern bent-wing bats (Miniopterus fuliginosus) via metagenomic analysis. We subsequently sequenced the full genome of the virus, which has been tentatively named Miniopterus fuliginosus polyomavirus (MfPyV). The nucleotide sequence identity of the genome with those of other bat PyVs was less than 80%. Phylogenetic analysis revealed that MfPyV belonged to the same cluster as PyVs detected in Miniopterus schreibersii. This study has identified the presence of a novel PyV in Japanese bats and provided genetic information about the virus.
Collapse
Affiliation(s)
- Ryota Koba
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Satori Suzuki
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Go Sato
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shingo Sato
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazuo Suzuki
- Hikiiwa Park Center, 1629 Inari-cho, Tanabe, Wakayama, 646-0051, Japan
| | - Soichi Maruyama
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yukinobu Tohya
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
12
|
Ramelow J, Brooks CD, Gao L, Almiman AA, Williams TM, Villalona-Calero MA, Duan W. The oncogenic potential of a mutant TP53 gene explored in two spontaneous lung cancer mice models. BMC Cancer 2020; 20:738. [PMID: 32770960 PMCID: PMC7414707 DOI: 10.1186/s12885-020-07212-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background Lung cancer is the number one cancer killer worldwide. A major drawback in the lung cancer treatment field is the lack of realistic mouse models that replicate the complexity of human malignancy and immune contexture within the tumor microenvironment. Such models are urgently needed. Mutations of the tumor protein p53 are among the most common alterations in human lung cancers. Methods Previously, we developed a line of lung cancer mouse model where mutant human TP53-273H is expressed in a lung specific manner in FVB/N background. To investigate whether the human TP53 mutant has a similar oncogenic potential when it is expressed in another strain of mouse, we crossed the FVB/N-SPC-TP53-273H mice to A/J strain and created A/J-SPC-TP53-273H transgenic mice. We then compared lung tumor formation between A/J-SPC-TP53-273H and FVB/N-SPC-TP53-273H. Results We found the TP53-273H mutant gene has a similar oncogenic potential in lung tumor formation in both mice strains, although A/J strain mice have been found to be a highly susceptible strain in terms of carcinogen-induced lung cancer. Both transgenic lines survived more than 18 months and developed age related lung adenocarcinomas. With micro CT imaging, we found the FVB-SPC-TP53-273H mice survived more than 8 weeks after initial detection of lung cancer, providing a sufficient window for evaluating new anti-cancer agents. Conclusions Oncogenic potential of the most common genetic mutation, TP53-273H, in human lung cancer is unique when it is expressed in different strains of mice. Our mouse models are useful tools for testing novel immune checkpoint inhibitors or other therapeutic strategies in the treatment of lung cancer.
Collapse
Affiliation(s)
- Julian Ramelow
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, The Florida International University, Miami, Florida, 33199, USA.,Biomolecular Sciences Institute, The Florida International University, Miami, Florida, 33199, USA.,Biological Sciences, College of Arts, Science and Education, The Florida International University, Miami, Florida, 33199, USA
| | - Christopher D Brooks
- Comprehensive Cancer Center at the Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Li Gao
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, The Florida International University, Miami, Florida, 33199, USA
| | - Abeer A Almiman
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, The Florida International University, Miami, Florida, 33199, USA
| | - Terence M Williams
- Comprehensive Cancer Center at the Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | | | - Wenrui Duan
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, The Florida International University, Miami, Florida, 33199, USA. .,Biomolecular Sciences Institute, The Florida International University, Miami, Florida, 33199, USA. .,Comprehensive Cancer Center at the Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
13
|
An update on the central nervous system manifestations of Li-Fraumeni syndrome. Acta Neuropathol 2020; 139:669-687. [PMID: 31468188 DOI: 10.1007/s00401-019-02055-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022]
Abstract
Li-Fraumeni syndrome (LFS), caused by the germline mutations in the TP53 gene, leads to significant lifetime risk to cancer in the central nervous system. Recognition of LFS, and elucidating its underlying cause has had a remarkable effect on our knowledge of the biology of brain tumors and represents a significant opportunity for cancer surveillance and screening. In this review, we discuss the historical context of the LFS with an emphasis on the clinicopathologic implications in clincal diagnosis, germline testing, and clinical management of brain tumor patients.
Collapse
|
14
|
Kim M, Kim SJ, Xu Z, Ha SY, Byeon JH, Kang EJ, Shin SH, Yoo SK, Jee HG, Yoon SG, Yi JW, Bae JM, Yu HW, Chai YJ, Cho SW, Choi JY, Lee KE, Han W. BRAFV600E Transduction of an SV40-Immortalized Normal Human Thyroid Cell Line Induces Dedifferentiated Thyroid Carcinogenesis in a Mouse Xenograft Model. Thyroid 2020; 30:487-500. [PMID: 32122255 DOI: 10.1089/thy.2019.0301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Despite active studies of the clinical importance of BRAFV600E, suitable research models to investigate the role of this mutation in the etiopathogenesis of human thyroid cancers are limited. Thus, we generated cell lines by transducing the simian virus (SV)-40 immortalized human thyroid cell line Nthy-ori 3-1 (Nthy) with lentiviral vectors expressing either BRAFWT (Nthy/WT) or BRAFV600E. Nthy/WT and Nthy/V600E cells were then xenografted into mice to evaluate the carcinogenic role of BRAFV600E. Methods: Each cell line was subcutaneously injected into NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice, and a pathological analysis was performed. The effects of the mutation were further verified by using a BRAFV600E-selective inhibitor (PLX-4032, vemurafenib). The transcriptome was analyzed by RNA sequencing and compared with data from The Cancer Cell Line Encyclopedia and Gene Expression Omnibus. Results: While Nthy/WT was not tumorigenic in vivo, Nthy/V600E formed tumors reaching 2784.343 mm3 in 4 weeks, on average. A pathological analysis indicated that Nthy/V600E tumors were dedifferentiated thyroid cancer. We found metastases in the lung, liver, and relevant lymph nodes. A transcriptomic analysis revealed 5512 differentially expressed genes (DEGs) between the mutant and wild-type cell lines, and more DEGs were shared with anaplastic thyroid cancer than with papillary thyroid cancer. BRAFV600E activated the cell cycle mainly by regulating G1/S phases. PLX-4032 treatment significantly inhibited tumor growth and metastasis. Conclusions: Our data show that BRAFV600E plays a pivotal role in the carcinogenic transformation of an SV40-transfected immortalized normal human thyroid cell line. This xenograft model is expected to contribute to studies of the etiopathogenesis and treatment of highly malignant thyroid cancers.
Collapse
Affiliation(s)
- Minjun Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Division of Surgery, Thyroid Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea
| | - Zhen Xu
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, YanBian University Hospital, Yanji, China
| | - Seong Yun Ha
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Hwan Byeon
- Department of Statistics, Yonsei Graduate School of Public Health, Seoul, Republic of Korea
| | - Eun Ji Kang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Hyun Shin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong-Keun Yoo
- Precision Medicine Institute, Macrogen, Inc., Seongnam, Republic of Korea
| | - Hyeon-Gun Jee
- Healthcare Innovation Park, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sang Gab Yoon
- Department of Surgery, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Jin Wook Yi
- Department of Surgery, Inha University Hospital, Incheon, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeong Won Yu
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young Jun Chai
- Department of Surgery, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - June Young Choi
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kyu Eun Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Division of Surgery, Thyroid Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Sethi N, Kikuchi O, McFarland J, Zhang Y, Chung M, Kafker N, Islam M, Lampson B, Chakraborty A, Kaelin WG, Bass AJ. Mutant p53 induces a hypoxia transcriptional program in gastric and esophageal adenocarcinoma. JCI Insight 2019; 4:128439. [PMID: 31391338 DOI: 10.1172/jci.insight.128439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022] Open
Abstract
Despite the propensity for gastric and esophageal adenocarcinomas to select for recurrent missense mutations in TP53, the precise functional consequence of these mutations remains unclear. Here we report that endogenous mRNA and protein levels of mutant p53 were elevated in cell lines and patients with gastric and esophageal cancer. Functional studies showed that mutant p53 was sufficient, but not necessary, for enhancing primary tumor growth in vivo. Unbiased genome-wide transcriptome analysis revealed that hypoxia signaling was induced by mutant p53 in 2 gastric cancer cell lines. Using real-time in vivo imaging, we confirmed that hypoxia reporter activity was elevated during the initiation of mutant p53 gastric cancer xenografts. Unlike HIF co-factor ARNT, HIF1α was required for primary tumor growth in mutant p53 gastric cancer. These findings elucidate the contribution of missense p53 mutations in gastroesophageal malignancy and indicate that hypoxia signaling rather than mutant p53 itself may serve as a therapeutic vulnerability in these deadly set of cancers.
Collapse
Affiliation(s)
- Nilay Sethi
- Department of Medical Oncology and.,Center for Gastrointestinal Oncology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts, USA.,The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Osamu Kikuchi
- Department of Medical Oncology and.,The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - James McFarland
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | - William G Kaelin
- Department of Medical Oncology and.,The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Adam J Bass
- Department of Medical Oncology and.,Center for Gastrointestinal Oncology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts, USA.,The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Kleinschmidt EG, Miller NLG, Ozmadenci D, Tancioni I, Osterman CD, Barrie AM, Taylor KN, Ye A, Jiang S, Connolly DC, Stupack DG, Schlaepfer DD. Rgnef promotes ovarian tumor progression and confers protection from oxidative stress. Oncogene 2019; 38:6323-6337. [PMID: 31308489 DOI: 10.1038/s41388-019-0881-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/13/2019] [Accepted: 04/16/2019] [Indexed: 11/09/2022]
Abstract
Ovarian cancer is the fifth-leading cause of cancer death among women. The dissemination of ovarian tumors and growth as spheroids accompanies late-stage disease. In cell culture, ovarian tumor cell spheroids can exhibit elevated resistance to environmental stressors, such as reactive oxygen species. Homeostatic balance of the antioxidant response is a protective mechanism that prevents anoikis, a form of programmed cell death. Signaling pathways activated by integrin receptors suppress anoikis. Rgnef (ARHGEF28/p190RhoGEF) is a guanine nucleotide exchange factor that is activated downstream of integrins. We find that Rgnef protein levels are elevated in late-stage serous ovarian cancer, high Rgnef mRNA levels are associated with decreased progression-free and overall survival, and genomic ARHGEF28 loss is associated with increased patient survival. Using transgenic and transplantable Rgnef knockout mouse models, we find that Rgnef is essential for supporting three-dimensional ovarian spheroid formation in vitro and tumor growth in mice. Using RNA-sequencing and bioinformatic analyses, we identify a conserved Rgnef-supported anti-oxidant gene signature including Gpx4, Nqo1, and Gsta4; common targets of the NF-kB transcription factor. Antioxidant treatment enhanced growth of Rgnef-knockout spheroids and Rgnef re-expression facilitated NF-κB-dependent tumorsphere survival. These studies reveal a new role for Rgnef in ovarian cancer to facilitate NF-κB-mediated gene expression protecting cells from oxidative stress.
Collapse
Affiliation(s)
- Elizabeth G Kleinschmidt
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA.,Biomedical Sciences Graduate Program, UC San Diego Health, La Jolla, CA, 92093, USA
| | - Nichol L G Miller
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA.,Pfizer Inc., La Jolla, CA, 92121, USA
| | - Duygu Ozmadenci
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | - Isabelle Tancioni
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | - Carlos Díaz Osterman
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | - Allison M Barrie
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | - Kristin N Taylor
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | - Aaron Ye
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | - Shulin Jiang
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | | | - Dwayne G Stupack
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA
| | - David D Schlaepfer
- Moores Cancer Center, Department of Obstetrics, Gynecology and Reproductive Science, UC San Diego Health, La Jolla, CA, 92093, USA.
| |
Collapse
|
17
|
Duan W, Gao L, Kalvala A, Aguila B, Brooks C, Mo X, Ding H, Shilo K, Otterson GA, Villalona-Calero MA. Type of TP53 mutation influences oncogenic potential and spectrum of associated K-ras mutations in lung-specific transgenic mice. Int J Cancer 2019; 145:2418-2426. [PMID: 30873587 DOI: 10.1002/ijc.32279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/30/2019] [Accepted: 02/28/2019] [Indexed: 11/11/2022]
Abstract
TP53 and K-ras mutations are two of the major genetic alterations in human nonsmall cell lung cancers. The association between these two genes during lung tumorigenesis is unknown. We evaluated the potential of two common Type I (273H, contact) and Type II (175H, conformational) TP53 mutations to induce lung tumors in transgenic mice, as well as K-ras status, and other driver mutations in these tumors. Among 516 (138 nontransgenic, 207 SPC-TP53-273H, 171 SPC-TP53-175H) mice analyzed, 91 tumors, all adenocarcinomas, were observed. Type II mutants developed tumors more frequently (as compared to nontransgenics, p = 0.0003; and Type I, p = 0.010), and had an earlier tumor onset compared to Type I (p = 0.012). K-ras mutations occurred in 21 of 50 (42%) of murine lung tumors sequenced. For both the nontransgenic and the SPC-TP53-273H transgenics, tumor K-ras codon 12-13 mutations occurred after 13 months with a peak incidence at 16-18 months. However, for the SPC-TP53-175H transgenics, K-ras codon 12-13 mutations were observed as early as 6 months, with a peak incidence between the ages of 10-12 months. Codons 12-13 transversion mutations were the predominant changes in the SPC-TP53-175H transgenics, whereas codon 61 transition mutations were more common in the SPC-TP53-273H transgenics. The observation of accelerated tumor onset, early appearance and high frequency of K-ras codon 12-13 mutations in the Type II TP53-175H mice suggests an enhanced oncogenic function of conformational TP53 mutations, and gains in early genetic instability for tumors containing these mutations compared to contact mutations.
Collapse
Affiliation(s)
- Wenrui Duan
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, The Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, the Florida International University, Miami, FL, USA.,Comprehensive Cancer Center at the Ohio State University College of Medicine and Public Health, Columbus, OH, USA
| | - Li Gao
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, The Florida International University, Miami, FL, USA.,Comprehensive Cancer Center at the Ohio State University College of Medicine and Public Health, Columbus, OH, USA
| | - Arjun Kalvala
- Comprehensive Cancer Center at the Ohio State University College of Medicine and Public Health, Columbus, OH, USA
| | - Brittany Aguila
- Comprehensive Cancer Center at the Ohio State University College of Medicine and Public Health, Columbus, OH, USA
| | - Christopher Brooks
- Comprehensive Cancer Center at the Ohio State University College of Medicine and Public Health, Columbus, OH, USA
| | - Xiaokui Mo
- Comprehensive Cancer Center at the Ohio State University College of Medicine and Public Health, Columbus, OH, USA
| | - Haiming Ding
- Comprehensive Cancer Center at the Ohio State University College of Medicine and Public Health, Columbus, OH, USA
| | - Konstantin Shilo
- Comprehensive Cancer Center at the Ohio State University College of Medicine and Public Health, Columbus, OH, USA
| | - Gregory A Otterson
- Comprehensive Cancer Center at the Ohio State University College of Medicine and Public Health, Columbus, OH, USA
| | - Miguel A Villalona-Calero
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, The Florida International University, Miami, FL, USA.,Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| |
Collapse
|
18
|
MacKenzie RK, Sankar PR, Bendall AJ. Dlx5 and Dlx6 can antagonize cell division at the G 1/S checkpoint. BMC Mol Cell Biol 2019; 20:8. [PMID: 31041891 PMCID: PMC6460778 DOI: 10.1186/s12860-019-0191-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/02/2019] [Indexed: 11/17/2022] Open
Abstract
Background Dlx5 and Dlx6 stimulate differentiation of diverse progenitors during embryonic development. Their actions as pro-differentiation transcription factors includes the up-regulation of differentiation markers but the extent to which differentiation may also be stimulated by regulation of the cell cycle has not been addressed. Results We document that expression of Dlx5 and Dlx6 antagonizes cell proliferation in a variety of cell types without inducing apoptosis or promoting cell cycle exit. Rather, a variety of evidence indicates that elevated Dlx5 and Dlx6 expression reduces the proportion of cells in S phase and affects the length of the cell cycle. Conclusions Antagonism of S-phase entry by Dlx5 and Dlx6 proteins likely represents a lineage-independent function to effect Dlx-mediated differentiation in multiple progenitor cell types.
Collapse
Affiliation(s)
- Rachel K MacKenzie
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd East, Guelph, Ontario, N1G 2W1, Canada
| | - Parvathy Ravi Sankar
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd East, Guelph, Ontario, N1G 2W1, Canada
| | - Andrew J Bendall
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
19
|
Wei S, Wang J, Oyinlade O, Ma D, Wang S, Kratz L, Lal B, Xu Q, Liu S, Shah SR, Zhang H, Li Y, Quiñones-Hinojosa A, Zhu H, Huang ZY, Cheng L, Qian J, Xia S. Heterozygous IDH1 R132H/WT created by "single base editing" inhibits human astroglial cell growth by downregulating YAP. Oncogene 2018; 37:5160-5174. [PMID: 29849122 PMCID: PMC6590918 DOI: 10.1038/s41388-018-0334-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/06/2018] [Accepted: 05/04/2018] [Indexed: 11/09/2022]
Abstract
Mutations in the isocitrate dehydrogenase 1 (IDH1) gene have been identified in a number of cancer types, including brain cancer. The Cancer Genome Atlas project has revealed that IDH1 mutations occur in 70-80% of grade II and grade III gliomas. Until recently, most of the functional studies of IDH1 mutations in cellular models have been conducted in overexpression systems with the IDH1 wild type background. In this study, we employed a modified CRISPR/Cas9 genome editing technique called "single base editing", and efficiently introduced heterozygous IDH1 R132H mutation (IDH1R132H/WT) in human astroglial cells. Global DNA methylation profiling revealed hypermethylation as well as hypomethylation induced by IDH1R132H/WT. Global gene expression analysis identified molecular targets and pathways altered by IDH1R132H/WT, including cell proliferation, extracellular matrix (ECM), and cell migration. Our phenotype analysis indicated that compared with IDH1 wild type cells, IDH1R132H/WT promoted cell migration by upregulating integrin β4 (ITGB4); and significantly inhibited cell proliferation. Using our mutated IDH1 models generated by "single base editing", we identified novel molecular targets of IDH1R132H/WT, namely Yes-associated protein (YAP) and its downstream signaling pathway Notch, to mediate the cell growth-inhibiting effect of IDH1R132H/WT. In summary, the "single base editing" strategy has successfully created heterozygous IDH1 R132H mutation that recapitulates the naturally occurring IDH1 mutation. Our isogenic cellular systems that differ in a single nucleotide in one allele of the IDH1 gene provide a valuable model for novel discoveries of IDH1R132H/WT-driven biological events.
Collapse
Affiliation(s)
- Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, 430030, Wuhan, China.,Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Jie Wang
- Department of Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Olutobi Oyinlade
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Ding Ma
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Shuyan Wang
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Lisa Kratz
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA
| | - Bachchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Qingfu Xu
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Senquan Liu
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Sagar R Shah
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA.,Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | | | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.,Center for High Throughput Biology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Zhi-Yong Huang
- Department of General Surgery, Tongji Hospital, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Linzhao Cheng
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Jiang Qian
- Department of Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
20
|
Drayman N, Ben-Nun-Shaul O, Butin-Israeli V, Srivastava R, Rubinstein AM, Mock CS, Elyada E, Ben-Neriah Y, Lahav G, Oppenheim A. p53 elevation in human cells halt SV40 infection by inhibiting T-ag expression. Oncotarget 2018; 7:52643-52660. [PMID: 27462916 PMCID: PMC5288138 DOI: 10.18632/oncotarget.10769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022] Open
Abstract
SV40 large T-antigen (T-ag) has been known for decades to inactivate the tumor suppressor p53 by sequestration and additional mechanisms. Our present study revealed that the struggle between p53 and T-ag begins very early in the infection cycle. We found that p53 is activated early after SV40 infection and defends the host against the infection. Using live cell imaging and single cell analyses we found that p53 dynamics are variable among individual cells, with only a subset of cells activating p53 immediately after SV40 infection. This cell-to-cell variabilty had clear consequences on the outcome of the infection. None of the cells with elevated p53 at the beginning of the infection proceeded to express T-ag, suggesting a p53-dependent decision between abortive and productive infection. In addition, we show that artificial elevation of p53 levels prior to the infection reduces infection efficiency, supporting a role for p53 in defending against SV40. We further found that the p53-mediated host defense mechanism against SV40 is not facilitated by apoptosis nor via interferon-stimulated genes. Instead p53 binds to the viral DNA at the T-ag promoter region, prevents its transcriptional activation by Sp1, and halts the progress of the infection. These findings shed new light on the long studied struggle between SV40 T-ag and p53, as developed during virus-host coevolution. Our studies indicate that the fate of SV40 infection is determined as soon as the viral DNA enters the nucleus, before the onset of viral gene expression.
Collapse
Affiliation(s)
- Nir Drayman
- Department of Hematology, Hebrew University Faculty of Medicine and Hadassah University Hospital, Jerusalem, Israel.,Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Ben-Nun-Shaul
- Department of Hematology, Hebrew University Faculty of Medicine and Hadassah University Hospital, Jerusalem, Israel
| | - Veronika Butin-Israeli
- Department of Hematology, Hebrew University Faculty of Medicine and Hadassah University Hospital, Jerusalem, Israel
| | - Rohit Srivastava
- Department of Hematology, Hebrew University Faculty of Medicine and Hadassah University Hospital, Jerusalem, Israel
| | - Ariel M Rubinstein
- Department of Hematology, Hebrew University Faculty of Medicine and Hadassah University Hospital, Jerusalem, Israel
| | - Caroline S Mock
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ela Elyada
- The Lautenberg Center for Immunology and Cancer Research, Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Yinon Ben-Neriah
- The Lautenberg Center for Immunology and Cancer Research, Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ariella Oppenheim
- Department of Hematology, Hebrew University Faculty of Medicine and Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
21
|
Callesen MM, Árnadóttir SS, Lyskjaer I, Ørntoft MBW, Høyer S, Dagnaes-Hansen F, Liu Y, Li R, Callesen H, Rasmussen MH, Berthelsen MF, Thomsen MK, Schweiger PJ, Jensen KB, Laurberg S, Ørntoft TF, Elverløv-Jakobsen JE, Andersen CL. A genetically inducible porcine model of intestinal cancer. Mol Oncol 2017; 11:1616-1629. [PMID: 28881081 PMCID: PMC5664002 DOI: 10.1002/1878-0261.12136] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/15/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
Transgenic porcine cancer models bring novel possibilities for research. Their physical similarities with humans enable the use of surgical procedures and treatment approaches used for patients, which facilitates clinical translation. Here, we aimed to develop an inducible oncopig model of intestinal cancer. Transgenic (TG) minipigs were generated using somatic cell nuclear transfer by handmade cloning. The pigs encode two TG cassettes: (a) an Flp recombinase‐inducible oncogene cassette containing KRAS‐G12D, cMYC, SV40LT – which inhibits p53 – and pRB and (b) a 4‐hydroxytamoxifen (4‐OHT)‐inducible Flp recombinase activator cassette controlled by the intestinal epithelium‐specific villin promoter. Thirteen viable transgenic minipigs were born. The ability of 4‐OHT to activate the oncogene cassette was confirmed in vitro in TG colonic organoids and ex vivo in tissue biopsies obtained by colonoscopy. In order to provide proof of principle that the oncogene cassette could also successfully be activated in vivo, three pigs were perorally treated with 400 mg tamoxifen for 2 × 5 days. After two months, one pig developed a duodenal neuroendocrine carcinoma with a lymph node metastasis. Molecular analysis of the carcinoma and metastasis confirmed activation of the oncogene cassette. No tumor formation was observed in untreated TG pigs or in the remaining two treated pigs. The latter indicates that tamoxifen delivery can probably be improved. In summary, we have generated a novel inducible oncopig model of intestinal cancer, which has the ability to form metastatic disease already two months after induction. The model may be helpful in bridging the gap between basic research and clinical usage. It opens new venues for longitudinal studies of tumor development and evolution, for preclinical assessment of new anticancer regimens, for pharmacology and toxicology assessments, as well as for studies into biological mechanisms of tumor formation and metastasis.
Collapse
Affiliation(s)
- Morten M Callesen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | | | - Iben Lyskjaer
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | | | - Søren Høyer
- Department of Pathology, Aarhus University Hospital, Denmark
| | | | - Ying Liu
- Department of Animal Science, Aarhus University, Denmark
| | - Rong Li
- Department of Animal Science, Aarhus University, Denmark
| | | | - Mads H Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | | | | | - Pawel J Schweiger
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
| | - Kim B Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
| | - Søren Laurberg
- Surgical Department P, Aarhus University Hospital, Denmark
| | - Torben F Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | | | - Claus L Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| |
Collapse
|
22
|
Selt F, Hohloch J, Hielscher T, Sahm F, Capper D, Korshunov A, Usta D, Brabetz S, Ridinger J, Ecker J, Oehme I, Gronych J, Marquardt V, Pauck D, Bächli H, Stiles CD, von Deimling A, Remke M, Schuhmann MU, Pfister SM, Brummer T, Jones DTW, Witt O, Milde T. Establishment and application of a novel patient-derived KIAA1549:BRAF-driven pediatric pilocytic astrocytoma model for preclinical drug testing. Oncotarget 2017; 8:11460-11479. [PMID: 28002790 PMCID: PMC5355278 DOI: 10.18632/oncotarget.14004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022] Open
Abstract
Pilocytic astrocytoma (PA) is the most frequent pediatric brain tumor. Activation of the MAPK pathway is well established as the oncogenic driver of the disease. It is most frequently caused by KIAA1549:BRAF fusions, and leads to oncogene induced senescence (OIS). OIS is thought to be a major reason for growth arrest of PA cells in vitro and in vivo, preventing establishment of PA cultures. Hence, valid preclinical models are currently very limited, but preclinical testing of new compounds is urgently needed. We transduced the PA short-term culture DKFZ-BT66 derived from the PA of a 2-year old patient with a doxycycline-inducible system coding for Simian Vacuolating Virus 40 Large T Antigen (SV40-TAg). SV40-TAg inhibits TP53/CDKN1A and CDKN2A/RB1, two pathways critical for OIS induction and maintenance. DNA methylation array and KIAA1549:BRAF fusion analysis confirmed pilocytic astrocytoma identity of DKFZ-BT66 cells after establishment. Readouts were analyzed in proliferating as well as senescent states, including cell counts, viability, cell cycle analysis, expression of SV40-Tag, CDKN2A (p16), CDKN1A (p21), and TP53 (p53) protein, and gene-expression profiling. Selected MAPK inhibitors (MAPKi) including clinically available MEK inhibitors (MEKi) were tested in vitro. Expression of SV40-TAg enabled the cells to bypass OIS and to resume proliferation with a mean doubling time of 45h allowing for propagation and long-term culture. Withdrawal of doxycycline led to an immediate decrease of SV40-TAg expression, appearance of senescent morphology, upregulation of CDKI proteins and a subsequent G1 growth arrest in line with the re-induction of senescence. DKFZ-BT66 cells still underwent replicative senescence that was overcome by TERT expression. Testing of a set of MAPKi revealed differential responses in DKFZ-BT66. MEKi efficiently inhibited MAPK signaling at clinically achievable concentrations, while BRAF V600E- and RAF Type II inhibitors showed paradoxical activation. Taken together, we have established the first patient-derived long term expandable PA cell line expressing the KIAA1549:BRAF-fusion suitable for preclinical drug testing.
Collapse
Affiliation(s)
- Florian Selt
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany.,Center for Individualized Pediatric Oncology (ZIPO) and Section of Pediatric Brain Tumors, Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Juliane Hohloch
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics (C060), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Diren Usta
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sebastian Brabetz
- Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Johannes Ridinger
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jonas Ecker
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany.,Center for Individualized Pediatric Oncology (ZIPO) and Section of Pediatric Brain Tumors, Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ina Oehme
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jan Gronych
- Division of Molecular Genetics (B060), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany.,Current affiliation: AbbVie Deutschland GmbH & Co. KG, Medical Immunology, Wiesbaden, Germany
| | - Viktoria Marquardt
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Germany.,Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Pauck
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Germany.,Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heidi Bächli
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Charles D Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Germany.,Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin U Schuhmann
- Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | - Stefan M Pfister
- Center for Individualized Pediatric Oncology (ZIPO) and Section of Pediatric Brain Tumors, Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University and University Medical Centre, Freiburg, Germany
| | - David T W Jones
- Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Olaf Witt
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany.,Center for Individualized Pediatric Oncology (ZIPO) and Section of Pediatric Brain Tumors, Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Till Milde
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany.,Center for Individualized Pediatric Oncology (ZIPO) and Section of Pediatric Brain Tumors, Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
Abstract
Since its discovery in 1979, p53 has been on the forefront of cancer research. It is considered a master gene of cancer suppression and is found mutated in around 50% of all human tumors. In addition, the progressive identification of p53-related transcription factors p63 and p73 as well as their multiple isoforms have added further layers of complexity to an already dense network. Among the numerous models used to unravel the p53 family mysteries, S. cerevisiae has been particularly useful. This seemingly naive model allows the expression of a functional human p53 and thus the assessment of p53 intrinsic transcriptional activity. The aim of this article is to review the various contributions that the budding yeast has made to the understanding of p53, p63 and p73 biology and to envision new possible directions for yeast-based assays in the field of cancer as well as other p53-family-related diseases.
Collapse
|
24
|
Pfister NT, Prives C. Transcriptional Regulation by Wild-Type and Cancer-Related Mutant Forms of p53. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026054. [PMID: 27836911 DOI: 10.1101/cshperspect.a026054] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
TP53 missense mutations produce a mutant p53 protein that cannot activate the p53 tumor suppressive transcriptional response, which is the primary selective pressure for TP53 mutation. Specific codons of TP53, termed hotspot mutants, are mutated at elevated frequency. Hotspot forms of mutant p53 possess oncogenic properties in addition to being deficient in tumor suppression. Such p53 mutants accumulate to high levels in the cells they inhabit, causing transcriptional alterations that produce pro-oncogenic activities, such as increased pro-growth signaling, invasiveness, and metastases. These forms of mutant p53 very likely use features of wild-type p53, such as interactions with the transcriptional machinery, to produce oncogenic effects. In this review, we discuss commonalities between wild-type and mutant p53 proteins with an emphasis on transcriptional processes.
Collapse
Affiliation(s)
- Neil T Pfister
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027
| |
Collapse
|
25
|
Abstract
p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40). Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host–bacteria interactions and tumorigenesis associated with bacterial infections. This review focuses on a novel aspect of host–bacteria interactions: the direct interplay between bacterial pathogens and tumor suppression mechanisms that protect the host from cancer development. Recent studies revealed that various pathogenic bacteria actively inhibit the major tumor suppression pathway mediated by p53 protein that plays a key role in the regulation of multiple cellular stress responses and prevention of cancerogenesis. Bacterial degradation of p53 was first discovered in the context of Helicobacter pylori infection, which is currently the strongest known risk factor for adenocarcinoma of the stomach. This phenomenon, however, is not limited to H. pylori, and many other bacterial pathogens inhibit p53 using various mechanisms. Inhibition of p53 by bacteria is linked to bacterial modulation of the host cellular responses to DNA damage, metabolic stress, and, potentially, other stressors. This is a dynamic area of research that will continue to evolve and make important contributions to a better understanding of host–microbe interactions and tumorigenesis. These studies may offer new molecular targets and opportunities for drug development.
Collapse
Affiliation(s)
- Alexander I. Zaika
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| | - Jinxiong Wei
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jennifer M. Noto
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Richard M. Peek
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Tennessee, United States of America
| |
Collapse
|
26
|
Polotskaia A, Xiao G, Reynoso K, Martin C, Qiu WG, Hendrickson RC, Bargonetti J. Proteome-wide analysis of mutant p53 targets in breast cancer identifies new levels of gain-of-function that influence PARP, PCNA, and MCM4. Proc Natl Acad Sci U S A 2015; 112:E1220-9. [PMID: 25733866 PMCID: PMC4371979 DOI: 10.1073/pnas.1416318112] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The gain-of-function mutant p53 (mtp53) transcriptome has been studied, but, to date, no detailed analysis of the mtp53-associated proteome has been described. We coupled cell fractionation with stable isotope labeling with amino acids in cell culture (SILAC) and inducible knockdown of endogenous mtp53 to determine the mtp53-driven proteome. Our fractionation data highlight the underappreciated biology that missense mtp53 proteins R273H, R280K, and L194F are tightly associated with chromatin. Using SILAC coupled to tandem MS, we identified that R273H mtp53 expression in MDA-MB-468 breast cancer cells up- and down-regulated multiple proteins and metabolic pathways. Here we provide the data set obtained from sequencing 73,154 peptide pairs that then corresponded to 3,010 proteins detected under reciprocal labeling conditions. Importantly, the high impact regulated targets included the previously identified transcriptionally regulated mevalonate pathway proteins but also identified two new levels of mtp53 protein regulation for nontranscriptional targets. Interestingly, mtp53 depletion profoundly influenced poly(ADP ribose) polymerase 1 (PARP1) localization, with increased cytoplasmic and decreased chromatin-associated protein. An enzymatic PARP shift occurred with high mtp53 expression, resulting in increased poly-ADP-ribosylated proteins in the nucleus. Mtp53 increased the level of proliferating cell nuclear antigen (PCNA) and minichromosome maintenance 4 (MCM4) proteins without changing the amount of pcna and mcm4 transcripts. Pathway enrichment analysis ranked the DNA replication pathway above the cholesterol biosynthesis pathway as a R273H mtp53 activated proteomic target. Knowledge of the proteome diversity driven by mtp53 suggests that DNA replication and repair pathways are major targets of mtp53 and highlights consideration of combination chemotherapeutic strategies targeting cholesterol biosynthesis and PARP inhibition.
Collapse
Affiliation(s)
- Alla Polotskaia
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| | - Gu Xiao
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| | - Katherine Reynoso
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| | - Che Martin
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| | - Wei-Gang Qiu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| | - Ronald C Hendrickson
- Proteomics Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Jill Bargonetti
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| |
Collapse
|
27
|
Wendzicki JA, Moore PS, Chang Y. Large T and small T antigens of Merkel cell polyomavirus. Curr Opin Virol 2015; 11:38-43. [PMID: 25681708 DOI: 10.1016/j.coviro.2015.01.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/19/2015] [Indexed: 12/16/2022]
Abstract
Merkel cell polyomavirus (MCV) is the etiological agent of Merkel cell carcinoma (MCC), a rare and highly lethal human skin cancer. A natural component of skin flora, MCV becomes tumorigenic only after integration into the host DNA together with specific mutations to the viral genome. Research on MCV large T (LT) and small T (sT) antigens, the only viral products expressed in MCC, shows that these major oncoproteins not only possess biochemical functions found in common with other polyomavirus T antigens, but also demonstrate new cellular targets not described in previous polyomavirus models. This review provides a map of the relevant functional motifs and domains in MCV T antigens that have been identified, highlighting their roles in tumorigenesis.
Collapse
Affiliation(s)
- Justin A Wendzicki
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Suite 1.8, 5117 Centre Avenue, Pittsburgh, PA 15213, United States
| | - Patrick S Moore
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Suite 1.8, 5117 Centre Avenue, Pittsburgh, PA 15213, United States.
| | - Yuan Chang
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Suite 1.8, 5117 Centre Avenue, Pittsburgh, PA 15213, United States.
| |
Collapse
|
28
|
Giacobbi NS, Gupta T, Coxon AT, Pipas JM. Polyomavirus T antigens activate an antiviral state. Virology 2015; 476:377-385. [PMID: 25589241 DOI: 10.1016/j.virol.2014.12.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/18/2014] [Accepted: 12/19/2014] [Indexed: 01/12/2023]
Abstract
Ectopic expression of Simian Virus 40 (SV40) large T antigen (LT) in mouse embryonic fibroblasts (MEFs) increased levels of mRNAs encoding interferon stimulated genes (ISGs). The mechanism by which T antigen increases levels of ISGs in MEFs remains unclear. We present evidence that expression of T antigen from SV40, Human Polyomaviruses BK (BKV) or JC (JCV) upregulate production of ISGs in MEFs, and subsequently result in an antiviral state, as determined by inhibition of VSV or EMCV growth. The first 136 amino acids of LT are sufficient for these activities. Furthermore, increased ISG expression and induction of the antiviral state requires STAT1. Finally, the RB binding motif of LT is necessary for activation of STAT1. We conclude that the induction of the STAT1 mediated innate immune response in MEFs is a common feature shared by SV40, BKV and JCV.
Collapse
Affiliation(s)
- Nicholas S Giacobbi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tushar Gupta
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrew T Coxon
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
29
|
Liu L, Chung HY, Lacatus G, Baliji S, Ruan J, Sunter G. Altered expression of Arabidopsis genes in response to a multifunctional geminivirus pathogenicity protein. BMC PLANT BIOLOGY 2014; 14:302. [PMID: 25403083 PMCID: PMC4253603 DOI: 10.1186/s12870-014-0302-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/23/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Geminivirus AC2 is a multifunctional protein that acts as a pathogenicity factor. Transcriptional regulation by AC2 appears to be mediated through interaction with a plant specific DNA binding protein, PEAPOD2 (PPD2), that specifically binds to sequences known to mediate activation of the CP promoter of Cabbage leaf curl virus (CaLCuV) and Tomato golden mosaic virus (TGMV). Suppression of both basal and innate immune responses by AC2 in plants is mediated through inactivation of SnRK1.2, an Arabidopsis SNF1 related protein kinase, and adenosine kinase (ADK). An indirect promoter targeting strategy, via AC2-host dsDNA binding protein interactions, and inactivation of SnRK1.2-mediated defense responses could provide the opportunity for geminiviruses to alter host gene expression and in turn, reprogram the host to support virus infection. The goal of this study was to identify changes in the transcriptome of Arabidopsis induced by the transcription activation function of AC2 and the inactivation of SnRK1.2. RESULTS Using full-length and truncated AC2 proteins, microarray analyses identified 834 genes differentially expressed in response to the transcriptional regulatory function of the AC2 protein at one and two days post treatment. We also identified 499 genes differentially expressed in response to inactivation of SnRK1.2 by the AC2 protein at one and two days post treatment. Network analysis of these two sets of differentially regulated genes identified several networks consisting of between four and eight highly connected genes. Quantitative real-time PCR analysis validated the microarray expression results for 10 out of 11 genes tested. CONCLUSIONS It is becoming increasingly apparent that geminiviruses manipulate the host in several ways to facilitate an environment conducive to infection, predominantly through the use of multifunctional proteins. Our approach of identifying networks of highly connected genes that are potentially co-regulated by geminiviruses during infection will allow us to identify novel pathways of co-regulated genes that are stimulated in response to pathogen infection in general, and virus infection in particular.
Collapse
Affiliation(s)
- Lu Liu
- />Department of Computer Science, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX USA
| | - Ho Yong Chung
- />Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX USA
| | - Gabriela Lacatus
- />Current address: Scripps Health/Hematology/Oncology Division, 15004 Innovation Drive, San Diego, CA 92128 USA
| | - Surendranath Baliji
- />Current address: Bayer CropScience Vegetable Seeds, 7087 East Peltier Road, Acampo, California 95220 USA
| | - Jianhua Ruan
- />Department of Computer Science, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX USA
| | - Garry Sunter
- />Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX USA
| |
Collapse
|
30
|
Preclinical efficacy of the synthetic retinoid ST1926 for treating adult T-cell leukemia/lymphoma. Blood 2014; 124:2072-80. [PMID: 25035162 DOI: 10.1182/blood-2014-03-560060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1). The HTLV-1 oncoprotein Tax plays an important role in ATL pathogenesis. ATL carries a poor prognosis due to chemotherapy resistance, stressing the need for alternative therapies. Here, we investigate the preclinical efficacy of the synthetic retinoid ST1926 in ATL and peripheral T-cell lymphomas. Clinically achievable concentrations of ST1926 induced a dramatic inhibition of cell proliferation in malignant T-cell lines and primary ATL cells with minimal effect on resting or activated normal lymphocytes. ST1926 induced apoptosis, DNA damage, and upregulation of p53 proteins in malignant T cells, whereas it caused an early downregulation of Tax proteins in HTLV-1-positive cells. In murine ATL, oral treatment with ST1926 prolonged survival and reduced leukemia cell infiltration, white blood cell counts, and spleen mass. In spleens of ST1926-treated animals, p53 and p21 proteins were upregulated, poly (ADP-ribose) polymerase was cleaved, and Tax transcripts were reduced. These results highlight the promising use of ST1926 as a targeted therapy for ATL.
Collapse
|
31
|
Loughery J, Cox M, Smith LM, Meek DW. Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters. Nucleic Acids Res 2014; 42:7666-80. [PMID: 24928858 PMCID: PMC4081099 DOI: 10.1093/nar/gku501] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The p53 tumour suppressor is induced by various stress stimuli and coordinates an adaptive gene expression programme leading to growth arrest or cell death. Some stimuli, such as DNA damage, lead to rapid and substantial multisite phosphorylation of p53, nucleated initially through phosphorylation of serine 15. Other stimuli, such as hyper-proliferation, do not stimulate p53-phosphorylation, raising questions regarding the physiological role for phosphorylation. Here, we show that a basal level of Ser15 phosphorylation occurs in both unstimulated cells and cells stimulated pharmacologically to induce p53. p53 in which Ser15 is substituted by alanine (S15A) fails to mediate p53-dependent transcription or growth arrest but can be rescued by substitution with aspartate (S15D: a phospho-mimic). Chromatin immunoprecipitation (ChIP) analyses show that, while wt- and S15A-p53 are detectable on the CDKN1A (p21) promoter (as a representative p53-responsive promoter), S15A-p53 does not stimulate histone acetylation (a measure of chromatin relaxation), nor is its recruitment stimulated, in response to a DNA damage or pharmacological stimulus. These data demonstrate that Ser15 phosphorylation is required for p53 function in the physiological context of p53-responsive promoters and suggest a key and possibly universal role even for low levels of this modification in promoting p53-transcription function.
Collapse
Affiliation(s)
- Jayne Loughery
- Division of Cancer Research, Medical Research Institute, The University of Dundee, Ninewells Hospital, James Arrott Drive, Dundee DD1 9SY, United Kingdom
| | - Miranda Cox
- Division of Cancer Research, Medical Research Institute, The University of Dundee, Ninewells Hospital, James Arrott Drive, Dundee DD1 9SY, United Kingdom
| | - Linda M Smith
- Division of Cancer Research, Medical Research Institute, The University of Dundee, Ninewells Hospital, James Arrott Drive, Dundee DD1 9SY, United Kingdom
| | - David W Meek
- Division of Cancer Research, Medical Research Institute, The University of Dundee, Ninewells Hospital, James Arrott Drive, Dundee DD1 9SY, United Kingdom
| |
Collapse
|
32
|
Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J. The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front Oncol 2014; 4:96. [PMID: 24904820 PMCID: PMC4032983 DOI: 10.3389/fonc.2014.00096] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022] Open
Abstract
Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and signal integration molecules. In line with this notion, CK1 is tightly connected to the regulation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions, it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, scientific effort has enormously increased (i) to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review, we summarize the current knowledge regarding CK1 regulation, function, and interaction with cellular proteins playing central roles in cellular stress-responses and carcinogenesis.
Collapse
Affiliation(s)
- Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Marc Krüger
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Julia Richter
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Balbina García-Reyes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Christian Peifer
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Jakob Halekotte
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Vasiliy Bakulev
- Department of Organic Synthesis, Ural Federal University , Ekaterinburg , Russia
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| |
Collapse
|
33
|
Zhang L, Yang Z, Ma A, Qu Y, Xia S, Xu D, Ge C, Qiu B, Xia Q, Li J, Liu Y. Growth arrest and DNA damage 45G down-regulation contributes to Janus kinase/signal transducer and activator of transcription 3 activation and cellular senescence evasion in hepatocellular carcinoma. Hepatology 2014; 59:178-89. [PMID: 23897841 DOI: 10.1002/hep.26628] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/07/2013] [Indexed: 12/19/2022]
Abstract
UNLABELLED Growth arrest and DNA damage 45G (GADD45G), a stress sensor with multiple implications in various biological processes, is down-regulated in a broad spectrum of cancers. However, little is known about the biological effects of GADD45G on hepatocellular carcinoma (HCC) cells and the related mechanisms. In the present study, we found that GADD45G was commonly down-regulated in oncogene-transformed mouse liver cells and in human and mouse HCC. Ectopic expression of GADD45G robustly elicited senescence in HCC cells and suppressed tumor growth in vivo. Furthermore, GADD45G-induced senescence occurred in HCC cells independently of p53, p16(INK4a) (p16), and retinoblastoma (Rb). Instead, the prompt inhibition of Janus kinase 2 (Jak2), tyrosine kinase 2 (Tyk2), and signal transducer and activator of transcription 3 (Stat3) activation was observed in cells undergoing senescence. Impairment of Jak-Stat3 activation caused by GADD45G expression was associated with activation of SH2 domain-containing protein tyrosine phosphatase-2 (Shp2). Expression of constitutively activated Stat3 or human telomerase reverse transcriptase (hTERT), as well as knockdown of Shp2f, efficiently counteracted GADD45G-induced senescence. More important, in clinical HCC specimens, we found that GADD45G expression was inversely correlated with phosphorylated Stat3 expression in tumor cells and disease progression. CONCLUSION GADD45G functions as a negative regulator of the Jak-Stat3 pathway and inhibits HCC by inducing cellular senescence. The decrease or absence of GADD45G expression may be a key event for tumor cells or premalignant liver cells to bypass cellular senescence.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
High-affinity Rb binding, p53 inhibition, subcellular localization, and transformation by wild-type or tumor-derived shortened Merkel cell polyomavirus large T antigens. J Virol 2013; 88:3144-60. [PMID: 24371076 DOI: 10.1128/jvi.02916-13] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Interference with tumor suppressor pathways by polyomavirus-encoded tumor antigens (T-Ags) can result in transformation. Consequently, it is thought that T-Ags encoded by Merkel cell polyomavirus (MCPyV), a virus integrated in ∼90% of all Merkel cell carcinoma (MCC) cases, are major contributors to tumorigenesis. The MCPyV large T-Ag (LT-Ag) has preserved the key functional domains present in all family members but has also acquired unique regions that flank the LxCxE motif. As these regions may mediate unique functions, or may modulate those shared with T-Ags of other polyomaviruses, functional studies of MCPyV T-Ags are required. Here, we have performed a comparative study of full-length or MCC-derived truncated LT-Ags with regard to their biochemical characteristics, their ability to bind to retinoblastoma (Rb) and p53 proteins, and their transforming potential. We provide evidence that full-length MCPyV LT-Ag may not directly bind to p53 but nevertheless can significantly reduce p53-dependent transcription in reporter assays. Although early region expression constructs harboring either full-length or MCC-derived truncated LT-Ag genes can transform primary baby rat kidney cells, truncated LT-Ags do not bind to p53 or reduce p53-dependent transcription. Interestingly, shortened LT-Ags exhibit a very high binding affinity for Rb, as shown by coimmunoprecipitation and in vitro binding studies. Additionally, we show that truncated MCPyV LT-Ag proteins are expressed at higher levels than those for the wild-type protein and are able to partially relocalize Rb to the cytoplasm, indicating that truncated LT proteins may have gained additional features that distinguish them from the full-length protein. IMPORTANCE MCPyV is one of the 12 known polyomaviruses that naturally infect humans. Among these, it is of particular interest since it is the only human polyomavirus known to be involved in tumorigenesis. MCPyV is thought to be causally linked to MCC, a rare skin tumor. In these tumors, viral DNA is monoclonally integrated into the genome of the tumor cells in up to 90% of all MCC cases, and the integrated MCV genomes, furthermore, harbor signature mutations in the so-called early region that selectively abrogate viral replication while preserving cell cycle deregulating functions of the virus. This study describes comparative studies of early region T-Ag protein characteristics, their ability to bind to Rb and p53, and their transforming potential.
Collapse
|
35
|
Mapping the structural and dynamical features of multiple p53 DNA binding domains: insights into loop 1 intrinsic dynamics. PLoS One 2013; 8:e80221. [PMID: 24324553 PMCID: PMC3855832 DOI: 10.1371/journal.pone.0080221] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022] Open
Abstract
The transcription factor p53 regulates cellular integrity in response to stress. p53 is mutated in more than half of cancerous cells, with a majority of the mutations localized to the DNA binding domain (DBD). In order to map the structural and dynamical features of the DBD, we carried out multiple copy molecular dynamics simulations (totaling 0.8 μs). Simulations show the loop 1 to be the most dynamic element among the DNA-contacting loops (loops 1-3). Loop 1 occupies two major conformational states: extended and recessed; the former but not the latter displays correlations in atomic fluctuations with those of loop 2 (~24 Å apart). Since loop 1 binds to the major groove whereas loop 2 binds to the minor groove of DNA, our results begin to provide some insight into the possible mechanism underpinning the cooperative nature of DBD binding to DNA. We propose (1) a novel mechanism underlying the dynamics of loop 1 and the possible tread-milling of p53 on DNA and (2) possible mutations on loop 1 residues to restore the transcriptional activity of an oncogenic mutation at a distant site.
Collapse
|
36
|
Replication stress and mitotic dysfunction in cells expressing simian virus 40 large T antigen. J Virol 2013; 87:13179-92. [PMID: 24067972 DOI: 10.1128/jvi.02224-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that simian virus 40 (SV40) large T antigen (LT) binds to the Bub1 kinase, a key regulator of the spindle checkpoint and chromosome segregation. Bub1 mutations or altered expression patterns are linked to chromosome missegregation and are considered to be a driving force in some human cancers. Here we report that LT, dependent on Bub1 binding, causes micronuclei, lagging chromatin, and anaphase bridges, which are hallmarks of chromosomal instability (CIN) and Bub1 insufficiency. Using time-lapse microscopy, we demonstrate that LT imposes a Bub1 binding-dependent delay in the metaphase-to-anaphase transition. Kinetochore fibers reveal that LT, via Bub1 binding, causes aberrant kinetochore (KT)-microtubule (MT) attachments and a shortened interkinetochore distance, consistent with a lack of tension. Previously, we showed that LT also induces the DNA damage response (DDR) via Bub1 binding. Using inducible LT cell lines, we show that an activated DDR was observed before the appearance of anaphase bridges and micronuclei. Furthermore, LT induction in serum-starved cells demonstrated γ-H2AX accumulation in cells that had not yet entered mitosis. Thus, DDR activation can occur independently of chromosome segregation defects. Replication stress pathways may be responsible, because signatures of replication stress were observed, which were attenuated by exogenous supplementation with nucleosides. Our observations allow us to propose a model that explains and integrates the diverse manifestations of genomic instability induced by LT.
Collapse
|
37
|
Son YO, Pratheeshkumar P, Lei W, Wang X, Kim DH, Lee JY, Zhang Z, Lee JC, Shi X. Reactive oxygen species mediate Cr(VI)-induced carcinogenesis through PI3K/AKT-dependent activation of GSK-3β/β-catenin signaling. Toxicol Appl Pharmacol 2013; 271:239-48. [PMID: 23707771 PMCID: PMC3742697 DOI: 10.1016/j.taap.2013.04.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 01/07/2023]
Abstract
Cr(VI) compounds are known human carcinogens that primarily target the lungs. Cr(VI) produces reactive oxygen species (ROS), but the exact effects of ROS on the signaling molecules involved in Cr(VI)-induced carcinogenesis have not been extensively studied. Chronic exposure of human bronchial epithelial cells to Cr(VI) at nanomolar concentrations (10-100nM) for 3months not only induced cell transformation, but also increased the potential of these cells to invade and migrate. Injection of Cr(VI)-stimulated cells into nude mice resulted in the formation of tumors. Chronic exposure to Cr(VI) increased levels of intracellular ROS and antiapoptotic proteins. Transfection with catalase or superoxide dismutase (SOD) prevented Cr(VI)-mediated increases in colony formation, cell invasion, migration, and xenograft tumors. While chronic Cr(VI) exposure led to activation of signaling cascades involving PI3K/AKT/GSK-3β/β-catenin and PI3K/AKT/mTOR, transfection with catalase or SOD markedly inhibited Cr(VI)-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the Cr(VI)-mediated increase in total and active β-catenin proteins and colony formation. In particular, Cr(VI) suppressed autophagy of epithelial cells under nutrition deprivation. Furthermore, there was a marked induction of AKT, GSK-3β, β-catenin, mTOR, and carcinogenic markers in tumor tissues formed in mice after injection with Cr(VI)-stimulated cells. Collectively, our findings suggest that ROS is a key mediator of Cr(VI)-induced carcinogenesis through the activation of PI3K/AKT-dependent GSK-3β/β-catenin signaling and the promotion of cell survival mechanisms via the inhibition of apoptosis and autophagy.
Collapse
Affiliation(s)
- Young-Ok Son
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| | - Poyil Pratheeshkumar
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| | - Wang Lei
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| | - Xin Wang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| | - Dong-Hern Kim
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| | - Ju-Yeon Lee
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| | - Zhuo Zhang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| | - Jeong-Chae Lee
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
- School of Dentistry and Institute of Oral Biosciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756, South Korea
| | - Xianglin Shi
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| |
Collapse
|
38
|
Mechanisms of p53 restriction in Merkel cell carcinoma cells are independent of the Merkel cell polyoma virus T antigens. J Invest Dermatol 2013; 133:2453-2460. [PMID: 23563200 DOI: 10.1038/jid.2013.169] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 11/08/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare and very aggressive skin cancer with viral etiology. The tumor-associated Merkel cell polyoma virus (MCV) belongs to a group of viruses encoding T antigens (TAs) that can induce tumorigenesis by interfering with cellular tumor-suppressor proteins like p53. To explore possible modes of p53 inactivation in MCC p53 sequencing, expression analysis and reporter gene assays for functional analyses were performed in a set of MCC lines. In one MCV-negative and one MCV-positive cell line, p53 inactivating mutations were found. In the majority of MCC lines, however, wild-type p53 is expressed and displays some transcriptional activity, which is yet not sufficient to effectively restrict cellular survival or growth in these cell cultures. Interestingly, the MCV TAs are not responsible for this critical lack in p53 activity, as TA knockdown in MCV-positive MCC cells does not induce p53 activity. In contrast, inhibition of the ubiquitin ligase HDM-2 (human double minute 2) by Nutlin-3a leads to p53 activation and p53-dependent apoptosis or cell cycle arrest in five out of seven p53 wild-type MCC lines, highlighting p53 as a potential target for future therapies of this aggressive tumor.
Collapse
|
39
|
He Y, Zha J, Wang Y, Liu W, Yang X, Yu P. Tissue damage-associated "danger signals" influence T-cell responses that promote the progression of preneoplasia to cancer. Cancer Res 2012; 73:629-39. [PMID: 23108142 DOI: 10.1158/0008-5472.can-12-2704] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
T-cell responses may be shaped by sterile "danger signals" that are constituted by damage-associated molecular patterns (DAMP). However, whether and what type of adaptive immune responses are triggered in vivo by DAMPs induced by tumor progression are not well characterized. In this study, we report that the production of HMGB1, an established DAMP released by dying cells, was critical for tumor progression in an established mouse model of prostate cancer. HMGB1 was required for the activation and intratumoral accumulation of T cells that expressed cytokine lymphotoxinα(1)β(2) (LT) on their surface. Intriguingly, these tumor-activated T cells recruited macrophages to the lesion and were essential to promote the preneoplasia to invasive carcinoma in an LTβ receptor (LTβR)-dependent manner. Taken together, our findings suggest that the release of HMGB1 as an endogenous danger signal is important for priming an adaptive immune response that promotes malignant progression, with implications for cancer prevention and therapy.
Collapse
Affiliation(s)
- Ying He
- The Committee on Immunology and Section of Dermatology/Department of Medicine University of Chicago, Chicago 60637, USA
| | | | | | | | | | | |
Collapse
|
40
|
Comparative analysis of SV40 17kT and LT function in vivo demonstrates that LT's C-terminus re-programs hepatic gene expression and is necessary for tumorigenesis in the liver. Oncogenesis 2012; 1:e28. [PMID: 23552841 PMCID: PMC3503294 DOI: 10.1038/oncsis.2012.27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transformation by Simian Virus 40 (SV40) large T antigen (LT) is mediated in large part by its interaction with a variety of cellular proteins at distinct binding domains within LT. While the interaction of LT's N-terminus with the tumor suppressor Rb is absolutely required for LT-dependent transformation, the requirement for the interaction of LT's C-terminus with p53 is less clear and cell- and context-dependent. Here, we report a line of transgenic mice expressing a doxycycline-inducible liver-specific viral transcript that produces abundant 17kT, a naturally occurring SV40 early product that is co-linear with LT for the first 131 amino acids and that binds to Rb, but not p53. Comparative analysis of livers of transgenic mice expressing either 17kT or full length LT demonstrates that 17kT stimulates cell proliferation and induces hepatic hyperplasia but is incapable of inducing hepatic dysplasia or promoting hepatocarcinogenesis. Gene expression profiling demonstrates that 17kT and LT invoke a set of shared molecular signatures consistent with the action of LT's N-terminus on Rb-E2F-mediated control of hepatocyte transcription. However, 17kT also induces a unique set of genes, many of which are known transcriptional targets of p53, while LT actively suppresses them. LT also uniquely deregulates the expression of a subset of genes within the imprinted network and rapidly re-programs hepatocyte gene expression to a more fetal-like state. Finally, we provide evidence that the LT/p53 complex provides a gain-of-function for LT-dependent transformation in the liver, and confirm the absolute requirement for LT's C-terminus for liver tumor development by demonstrating that phosphatase and tensin homolog (PTEN)-deficiency readily cooperates with LT, but not 17kT, for tumorigenesis. These results confirm independent and inter-dependent functions for LT's N- and C-terminus and emphasize differences in the requirements for LT's C-terminus in cell-type dependent transformation.
Collapse
|
41
|
Thakur BK, Dittrich T, Chandra P, Becker A, Lippka Y, Selvakumar D, Klusmann JH, Reinhardt D, Welte K. Inhibition of NAMPT pathway by FK866 activates the function of p53 in HEK293T cells. Biochem Biophys Res Commun 2012; 424:371-7. [DOI: 10.1016/j.bbrc.2012.06.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/16/2012] [Indexed: 12/17/2022]
|
42
|
Differential patterns of large tumor antigen-specific immune responsiveness in patients with BK polyomavirus-positive prostate cancer or benign prostatic hyperplasia. J Virol 2012; 86:8461-71. [PMID: 22647697 DOI: 10.1128/jvi.00005-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The role of the polyomavirus BK (BKV) large tumor antigen (L-Tag) as a target of immune response in patients with prostate cancer (PCa) has not been investigated thus far. In this study, we comparatively analyzed humoral and cellular L-Tag-specific responsiveness in age-matched patients bearing PCa or benign prostatic hyperplasia, expressing or not expressing BKV L-Tag-specific sequences in their tissue specimens, and in non-age-matched healthy individuals. Furthermore, results from patients with PCa were correlated to 5-year follow-up clinical data focusing on evidence of biochemical recurrence (BR) after surgery (prostate specific antigen level of ≥0.2 ng/ml). In peripheral blood mononuclear cells (PBMC) from patients with PCa with evidence of BR and BKV L-Tag-positive tumors, stimulation with peptides derived from the BKV L-Tag but not those derived from Epstein-Barr virus, influenza virus, or cytomegalovirus induced a peculiar cytokine gene expression profile, characterized by high expression of interleukin-10 (IL-10) and transforming growth factor β1 and low expression of gamma interferon genes. This pattern was confirmed by protein secretion data and correlated with high levels of anti-BKV L-Tag IgG. Furthermore, in PBMC from these PCa-bearing patients, L-Tag-derived peptides significantly expanded an IL-10-secreting CD4(+) CD25(+(high)) CD127(-) FoxP3(+) T cell population with an effector memory phenotype (CD103(+)) capable of inhibiting proliferation of autologous anti-CD3/CD28-triggered CD4(+) CD25(-) T cells. Collectively, our findings indicate that potentially tolerogenic features of L-Tag-specific immune response are significantly associated with tumor progression in patients with BKV(+) PCa.
Collapse
|
43
|
Jiang M, Imperiale MJ. Design stars: how small DNA viruses remodel the host nucleus. Future Virol 2012; 7:445-459. [PMID: 22754587 DOI: 10.2217/fvl.12.38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Numerous host components are encountered by viruses during the infection process. While some of these host structures are left unchanged, others may go through dramatic remodeling processes. In this review, we summarize these host changes that occur during small DNA virus infections, with a focus on host nuclear components and pathways. Although these viruses differ significantly in their genome structures and infectious pathways, there are common nuclear targets that are altered by various viral factors. Accumulating evidence suggests that these nuclear remodeling processes are often essential for productive viral infections and/or viral-induced transformation. Understanding the complex interactions between viruses and these host structures and pathways will help to build a more integrated network of how the virus completes its life cycle and point toward the design of novel therapeutic regimens that either prevent harmful viral infections or employ viruses as nontraditional treatment options or molecular tools.
Collapse
Affiliation(s)
- Mengxi Jiang
- Department of Microbiology & Immunology, & Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
44
|
Cabrera MC, Díaz-Cruz ES, Kallakury BVS, Pishvaian MJ, Grubbs CJ, Muccio DD, Furth PA. The CDK4/6 inhibitor PD0332991 reverses epithelial dysplasia associated with abnormal activation of the cyclin-CDK-Rb pathway. Cancer Prev Res (Phila) 2012; 5:810-21. [PMID: 22508966 DOI: 10.1158/1940-6207.capr-11-0532-t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss of normal growth control is a hallmark of cancer progression. Therefore, understanding the early mechanisms of normal growth regulation and the changes that occur during preneoplasia may provide insights of both diagnostic and therapeutic importance. Models of dysplasia that help elucidate the mechanisms responsible for disease progression are useful in highlighting potential targets for prevention. An important strategy in cancer prevention treatment programs is to reduce hyperplasia and dysplasia. This study identified abnormal upregulation of cell cycle-related proteins cyclin D1, cyclin-dependent kinase (CDK)4, CDK6, and phosphorylated retinoblastoma protein (pRb) as mechanisms responsible for maintenance of hyperplasia and dysplasia following downregulation of the initiating viral oncoprotein Simian virus 40 (SV40) T antigen. Significantly, p53 was not required for successful reversal of hyperplasia and dysplasia. Ligand-induced activation of retinoid X receptor and PPARγ agonists attenuated cyclin D1 and CDK6 but not CDK4 or phosphorylated pRb upregulation with limited reversal of hyperplasia and dysplasia. PD0332991, an orally available CDK4/6 inhibitor, was able to prevent upregulation of cyclin D1 and CDK6 as well as CDK4 and phosphorylated pRb and this correlated with a more profound reversal of hyperplasia and dysplasia. In summary, the study distinguished CDK4 and phosphorylated pRb as targets for chemoprevention regimens targeting reversal of hyperplasia and dysplasia.
Collapse
Affiliation(s)
- M Carla Cabrera
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Baculovirus infection induces a DNA damage response that is required for efficient viral replication. J Virol 2011; 85:12547-56. [PMID: 21917957 DOI: 10.1128/jvi.05766-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several mammalian viruses have been shown to induce a cellular DNA damage response during replication, and in some cases, this response is required for optimal virus replication. However, nothing is known about whether a DNA damage response is stimulated by DNA viruses in invertebrates. Cell cycle arrest and apoptosis are two of the downstream effects of the DNA damage response, and both are stimulated by baculovirus infection, suggesting a possible relationship between baculoviruses and the DNA damage response. In the study described in this report, we found that replication of the baculovirus Autographa californica M nucleopolyhedrovirus (AcMNPV) in the cell line Sf9, derived from the lepidopteran insect Spodoptera frugiperda, stimulated a DNA damage response, as indicated by an increased abundance of the S. frugiperda P53 protein (SfP53) and phosphorylation of the histone variant protein H2AX. Stimulation of the DNA damage response was dependent on viral DNA replication. Inhibition of the DNA damage response prevented both the increase in SfP53 accumulation and H2AX phosphorylation and also caused a 10- to 100-fold reduction in virus production, along with decreased viral DNA replication and late gene expression. However, silencing of Sfp53 expression by RNA interference did not significantly affect AcMNPV replication or induction of apoptosis by a mutant of AcMNPV lacking the antiapoptotic gene p35, indicating that these processes are not dependent on SfP53 in Sf9 cells.
Collapse
|
46
|
Zhou B, Yan H, Li Y, Wang R, Chen K, Zhou Z, Sun X. PNAS-4 expression and its relationship to p53 in colorectal cancer. Mol Biol Rep 2011; 39:243-9. [PMID: 21556770 DOI: 10.1007/s11033-011-0732-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 04/23/2011] [Indexed: 02/05/2023]
Abstract
PNAS-4 is a novel pro-apoptotic protein activated during the early response to DNA damage; however, the molecular mechanisms and pathways regulating PNAS-4 expression in tumors are not well understood. We hypothesized that PNAS-4 is a p53 down-stream target gene and designed this study. We searched online for putative p53-binding sites in the entire PNAS-4 gene and did not find any corresponding information. In HCT116 colon cancer cells, after being transfected with small interfering RNA to silence p53, the expressions of PNAS-4 and other known p53 target gene (Apaf1, Bax, Fas and Dr5) were determined by real-time PCR. We found that PNAS-4 was up-regulated while Apaf1, Bax, Fas and Dr5 were down-regulated. We then examined the expression of PNAS-4 and p53 mutation in colorectal cancer patients. PNAS-4 expressed both in colorectal cancers and normal tissues, but compared with paired control, PNAS-4 was up-regulated in cancers (P=0.018). PNAS-4 overexpression ratios were correlated to the p53 mutant status (P=0.001). The mean PNAS-4 expression levels of p53 mutant homozygote group and heterozygote group were higher than that of p53 wild type group (P=0.013). The expression ratios of PNAS-4 (every sample in relative to its paired normal mucosa) were different between negative lymph node metastasis (66% up-regulated, 34% down-regulated) and positive metastasis (42% up-regulated, 58% down-regulated). Taken together, these findings suggested that PNAS-4 was not a p53 target, but overexpression of PNAS-4 was correlated to p53 inactivity in colorectal cancer.
Collapse
Affiliation(s)
- Bin Zhou
- Laboratory of Digestive Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
BMI1 is a key component of multiprotein Polycomb repression complex 1 (PRC1), and its disruption in mice induces severe aplastic anemia by early adulthood. The contributing mechanisms responsible for this phenotype remain elusive. Here we show that transformed human cell lines as well as primitive hematopoietic cells exhibit a high frequency of spontaneous chromosome breaks upon BMI1 depletion and are hypersensitive to genotoxic agents. Consistent with these observations, we found that BMI1 is recruited rapidly to DNA damage foci where it blocks transcriptional elongation. We also show that BMI1 contributes to homologous recombination DNA repair and is required for checkpoint recovery. Taken together, our results suggest that BMI1 is critical for the maintenance of chromosome integrity in both normal and transformed cells.
Collapse
|
48
|
Boamah EK, Brekman A, Tomasz M, Myeku N, Figueiredo-Pereira M, Hunter S, Meyer J, Bhosle RC, Bargonetti J. DNA adducts of decarbamoyl mitomycin C efficiently kill cells without wild-type p53 resulting from proteasome-mediated degradation of checkpoint protein 1. Chem Res Toxicol 2010; 23:1151-62. [PMID: 20536192 PMCID: PMC2907727 DOI: 10.1021/tx900420k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
The mitomycin derivative 10-decarbamoyl mitomycin C (DMC) more rapidly activates a p53-independent cell death pathway than mitomycin C (MC). We recently documented that an increased proportion of mitosene1-β-adduct formation occurs in human cells treated with DMC in comparison to those treated with MC. Here, we compare the cellular and molecular response of human cancer cells treated with MC and DMC. We find the increase in mitosene 1-β-adduct formation correlates with a condensed nuclear morphology and increased cytotoxicity in human cancer cells with or without p53. DMC caused more DNA damage than MC in the nuclear and mitochondrial genomes. Checkpoint 1 protein (Chk1) was depleted following DMC, and the depletion of Chk1 by DMC was achieved through the ubiquitin proteasome pathway since chemical inhibition of the proteasome protected against Chk1 depletion. Gene silencing of Chk1 by siRNA increased the cytotoxicity of MC. DMC treatment caused a decrease in the level of total ubiquitinated proteins without increasing proteasome activity, suggesting that DMC mediated DNA adducts facilitate signal transduction to a pathway targeting cellular proteins for proteolysis. Thus, the mitosene-1-β stereoisomeric DNA adducts produced by the DMC signal for a p53-independent mode of cell death correlated with reduced nuclear size, persistent DNA damage, increased ubiquitin proteolysis and reduced Chk1 protein.
Collapse
Affiliation(s)
- Ernest K Boamah
- Department of Biological Sciences, Hunter College and The Graduate Center, City University of New York, 695 Park Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Over 50 years of polyomavirus research has produced a wealth of insights into not only general biologic processes in mammalian cells, but also, how conditions can be altered and signaling systems tweaked to produce transformation phenotypes. In the past few years three new members (KIV, WUV, and MCV) have joined two previously known (JCV and BKV) human polyomaviruses. In this review, we present updated information on general virologic features of these polyomaviruses in their natural host, concentrating on the association of MCV with human Merkel cell carcinoma. We further present a discussion on advances made in SV40 as the prototypic model, which has and will continue to inform our understanding about viruses and cancer.
Collapse
Affiliation(s)
- Ole Gjoerup
- Cancer Virology Program, Hillman Cancer Research Pavilion, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | |
Collapse
|
50
|
Abstract
A virus (from the Latin virus meaning toxin or poison) is a small infectious agent that can only replicate inside the cells of another organism. Viruses are found wherever there is life and have probably existed since living cells first evolved. Viruses do not have their own metabolism and require a host cell to make new products. The range of structural and biochemical (i.e., cytopathic) effects that viruses have on the host cell is extensive. Most viral infections eventually result in the death of the host cell. The causes of death include cell lysis, alterations to the cell's surface membrane and various modes of programmed cell death. Some viruses cause no apparent changes to the infected cell. Cells in which the virus is latent and inactive show few signs of infection and often function normally. This causes persistent infection and the virus is often dormant for many months or years. Some viruses can cause cells to proliferate without causing malignancy, whereas others are established causes of cancer. Human organisms use a genetically controlled cell death programme that prevents the spreading of viral infection and kills the virus. Between 19 and 21 November 2009, with sponsorship from the Journal of Internal Medicine, the Swedish Research Foundation and the Swedish Cancer Society hosted a conference in Stockholm entitled: 'To kill or to be killed. Viral evasion strategies and interference with cell death machinery'. Four comprehensive reviews from this conference are presented in this issue of the Journal of Internal Medicine. These reviews include descriptions of: the modulation of host innate and adaptive immune defenses by cytomegalovirus; the impact of gamma-chain family cytokines on T cell homoeostasis in HIV-1 infection and the therapeutic implications; approaches to killing tumours by depriving them of the mechanisms for detoxification; and viral strategies for the evasion of immunogenic cell death.
Collapse
Affiliation(s)
- V Kaminskyy
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|