1
|
Vandermeulen MD, Khaiwal S, Rubio G, Liti G, Cullen PJ. Gain- and loss-of-function alleles within signaling pathways lead to phenotypic diversity among individuals. iScience 2024; 27:110860. [PMID: 39381740 PMCID: PMC11460476 DOI: 10.1016/j.isci.2024.110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/29/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
Understanding how phenotypic diversity is generated is an important question in biology. We explored phenotypic diversity among wild yeast isolates (Saccharomyces cerevisiae) and found variation in the activity of MAPK signaling pathways as a contributing mechanism. To uncover the genetic basis of this mechanism, we identified 1957 SNPs in 62 candidate genes encoding signaling proteins from a MAPK signaling module within a large collection of yeast (>1500 individuals). Follow-up testing identified functionally relevant variants in key signaling proteins. Loss-of-function (LOF) alleles in a PAK kinase impacted protein stability and pathway specificity decreasing filamentous growth and mating phenotypes. In contrast, gain-of-function (GOF) alleles in G-proteins that were hyperactivating induced filamentous growth. Similar amino acid substitutions in G-proteins were identified in metazoans that in some cases were fixed in multicellular lineages including humans, suggesting hyperactivating GOF alleles may play roles in generating phenotypic diversity across eukaryotes. A mucin signaler that regulates MAPK activity was also found to contain a prevalance of presumed GOF alleles amoung individuals based on changes in mucin repeat numbers. Thus, genetic variation in signaling pathways may act as a reservoir for generating phenotypic diversity across eukaryotes.
Collapse
Affiliation(s)
| | - Sakshi Khaiwal
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Gabriel Rubio
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
2
|
Pujari AN, Cullen PJ. Modulators of MAPK pathway activity during filamentous growth in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2024; 14:jkae072. [PMID: 38560781 PMCID: PMC11152069 DOI: 10.1093/g3journal/jkae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK pathway-dependent growth reporter (ste4 FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and loss-of-function alleles in RGA1, which encodes a GTPase-activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1, and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). Mutations leading to C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, identifying an inhibitory domain of the protein from residues 491 to 688. We also find that a diversity of filamentous growth phenotypes can result from combinatorial effects of multiple mutations and by loss of different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.
Collapse
Affiliation(s)
- Atindra N Pujari
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
3
|
Pujari AN, Cullen PJ. Modulators of MAPK pathway activity during filamentous growth in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573138. [PMID: 38187743 PMCID: PMC10769413 DOI: 10.1101/2023.12.22.573138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK-pathway dependent growth reporter (ste4 FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay, and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and RGA1, which encodes a GTPase activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1 and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, presumably identifying an inhibitory domain in the C-terminus of the protein. We also show that a wide variety of filamentous growth phenotypes result from mutations in different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.
Collapse
Affiliation(s)
- Atindra N. Pujari
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260
| |
Collapse
|
4
|
González B, Mirzaei M, Basu S, Pujari AN, Vandermeulen MD, Prabhakar A, Cullen PJ. Turnover and bypass of p21-activated kinase during Cdc42-dependent MAPK signaling in yeast. J Biol Chem 2023; 299:105297. [PMID: 37774975 PMCID: PMC10641623 DOI: 10.1016/j.jbc.2023.105297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 10/01/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular behaviors, including the response to stress and cell differentiation, and are highly conserved across eukaryotes. MAPK pathways can be activated by the interaction between the small GTPase Cdc42p and the p21-activated kinase (Ste20p in yeast). By studying MAPK pathway regulation in yeast, we recently found that the active conformation of Cdc42p is regulated by turnover, which impacts the activity of the pathway that regulates filamentous growth (fMAPK). Here, we show that Ste20p is regulated in a similar manner and is turned over by the 26S proteasome. This turnover did not occur when Ste20p was bound to Cdc42p, which presumably stabilized the protein to sustain MAPK pathway signaling. Although Ste20p is a major component of the fMAPK pathway, genetic approaches here identified a Ste20p-independent branch of signaling. Ste20p-independent signaling partially required the fMAPK pathway scaffold and Cdc42p-interacting protein, Bem4p, while Ste20p-dependent signaling required the 14-3-3 proteins, Bmh1p and Bmh2p. Interestingly, Ste20p-independent signaling was inhibited by one of the GTPase-activating proteins for Cdc42p, Rga1p, which unexpectedly dampened basal but not active fMAPK pathway activity. These new regulatory features of the Rho GTPase and p21-activated kinase module may extend to related pathways in other systems.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Mahnoosh Mirzaei
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Sukanya Basu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Atindra N Pujari
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Matthew D Vandermeulen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Aditi Prabhakar
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Paul J Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
5
|
Bardwell L, Thorner J. Mitogen-activated protein kinase (MAPK) cascades-A yeast perspective. Enzymes 2023; 54:137-170. [PMID: 37945169 DOI: 10.1016/bs.enz.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Discovery of the class of protein kinase now dubbed a mitogen (or messenger)-activated protein kinase (MAPK) is an illustrative example of how disparate lines of investigation can converge and reveal an enzyme family universally conserved among eukaryotes, from single-celled microbes to humans. Moreover, elucidation of the circuitry controlling MAPK function defined a now overarching principle in enzyme regulation-the concept of an activation cascade mediated by sequential phosphorylation events. Particularly ground-breaking for this field of exploration were the contributions of genetic approaches conducted using several model organisms, but especially the budding yeast Saccharomyces cerevisiae. Notably, examination of how haploid yeast cells respond to their secreted peptide mating pheromones was crucial in pinpointing genes encoding MAPKs and their upstream activators. Fully contemporaneous biochemical analysis of the activities elicited upon stimulation of mammalian cells by insulin and other growth- and differentiation-inducing factors lead eventually to the demonstration that components homologous to those in yeast were involved. Continued studies of these pathways in yeast were integral to other foundational discoveries in MAPK signaling, including the roles of tethering, scaffolding and docking interactions.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States.
| |
Collapse
|
6
|
Gonz Lez B, Mirzaei M, Basu S, Prabhakar A, Cullen PJ. New Features Surrounding the Cdc42-Ste20 Module that Regulates MAP Kinase Signaling in Yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530426. [PMID: 36909494 PMCID: PMC10002611 DOI: 10.1101/2023.02.28.530426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular responses, including the response to stress and cell differentiation, and are highly conserved across eukaryotes from yeast to humans. In yeast, the canonical activation of several MAPK pathways includes the interaction of the small GTPase Cdc42p with the p21-activated kinase (PAK) Ste20p. We recently found that the active conformation of Cdc42p is regulated by turnover, which impacts the activity of the pathway that regulates filamentous growth (fMAPK). Here, we show that Ste20p is turned over by the 26S proteasome. Ste20p was stabilized when bound to Cdc42p, presumably to sustain MAPK pathway signaling. Ste20p is a major conduit by which signals flow through the fMAPK pathway; however, by genetic approaches we also identified a Ste20p-independent branch of the fMAPK pathway. Ste20p-dependent signaling required the 14-3-3 proteins, Bmh1p and Bmh2p, while Ste20p-independent signaling required the fMAPK pathway adaptor and Cdc42p-interacting protein, Bem4p. Ste20p-independent signaling was inhibited by one of the GTPase-activating proteins for Cdc42p in the fMAPK pathway, Rga1p, which also dampened basal but not active fMAPK pathway activity. Finally, the polarity adaptor and Cdc42p-interacting protein, Bem1p, which also regulates the fMAPK pathway, interacts with the tetra-span protein Sho1p, connecting a sensor at the plasma membrane to a protein that regulates the GTPase module. Collectively, these data reveal new regulatory features surrounding a Rho-PAK module that may extend to other pathways that control cell differentiation.
Collapse
|
7
|
Prabhakar A, González B, Dionne H, Basu S, Cullen PJ. Spatiotemporal control of pathway sensors and cross-pathway feedback regulate a differentiation MAPK pathway in yeast. J Cell Sci 2021; 134:jcs258341. [PMID: 34347092 PMCID: PMC8353523 DOI: 10.1242/jcs.258341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways control cell differentiation and the response to stress. In Saccharomyces cerevisiae, the MAPK pathway that controls filamentous growth (fMAPK) shares components with the pathway that regulates the response to osmotic stress (HOG). Here, we show that the two pathways exhibit different patterns of activity throughout the cell cycle. The different patterns resulted from different expression profiles of genes encoding mucin sensors that regulate the pathways. Cross-pathway regulation from the fMAPK pathway stimulated the HOG pathway, presumably to modulate fMAPK pathway activity. We also show that the shared tetraspan protein Sho1p, which has a dynamic localization pattern throughout the cell cycle, induced the fMAPK pathway at the mother-bud neck. A Sho1p-interacting protein, Hof1p, which also localizes to the mother-bud neck and regulates cytokinesis, also regulated the fMAPK pathway. Therefore, spatial and temporal regulation of pathway sensors, and cross-pathway regulation, control a MAPK pathway that regulates cell differentiation in yeast.
Collapse
Affiliation(s)
| | | | | | | | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
8
|
Costa ACBP, Omran RP, Law C, Dumeaux V, Whiteway M. Signal-mediated localization of Candida albicans pheromone response pathway components. G3-GENES GENOMES GENETICS 2021; 11:6033596. [PMID: 33793759 PMCID: PMC8022970 DOI: 10.1093/g3journal/jkaa033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/25/2020] [Indexed: 01/07/2023]
Abstract
A MAPK cascade consists of three kinases, (MEKK, MEK and MAPK), that are sequentially activated in response to a stimulus and serve to transmit signals. In C. albicans and in yeast, an MAPK cascade is linked to the pheromone pathway through a scaffold protein (Cst5 and Ste5, respectively). Cst5 is much shorter and lacks key domains compared to Ste5, so in C. albicans, other elements, in particular the MEKK Ste11, play key roles in controlling the associations and localizations of network components. Abstract Candida albicans opaque cells release pheromones to stimulate cells of opposite mating type to activate their pheromone response pathway. Although this fungal pathogen shares orthologous proteins involved in the process with Saccharomyces cerevisiae, the pathway in each organism has unique characteristics. We have used GFP-tagged fusion proteins to investigate the localization of the scaffold protein Cst5, as well as the MAP kinases Cek1 and Cek2, during pheromone response in C. albicans. In wild-type cells, pheromone treatment directed Cst5-GFP to surface puncta concentrated at the tips of mating projections. These puncta failed to form in cells defective in either the Gα or β subunits. However, they still formed in response to pheromone in cells missing Ste11, but with the puncta distributed around the cell periphery in the absence of mating projections. These puncta were absent from hst7Δ/Δ cells, but could be detected in the ste11Δ/Δ hst7Δ/Δ double mutant. Cek2-GFP showed a strong nuclear localization late in the response, consistent with a role in adaptation, while Cek1-GFP showed a weaker, but early increase in nuclear localization after pheromone treatment. Activation loop phosphorylation of both Cek1 and Cek2 required the presence of Ste11. In contrast to Cek2-GFP, which showed no localization signal in ste11Δ/Δ cells, Cek1-GFP showed enhanced nuclear localization that was pheromone independent in the ste11Δ/Δ mutant. The results are consistent with CaSte11 facilitating Hst7-mediated MAP kinase phosphorylation and also playing a potentially critical role in both MAP kinase and Cst5 scaffold localization.
Collapse
Affiliation(s)
| | - Raha Parvizi Omran
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Chris Law
- Centre for Microscopy and Cellular Imaging, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Vanessa Dumeaux
- PERFORM Centre, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
9
|
Bhunia A, Ilyas H, Bhattacharjya S. Salt Dependence Conformational Stability of the Dimeric SAM Domain of MAPKKK Ste11 from Budding Yeast: A Native-State H/D Exchange NMR Study. Biochemistry 2020; 59:2849-2858. [PMID: 32667811 DOI: 10.1021/acs.biochem.0c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sterile α motif, also called the SAM domain, is known to form homo or heterocomplexes that modulate diverse biological functions through the regulation of specific protein-protein interactions. The MAPK pathway of budding yeast Saccharomyces cerevisiae is comprised of a three-tier kinase system akin to mammals. The MAPKKK Ste11 protein of yeast contains a homodimer SAM domain, which is critical for transmitting cues to the downstream kinases. The structural stability of the dimeric Ste11 SAM is maintained by hydrophobic and ionic interactions at the interfacial amino acids. The urea-induced equilibrium-unfolding process of the Ste11 SAM domain is cooperative without evidence of any intermediate states. The native-state H/D exchange under subdenaturing conditions is a useful method for the detection of intermediate states of proteins. In the present study, we investigated the effect of ionic strength on the conformational stability of the dimer using the H/D exchange experiments. The hydrogen exchange behavior of the Ste11 dimer under physiological salt concentrations reveals two partially unfolded metastable intermediate states, which may be generated by a sequential and cooperative unfolding of the five helices present in the domain. These intermediates appear to be significant for the reversible unfolding kinetics via hydrophobic collapse. In contrast, higher ionic concentrations eliminate this cooperative interactions that stabilize the pairs of helices.
Collapse
Affiliation(s)
- Anirban Bhunia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India
| | - Humaira Ilyas
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
10
|
Van Drogen F, Dard N, Pelet S, Lee SS, Mishra R, Srejić N, Peter M. Crosstalk and spatiotemporal regulation between stress-induced MAP kinase pathways and pheromone signaling in budding yeast. Cell Cycle 2020; 19:1707-1715. [PMID: 32552303 DOI: 10.1080/15384101.2020.1779469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Budding yeast, Saccharomyces cerevisiae, has been widely used as a model system to study cellular signaling in response to internal and external cues. Yeast was among the first organisms in which the architecture, feedback mechanisms and physiological responses of various MAP kinase signaling cascades were studied in detail. Although these MAP kinase pathways are activated by different signals and elicit diverse cellular responses, such as adaptation to stress and mating, they function as an interconnected signaling network, as they influence each other and, in some cases, even share components. Indeed, various stress signaling pathways interfere with pheromone signaling that triggers a distinct cellular differentiation program. However, the molecular mechanisms responsible for this crosstalk are still poorly understood. Here, we review the general topology of the yeast MAP kinase signaling network and highlight recent and new data revealing how conflicting intrinsic and extrinsic signals are interpreted to orchestrate appropriate cellular responses.
Collapse
Affiliation(s)
| | - Nicolas Dard
- Ufr Smbh, University Sorbonne Paris Nord , Bobigny, France
| | - Serge Pelet
- Department of Fundamental Microbiology, University of Lausanne , Lausanne, Switzerland
| | - Sung Sik Lee
- ETH Zürich, Institute for Biochemistry , Zürich, Switzerland.,ETH Zürich, Scientific Center for Optical and Electron Microscopy (ScopeM) , Zürich, Switzerland
| | - Ranjan Mishra
- ETH Zürich, Institute for Biochemistry , Zürich, Switzerland
| | - Nevena Srejić
- ETH Zürich, Institute for Biochemistry , Zürich, Switzerland
| | - Matthias Peter
- ETH Zürich, Institute for Biochemistry , Zürich, Switzerland
| |
Collapse
|
11
|
Prabhakar A, Chow J, Siegel AJ, Cullen PJ. Regulation of intrinsic polarity establishment by a differentiation-type MAPK pathway in S. cerevisiae. J Cell Sci 2020; 133:jcs241513. [PMID: 32079658 PMCID: PMC7174846 DOI: 10.1242/jcs.241513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/12/2020] [Indexed: 01/15/2023] Open
Abstract
All cells establish and maintain an axis of polarity that is critical for cell shape and progression through the cell cycle. A well-studied example of polarity establishment is bud emergence in the yeast Saccharomyces cerevisiae, which is controlled by the Rho GTPase Cdc42p. The prevailing view of bud emergence does not account for regulation by extrinsic cues. Here, we show that the filamentous growth mitogen activated protein kinase (fMAPK) pathway regulates bud emergence under nutrient-limiting conditions. The fMAPK pathway regulated the expression of polarity targets including the gene encoding a direct effector of Cdc42p, Gic2p. The fMAPK pathway also stimulated GTP-Cdc42p levels, which is a critical determinant of polarity establishment. The fMAPK pathway activity was spatially restricted to bud sites and active during the period of the cell cycle leading up to bud emergence. Time-lapse fluorescence microscopy showed that the fMAPK pathway stimulated the rate of bud emergence during filamentous growth. Unregulated activation of the fMAPK pathway induced multiple rounds of symmetry breaking inside the growing bud. Collectively, our findings identify a new regulatory aspect of bud emergence that sensitizes this essential cellular process to external cues.
Collapse
Affiliation(s)
- Aditi Prabhakar
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Jacky Chow
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Alan J Siegel
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
12
|
Basu S, González B, Li B, Kimble G, Kozminski KG, Cullen PJ. Functions for Cdc42p BEM adaptors in regulating a differentiation-type MAP kinase pathway. Mol Biol Cell 2020; 31:491-510. [PMID: 31940256 PMCID: PMC7185891 DOI: 10.1091/mbc.e19-08-0441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ras homology (Rho) GTPases regulate cell polarity and signal transduction pathways to control morphogenetic responses in different settings. In yeast, the Rho GTPase Cdc42p regulates cell polarity, and through the p21-activated kinase Ste20p, Cdc42p also regulates mitogen-activated protein kinase (MAPK) pathways (mating, filamentous growth or fMAPK, and HOG). Although much is known about how Cdc42p regulates cell polarity and the mating pathway, how Cdc42p regulates the fMAPK pathway is not clear. To address this question, Cdc42p-dependent MAPK pathways were compared in the filamentous (Σ1278b) strain background. Each MAPK pathway showed a unique activation profile, with the fMAPK pathway exhibiting slow activation kinetics compared with the mating and HOG pathways. A previously characterized version of Cdc42p, Cdc42pE100A, that is specifically defective for fMAPK pathway signaling, was defective for interaction with Bem4p, the pathway-specific adaptor for the fMAPK pathway. Corresponding residues in Bem4p were identified that were required for interaction with Cdc42p and fMAPK pathway signaling. The polarity adaptor Bem1p also regulated the fMAPK pathway. Versions of Bem1p defective for recruitment of Ste20p to the plasma membrane, intramolecular interactions, and interaction with the GEF, Cdc24p, were defective for fMAPK pathway signaling. Bem1p also regulated effector pathways in different ways. In some pathways, multiple domains of the protein were required for its function, whereas in other pathways, a single domain or function was needed. Genetic suppression tests showed that Bem4p and Bem1p regulate the fMAPK pathway in an ordered sequence. Collectively, the study demonstrates unique and sequential functions for Rho GTPase adaptors in regulating MAPK pathways.
Collapse
Affiliation(s)
- Sukanya Basu
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Beatriz González
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Boyang Li
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Garrett Kimble
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Keith G Kozminski
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, VA 22904
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| |
Collapse
|
13
|
Prabhakar A, Vadaie N, Krzystek T, Cullen PJ. Proteins That Interact with the Mucin-Type Glycoprotein Msb2p Include a Regulator of the Actin Cytoskeleton. Biochemistry 2019; 58:4842-4856. [PMID: 31710471 DOI: 10.1021/acs.biochem.9b00725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transmembrane mucin-type glycoproteins can regulate signal transduction pathways. In yeast, signaling mucins regulate mitogen-activated protein kinase (MAPK) pathways that induce cell differentiation to filamentous growth (fMAPK pathway) and the response to osmotic stress (HOG pathway). To explore regulatory aspects of signaling mucin function, protein microarrays were used to identify proteins that interact with the cytoplasmic domain of the mucin-like glycoprotein Msb2p. Eighteen proteins were identified that comprised functional categories of metabolism, actin filament capping and depolymerization, aerobic and anaerobic growth, chromatin organization and bud growth, sporulation, ribosome biogenesis, protein modification by iron-sulfur clusters, RNA catabolism, and DNA replication and DNA repair. A subunit of actin capping protein, Cap2p, interacted with the cytoplasmic domain of Msb2p. Cells lacking Cap2p showed altered localization of Msb2p and increased levels of shedding of Msb2p's N-terminal glycosylated domain. Consistent with its role in regulating the actin cytoskeleton, Cap2p was required for enhanced cell polarization during filamentous growth. Our study identifies proteins that connect a signaling mucin to diverse cellular processes and may provide insight into new aspects of mucin function.
Collapse
Affiliation(s)
- Aditi Prabhakar
- Department of Biological Sciences , State University of New York at Buffalo , Buffalo , New York 14260-1300 , United States
| | - Nadia Vadaie
- Department of Biological Sciences , State University of New York at Buffalo , Buffalo , New York 14260-1300 , United States
| | - Thomas Krzystek
- Department of Biological Sciences , State University of New York at Buffalo , Buffalo , New York 14260-1300 , United States
| | - Paul J Cullen
- Department of Biological Sciences , State University of New York at Buffalo , Buffalo , New York 14260-1300 , United States
| |
Collapse
|
14
|
van Leeuwen J, Pons C, Boone C, Andrews BJ. Mechanisms of suppression: The wiring of genetic resilience. Bioessays 2017; 39. [PMID: 28582599 DOI: 10.1002/bies.201700042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent analysis of genome sequences has identified individuals that are healthy despite carrying severe disease-associated mutations. A possible explanation is that these individuals carry a second genomic perturbation that can compensate for the detrimental effects of the disease allele, a phenomenon referred to as suppression. In model organisms, suppression interactions are generally divided into two classes: genomic suppressors which are secondary mutations in the genome that bypass a mutant phenotype, and dosage suppression interactions in which overexpression of a suppressor gene rescues a mutant phenotype. Here, we describe the general properties of genomic and dosage suppression, with an emphasis on the budding yeast. We propose that suppression interactions between genetic variants are likely relevant for determining the penetrance of human traits. Consequently, an understanding of suppression mechanisms may guide the discovery of protective variants in healthy individuals that carry disease alleles, which could direct the rational design of new therapeutics.
Collapse
Affiliation(s)
- Jolanda van Leeuwen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Brenda J Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Genetic Approaches to Study Meiosis and Meiosis-Specific Gene Expression in Saccharomyces cerevisiae. Methods Mol Biol 2017. [PMID: 28349388 DOI: 10.1007/978-1-4939-6340-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The budding yeast Saccharomyces cerevisiae has a long history as a model organism for studies of meiosis and the cell cycle. The popularity of this yeast as a model is in large part due to the variety of genetic and cytological approaches that can be effectively performed with the cells. Cultures of the cells can be induced to synchronously progress through meiosis and sporulation allowing large-scale gene expression and biochemical studies to be performed. Additionally, the spore tetrads resulting from meiosis make it possible to characterize the haploid products of meiosis allowing investigation of meiotic recombination and chromosome segregation. Here we describe genetic methods for analysis progression of S. cerevisiae through meiosis and sporulation with an emphasis on strategies for the genetic analysis of regulators of meiosis-specific genes.
Collapse
|
16
|
Spatial landmarks regulate a Cdc42-dependent MAPK pathway to control differentiation and the response to positional compromise. Proc Natl Acad Sci U S A 2016; 113:E2019-28. [PMID: 27001830 DOI: 10.1073/pnas.1522679113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental problem in cell biology is to understand how spatial information is recognized and integrated into morphogenetic responses. Budding yeast undergoes differentiation to filamentous growth, which involves changes in cell polarity through mechanisms that remain obscure. Here we define a regulatory input where spatial landmarks (bud-site-selection proteins) regulate the MAPK pathway that controls filamentous growth (fMAPK pathway). The bud-site GTPase Rsr1p regulated the fMAPK pathway through Cdc24p, the guanine nucleotide exchange factor for the polarity establishment GTPase Cdc42p. Positional landmarks that direct Rsr1p to bud sites conditionally regulated the fMAPK pathway, corresponding to their roles in regulating bud-site selection. Therefore, cell differentiation is achieved in part by the reorganization of polarity at bud sites. In line with this conclusion, dynamic changes in budding pattern during filamentous growth induced corresponding changes in fMAPK activity. Intrinsic compromise of bud-site selection also impacted fMAPK activity. Therefore, a surveillance mechanism monitors spatial position in response to extrinsic and intrinsic stress and modulates the response through a differentiation MAPK pathway.
Collapse
|
17
|
Sacristán-Reviriego A, Molina M, Martín H. Methods to Study Protein Tyrosine Phosphatases Acting on Yeast MAPKs. Methods Mol Biol 2016; 1447:385-398. [PMID: 27514817 DOI: 10.1007/978-1-4939-3746-2_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mitogen activated protein kinases (MAPK) pathways play a key role in orchestrating the eukaryotic cellular response to different stimuli. In this process, phosphorylation of both conserved threonine and tyrosine residues of MAPKs is essential for their activation. Identification of tyrosine and dual specificity protein phosphatases capable of dephosphorylating these phosphosites is thus critical to gain insight into their regulation. Due to the conservation of pivotal elements in eukaryotic signaling, yeast has turned into a valuable tool to increase the knowledge of MAPK signaling in other cell types. Here we describe an in vivo method to evaluate the capacity of a protein, from yeast or other origin, to act as a MAPK phosphatase. It relies on the ability of the phosphatase to reduce, when overexpressed, both the amount of activated MAPK and the transcription from a specific promoter regulated by the corresponding pathway. To this end, the pathway has to be previously activated, preferentially through overexpression of a hyperactive allele of an upstream component within the MAPK module. Additionally, the ability of an overexpressed "trapping" inactive phosphatase version to modify these readouts is also analyzed. Western blotting analysis with specific anti-phospho MAPK antibodies and flow cytometry-based determination of fluorescence produced by GFP whose expression is driven by MAPK-regulated promoters are the selected techniques for monitoring these readouts.
Collapse
Affiliation(s)
- Almudena Sacristán-Reviriego
- Departamento de Microbiología II, Facultad de Farmacia, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - María Molina
- Departamento de Microbiología II, Facultad de Farmacia, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Humberto Martín
- Departamento de Microbiología II, Facultad de Farmacia, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
18
|
Qi L, Kim Y, Jiang C, Li Y, Peng Y, Xu JR. Activation of Mst11 and Feedback Inhibition of Germ Tube Growth in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:881-91. [PMID: 26057388 DOI: 10.1094/mpmi-12-14-0391-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Appressorium formation and invasive growth are two important steps in the infection cycle of Magnaporthe oryzae that are regulated by the Mst11-Mst7-Pmk1 mitogen-activated protein kinase (MAPK) pathway. However, the molecular mechanism involved in the activation of Mst11 MAPK kinase kinase is not clear in the rice blast fungus. In this study, we functionally characterized the regulatory region of Mst11 and its self-inhibitory binding. Deletion of the middle region of Mst11, which contains the Ras-association (RA) domain and two conserved phosphorylation sites (S453 and S458), blocked Pmk1 activation and appressorium formation. However, the MST11(ΔRA) transformant MRD-2 still formed appressoria, although it was reduced in virulence. Interestingly, over 50% of its germ tubes branched and formed two appressoria by 48 h, which was suppressed by treatments with exogenous cAMP. The G18V dominant active mutation enhanced the interaction of Ras2 with Mst11, suggesting that Mst11 has stronger interactions with the activated Ras2. Furthermore, deletion and site-directed mutagenesis analyses indicated that phosphorylation at S453 and S458 of Mst11 is important for appressorium formation and required for the activation of Pmk1. We also showed that the N-terminal region of Mst11 directly interacted with its kinase domain, and the S789G mutation reduced their interactions. Expression of the MST11(S789G) allele rescued the defect of the mst11 mutant in plant infection and resulted in the formation of appressoria on hydrophilic surfaces, suggesting the gain-of-function effect of the S789G mutation. Overall, our results indicate that the interaction of Mst11 with activated Ras2 and phosphorylation of S453 and S458 play regulatory roles in Mst11 activation and infection-related morphogenesis, possibly by relieving its self-inhibitory interaction between its N-terminal region and the C-terminal kinase domain. In addition, binding of Mst11 to Ras2 may be involved in the feedback inhibition of cAMP signaling and further differentiation of germ tubes after appressorium formation.
Collapse
Affiliation(s)
- Linlu Qi
- 1 MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Yangseon Kim
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Cong Jiang
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
- 3 NWAFU-PU Joint Research Center, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Youliang Peng
- 1 MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jin-Rong Xu
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
- 3 NWAFU-PU Joint Research Center, Northwestern A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
19
|
MacDonald K, Kimber MJ, Day TA, Ribeiro P. A constitutively active G protein-coupled acetylcholine receptor regulates motility of larval Schistosoma mansoni. Mol Biochem Parasitol 2015; 202:29-37. [PMID: 26365538 PMCID: PMC4607267 DOI: 10.1016/j.molbiopara.2015.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022]
Abstract
The neuromuscular system of helminths controls a variety of essential biological processes and therefore represents a good source of novel drug targets. The neuroactive substance, acetylcholine controls movement of Schistosoma mansoni but the mode of action is poorly understood. Here, we present first evidence of a functional G protein-coupled acetylcholine receptor in S. mansoni, which we have named SmGAR. A bioinformatics analysis indicated that SmGAR belongs to a clade of invertebrate GAR-like receptors and is related to vertebrate muscarinic acetylcholine receptors. Functional expression studies in yeast showed that SmGAR is constitutively active but can be further activated by acetylcholine and, to a lesser extent, the cholinergic agonist, carbachol. Anti-cholinergic drugs, atropine and promethazine, were found to have inverse agonist activity towards SmGAR, causing a significant decrease in the receptor's basal activity. An RNAi phenotypic assay revealed that suppression of SmGAR activity in early-stage larval schistosomulae leads to a drastic reduction in larval motility. In sum, our results provide the first molecular evidence that cholinergic GAR-like receptors are present in schistosomes and are required for proper motor control in the larvae. The results further identify SmGAR as a possible candidate for antiparasitic drug targeting.
Collapse
Affiliation(s)
- Kevin MacDonald
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue Quebec, H9X 3V9, Canada
| | - Michael J Kimber
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Tim A Day
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue Quebec, H9X 3V9, Canada.
| |
Collapse
|
20
|
Sacristán-Reviriego A, Martín H, Molina M. Identification of putative negative regulators of yeast signaling through a screening for protein phosphatases acting on cell wall integrity and mating MAPK pathways. Fungal Genet Biol 2015; 77:1-11. [DOI: 10.1016/j.fgb.2015.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/24/2022]
|
21
|
Cdc42p-interacting protein Bem4p regulates the filamentous-growth mitogen-activated protein kinase pathway. Mol Cell Biol 2014; 35:417-36. [PMID: 25384973 DOI: 10.1128/mcb.00850-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ubiquitous Rho (Ras homology) GTPase Cdc42p can function in different settings to regulate cell polarity and cellular signaling. How Cdc42p and other proteins are directed to function in a particular context remains unclear. We show that the Cdc42p-interacting protein Bem4p regulates the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in Saccharomyces cerevisiae. Bem4p controlled the filamentous-growth pathway but not other MAPK pathways (mating or high-osmolarity glycerol response [HOG]) that also require Cdc42p and other shared components. Bem4p associated with the plasma membrane (PM) protein, Sho1p, to regulate MAPK activity and cell polarization under nutrient-limiting conditions that favor filamentous growth. Bem4p also interacted with the major activator of Cdc42p, the guanine nucleotide exchange factor (GEF) Cdc24p, which we show also regulates the filamentous-growth pathway. Bem4p interacted with the pleckstrin homology (PH) domain of Cdc24p, which functions in an autoinhibitory capacity, and was required, along with other pathway regulators, to maintain Cdc24p at polarized sites during filamentous growth. Bem4p also interacted with the MAPK kinase kinase (MAPKKK) Ste11p. Thus, Bem4p is a new regulator of the filamentous-growth MAPK pathway and binds to general proteins, like Cdc42p and Ste11p, to promote a pathway-specific response.
Collapse
|
22
|
Abstract
Cell differentiation requires different pathways to act in concert to produce a specialized cell type. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth in response to nutrient limitation. Differentiation to the filamentous cell type requires multiple signaling pathways, including a mitogen-activated protein kinase (MAPK) pathway. To identify new regulators of the filamentous growth MAPK pathway, a genetic screen was performed with a collection of 4072 nonessential deletion mutants constructed in the filamentous (Σ1278b) strain background. The screen, in combination with directed gene-deletion analysis, uncovered 97 new regulators of the filamentous growth MAPK pathway comprising 40% of the major regulators of filamentous growth. Functional classification extended known connections to the pathway and identified new connections. One function for the extensive regulatory network was to adjust the activity of the filamentous growth MAPK pathway to the activity of other pathways that regulate the response. In support of this idea, an unregulated filamentous growth MAPK pathway led to an uncoordinated response. Many of the pathways that regulate filamentous growth also regulated each other's targets, which brings to light an integrated signaling network that regulates the differentiation response. The regulatory network characterized here provides a template for understanding MAPK-dependent differentiation that may extend to other systems, including fungal pathogens and metazoans.
Collapse
|
23
|
Gupta S, Bhattacharjya S. Characterization of the near native conformational states of the SAM domain of Ste11 protein by NMR spectroscopy. Proteins 2014; 82:2957-69. [PMID: 25066357 DOI: 10.1002/prot.24652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/01/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
The sterile alpha motif or SAM domain is one of the most frequently present protein interaction modules with diverse functional attributions. SAM domain of the Ste11 protein of budding yeast plays important roles in mitogen-activated protein kinase cascades. In the current study, urea-induced, at subdenaturing concentrations, structural, and dynamical changes in the Ste11 SAM domain have been investigated by nuclear magnetic resonance spectroscopy. Our study revealed that a number of residues from Helix 1 and Helix 5 of the Ste11 SAM domain display plausible alternate conformational states and largest chemical shift perturbations at low urea concentrations. Amide proton (H/D) exchange experiments indicated that Helix 1, loop, and Helix 5 become more susceptible to solvent exchange with increased concentrations of urea. Notably, Helix 1 and Helix 5 are directly involved in binding interactions of the Ste11 SAM domain. Our data further demonstrate that the existence of alternate conformational states around the regions involved in dimeric interactions in native or near native conditions.
Collapse
Affiliation(s)
- Sebanti Gupta
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | | |
Collapse
|
24
|
Clement ST, Dixit G, Dohlman HG. Regulation of yeast G protein signaling by the kinases that activate the AMPK homolog Snf1. Sci Signal 2013; 6:ra78. [PMID: 24003255 DOI: 10.1126/scisignal.2004143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular signals, such as nutrients and hormones, cue intracellular pathways to produce adaptive responses. Often, cells must coordinate their responses to multiple signals to produce an appropriate outcome. We showed that components of a glucose-sensing pathway acted on components of a heterotrimeric guanine nucleotide-binding protein (G protein)-mediated pheromone signaling pathway in the yeast Saccharomyces cerevisiae. We demonstrated that the G protein α subunit Gpa1 was phosphorylated in response to conditions of reduced glucose availability and that this phosphorylation event contributed to reduced pheromone-dependent stimulation of mitogen-activated protein kinases, gene transcription, cell morphogenesis, and mating efficiency. We found that Elm1, Sak1, and Tos3, the kinases that phosphorylate Snf1, the yeast homolog of adenosine monophosphate-activated protein kinase (AMPK), in response to limited glucose availability, also phosphorylated Gpa1 and contributed to the diminished mating response. Reg1, the regulatory subunit of the phosphatase PP1 that acts on Snf1, was likewise required to reverse the phosphorylation of Gpa1 and to maintain the mating response. Thus, the same kinases and phosphatase that regulate Snf1 also regulate Gpa1. More broadly, these results indicate that the pheromone signaling and glucose-sensing pathways communicate directly to coordinate cell behavior.
Collapse
Affiliation(s)
- Sarah T Clement
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
25
|
Baryshnikova A, Costanzo M, Myers CL, Andrews B, Boone C. Genetic Interaction Networks: Toward an Understanding of Heritability. Annu Rev Genomics Hum Genet 2013; 14:111-33. [DOI: 10.1146/annurev-genom-082509-141730] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anastasia Baryshnikova
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544
| | - Michael Costanzo
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Chad L. Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Brenda Andrews
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 3E1, Canada;
| | - Charles Boone
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 3E1, Canada;
| |
Collapse
|
26
|
Guillas I, Vernay A, Vitagliano JJ, Arkowitz RA. Phosphatidylinositol 4,5-bisphosphate is required for invasive growth in Saccharomyces cerevisiae. J Cell Sci 2013; 126:3602-14. [PMID: 23781030 DOI: 10.1242/jcs.122606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phosphatidylinositol phosphates are important regulators of processes such as the cytoskeleton organization, membrane trafficking and gene transcription, which are all crucial for polarized cell growth. In particular, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] has essential roles in polarized growth as well as in cellular responses to stress. In the yeast Saccharomyces cerevisiae, the sole phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) Mss4p is essential for generating plasma membrane PtdIns(4,5)P2. Here, we show that Mss4p is required for yeast invasive growth in low-nutrient conditions. We isolated specific mss4 mutants that were defective in cell elongation, induction of the Flo11p flocculin, adhesion and cell wall integrity. We show that mss4-f12 cells have reduced plasma membrane PtdIns(4,5)P2 levels as well as a defect in its polarized distribution, yet Mss4-f12p is catalytically active in vitro. In addition, the Mss4-f12 protein was defective in localizing to the plasma membrane. Furthermore, addition of cAMP, but not an activated MAPKKK allele, partially restored the invasive growth defect of mss4-f12 cells. Taken together, our results indicate that plasma membrane PtdIns(4,5)P2 is crucial for yeast invasive growth and suggest that this phospholipid functions upstream of the cAMP-dependent protein kinase A signaling pathway.
Collapse
Affiliation(s)
- Isabelle Guillas
- Université Nice - Sophia Antipolis, Institute of Biology Valrose, 06108 Nice Cedex 2, France
| | | | | | | |
Collapse
|
27
|
Furukawa K, Hohmann S. Synthetic biology: lessons from engineering yeast MAPK signalling pathways. Mol Microbiol 2013; 88:5-19. [PMID: 23461595 DOI: 10.1111/mmi.12174] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 02/04/2023]
Abstract
All living cells respond to external stimuli and execute specific physiological responses through signal transduction pathways. Understanding the mechanisms controlling signalling pathways is important for diagnosing and treating diseases and for reprogramming cells with desired functions. Although many of the signalling components in the budding yeast Saccharomyces cerevisiae have been identified by genetic studies, many features concerning the dynamic control of pathway activity, cross-talk, cell-to-cell variability or robustness against perturbation are still incompletely understood. Comparing the behaviour of engineered and natural signalling pathways offers insight complementary to that achievable with standard genetic and molecular studies. Here, we review studies that aim at a deeper understanding of signalling design principles and generation of novel signalling properties by engineering the yeast mitogen-activated protein kinase (MAPK) pathways. The underlying approaches can be applied to other organisms including mammalian cells and offer opportunities for building synthetic pathways and functionalities useful in medicine and biotechnology.
Collapse
Affiliation(s)
- Kentaro Furukawa
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | | |
Collapse
|
28
|
Carter GW, Hays M, Sherman A, Galitski T. Use of pleiotropy to model genetic interactions in a population. PLoS Genet 2012; 8:e1003010. [PMID: 23071457 PMCID: PMC3469415 DOI: 10.1371/journal.pgen.1003010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/19/2012] [Indexed: 12/01/2022] Open
Abstract
Systems-level genetic studies in humans and model systems increasingly involve both high-resolution genotyping and multi-dimensional quantitative phenotyping. We present a novel method to infer and interpret genetic interactions that exploits the complementary information in multiple phenotypes. We applied this approach to a population of yeast strains with randomly assorted perturbations of five genes involved in mating. We quantified pheromone response at the molecular level and overall mating efficiency. These phenotypes were jointly analyzed to derive a network of genetic interactions that mapped mating-pathway relationships. To determine the distinct biological processes driving the phenotypic complementarity, we analyzed patterns of gene expression to find that the pheromone response phenotype is specific to cellular fusion, whereas mating efficiency was a combined measure of cellular fusion, cell cycle arrest, and modifications in cellular metabolism. We applied our novel method to global gene expression patterns to derive an expression-specific interaction network and demonstrate applicability to global transcript data. Our approach provides a basis for interpretation of genetic interactions and the generation of specific hypotheses from populations assayed for multiple phenotypes. Parallel advances in genotype and phenotype measurement technologies are yielding large-scale, multidimensional datasets that can potentially decipher the genetic etiology of complex traits. Understanding these data will require methods that combine the experimental power of molecular biology and the quantitative power of statistical genetics. In this work, we describe a novel approach that uses the complementary information encoded by multiple phenotypes in conjunction with genetic data to map genetic interaction networks in terms of quantitative variant-to-variant and variant-to-phenotype influences. We tested this method using a population of yeast strains with random combinations of five genetic mutations and derived an interaction network using molecular and colony-level assays of mating phenotypes. Distinct biological processes that underlie the two phenotypes were identified with gene expression analysis, validating the method's ability to exploit complementary biological information in multiple phenotypes. Our method generates data-driven models and testable hypotheses of how the genetic variation in a population combines to affect complex traits. It is designed to be flexible and scalable for application to populations with extensive genetic diversity.
Collapse
|
29
|
Fernandez-Piñar P, Alemán A, Sondek J, Dohlman HG, Molina M, Martín H. The Salmonella Typhimurium effector SteC inhibits Cdc42-mediated signaling through binding to the exchange factor Cdc24 in Saccharomyces cerevisiae. Mol Biol Cell 2012; 23:4430-43. [PMID: 23015760 PMCID: PMC3496616 DOI: 10.1091/mbc.e12-03-0243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Expression of the Salmonella effector SteC in yeast leads to down-regulation of the mating and HOG pathways by Cdc42 inhibition. This is mediated by the SteC N-terminal domain through binding to the GEF Cdc24. SteC alters Cdc24 localization and also interacts with human GEF Vav1, suggesting that SteC could target Cdc42 function in host cells. Intracellular survival of Salmonella relies on the activity of proteins translocated into the host cell by type III secretion systems (T3SS). The protein kinase activity of the T3SS effector SteC is required for F-actin remodeling in host cells, although no SteC target has been identified so far. Here we show that expression of the N-terminal non-kinase domain of SteC down-regulates the mating and HOG pathways in Saccharomyces cerevisiae. Epistasis analyses using constitutively active components of these pathways indicate that SteC inhibits signaling at the level of the GTPase Cdc42. We demonstrate that SteC interacts through its N-terminal domain with the catalytic domain of Cdc24, the sole S. cerevisiae Cdc42 guanine nucleotide exchange factor (GEF). SteC also binds to the human Cdc24-like GEF protein Vav1. Moreover, expression of human Cdc42 suppresses growth inhibition caused by SteC. Of interest, the N-terminal SteC domain alters Cdc24 cellular localization, preventing its nuclear accumulation. These data reveal a novel functional domain within SteC, raising the possibility that this effector could also target GTPase function in mammalian cells. Our results also highlight the key role of the Cdc42 switch in yeast mating and HOG pathways and provide a new tool to study the functional consequences of Cdc24 localization.
Collapse
Affiliation(s)
- Pablo Fernandez-Piñar
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Dettmann A, Illgen J, März S, Schürg T, Fleissner A, Seiler S. The NDR kinase scaffold HYM1/MO25 is essential for MAK2 map kinase signaling in Neurospora crassa. PLoS Genet 2012; 8:e1002950. [PMID: 23028357 PMCID: PMC3447951 DOI: 10.1371/journal.pgen.1002950] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/30/2012] [Indexed: 12/22/2022] Open
Abstract
Cell communication is essential for eukaryotic development, but our knowledge of molecules and mechanisms required for intercellular communication is fragmentary. In particular, the connection between signal sensing and regulation of cell polarity is poorly understood. In the filamentous ascomycete Neurospora crassa, germinating spores mutually attract each other and subsequently fuse. During these tropic interactions, the two communicating cells rapidly alternate between two different physiological states, probably associated with signal delivery and response. The MAK2 MAP kinase cascade mediates cell–cell signaling. Here, we show that the conserved scaffolding protein HYM1/MO25 controls the cell shape-regulating NDR kinase module as well as the signal-receiving MAP kinase cascade. HYM1 functions as an integral part of the COT1 NDR kinase complex to regulate the interaction with its upstream kinase POD6 and thereby COT1 activity. In addition, HYM1 interacts with NRC1, MEK2, and MAK2, the three kinases of the MAK2 MAP kinase cascade, and co-localizes with MAK2 at the apex of growing cells. During cell fusion, the three kinases of the MAP kinase module as well as HYM1 are recruited to the point of cell–cell contact. hym-1 mutants phenocopy all defects observed for MAK2 pathway mutants by abolishing MAK2 activity. An NRC1-MEK2 fusion protein reconstitutes MAK2 signaling in hym-1, while constitutive activation of NRC1 and MEK2 does not. These data identify HYM1 as a novel regulator of the NRC1-MEK2-MAK2 pathway, which may coordinate NDR and MAP kinase signaling during cell polarity and intercellular communication. Intercellular communication and cellular morphogenesis are essential for eukaryotic development. Our knowledge of molecules and mechanisms associated with these processes is, however, fragmentary. In particular, the molecular connection between signal sensing and regulation of cell polarity is poorly understood. Fungal hyphae share with neurons and pollen tubes the distinction of being amongst the most highly polarized cells in biology. The robust genetic tractability of filamentous fungi provides an unparalleled opportunity to determine common principles that underlie polarized growth and its regulation through cell communication. In Neurospora crassa, germinating spores mutually attract each other, establish physical contact through polarized tropic growth, and fuse. During this process, the cells rapidly alternate between two different physiological states, probably associated with signal delivery and response. Here, we show that the conserved scaffolding protein HYM1/MO25 interacts with the polarity and cell shape-regulating NDR kinase complex as well as a MAP kinase module, which is essential for cell communication during the tropic interaction. We propose that this dual use of a common regulator in both molecular complexes may represent an intriguing mechanism of linking the perception of external cues with the polarization machinery to coordinate communication and tropic growth of interacting cells.
Collapse
Affiliation(s)
- Anne Dettmann
- Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Julia Illgen
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sabine März
- Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Timo Schürg
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Andre Fleissner
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Seiler
- Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
- * E-mail:
| |
Collapse
|
31
|
The filamentous growth MAPK Pathway Responds to Glucose Starvation Through the Mig1/2 transcriptional repressors in Saccharomyces cerevisiae. Genetics 2012; 192:869-87. [PMID: 22904036 DOI: 10.1534/genetics.112.142661] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the budding yeast S. cerevisiae, nutrient limitation induces a MAPK pathway that regulates filamentous growth and biofilm/mat formation. How nutrient levels feed into the regulation of the filamentous growth pathway is not entirely clear. We characterized a newly identified MAPK regulatory protein of the filamentous growth pathway, Opy2. A two-hybrid screen with the cytosolic domain of Opy2 uncovered new interacting partners including a transcriptional repressor that functions in the AMPK pathway, Mig1, and its close functional homolog, Mig2. Mig1 and Mig2 coregulated the filamentous growth pathway in response to glucose limitation, as did the AMP kinase Snf1. In addition to associating with Opy2, Mig1 and Mig2 interacted with other regulators of the filamentous growth pathway including the cytosolic domain of the signaling mucin Msb2, the MAP kinase kinase Ste7, and the MAP kinase Kss1. As for Opy2, Mig1 overproduction dampened the pheromone response pathway, which implicates Mig1 and Opy2 as potential regulators of pathway specificity. Taken together, our findings provide the first regulatory link in yeast between components of the AMPK pathway and a MAPK pathway that controls cellular differentiation.
Collapse
|
32
|
Cappell SD, Dohlman HG. Selective regulation of MAP kinase signaling by an endomembrane phosphatidylinositol 4-kinase. J Biol Chem 2011; 286:14852-60. [PMID: 21388955 DOI: 10.1074/jbc.m110.195073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Multiple MAP kinase pathways share components yet initiate distinct biological processes. Signaling fidelity can be maintained by scaffold proteins and restriction of signaling complexes to discreet subcellular locations. For example, the yeast MAP kinase scaffold Ste5 binds to phospholipids produced at the plasma membrane and promotes selective MAP kinase activation. Here we show that Pik1, a phosphatidylinositol 4-kinase that localizes primarily to the Golgi, also regulates MAP kinase specificity but does so independently of Ste5. Pik1 is required for full activation of the MAP kinases Fus3 and Hog1 and represses activation of Kss1. Further, we show by genetic epistasis analysis that Pik1 likely regulates Ste11 and Ste50, components shared by all three MAP kinase pathways, through their interaction with the scaffold protein Opy2. These findings reveal a new regulator of signaling specificity functioning at endomembranes rather than at the plasma membrane.
Collapse
Affiliation(s)
- Steven D Cappell
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
33
|
Utilization of the mating scaffold protein in the evolution of a new signal transduction pathway for biofilm development. mBio 2011; 2:e00237-10. [PMID: 21221248 PMCID: PMC3018282 DOI: 10.1128/mbio.00237-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 11/30/2010] [Indexed: 11/20/2022] Open
Abstract
Among the hemiascomycetes, only Candida albicans must switch from the white phenotype to the opaque phenotype to mate. In the recent evolution of this transition, mating-incompetent white cells acquired a unique response to mating pheromone, resulting in the formation of a white cell biofilm that facilitates mating. All of the upstream components of the white cell response pathway so far analyzed have been shown to be derived from the ancestral pathway involved in mating, except for the mitogen-activated protein (MAP) kinase scaffold protein, which had not been identified. Here, through binding and mutational studies, it is demonstrated that in both the opaque and the white cell pheromone responses, Cst5 is the scaffold protein, supporting the evolutionary scenario proposed. Although Cst5 plays the same role in tethering the MAP kinases as Ste5 does in Saccharomyces cerevisiae, Cst5 is approximately one-third the size and has only one rather than four phosphorylation sites involved in activation and cytoplasmic relocalization. Candida albicans must switch from white to opaque to mate. Opaque cells then release pheromone, which not only induces cells to mate but also in a unique fashion induces mating-incompetent white cells to form biofilms that facilitate opaque cell mating. All of the tested upstream components of the newly evolved white cell pheromone response pathway, from the receptor to the mitogen-activated protein (MAP) kinase cascade, are the same as those of the conserved opaque cell response pathway. One key element, however, remained unidentified, the scaffold protein for the kinase cascade. Here, we demonstrate that Cst5, a homolog of the Saccharomyces cerevisiae scaffold protein Ste5, functions as the scaffold protein in both the opaque and the white cell pheromone responses. Pheromone induces Cst5 phosphorylation, which is involved in activation and cytoplasmic localization of Cst5. However, Cst5 contains only one phosphorylation site, not four as in the S. cerevisiae ortholog Ste5. These results support the hypothesis that the entire upper portion of the newly evolved white cell pheromone response pathway is derived from the conserved pheromone response pathway in the mating process.
Collapse
|
34
|
Sakaguchi A, Tsuji G, Kubo Y. A yeast STE11 homologue CoMEKK1 is essential for pathogenesis-related morphogenesis in Colletotrichum orbiculare. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1563-1572. [PMID: 21039273 DOI: 10.1094/mpmi-03-10-0051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Several signal transduction pathways, including mitogen-activated protein kinase (MAPK) pathways, are involved in appressorium development in Colletotrichum orbiculare, the causal agent of cucumber anthracnose disease. In this study, CoMEKK1, a yeast MAPK kinases (MAPKK) kinase STE11 homolog, was identified as a disrupted gene in an Agrobacterium tumefaciens-mediated transformation mutant. The phenotype of comekk1 disruptant was similar to that of cmk1, a Saccharomyces cerevisiae Fus3/Kss1 MAPK homolog mutant. Moreover, comekk1 and cmk1 mutants were sensitive to high osmotic and salinity stresses, indicating that Comekk1p/Cmk1p signal transduction is involved in stress tolerance. The transformants of the wild type and the comekk1 mutant expressing a constitutively active form of the CoMEKK1 showed slower hyphal growth and abnormal appressorium formation, whereas those of the cmk1 disruptant did not. A Cmk1p-green fluorescent protein (GFP) intracellular localization experiment indicated that nuclear localization of the Cmk1p-GFP fusion protein induced by salt stress was diminished in comekk1 mutants. These results indicate that Comekk1p functions upstream of Cmk1p.
Collapse
Affiliation(s)
- Ayumu Sakaguchi
- Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | | | | |
Collapse
|
35
|
The putative lipid transporter, Arv1, is required for activating pheromone-induced MAP kinase signaling in Saccharomyces cerevisiae. Genetics 2010; 187:455-65. [PMID: 21098723 DOI: 10.1534/genetics.110.120725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae haploid cells respond to extrinsic mating signals by forming polarized projections (shmoos), which are necessary for conjugation. We have examined the role of the putative lipid transporter, Arv1, in yeast mating, particularly the conserved Arv1 homology domain (AHD) within Arv1 and its role in this process. Previously it was shown that arv1 cells harbor defects in sphingolipid and glycosylphosphatidylinositol (GPI) biosyntheses and may harbor sterol trafficking defects. Here we demonstrate that arv1 cells are mating defective and cannot form shmoos. They lack the ability to initiate pheromone-induced G1 cell cycle arrest, due to failure to polarize PI(4,5)P(2) and the Ste5 scaffold, which results in weakened MAP kinase signaling activity. A mutant Ste5, Ste5(Q59L), which binds more tightly to the plasma membrane, suppresses the MAP kinase signaling defects of arv1 cells. Filipin staining shows arv1 cells contain altered levels of various sterol microdomains that persist throughout the mating process. Data suggest that the sterol trafficking defects of arv1 affect PI(4,5)P(2) polarization, which causes a mislocalization of Ste5, resulting in defective MAP kinase signaling and the inability to mate. Importantly, our studies show that the AHD of Arv1 is required for mating, pheromone-induced G1 cell cycle arrest, and for sterol trafficking.
Collapse
|
36
|
Histamine signalling in Schistosoma mansoni: Immunolocalisation and characterisation of a new histamine-responsive receptor (SmGPR-2). Int J Parasitol 2010; 40:1395-406. [DOI: 10.1016/j.ijpara.2010.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/01/2010] [Accepted: 04/05/2010] [Indexed: 11/24/2022]
|
37
|
Coordinate control of gene expression noise and interchromosomal interactions in a MAP kinase pathway. Nat Cell Biol 2010; 12:954-62. [PMID: 20852627 PMCID: PMC2948760 DOI: 10.1038/ncb2097] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 08/19/2010] [Indexed: 11/29/2022]
Abstract
In the Saccharomyces cerevisiae pheromone-response pathway, the transcription factor Ste12 is inhibited by two MAP kinase-responsive regulators, Dig1 and Dig2. These two related proteins bind to distinct regions of Ste12 but are redundant in their inhibition of Ste12-dependent gene expression. Here we describe three unexpected functions for Dig1 that are non-redundant with those of Dig2. First, the removal of Dig1 results in a specific increase in intrinsic and extrinsic noise in the transcriptional outputs of the mating pathway. Second, in dig1Δ cells, Ste12 relocalizes from the nucleoplasmic distribution seen in wild-type cells into discrete subnuclear foci. Third, genome-wide iChIP studies revealed that Ste12-dependent genes display increased interchromosomal interactions in dig1Δ cells. These findings suggest that the regulation of gene expression through long-range gene interactions, a widely-observed phenomenon, comes at the cost of increased noise. Consequently, cells may have evolved mechanisms to suppress noise by controlling these interactions.
Collapse
|
38
|
Cappell SD, Baker R, Skowyra D, Dohlman HG. Systematic analysis of essential genes reveals important regulators of G protein signaling. Mol Cell 2010; 38:746-57. [PMID: 20542006 DOI: 10.1016/j.molcel.2010.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/30/2010] [Accepted: 04/02/2010] [Indexed: 10/19/2022]
Abstract
The yeast pheromone pathway consists of a canonical heterotrimeric G protein and MAP kinase cascade. To identify additional signaling components, we systematically evaluated 870 essential genes using a library of repressible-promoter strains. Quantitative transcription-reporter and MAPK activity assays were used to identify strains that exhibit altered pheromone sensitivity. Of the 92 newly identified essential genes required for proper G protein signaling, those involved with protein degradation were most highly represented. Included in this group are members of the Skp, Cullin, F box (SCF) ubiquitin ligase complex. Further genetic and biochemical analysis reveals that SCF(Cdc4) acts together with the Cdc34 ubiquitin-conjugating enzyme at the level of the G protein; promotes degradation of the G protein alpha subunit, Gpa1, in vivo; and catalyzes Gpa1 ubiquitination in vitro. These insights to the G protein signaling network reveal the essential genome as an untapped resource for identifying new components and regulators of signal transduction pathways.
Collapse
Affiliation(s)
- Steven D Cappell
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
39
|
Dynamic localization of Fus3 mitogen-activated protein kinase is necessary to evoke appropriate responses and avoid cytotoxic effects. Mol Cell Biol 2010; 30:4293-307. [PMID: 20584989 DOI: 10.1128/mcb.00361-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular responses to many external stimuli are mediated by mitogen-activated protein kinases (MAPKs). We investigated whether dynamic intracellular movement contributes to the spatial and temporal characteristics of the responses elicited by a prototypic MAPK, Fus3, in the mating pheromone response pathway in budding yeast (Saccharomyces cerevisiae). Confining Fus3 in the nucleus, via fusion to a histone H2B, reduced MAPK activation and diminished all responses (pheromone-induced gene expression, cell cycle arrest, projection formation, and mating). Elimination of MAPK phosphatases restored more robust outputs for all responses, indicating that nuclear sequestration impedes full MAPK activation but does not abrogate its functional competence. Restricting Fus3 to the plasma membrane, via fusion to a lipid-modified CCaaX motif, led to MAPK hyperactivation yet severely impaired all response outputs. Fus3-CCaaX also caused aberrant cell morphology and a proliferation defect. Unlike similar phenotypes induced by pathway hyperactivation via upstream components, these deleterious effects were independent of the downstream transcription factor Ste12. Thus, appropriate cellular responses require free subcellular MAPK transit to disseminate MAPK activity optimally because preventing dynamic MAPK movement either markedly impaired signal-dependent activation and/or resulted in improper biological outputs.
Collapse
|
40
|
A protein kinase network regulates the function of aminophospholipid flippases. Proc Natl Acad Sci U S A 2009; 107:34-9. [PMID: 19966303 DOI: 10.1073/pnas.0912497106] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Limited exposure of aminophospholipids on the outer leaflet of the plasma membrane is a fundamental feature of eukaryotic cells and is maintained by the action of inward-directed P-type ATPases ("flippases"). Yeast S. cerevisiae has five flippases (Dnf1, Dnf2, Dnf3, Drs2, and Neo1), but their regulation is poorly understood. Two paralogous plasma membrane-associated protein kinases, Pkh1 and Pkh2 (orthologs of mammalian PDK1), are required for viability of S. cerevisiae cells because they activate several essential downstream protein kinases by phosphorylating a critical Thr in their activation loops. Two such targets are related protein kinases Ypk1 and Ypk2 (orthologs of mammalian SGK1), which have been implicated in multiple processes, including endocytosis and coupling of membrane expansion to cell wall remodeling, but the downstream effector(s) of these kinases have been elusive. Here we show that a physiologically relevant substrate of Ypk1 is another protein kinase, Fpk1, a known flippase activator. We show that Ypk1 phosphorylates and thereby down-regulates Fpk1, and further that a complex sphingolipid counteracts the down-regulation of Fpk1 by Ypk1. Our findings delineate a unique regulatory mechanism for imposing a balance between sphingolipid content and aminophospholipid asymmetry in eukaryotic plasma membranes.
Collapse
|
41
|
Dixon SJ, Costanzo M, Baryshnikova A, Andrews B, Boone C. Systematic Mapping of Genetic Interaction Networks. Annu Rev Genet 2009; 43:601-25. [DOI: 10.1146/annurev.genet.39.073003.114751] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Scott J. Dixon
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 1A7, Canada;
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Michael Costanzo
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 1A7, Canada;
| | - Anastasia Baryshnikova
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 1A7, Canada;
| | - Brenda Andrews
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 1A7, Canada;
| | - Charles Boone
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 1A7, Canada;
| |
Collapse
|
42
|
Tanaka H, Yi TM. Reverse engineering a signaling network using alternative inputs. PLoS One 2009; 4:e7622. [PMID: 19898612 PMCID: PMC2764141 DOI: 10.1371/journal.pone.0007622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/06/2009] [Indexed: 11/19/2022] Open
Abstract
One of the goals of systems biology is to reverse engineer in a comprehensive fashion the arrow diagrams of signal transduction systems. An important tool for ordering pathway components is genetic epistasis analysis, and here we present a strategy termed Alternative Inputs (AIs) to perform systematic epistasis analysis. An alternative input is defined as any genetic manipulation that can activate the signaling pathway instead of the natural input. We introduced the concept of an "AIs-Deletions matrix" that summarizes the outputs of all combinations of alternative inputs and deletions. We developed the theory and algorithms to construct a pairwise relationship graph from the AIs-Deletions matrix capturing both functional ordering (upstream, downstream) and logical relationships (AND, OR), and then interpreting these relationships into a standard arrow diagram. As a proof-of-principle, we applied this methodology to a subset of genes involved in yeast mating signaling. This experimental pilot study highlights the robustness of the approach and important technical challenges. In summary, this research formalizes and extends classical epistasis analysis from linear pathways to more complex networks, facilitating computational analysis and reconstruction of signaling arrow diagrams.
Collapse
Affiliation(s)
- Hiromasa Tanaka
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - Tau-Mu Yi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Dse1 may control cross talk between the pheromone and filamentation pathways in yeast. Curr Genet 2009; 55:611-21. [PMID: 19820940 DOI: 10.1007/s00294-009-0274-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 09/18/2009] [Accepted: 09/20/2009] [Indexed: 10/20/2022]
Abstract
The filamentous/invasive growth pathway is activated by nutrient limitation in the haploid form of the yeast Saccharomyces cerevisiae, whereas exposure to mating-pheromone causes cells to differentiate into gametes. Although these two pathways respond to very different stimuli and generate very different responses, they utilize many of the same signaling components. This implies the need for robust mechanisms to maintain signal fidelity. Dse1 was identified in an allele-specific suppressor screen for proteins that interact with the pheromone-responsive Gbetagamma, and found to bind both to a Gbetagamma-affinity column, and to the shared MEKK, Ste11. Although overexpression of Dse1 stimulated invasive growth and transcription of both filamentation and mating-specific transcriptional reporters, deletion of DSE1 had no effect on these outputs. In contrast, pheromone hyper-induced transcription of the filamentation reporter in cells lacking Dse1 and in cells expressing a mutant form of Gbeta that exhibits diminished interaction with Dse1. Thus, the interaction of Dse1 with both Gbeta and Ste11 may be designed to control cross talk between the pheromone and filamentation pathways.
Collapse
|
44
|
The tRNA modification complex elongator regulates the Cdc42-dependent mitogen-activated protein kinase pathway that controls filamentous growth in yeast. EUKARYOTIC CELL 2009; 8:1362-72. [PMID: 19633267 DOI: 10.1128/ec.00015-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signal transduction pathways control multiple aspects of cellular behavior, including global changes to the cell cycle, cell polarity, and gene expression, which can result in the formation of a new cell type. In the budding yeast Saccharomyces cerevisiae, the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth induces a dimorphic foraging response under nutrient-limiting conditions. How nutritional cues feed into MAPK activation remains an open question. Here we report a functional connection between the elongator tRNA modification complex (ELP genes) and activity of the filamentous growth pathway. Elongator was required for filamentous growth pathway signaling, and elp mutants were defective for invasive growth, cell polarization, and MAPK-dependent mat formation. Genetic suppression analysis showed that elongator functions at the level of Msb2p, the signaling mucin that operates at the head of the pathway, which led to the finding that elongator regulates the starvation-dependent expression of the MSB2 gene. The Elp complex was not required for activation of related pathways (pheromone response or high osmolarity glycerol response) that share components with the filamentous growth pathway. Because protein translation provides a rough metric of cellular nutritional status, elongator may convey nutritional information to the filamentous growth pathway at the level of MSB2 expression.
Collapse
|
45
|
Taman A, Ribeiro P. Investigation of a dopamine receptor in Schistosoma mansoni: functional studies and immunolocalization. Mol Biochem Parasitol 2009; 168:24-33. [PMID: 19545592 DOI: 10.1016/j.molbiopara.2009.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/05/2009] [Accepted: 06/11/2009] [Indexed: 11/15/2022]
Abstract
A dopamine receptor (SmD2) was cloned from adult Schistosoma mansoni. The receptor has the classical heptahelical topology of class A (rhodopsin-like) G protein-coupled receptors (GPCR) and shares sequence homology with D2-like receptors from other species. The full length SmD2 cDNA was expressed in the yeast Saccharomyces cerevisiae and mammalian HEK293 cells. Functional assays in both expression systems revealed that SmD2 was responsive to dopamine in a dose-dependent manner, whereas other structurally related amines had no effect. Activation of SmD2 in mammalian cells caused an elevation in intracellular cAMP but not calcium, suggesting that the receptor coupled to Gs and the stimulation of adenylate cyclase. Pharmacological studies showed that the S. mansoni dopamine receptor was inhibited by apomorphine, a classical dopamine agonist, as well as known dopaminergic antagonists, including chlorpromazine, spiperone and haloperidol. SmD2 immunoreactivity was detected in membrane protein fractions of S. mansoni cercaria, in vitro transformed schistosomula and adult parasites, using a specific peptide antibody. When tested by confocal immunofluorescence, SmD2 was detected in the subtegumental somatic musculature and acetabulum of all larval stages tested. In the adults, SmD2 was enriched in the somatic muscles and, to a lesser extent, the muscular lining of the caecum. The results suggest that SmD2 is an important component of the neuromuscular system in schistosomes.
Collapse
Affiliation(s)
- Amira Taman
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, Canada
| | | |
Collapse
|
46
|
Pitoniak A, Birkaya B, Dionne HM, Vadaie N, Cullen PJ. The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response. Mol Biol Cell 2009; 20:3101-14. [PMID: 19439450 DOI: 10.1091/mbc.e08-07-0760] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A central question in the area of signal transduction is why pathways utilize common components. In the budding yeast Saccharomyces cerevisiae, the HOG and filamentous growth (FG) MAPK pathways require overlapping components but are thought to be induced by different stimuli and specify distinct outputs. To better understand the regulation of the FG pathway, we examined FG in one of yeast's native environments, the grape-producing plant Vitis vinifera. In this setting, different aspects of FG were induced in a temporal manner coupled to the nutrient cycle, which uncovered a multimodal feature of FG pathway signaling. FG pathway activity was modulated by the HOG pathway, which led to the finding that the signaling mucins Msb2p and Hkr1p, which operate at the head of the HOG pathway, differentially regulate the FG pathway. The two mucins exhibited different expression and secretion patterns, and their overproduction induced nonoverlapping sets of target genes. Moreover, Msb2p had a function in cell polarization through the adaptor protein Sho1p that Hkr1p did not. Differential MAPK activation by signaling mucins brings to light a new point of discrimination between MAPK pathways.
Collapse
Affiliation(s)
- Andrew Pitoniak
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA
| | | | | | | | | |
Collapse
|
47
|
Bhunia A, Domadia PN, Mohanram H, Bhattacharjya S. NMR structural studies of the Ste11 SAM domain in the dodecyl phosphocholine micelle. Proteins 2009; 74:328-43. [PMID: 18618697 DOI: 10.1002/prot.22166] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The sterile alpha-motif (SAM), a relatively small ( approximately 70 amino acids) interaction domain, is found in a variety of proteins involved in cell signaling, transcription regulation, and scaffolding. The Ste11 protein kinase from the mitogen activated protein kinase (MAPK) signaling cascades of the budding yeast is regulated by a SAM domain located at the N-terminus of full-length protein. In solution, the Ste11 SAM domain exists as a well-folded dimeric structure that is involved in interaction with the cognate SAM domain from an adaptor protein Ste50. In this work, we show that the Ste11 SAM domain has an intrinsic affinity towards the lipid membranes. The solution conformation of the Ste11 SAM determined in perdeuterated DPC micelle, using NMR spectroscopy, is defined by five helices of different lengths connected by a number of loops. In the micelle bound state, the non-polar and aromatic residues of the Ste11 SAM lack a native-like packing and are presumably engaged in interactions with the micelle. Using two different paramagnetic doxyl-lipids; we have mapped out localization of Ste11 SAM residues at the micelle surface. Most of the residues appear to localize at the interfacial region of the micelle. However, a number of non-polar residues from the central region of the domain are found to be located inside the core of the micelle including residues from the helix 4 and a loop between helix 2 and helix 3. Isothermal titration calorimetry studies demonstrate that a facile insertion of the Ste11 SAM into the DPC micelle is primarily driven by a large change in enthalpy, -50 kcal/mol with an apparent equilibrium association constant (Ka) of 7.86 x 10(6) M(-1). Interestingly, an interfacial mutant L60R of the Ste11 SAM lacking the dimeric structure does not show detectable interactions with the lipid micelle. The micelle-bound structure of the Ste11 SAM domain described in this work may have potential implications in the regulation of MAPK signaling whereby positioning of the Ste11 protein in close proximity to the membrane may facilitate efficient phosphorylation of the Ste11 kinase by the membrane attached upstream Ste20/pak kinase.
Collapse
Affiliation(s)
- Anirban Bhunia
- Biomolecular NMR and Drug Discovery Laboratory, Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | |
Collapse
|
48
|
Rutherford JC, Chua G, Hughes T, Cardenas ME, Heitman J. A Mep2-dependent transcriptional profile links permease function to gene expression during pseudohyphal growth in Saccharomyces cerevisiae. Mol Biol Cell 2008; 19:3028-39. [PMID: 18434596 DOI: 10.1091/mbc.e08-01-0033] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ammonium permease Mep2 is required for the induction of pseudohyphal growth, a process in Saccharomyces cerevisiae that occurs in response to nutrient limitation. Mep2 has both a transport and a regulatory function, supporting models in which Mep2 acts as a sensor of ammonium availability. Potentially similar ammonium permease-dependent regulatory cascades operate in other fungi, and they may also function in animals via the homologous Rh proteins; however, little is known about the molecular mechanisms that mediate ammonium sensing. We show that Mep2 is localized to the cell surface during pseudohyphal growth, and it is required for both filamentous and invasive growth. Analysis of site-directed Mep2 mutants in residues lining the ammonia-conducting channel reveal separation of function alleles (transport and signaling defective; transport-proficient/signaling defective), indicating transport is necessary but not sufficient to sense ammonia. Furthermore, Mep2 overexpression enhances differentiation under normally repressive conditions and induces a transcriptional profile that is consistent with activation of the mitogen-activated protein (MAP) kinase pathway. This finding is supported by epistasis analysis establishing that the known role of the MAP kinase pathway in pseudohyphal growth is linked to Mep2 function. Together, these data strengthen the model that Mep2-like proteins are nutrient sensing transceptors that govern cellular differentiation.
Collapse
Affiliation(s)
- Julian C Rutherford
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
49
|
Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 2008; 1:77-83. [PMID: 18005683 DOI: 10.1016/j.chom.2007.02.002] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/22/2007] [Accepted: 02/08/2007] [Indexed: 11/30/2022]
Abstract
Many bacteria pathogenic for plants or animals, including Shigella spp., which is responsible for shigellosis in humans, use a type III secretion apparatus to inject effector proteins into host cells. Effectors alter cell signaling and host responses induced upon infection; however, their precise biochemical activities have been elucidated in very few cases. Utilizing Saccharomyces cerevisiae as a surrogate host, we show that the Shigella effector IpaH9.8 interrupts pheromone response signaling by promoting the proteasome-dependent destruction of the MAPKK Ste7. In vitro, IpaH9.8 displayed ubiquitin ligase activity toward ubiquitin and Ste7. Replacement of a Cys residue that is invariant among IpaH homologs of plant and animal pathogens abolished the ubiquitin ligase activity of IpaH9.8. We also present evidence that the IpaH homolog SspH1 from Salmonella enterica can ubiquitinate ubiquitin and PKN1, a previously identified SspH1 interaction partner. This study assigns a function for IpaH family members as E3 ubiquitin ligases.
Collapse
Affiliation(s)
- John R Rohde
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 rue du Dr. Roux, F-75724 Paris, Cédex 15, France
| | | | | | | | | |
Collapse
|
50
|
Yu L, Qi M, Sheff MA, Elion EA. Counteractive control of polarized morphogenesis during mating by mitogen-activated protein kinase Fus3 and G1 cyclin-dependent kinase. Mol Biol Cell 2008; 19:1739-52. [PMID: 18256288 PMCID: PMC2291402 DOI: 10.1091/mbc.e07-08-0757] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 01/18/2008] [Accepted: 01/29/2008] [Indexed: 01/10/2023] Open
Abstract
Cell polarization in response to external cues is critical to many eukaryotic cells. During pheromone-induced mating in Saccharomyces cerevisiae, the mitogen-activated protein kinase (MAPK) Fus3 induces polarization of the actin cytoskeleton toward a landmark generated by the pheromone receptor. Here, we analyze the role of Fus3 activation and cell cycle arrest in mating morphogenesis. The MAPK scaffold Ste5 is initially recruited to the plasma membrane in random patches that polarize before shmoo emergence. Polarized localization of Ste5 is important for shmooing. In fus3 mutants, Ste5 is recruited to significantly more of the plasma membrane, whereas recruitment of Bni1 formin, Cdc24 guanine exchange factor, and Ste20 p21-activated protein kinase are inhibited. In contrast, polarized recruitment still occurs in a far1 mutant that is also defective in G1 arrest. Remarkably, loss of Cln2 or Cdc28 cyclin-dependent kinase restores polarized localization of Bni1, Ste5, and Ste20 to a fus3 mutant. These and other findings suggest Fus3 induces polarized growth in G1 phase cells by down-regulating Ste5 recruitment and by inhibiting Cln/Cdc28 kinase, which prevents basal recruitment of Ste5, Cdc42-mediated asymmetry, and mating morphogenesis.
Collapse
Affiliation(s)
- Lu Yu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| | - Maosong Qi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| | - Mark A. Sheff
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| | - Elaine A. Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| |
Collapse
|