1
|
Conway TP, Simonicova L, Moye-Rowley WS. Overlapping coactivator function is required for transcriptional activation by the Candida glabrata Pdr1 transcription factor. Genetics 2024; 228:iyae115. [PMID: 39028831 PMCID: PMC11791784 DOI: 10.1093/genetics/iyae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024] Open
Abstract
Azole resistance in the pathogenic yeast Candida glabrata is a serious clinical complication and increasing in frequency. The majority of resistant organisms have been found to contain a substitution mutation in the Zn2Cys6 zinc cluster-containing transcription factor Pdr1. These mutations typically lead to this factor driving high, constitutive expression of target genes like the ATP-binding cassette transporter-encoding gene CDR1. Overexpression of Cdr1 is required for the observed elevated fluconazole resistance exhibited by strains containing one of these hyperactive PDR1 alleles. While the identity of hyperactive PDR1 alleles has been extensively documented, the mechanisms underlying how these gain-of-function (GOF) forms of Pdr1 lead to elevated target gene transcription are not well understood. We have used a tandem affinity purification-tagged form of Pdr1 to identify coactivator proteins that biochemically purify with the wild-type and 2 different GOF forms of Pdr1. Three coactivator proteins were found to associate with Pdr1: the SWI/SNF complex Snf2 chromatin remodeling protein and 2 different components of the SAGA complex, Spt7 and Ngg1. We found that deletion mutants lacking either SNF2 or SPT7 exhibited growth defects, even in the absence of fluconazole challenge. To overcome these issues, we employed a conditional degradation system to acutely deplete these coactivators and determined that loss of either coactivator complex, SWI/SNF or SAGA, caused defects in Pdr1-dependent transcription. A double degron strain that could be depleted for both SWI/SNF and SAGA exhibited a profound defect in PDR1 autoregulation, revealing that these complexes work together to ensure high-level Pdr1-dependent gene transcription.
Collapse
Affiliation(s)
- Thomas P Conway
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lucia Simonicova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Lin WH, Opoc FG, Liao CW, Roy K, Steinmetz L, Leu JY. Histone deacetylase Hos2 regulates protein expression noise by potentially modulating the protein translation machinery. Nucleic Acids Res 2024; 52:7556-7571. [PMID: 38783136 PMCID: PMC11260488 DOI: 10.1093/nar/gkae432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Non-genetic variations derived from expression noise at transcript or protein levels can result in cell-to-cell heterogeneity within an isogenic population. Although cells have developed strategies to reduce noise in some cellular functions, this heterogeneity can also facilitate varying levels of regulation and provide evolutionary benefits in specific environments. Despite several general characteristics of cellular noise having been revealed, the detailed molecular pathways underlying noise regulation remain elusive. Here, we established a dual-fluorescent reporter system in Saccharomyces cerevisiae and performed experimental evolution to search for mutations that increase expression noise. By analyzing evolved cells using bulk segregant analysis coupled with whole-genome sequencing, we identified the histone deacetylase Hos2 as a negative noise regulator. A hos2 mutant down-regulated multiple ribosomal protein genes and exhibited partially compromised protein translation, indicating that Hos2 may regulate protein expression noise by modulating the translation machinery. Treating cells with translation inhibitors or introducing mutations into several Hos2-regulated ribosomal protein genes-RPS9A, RPS28B and RPL42A-enhanced protein expression noise. Our study provides an effective strategy for identifying noise regulators and also sheds light on how cells regulate non-genetic variation through protein translation.
Collapse
Affiliation(s)
- Wei-Han Lin
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Florica J G Opoc
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Wei Liao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Kevin R Roy
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany
| | - Jun-Yi Leu
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
3
|
Conway TP, Simonicova L, Moye-Rowley WS. Overlapping coactivator function is required for transcriptional activation by the Candida glabrata Pdr1 transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595833. [PMID: 38853834 PMCID: PMC11160619 DOI: 10.1101/2024.05.24.595833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Azole resistance in the pathogenic yeast Candida glabrata is a serious clinical complication and increasing in frequency. The majority of resistant organisms have been found to contain a substitution mutation in the Zn2Cys6 zinc cluster-containing transcription factor Pdr1. These mutations typically lead to this factor driving high, constitutive expression of target genes like the ATP-binding cassette transporter-encoding gene CDR1 . Overexpression of Cdr1 is required for the observed elevated fluconazole resistance exhibited by strains containing one of these hyperactive PDR1 alleles. While the identity of hyperactive PDR1 alleles has been extensively documented, the mechanisms underlying how these gain-of-function (GOF) forms of Pdr1 lead to elevated target gene transcription are not well understood. We have used a tandem affinity purification (TAP)-tagged form of Pdr1 to identify coactivator proteins that biochemically purify with the wild-type and two different GOF forms of Pdr1. Three coactivator proteins were found to associate with Pdr1: the SWI/SNF complex Snf2 chromatin remodeling protein and two different components of the SAGA complex, Spt7 and Ngg1. We found that deletion mutants lacking either SNF2 or SPT7 exhibited growth defects, even in the absence of fluconazole challenge. To overcome these issues, we employed a conditional degradation system to acutely deplete these coactivators and determined that loss of either coactivator complex, SWI/SNF or SAGA, caused defects in Pdr1-dependent transcription. A double degron strain that could be depleted for both SWI/SNF and SAGA exhibited a profound defect in PDR1 autoregulation, revealing that these complexes work together to ensure high level Pdr1-dependent gene transcription.
Collapse
|
4
|
Karl LA, Galanti L, Bantele SC, Metzner F, Šafarić B, Rajappa L, Foster B, Pires VB, Bansal P, Chacin E, Basquin J, Duderstadt KE, Kurat CF, Bartke T, Hopfner KP, Pfander B. A SAM-key domain required for enzymatic activity of the Fun30 nucleosome remodeler. Life Sci Alliance 2023; 6:e202201790. [PMID: 37468166 PMCID: PMC10355287 DOI: 10.26508/lsa.202201790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
Fun30 is the prototype of the Fun30-SMARCAD1-ETL subfamily of nucleosome remodelers involved in DNA repair and gene silencing. These proteins appear to act as single-subunit nucleosome remodelers, but their molecular mechanisms are, at this point, poorly understood. Using multiple sequence alignment and structure prediction, we identify an evolutionarily conserved domain that is modeled to contain a SAM-like fold with one long, protruding helix, which we term SAM-key. Deletion of the SAM-key within budding yeast Fun30 leads to a defect in DNA repair and gene silencing similar to that of the fun30Δ mutant. In vitro, Fun30 protein lacking the SAM-key is able to bind nucleosomes but is deficient in DNA-stimulated ATPase activity and nucleosome sliding and eviction. A structural model based on AlphaFold2 prediction and verified by crosslinking-MS indicates an interaction of the long SAM-key helix with protrusion I, a subdomain located between the two ATPase lobes that is critical for control of enzymatic activity. Mutation of the interaction interface phenocopies the domain deletion with a lack of DNA-stimulated ATPase activation and a nucleosome-remodeling defect, thereby confirming a role of the SAM-key helix in regulating ATPase activity. Our data thereby demonstrate a central role of the SAM-key domain in mediating the activation of Fun30 catalytic activity, thus highlighting the importance of allosteric activation for this class of enzymes.
Collapse
Affiliation(s)
- Leonhard A Karl
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lorenzo Galanti
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Genome Stability in Ageing and Disease, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Susanne Cs Bantele
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Felix Metzner
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Barbara Šafarić
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lional Rajappa
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Benjamin Foster
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
| | - Vanessa Borges Pires
- Genome Maintenance Mechanisms in Health and Disease, Institute of Genome Stability in Ageing and Disease, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Priyanka Bansal
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Erika Chacin
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Jerôme Basquin
- Crystallization Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Karl E Duderstadt
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
- Physik Department, Technische Universität München, Munich, Germany
| | - Christoph F Kurat
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Till Bartke
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
| | - Karl-Peter Hopfner
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Boris Pfander
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Genome Stability in Ageing and Disease, CECAD Research Center, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Conway TP, Moye-Rowley WS. Conditional Protein Depletion in the Analysis of Antifungal Drug Resistance in Candida glabrata. Methods Mol Biol 2023; 2658:191-200. [PMID: 37024703 DOI: 10.1007/978-1-0716-3155-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
This chapter illustrates a method to generate Candida glabrata conditional depletion mutants for SNF2, an ATPase subunit of the SWI/SNF chromatin remodeling complex with potential roles in the response to azole drugs. The strategy employed utilizes a plant-specific proteolysis pathway which allows for the rapid degradation of a target protein in the presence of the phytohormone, auxin. The steps taken to generate strains expressing the auxin-inducible plant F-box protein, Tir1, and in which the auxin-binding target, IAA17, is C-terminally fused to Snf2 are described. This acute depletion strategy is suitable for studying the effects of the loss of growth-critical proteins. The rapid depletion afforded by the auxin-induced degradation avoids the potential complications of a null allele causing a severe growth defect and allows a more rapid assessment of the consequences of reduced levels of a protein of interest.
Collapse
Affiliation(s)
- Thomas P Conway
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
6
|
Jiménez C, Antonelli R, Nadal-Ribelles M, Devis-Jauregui L, Latorre P, Solé C, Masanas M, Molero-Valenzuela A, Soriano A, Sánchez de Toledo J, Llobet-Navas D, Roma J, Posas F, de Nadal E, Gallego S, Moreno L, Segura MF. Structural disruption of BAF chromatin remodeller impairs neuroblastoma metastasis by reverting an invasiveness epigenomic program. Mol Cancer 2022; 21:175. [PMID: 36057593 PMCID: PMC9440539 DOI: 10.1186/s12943-022-01643-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/24/2022] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Epigenetic programming during development is essential for determining cell lineages, and alterations in this programming contribute to the initiation of embryonal tumour development. In neuroblastoma, neural crest progenitors block their course of natural differentiation into sympathoadrenergic cells, leading to the development of aggressive and metastatic paediatric cancer. Research of the epigenetic regulators responsible for oncogenic epigenomic networks is crucial for developing new epigenetic-based therapies against these tumours. Mammalian switch/sucrose non-fermenting (mSWI/SNF) ATP-dependent chromatin remodelling complexes act genome-wide translating epigenetic signals into open chromatin states. The present study aimed to understand the contribution of mSWI/SNF to the oncogenic epigenomes of neuroblastoma and its potential as a therapeutic target. METHODS Functional characterisation of the mSWI/SNF complexes was performed in neuroblastoma cells using proteomic approaches, loss-of-function experiments, transcriptome and chromatin accessibility analyses, and in vitro and in vivo assays. RESULTS Neuroblastoma cells contain three main mSWI/SNF subtypes, but only BRG1-associated factor (BAF) complex disruption through silencing of its key structural subunits, ARID1A and ARID1B, impairs cell proliferation by promoting cell cycle blockade. Genome-wide chromatin remodelling and transcriptomic analyses revealed that BAF disruption results in the epigenetic repression of an extensive invasiveness-related expression program involving integrins, cadherins, and key mesenchymal regulators, thereby reducing adhesion to the extracellular matrix and the subsequent invasion in vitro and drastically inhibiting the initiation and growth of neuroblastoma metastasis in vivo. CONCLUSIONS We report a novel ATPase-independent role for the BAF complex in maintaining an epigenomic program that allows neuroblastoma invasiveness and metastasis, urging for the development of new BAF pharmacological structural disruptors for therapeutic exploitation in metastatic neuroblastoma.
Collapse
Affiliation(s)
- Carlos Jiménez
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Roberta Antonelli
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Mariona Nadal-Ribelles
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Devis-Jauregui
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain
| | - Pablo Latorre
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carme Solé
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marc Masanas
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Adrià Molero-Valenzuela
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Aroa Soriano
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Josep Sánchez de Toledo
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Catalan Institute of Oncology, L'Hospitalet de Llobregat, Spain
| | - David Llobet-Navas
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain.,Low Prevalence Tumors. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Roma
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Francesc Posas
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eulàlia de Nadal
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Soledad Gallego
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Paediatric Oncology and Haematology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lucas Moreno
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Paediatric Oncology and Haematology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Miguel F Segura
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| |
Collapse
|
7
|
Dong C, Zhang R, Xu L, Liu B, Chu X. Assembly and interaction of core subunits of BAF complexes and crystal study of the SMARCC1/SMARCE1 binary complex. Biochem Biophys Res Commun 2022; 599:9-16. [DOI: 10.1016/j.bbrc.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 01/20/2023]
|
8
|
Balachandra VK, Ghosh SK. Emerging roles of SWI/SNF remodelers in fungal pathogens. Curr Genet 2022; 68:195-206. [PMID: 35001152 DOI: 10.1007/s00294-021-01219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
Abstract
Fungal pathogens constantly sense and respond to the environment they inhabit, and this interaction is vital for their survival inside hosts and exhibiting pathogenic traits. Since such responses often entail specific patterns of gene expression, regulators of chromatin structure contribute to the fitness and virulence of the pathogens by modulating DNA accessibility to the transcriptional machinery. Recent studies in several human and plant fungal pathogens have uncovered the SWI/SNF group of chromatin remodelers as an important determinant of pathogenic traits and provided insights into their mechanism of function. Here, we review these studies and highlight the differential functions of these remodeling complexes and their subunits in regulating fungal fitness and pathogenicity. As an extension of our previous study, we also show that loss of specific RSC subunits can predispose the human fungal pathogen Candida albicans cells to filamentous growth in a context-dependent manner. Finally, we consider the potential of targeting the fungal SWI/SNF remodeling complexes for antifungal interventions.
Collapse
Affiliation(s)
- Vinutha K Balachandra
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
9
|
In-on A, Thananusak R, Ruengjitchatchawalya M, Vongsangnak W, Laomettachit T. Construction of Light-Responsive Gene Regulatory Network for Growth, Development and Secondary Metabolite Production in Cordyceps militaris. BIOLOGY 2022; 11:biology11010071. [PMID: 35053069 PMCID: PMC8773263 DOI: 10.3390/biology11010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 01/17/2023]
Abstract
Cordyceps militaris is an edible fungus that produces many beneficial compounds, including cordycepin and carotenoid. In many fungi, growth, development and secondary metabolite production are controlled by crosstalk between light-signaling pathways and other regulatory cascades. However, little is known about the gene regulation upon light exposure in C. militaris. This study aims to construct a gene regulatory network (GRN) that responds to light in C. militaris. First, a genome-scale GRN was built based on transcription factor (TF)-target gene interactions predicted from the Regulatory Sequence Analysis Tools (RSAT). Then, a light-responsive GRN was extracted by integrating the transcriptomic data onto the genome-scale GRN. The light-responsive network contains 2689 genes and 6837 interactions. From the network, five TFs, Snf21 (CCM_04586), an AT-hook DNA-binding motif TF (CCM_08536), a homeobox TF (CCM_07504), a forkhead box protein L2 (CCM_02646) and a heat shock factor Hsf1 (CCM_05142), were identified as key regulators that co-regulate a large group of growth and developmental genes. The identified regulatory network and expression profiles from our analysis suggested how light may induce the growth and development of C. militaris into a sexual cycle. The light-mediated regulation also couples fungal development with cordycepin and carotenoid production. This study leads to an enhanced understanding of the light-responsive regulation of growth, development and secondary metabolite production in the fungi.
Collapse
Affiliation(s)
- Ammarin In-on
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand; (A.I.-o.); (M.R.)
- School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Roypim Thananusak
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Marasri Ruengjitchatchawalya
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand; (A.I.-o.); (M.R.)
- Biotechnology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Correspondence: (W.V.); (T.L.)
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand; (A.I.-o.); (M.R.)
- Theoretical and Computational Physics (TCP) Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Correspondence: (W.V.); (T.L.)
| |
Collapse
|
10
|
Pyziak K, Sroka-Porada A, Rzymski T, Dulak J, Łoboda A. Potential of enhancer of zeste homolog 2 inhibitors for the treatment of SWI/SNF mutant cancers and tumor microenvironment modulation. Drug Dev Res 2021; 82:730-753. [PMID: 33565092 DOI: 10.1002/ddr.21796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2), a catalytic component of polycomb repressive complex 2 (PRC2), is commonly overexpressed or mutated in many cancer types, both of hematological and solid nature. Till now, plenty of EZH2 small molecule inhibitors have been developed and some of them have already been tested in clinical trials. Most of these inhibitors, however, are effective only in limited cases in the context of EZH2 gain-of-function mutated tumors such as lymphomas. Other cancer types with aberrant EZH2 expression and function require alternative approaches for successful treatment. One possibility is to exploit synthetic lethal strategy, which is based on the phenomenon that concurrent loss of two genes is detrimental but the deletion of either of them leaves cell viable. In the context of EZH2/PRC2, the most promising synthetic lethal target seems to be SWItch/Sucrose Non-Fermentable chromatin remodeling complex (SWI/SNF), which is known to counteract PRC2 functions. SWI/SNF is heavily involved in carcinogenesis and its subunits have been found mutated in approximately 20% of tumors of different kinds. In the current review, we summarize the existing knowledge of synthetic lethal relationships between EZH2/PRC2 and components of the SWI/SNF complex and discuss in detail the potential application of existing EZH2 inhibitors in cancer patients harboring mutations in SWI/SNF proteins. We also highlight recent discoveries of EZH2 involvement in tumor microenvironment regulation and consequences for future therapies. Although clinical studies are limited, the fundamental research might help to understand which patients are most likely to benefit from therapies using EZH2 inhibitors.
Collapse
Affiliation(s)
- Karolina Pyziak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Biology R&D, Ryvu Therapeutics S.A., Kraków, Poland
| | | | | | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
11
|
The mechanisms of action of chromatin remodelers and implications in development and disease. Biochem Pharmacol 2020; 180:114200. [DOI: 10.1016/j.bcp.2020.114200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
|
12
|
Abstract
The Trithorax group (TrxG) of proteins is a large family of epigenetic regulators that form multiprotein complexes to counteract repressive developmental gene expression programmes established by the Polycomb group of proteins and to promote and maintain an active state of gene expression. Recent studies are providing new insights into how two crucial families of the TrxG - the COMPASS family of histone H3 lysine 4 methyltransferases and the SWI/SNF family of chromatin remodelling complexes - regulate gene expression and developmental programmes, and how misregulation of their activities through genetic abnormalities leads to pathologies such as developmental disorders and malignancies.
Collapse
|
13
|
Kollárovič G, Topping CE, Shaw EP, Chambers AL. The human HELLS chromatin remodelling protein promotes end resection to facilitate homologous recombination and contributes to DSB repair within heterochromatin. Nucleic Acids Res 2020; 48:1872-1885. [PMID: 31802118 PMCID: PMC7038987 DOI: 10.1093/nar/gkz1146] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 11/23/2022] Open
Abstract
Efficient double-strand break repair in eukaryotes requires manipulation of chromatin structure. ATP-dependent chromatin remodelling enzymes facilitate different DNA repair pathways, during different stages of the cell cycle and in varied chromatin environments. The contribution of remodelling factors to double-strand break repair within heterochromatin during G2 is unclear. The human HELLS protein is a Snf2-like chromatin remodeller family member and is mutated or misregulated in several cancers and some cases of ICF syndrome. HELLS has been implicated in the DNA damage response, but its mechanistic function in repair is not well understood. We discover that HELLS facilitates homologous recombination at two-ended breaks and contributes to repair within heterochromatic regions during G2. HELLS promotes initiation of HR by facilitating end-resection and accumulation of CtIP at IR-induced foci. We identify an interaction between HELLS and CtIP and establish that the ATPase domain of HELLS is required to promote DSB repair. This function of HELLS in maintenance of genome stability is likely to contribute to its role in cancer biology and demonstrates that different chromatin remodelling activities are required for efficient repair in specific genomic contexts.
Collapse
Affiliation(s)
- Gabriel Kollárovič
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Caitríona E Topping
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Edward P Shaw
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Anna L Chambers
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
14
|
Gore-Lloyd D, Sumann I, Brachmann AO, Schneeberger K, Ortiz-Merino RA, Moreno-Beltrán M, Schläfli M, Kirner P, Santos Kron A, Rueda-Mejia MP, Somerville V, Wolfe KH, Piel J, Ahrens CH, Henk D, Freimoser FM. Snf2 controls pulcherriminic acid biosynthesis and antifungal activity of the biocontrol yeast Metschnikowia pulcherrima. Mol Microbiol 2019; 112:317-332. [PMID: 31081214 PMCID: PMC6851878 DOI: 10.1111/mmi.14272] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2019] [Indexed: 12/14/2022]
Abstract
Metschnikowia pulcherrima synthesises the pigment pulcherrimin, from cyclodileucine (cyclo(Leu-Leu)) as a precursor, and exhibits strong antifungal activity against notorious plant pathogenic fungi. This yeast therefore has great potential for biocontrol applications against fungal diseases; particularly in the phyllosphere where this species is frequently found. To elucidate the molecular basis of the antifungal activity of M. pulcherrima, we compared a wild-type strain with a spontaneously occurring, pigmentless, weakly antagonistic mutant derivative. Whole genome sequencing of the wild-type and mutant strains identified a point mutation that creates a premature stop codon in the transcriptional regulator gene SNF2 in the mutant. Complementation of the mutant strain with the wild-type SNF2 gene restored pigmentation and recovered the strong antifungal activity. Mass spectrometry (UPLC HR HESI-MS) proved the presence of the pulcherrimin precursors cyclo(Leu-Leu) and pulcherriminic acid and identified new precursor and degradation products of pulcherriminic acid and/or pulcherrimin. All of these compounds were identified in the wild-type and complemented strain, but were undetectable in the pigmentless snf2 mutant strain. These results thus identify Snf2 as a regulator of antifungal activity and pulcherriminic acid biosynthesis in M. pulcherrima and provide a starting point for deciphering the molecular functions underlying the antagonistic activity of this yeast.
Collapse
Affiliation(s)
- Deborah Gore-Lloyd
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Inés Sumann
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Alexander O Brachmann
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| | - Kerstin Schneeberger
- Competence Division Method Development and Analytics, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | | | | | - Michael Schläfli
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Pascal Kirner
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Amanda Santos Kron
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Maria Paula Rueda-Mejia
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Vincent Somerville
- Competence Division Method Development and Analytics, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Kenneth H Wolfe
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| | - Christian H Ahrens
- Competence Division Method Development and Analytics, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland.,SIB, Swiss Institute of Bioinformatics, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Daniel Henk
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Florian M Freimoser
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| |
Collapse
|
15
|
Bauer SL, Chen J, Åström SU. Helicase/SUMO-targeted ubiquitin ligase Uls1 interacts with the Holliday junction resolvase Yen1. PLoS One 2019; 14:e0214102. [PMID: 30897139 PMCID: PMC6428284 DOI: 10.1371/journal.pone.0214102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/06/2019] [Indexed: 11/30/2022] Open
Abstract
Resolution of branched DNA structures is pivotal for repair of stalled replication forks and meiotic recombination intermediates. The Yen1 nuclease cleaves both Holliday junctions and replication forks. We show that Yen1 interacts physically with Uls1, a suggested SUMO-targeted ubiquitin ligase that also contains a SWI/SNF-family ATPase-domain. Yen1 is SUMO-modified in its noncatalytic carboxyl terminus and DNA damage induces SUMOylation. SUMO-modification of Yen1 strengthens the interaction to Uls1, and mutations in SUMO interaction motifs in Uls1 weakens the interaction. However, Uls1 does not regulate the steady-state level of SUMO-modified Yen1 or chromatin-associated Yen1. In addition, SUMO-modification of Yen1 does not affect the catalytic activity in vitro. Consistent with a shared function for Uls1 and Yen1, mutations in both genes display similar phenotypes. Both uls1 and yen1 display negative genetic interactions with the alternative HJ-cleaving nuclease Mus81, manifested both in hypersensitivity to DNA damaging agents and in meiotic defects. Point mutations in ULS1 (uls1K975R and uls1C1330S, C1333S) predicted to inactivate the ATPase and ubiquitin ligase activities, respectively, are as defective as the null allele, indicating that both functions of Uls1 are essential. A micrococcal nuclease sequencing experiment showed that Uls1 had minimal effects on global nucleosome positioning/occupancy. Moreover, increased gene dosage of YEN1 partially alleviates the mus81 uls1 sensitivity to DNA damage. We suggest a preliminary model in which Uls1 acts in the same pathway as Yen1 to resolve branched DNA structures.
Collapse
Affiliation(s)
- Stefanie L. Bauer
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jiang Chen
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Stefan U. Åström
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
16
|
Pereira BJA, Oba-Shinjo SM, de Almeida AN, Marie SKN. Molecular alterations in meningiomas: Literature review. Clin Neurol Neurosurg 2018; 176:89-96. [PMID: 30553171 DOI: 10.1016/j.clineuro.2018.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/16/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Meningiomas, tumors that originate from meningothelial cells, account for approximately 30% of all new diagnoses of central nervous system neoplasms. According to the 2016 WHO classification of central nervous system tumors meningiomas are classified into three grades: I, II, and III. Past studies have shown that the risk of meningiomas recurrence is strongly correlated with the molecular profile of the tumor. Extensive whole-exome or whole-genome sequencing has provided a large body of information about the mutational landscape of meningiomas. However, such a stratification of meningiomas based on mutational analysis alone has been proven not to satisfy the clinical need for distinction between patients who need (or do not need) an adjuvant treatment. Combined analysis of exome, transcriptome, methylome and future approaches for epigenetic aspects in meningiomas may allow researchers to unveil a more comprehensive understanding of tumor progression mechanisms and, consequently, a more personalized clinical approach for patients with meningioma. A better understanding of the genetics and clinical behavior of high-grade meningiomas is mandatory in order to better design future clinical trials. By studying the mechanisms underlying these new tumorigenesis pathways, we should be able to offer personalized chemotherapy to patients with surgery and radiation-refractory meningiomas in the near future. The purpose of this article is to accurately bring the compilation of this information, for a greater understanding of the subject.
Collapse
Affiliation(s)
- Benedito Jamilson Araújo Pereira
- Departament of Neurology, Laboratory of Molecular and Cellular Biology, LIM15, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
| | - Sueli Mieko Oba-Shinjo
- Departament of Neurology, Laboratory of Molecular and Cellular Biology, LIM15, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil
| | | | - Suely Kazue Nagahashi Marie
- Departament of Neurology, Laboratory of Molecular and Cellular Biology, LIM15, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil
| |
Collapse
|
17
|
Abstract
The nucleosome serves as a general gene repressor, preventing all initiation of transcription except that which is brought about by specific positive regulatory mechanisms. The positive mechanisms begin with chromatin-remodeling by complexes that slide, disrupt, or otherwise alter the structure and organization of nucleosomes. RSC in yeast and its counterpart PBAF in human cells are the major remodeling complexes for transcription. RSC creates a nucleosome-free region in front of a gene, flanked by strongly positioned +1 and -1 nucleosomes, with the transcription start site typically 10-15 bp inside the border of the +1 nucleosome. RSC also binds stably to nucleosomes harboring regulatory elements and to +1 nucleosomes, perturbing their structures in a manner that partially exposes their DNA sequences. The cryo-electron microscope structure of a RSC-nucleosome complex reveals such a structural perturbation, with the DNA largely unwrapped from the nucleosome and likely interacting with a positively charged surface of RSC. Such unwrapping both exposes the DNA and enables its translocation across the histone octamer of the nucleosome by an ATP-dependent activity of RSC. Genetic studies have revealed additional roles of RSC in DNA repair, chromosome segregation, and other chromosomal DNA transactions. These functions of RSC likely involve the same fundamental activities, DNA unwrapping and DNA translocation.
Collapse
|
18
|
Saettone A, Garg J, Lambert JP, Nabeel-Shah S, Ponce M, Burtch A, Thuppu Mudalige C, Gingras AC, Pearlman RE, Fillingham J. The bromodomain-containing protein Ibd1 links multiple chromatin-related protein complexes to highly expressed genes in Tetrahymena thermophila. Epigenetics Chromatin 2018. [PMID: 29523178 PMCID: PMC5844071 DOI: 10.1186/s13072-018-0180-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background The chromatin remodelers of the SWI/SNF family are critical transcriptional regulators. Recognition of lysine acetylation through a bromodomain (BRD) component is key to SWI/SNF function; in most eukaryotes, this function is attributed to SNF2/Brg1. Results Using affinity purification coupled to mass spectrometry (AP–MS) we identified members of a SWI/SNF complex (SWI/SNFTt) in Tetrahymena thermophila. SWI/SNFTt is composed of 11 proteins, Snf5Tt, Swi1Tt, Swi3Tt, Snf12Tt, Brg1Tt, two proteins with potential chromatin-interacting domains and four proteins without orthologs to SWI/SNF proteins in yeast or mammals. SWI/SNFTt subunits localize exclusively to the transcriptionally active macronucleus during growth and development, consistent with a role in transcription. While Tetrahymena Brg1 does not contain a BRD, our AP–MS results identified a BRD-containing SWI/SNFTt component, Ibd1 that associates with SWI/SNFTt during growth but not development. AP–MS analysis of epitope-tagged Ibd1 revealed it to be a subunit of several additional protein complexes, including putative SWRTt, and SAGATt complexes as well as a putative H3K4-specific histone methyl transferase complex. Recombinant Ibd1 recognizes acetyl-lysine marks on histones correlated with active transcription. Consistent with our AP–MS and histone array data suggesting a role in regulation of gene expression, ChIP-Seq analysis of Ibd1 indicated that it primarily binds near promoters and within gene bodies of highly expressed genes during growth. Conclusions Our results suggest that through recognizing specific histones marks, Ibd1 targets active chromatin regions of highly expressed genes in Tetrahymena where it subsequently might coordinate the recruitment of several chromatin-remodeling complexes to regulate the transcriptional landscape of vegetatively growing Tetrahymena cells. Electronic supplementary material The online version of this article (10.1186/s13072-018-0180-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele St., Toronto, M3J 1P3, Canada
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, Canada.,Department of Molecular Medicine, Université Laval, Quebec, Canada.,Centre Hospitalier Universitaire de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, G1V 4G2, Canada
| | - Syed Nabeel-Shah
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Marcelo Ponce
- SciNet HPC Consortium, University of Toronto, 661 University Ave, Suite 1140, Toronto, M5G 1M1, Canada
| | - Alyson Burtch
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada
| | - Cristina Thuppu Mudalige
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele St., Toronto, M3J 1P3, Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada.
| |
Collapse
|
19
|
Mathur R, Roberts CW. SWI/SNF (BAF) Complexes: Guardians of the Epigenome. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Radhika Mathur
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Charles W.M. Roberts
- Department of Oncology and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
20
|
Goyal N, Rossi MJ, Mazina OM, Chi Y, Moritz RL, Clurman BE, Mazin AV. RAD54 N-terminal domain is a DNA sensor that couples ATP hydrolysis with branch migration of Holliday junctions. Nat Commun 2018; 9:34. [PMID: 29295984 PMCID: PMC5750232 DOI: 10.1038/s41467-017-02497-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/28/2017] [Indexed: 11/08/2022] Open
Abstract
In eukaryotes, RAD54 catalyzes branch migration (BM) of Holliday junctions, a basic process during DNA repair, replication, and recombination. RAD54 also stimulates RAD51 recombinase and has other activities. Here, we investigate the structural determinants for different RAD54 activities. We find that the RAD54 N-terminal domain (NTD) is responsible for initiation of BM through two coupled, but distinct steps; specific binding to Holliday junctions and RAD54 oligomerization. Furthermore, we find that the RAD54 oligomeric state can be controlled by NTD phosphorylation at S49, a CDK2 consensus site, which inhibits RAD54 oligomerization and, consequently, BM. Importantly, the effect of phosphorylation on RAD54 oligomerization is specific for BM, as it does not affect stimulation of RAD51 recombinase by RAD54. Thus, the transition of the oligomeric states provides an important control of the biological functions of RAD54 and, likely, other multifunctional proteins.
Collapse
Affiliation(s)
- Nadish Goyal
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Matthew J Rossi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Yong Chi
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Bruce E Clurman
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
21
|
Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nat Struct Mol Biol 2017; 25:61-72. [PMID: 29323272 PMCID: PMC5909405 DOI: 10.1038/s41594-017-0007-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/09/2017] [Indexed: 01/03/2023]
Abstract
Mutation of SMARCA4 (BRG1), the ATPase of BAF (mSWI/SNF) and PBAF complexes, contributes to a range of malignancies and neurologic disorders. Unfortunately, the effects of SMARCA4 missense mutations have remained uncertain. Here we show that SMARCA4 cancer missense mutations target conserved ATPase surfaces and disrupt the mechanochemical cycle of remodeling. We find that heterozygous expression of mutants alters the open chromatin landscape at thousands of sites across the genome. Loss of DNA accessibility does not directly overlap with Polycomb accumulation, but is enriched in 'A compartments' at active enhancers, which lose H3K27ac but not H3K4me1. Affected positions include hundreds of sites identified as superenhancers in many tissues. Dominant-negative mutation induces pro-oncogenic expression changes, including increased expression of Myc and its target genes. Together, our data suggest that disruption of enhancer accessibility represents a key source of altered function in disorders with SMARCA4 mutations in a wide variety of tissues.
Collapse
|
22
|
The Genomic Landscape of the Fungus-Specific SWI/SNF Complex Subunit, Snf6, in Candida albicans. mSphere 2017; 2:mSphere00497-17. [PMID: 29152582 PMCID: PMC5687922 DOI: 10.1128/msphere.00497-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022] Open
Abstract
SWI/SNF is an ATP-dependent chromatin-remodeling complex that is required for the regulation of gene expression in eukaryotes. While most of the fungal SWI/SNF components are evolutionarily conserved with those of the metazoan SWI/SNF, subunits such as Snf6 are specific to certain fungi and thus represent potential antifungal targets. We have characterized the role of the Snf6 protein in Candida albicans. Our data showed that although there was low conservation of its protein sequence with other fungal orthologs, Snf6 was copurified with bona fide SWI/SNF complex subunits. The role of Snf6 in C. albicans was investigated by determining its genome-wide occupancy using chromatin immunoprecipitation coupled to tiling arrays in addition to transcriptional profiling of the snf6 conditional mutant. Snf6 directs targets that were enriched in functions related to carbohydrate and amino acid metabolic circuits, to cellular transport, and to heat stress responses. Under hypha-promoting conditions, Snf6 expanded its set of targets to include promoters of genes related to respiration, ribosome biogenesis, mating, and vesicle transport. In accordance with the genomic occupancy data, an snf6 doxycycline-repressible mutant exhibited growth defects in response to heat stress and also when grown in the presence of different fermentable and nonfermentable carbon sources. Snf6 was also required to differentiate invasive hyphae in response to different cues. This study represents the first comprehensive characterization, at the genomic level, of the role of SWI/SNF in the pathogenic yeast C. albicans and uncovers functions that are essential for fungal morphogenesis and metabolic flexibility. IMPORTANCECandida albicans is a natural component of the human microbiota but also an opportunistic pathogen that causes life-threatening infections in immunosuppressed patients. Current therapeutics include a limited number of molecules that suffer from limitations, including growing clinical resistance and toxicity. New molecules are being clinically investigated; however, the majority of these potential antifungals target the same processes as do the standard antifungals and might confront the same problems of toxicity and loss of efficiency due to the common resistance mechanisms. Here, we characterized the role of Snf6, a fungus-specific subunit of the chromatin-remodeling complex SWI/SNF. Our genomic and phenotypic data demonstrated a central role of Snf6 in biological processes that are critical for a fungal pathogen to colonize its host and cause disease, suggesting Snf6 as a possible antifungal target.
Collapse
|
23
|
Stroud LK, McGinnis KM. Altered nucleosome positions in maize haplotypes and mutants of a subset of SWI/SNF-like proteins. PLANT DIRECT 2017; 1:e00019. [PMID: 31245667 PMCID: PMC6508530 DOI: 10.1002/pld3.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/07/2017] [Accepted: 09/25/2017] [Indexed: 06/09/2023]
Abstract
Chromatin remodelers alter DNA-histone interactions in eukaryotic organisms and have been well characterized in yeast and Arabidopsis. While there are maize proteins with similar domains as known remodelers, the ability of the maize proteins to alter nucleosome position has not been reported. Mutant alleles of several maize proteins (RMR1, CHR101, CHR106, CHR127, and CHR156) with similar functional domains to known chromatin remodelers were identified. Altered gene expression of Chr101, Chr106, Chr127, and Chr156 was demonstrated in plants homozygous for the mutant alleles. These mutant genotypes were subjected to nucleosome position analysis to determine whether misregulation of putative maize chromatin proteins would lead to altered DNA-histone interactions. Nucleosome position changes were observed in plants homozygous for chr101, chr106, chr127, and chr156 mutant alleles, suggesting that CHR101, CHR106, CHR127, and CHR156 may affect chromatin structure. The role of RNA polymerases in altering DNA-histone interactions was also tested. Changes in nucleosome position were demonstrated in homozygous mop2-1 individuals. These changes were demonstrated at the b1 tandem repeats and at newly identified loci. Additionally, differential DNA-histone interactions and altered gene expression of putative chromatin remodelers were demonstrated between different maize haplotypes.
Collapse
Affiliation(s)
- Linda K. Stroud
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| | - Karen M. McGinnis
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| |
Collapse
|
24
|
Kobayashi K, Hiramatsu H, Nakamura S, Kobayashi K, Haraguchi T, Iba H. Tumor suppression via inhibition of SWI/SNF complex-dependent NF-κB activation. Sci Rep 2017; 7:11772. [PMID: 28924147 PMCID: PMC5603518 DOI: 10.1038/s41598-017-11806-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023] Open
Abstract
The transcription factor NF-κB is constitutively activated in many epithelial tumors but few NF-κB inhibitors are suitable for cancer therapy because of its broad biological effects. We previously reported that the d4-family proteins (DPF1, DPF2, DPF3a/b) function as adaptor proteins linking NF-κB with the SWI/SNF complex. Here, using epithelial tumor cell lines, A549 and HeLaS3, we demonstrate that exogenous expression of the highly-conserved N-terminal 84-amino acid region (designated "CT1") of either DPF2 or DPF3a/b has stronger inhibitory effects on anchorage-independent growth than the single knockdown of any d4-family protein. This indicates that CT1 can function as an efficient dominant-negative mutant of the entire d4-family proteins. By in situ proximity ligation assay, CT1 was found to retain full adaptor function, indicating that the C-terminal region of d4-family proteins lacking in CT1 would include essential domains for SWI/SNF-dependent NF-κB activation. Microarray analysis revealed that CT1 suppresses only a portion of the NF-κB target genes, including representative SWI/SNF-dependent genes. Among these genes, IL6 was shown to strongly contribute to anchorage-independent growth. Finally, exogenous CT1 expression efficiently suppressed tumor formation in a mouse xenograft model, suggesting that the d4-family proteins are promising cancer therapy targets.
Collapse
Affiliation(s)
- Kazuyoshi Kobayashi
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Hiroaki Hiramatsu
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Shinya Nakamura
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Kyousuke Kobayashi
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Takeshi Haraguchi
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Hideo Iba
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan. .,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan.
| |
Collapse
|
25
|
Stanton BZ, Hodges C, Crabtree GR, Zhao K. A General Non-Radioactive ATPase Assay for Chromatin Remodeling Complexes. ACTA ACUST UNITED AC 2017; 9:1-10. [PMID: 28253434 DOI: 10.1002/cpch.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chromatin remodeling complexes couple the energy released from ATP hydrolysis to facilitate transcription, recombination, and repair mechanisms essential for a wide variety of biologic responses. While recombinant expression of the regulatory subunits of these enzymes is possible, measuring catalytic (ATPase) activity of the intact complexes recovered from normal or mutant cells is critical for understanding their mechanisms. SWI/SNF-like remodeling complexes can be megadaltons in size and include many regulatory subunits, making reconstitution of purified subunits challenging for recapitulating in vivo function. The protocol in this article defines the first highly quantitative ATPase assay for intact remodeling complexes that does not require radiation or reconstitution of recombinantly expressed subunits. This protocol is specifically useful for defining the catalytic role of active-site mutations in the context of other regulatory subunits and quantitatively rank-ordering inactivating catalytic-site mutations. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Benjamin Z Stanton
- Department of Pathology, Stanford University School of Medicine, Stanford, California.,Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Courtney Hodges
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Gerald R Crabtree
- Department of Pathology, Stanford University School of Medicine, Stanford, California.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Keji Zhao
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
26
|
Histone Post-Translational Modifications and Nucleosome Organisation in Transcriptional Regulation: Some Open Questions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28639249 DOI: 10.1007/5584_2017_58] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The organisation of chromatin is first discussed to conclude that nucleosomes play both structural and transcription-regulatory roles. The presence of nucleosomes makes difficult the access of transcriptional factors to their target sequences and the action of RNA polymerases. The histone post-translational modifications and nucleosome remodelling are first discussed, from a historical point of view, as mechanisms to remove the obstacles imposed by chromatin structure to transcription. Instead of reviewing the state of the art of the whole field, this review is centred on some open questions. First, some "non-classical" histone modifications, such as short-chain acylations other than acetylation, are considered to conclude that their relationship with the concentration of metabolic intermediaries might make of them a sensor of the physiological state of the cells. Then attention is paid to the interest of studying chromatin organisation and epigenetic marks at a single nucleosome level as a complement to genome-wide approaches. Finally, as a consequence of the above questions, the review focuses on the presence of multiple histone post-translational modifications on a single nucleosome. The methods to detect them and their meaning, with special emphasis on bivalent marks, are discussed.
Collapse
|
27
|
Hodges C, Kirkland JG, Crabtree GR. The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026930. [PMID: 27413115 DOI: 10.1101/cshperspect.a026930] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the last decade, a host of epigenetic mechanisms were found to contribute to cancer and other human diseases. Several genomic studies have revealed that ∼20% of malignancies have alterations of the subunits of polymorphic BRG-/BRM-associated factor (BAF) and Polybromo-associated BAF (PBAF) complexes, making them among the most frequently mutated complexes in cancer. Recurrent mutations arise in genes encoding several BAF/PBAF subunits, including ARID1A, ARID2, PBRM1, SMARCA4, and SMARCB1 These subunits share some degree of conservation with subunits from related adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in model organisms, in which a large body of work provides insight into their roles in cancer. Here, we review the roles of BAF- and PBAF-like complexes in these organisms, and relate these findings to recent discoveries in cancer epigenomics. We review several roles of BAF and PBAF complexes in cancer, including transcriptional regulation, DNA repair, and regulation of chromatin architecture and topology. More recent results highlight the need for new techniques to study these complexes.
Collapse
Affiliation(s)
- Courtney Hodges
- Departments of Pathology, Developmental Biology, and Genetics, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Jacob G Kirkland
- Departments of Pathology, Developmental Biology, and Genetics, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Gerald R Crabtree
- Departments of Pathology, Developmental Biology, and Genetics, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
28
|
Nguyen H, Sokpor G, Pham L, Rosenbusch J, Stoykova A, Staiger JF, Tuoc T. Epigenetic regulation by BAF (mSWI/SNF) chromatin remodeling complexes is indispensable for embryonic development. Cell Cycle 2016; 15:1317-24. [PMID: 26986003 DOI: 10.1080/15384101.2016.1160984] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The multi-subunit chromatin-remodeling SWI/SNF (known as BAF for Brg/Brm-associated factor) complexes play essential roles in development. Studies have shown that the loss of individual BAF subunits often affects local chromatin structure and specific transcriptional programs. However, we do not fully understand how BAF complexes function in development because no animal mutant had been engineered to lack entire multi-subunit BAF complexes. Importantly, we recently reported that double conditional knock-out (dcKO) of the BAF155 and BAF170 core subunits in mice abolished the presence of the other BAF subunits in the developing cortex. The generated dcKO mutant provides a novel and powerful tool for investigating how entire BAF complexes affect cortical development. Using this model, we found that BAF complexes globally control the key heterochromatin marks, H3K27me2 and -3, by directly modulating the enzymatic activity of the H3K27 demethylases, Utx and Jmjd3. Here, we present further insights into how the scaffolding ability of the BAF155 and BAF170 core subunits maintains the stability of BAF complexes in the forebrain and throughout the embryo during development. Furthermore, we show that the loss of BAF complexes in the above-described model up-regulates H3K27me3 and impairs forebrain development and embryogenesis. These findings improve our understanding of epigenetic mechanisms and their modulation by the chromatin-remodeling SWI/SNF complexes that control embryonic development.
Collapse
Affiliation(s)
- Huong Nguyen
- a University Medical Center , Georg-August-University Goettingen , Germany
| | - Godwin Sokpor
- a University Medical Center , Georg-August-University Goettingen , Germany
| | - Linh Pham
- a University Medical Center , Georg-August-University Goettingen , Germany
| | - Joachim Rosenbusch
- a University Medical Center , Georg-August-University Goettingen , Germany
| | - Anastassia Stoykova
- b Max-Planck-Institute for Biophysical Chemistry , Goettingen ; Germany.,c DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB) , Goettingen , Germany
| | - Jochen F Staiger
- a University Medical Center , Georg-August-University Goettingen , Germany.,c DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB) , Goettingen , Germany
| | - Tran Tuoc
- a University Medical Center , Georg-August-University Goettingen , Germany.,c DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB) , Goettingen , Germany
| |
Collapse
|
29
|
Kadoch C, Copeland RA, Keilhack H. PRC2 and SWI/SNF Chromatin Remodeling Complexes in Health and Disease. Biochemistry 2016; 55:1600-14. [DOI: 10.1021/acs.biochem.5b01191] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Robert A. Copeland
- Epizyme Inc., 400 Technology
Square, 4th floor, Cambridge, Massachusetts 02139, United States
| | - Heike Keilhack
- Epizyme Inc., 400 Technology
Square, 4th floor, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Tsuchiya M, Isogai S, Taniguchi H, Tochio H, Shirakawa M, Morohashi KI, Hiraoka Y, Haraguchi T, Ogawa H. Selective autophagic receptor p62 regulates the abundance of transcriptional coregulator ARIP4 during nutrient starvation. Sci Rep 2015; 5:14498. [PMID: 26412716 PMCID: PMC4585976 DOI: 10.1038/srep14498] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022] Open
Abstract
Transcriptional coregulators contribute to several processes involving nuclear receptor transcriptional regulation. The transcriptional coregulator androgen receptor-interacting protein 4 (ARIP4) interacts with nuclear receptors and regulates their transcriptional activity. In this study, we identified p62 as a major interacting protein partner for ARIP4 in the nucleus. Nuclear magnetic resonance analysis demonstrated that ARIP4 interacts directly with the ubiquitin-associated (UBA) domain of p62. ARIP4 and ubiquitin both bind to similar amino acid residues within UBA domains; therefore, these proteins may possess a similar surface structure at their UBA-binding interfaces. We also found that p62 is required for the regulation of ARIP4 protein levels under nutrient starvation conditions. We propose that p62 is a novel binding partner for ARIP4, and that its binding regulates the cellular protein level of ARIP4 under conditions of metabolic stress.
Collapse
Affiliation(s)
- Megumi Tsuchiya
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Shin Isogai
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroaki Taniguchi
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe 610-0394, Japan
| | - Hidehito Tochio
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| |
Collapse
|
31
|
Petrovič U. Next-generation biofuels: a new challenge for yeast. Yeast 2015; 32:583-93. [DOI: 10.1002/yea.3082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 11/11/2022] Open
Affiliation(s)
- Uroš Petrovič
- Jožef Stefan Institute; Department of Molecular and Biomedical Sciences; Ljubljana Slovenia
| |
Collapse
|
32
|
Hainer SJ, Gu W, Carone BR, Landry BD, Rando OJ, Mello CC, Fazzio TG. Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF. Genes Dev 2015; 29:362-78. [PMID: 25691467 PMCID: PMC4335293 DOI: 10.1101/gad.253534.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hainer et al. show that esBAF, a SWI/SNF family nucleosome remodeling factor, suppresses transcription of noncoding RNAs (ncRNAs) from ∼57,000 nucleosome-depleted regions (NDRs) throughout the genome of mouse embryonic stem cells. esBAF’s function to enforce nucleosome occupancy adjacent to NDRs, but not its function to maintain NDRs in a nucleosome-free state, is necessary for silencing transcription over ncDNA. Finally, the ability of a strongly positioned nucleosome to repress ncRNA depends on its translational positioning. Approximately 75% of the human genome is transcribed, the majority of which does not encode protein. However, many noncoding RNAs (ncRNAs) are rapidly degraded after transcription, and relatively few have established functions, questioning the significance of this observation. Here we show that esBAF, a SWI/SNF family nucleosome remodeling factor, suppresses transcription of ncRNAs from ∼57,000 nucleosome-depleted regions (NDRs) throughout the genome of mouse embryonic stem cells (ESCs). We show that esBAF functions to both keep NDRs nucleosome-free and promote elevated nucleosome occupancy adjacent to NDRs. Reduction of adjacent nucleosome occupancy upon esBAF depletion is strongly correlated with ncRNA expression, suggesting that flanking nucleosomes form a barrier to pervasive transcription. Upon forcing nucleosome occupancy near two NDRs using a nucleosome-positioning sequence, we found that esBAF is no longer required to silence transcription. Therefore, esBAF’s function to enforce nucleosome occupancy adjacent to NDRs, and not its function to maintain NDRs in a nucleosome-free state, is necessary for silencing transcription over ncDNA. Finally, we show that the ability of a strongly positioned nucleosome to repress ncRNA depends on its translational positioning. These data reveal a novel role for esBAF in suppressing pervasive transcription from open chromatin regions in ESCs.
Collapse
Affiliation(s)
- Sarah J Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Weifeng Gu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Benjamin R Carone
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Benjamin D Landry
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Craig C Mello
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA;
| |
Collapse
|
33
|
Steglich B, Strålfors A, Khorosjutina O, Persson J, Smialowska A, Javerzat JP, Ekwall K. The Fun30 chromatin remodeler Fft3 controls nuclear organization and chromatin structure of insulators and subtelomeres in fission yeast. PLoS Genet 2015; 11:e1005101. [PMID: 25798942 PMCID: PMC4370569 DOI: 10.1371/journal.pgen.1005101] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 02/25/2015] [Indexed: 12/21/2022] Open
Abstract
In eukaryotic cells, local chromatin structure and chromatin organization in the nucleus both influence transcriptional regulation. At the local level, the Fun30 chromatin remodeler Fft3 is essential for maintaining proper chromatin structure at centromeres and subtelomeres in fission yeast. Using genome-wide mapping and live cell imaging, we show that this role is linked to controlling nuclear organization of its targets. In fft3∆ cells, subtelomeres lose their association with the LEM domain protein Man1 at the nuclear periphery and move to the interior of the nucleus. Furthermore, genes in these domains are upregulated and active chromatin marks increase. Fft3 is also enriched at retrotransposon-derived long terminal repeat (LTR) elements and at tRNA genes. In cells lacking Fft3, these sites lose their peripheral positioning and show reduced nucleosome occupancy. We propose that Fft3 has a global role in mediating association between specific chromatin domains and the nuclear envelope. In the genome of eukaryotic cells, domains of active and repressive chromatin alternate along the chromosome arms. Insulator elements are necessary to shield these different environments from each other. In the fission yeast Schizosaccharomyces pombe, the chromatin remodeler Fft3 is required to maintain the repressed subtelomeric chromatin. Here we show that Fft3 maintains nucleosome structure of insulator elements at the subtelomeric borders. We also observe that subtelomeres and insulator elements move away from the nuclear envelope in cells lacking Fft3. The nuclear periphery is known to harbor repressive chromatin in many eukaryotes and has been implied in insulator function. Our results suggest that chromatin remodeling through Fft3 is required to maintain proper chromatin structure and nuclear organization of insulator elements.
Collapse
Affiliation(s)
- Babett Steglich
- Department of Biosciences and Nutrition; Center for Innovative Medicine, Karolinska Institutet, Novum Building, Huddinge, Sweden
| | - Annelie Strålfors
- Department of Biosciences and Nutrition; Center for Innovative Medicine, Karolinska Institutet, Novum Building, Huddinge, Sweden
| | - Olga Khorosjutina
- Department of Biosciences and Nutrition; Center for Innovative Medicine, Karolinska Institutet, Novum Building, Huddinge, Sweden
| | - Jenna Persson
- Department of Biosciences and Nutrition; Center for Innovative Medicine, Karolinska Institutet, Novum Building, Huddinge, Sweden
| | - Agata Smialowska
- Department of Biosciences and Nutrition; Center for Innovative Medicine, Karolinska Institutet, Novum Building, Huddinge, Sweden
| | - Jean-Paul Javerzat
- Univ. Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Karl Ekwall
- Department of Biosciences and Nutrition; Center for Innovative Medicine, Karolinska Institutet, Novum Building, Huddinge, Sweden
- * E-mail:
| |
Collapse
|
34
|
Wang B, Kettenbach AN, Gerber SA, Loros JJ, Dunlap JC. Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle. PLoS Genet 2014; 10:e1004599. [PMID: 25254987 PMCID: PMC4177678 DOI: 10.1371/journal.pgen.1004599] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 07/13/2014] [Indexed: 12/23/2022] Open
Abstract
In the negative feedback loop comprising the Neurospora circadian oscillator, the White Collar Complex (WCC) formed from White Collar-1 (WC-1) and White Collar-2 (WC-2) drives transcription of the circadian pacemaker gene frequency (frq). Although FRQ-dependent repression of WCC has been extensively studied, the mechanism by which the WCC initiates a circadian cycle remains elusive. Structure/function analysis of WC-1 eliminated domains previously thought to transactivate frq expression but instead identified amino acids 100–200 as essential for frq circadian expression. A proteomics-based search for coactivators with WCC uncovered the SWI/SNF (SWItch/Sucrose NonFermentable) complex: SWI/SNF interacts with WCC in vivo and in vitro, binds to the Clock box in the frq promoter, and is required both for circadian remodeling of nucleosomes at frq and for rhythmic frq expression; interestingly, SWI/SNF is not required for light-induced frq expression. These data suggest a model in which WC-1 recruits SWI/SNF to remodel and loop chromatin at frq, thereby activating frq expression to initiate the circadian cycle. Circadian clocks govern behavior in a wide variety of organisms. These clocks are assembled in such a way that proteins encoded by a few dedicated “clock genes” form a complex that acts to reduce their own expression. That is, the genes and proteins participate in a negative feedback loop, and so long as the feedback has delays built in, this system will oscillate. The feedback loops that underlie circadian rhythms in fungi and animals are quite similar in many ways, and while much is known about the proteins themselves, both those that activate the dedicated clock genes and the clock proteins that repress their own expression, relatively little is known about how the initial expression of the clock genes is activated. In Neurospora, a fungal model for these clocks, the proteins that activate expression of the clock gene “frequency” bind to DNA far away from where the coding part of the gene begins, and a mystery has been how this action-at-a-distance works. The answer revealed here is that the activating proteins recruit other proteins to unwrap the DNA and bring the distal site close to the place where the coding part of the gene begins.
Collapse
Affiliation(s)
- Bin Wang
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Arminja N. Kettenbach
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Scott A. Gerber
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jennifer J. Loros
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Department of Biochemistry, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
35
|
Korber P, Barbaric S. The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Res 2014; 42:10888-902. [PMID: 25190457 PMCID: PMC4176169 DOI: 10.1093/nar/gku784] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chromatin dynamics crucially contributes to gene regulation. Studies of the yeast PHO5 promoter were key to establish this nowadays accepted view and continuously provide mechanistic insight in chromatin remodeling and promoter regulation, both on single locus as well as on systems level. The PHO5 promoter is a context independent chromatin switch module where in the repressed state positioned nucleosomes occlude transcription factor sites such that nucleosome remodeling is a prerequisite for and not consequence of induced gene transcription. This massive chromatin transition from positioned nucleosomes to an extensive hypersensitive site, together with respective transitions at the co-regulated PHO8 and PHO84 promoters, became a prime model for dissecting how remodelers, histone modifiers and chaperones co-operate in nucleosome remodeling upon gene induction. This revealed a surprisingly complex cofactor network at the PHO5 promoter, including five remodeler ATPases (SWI/SNF, RSC, INO80, Isw1, Chd1), and demonstrated for the first time histone eviction in trans as remodeling mode in vivo. Recently, the PHO5 promoter and the whole PHO regulon were harnessed for quantitative analyses and computational modeling of remodeling, transcription factor binding and promoter input-output relations such that this rewarding single-locus model becomes a paradigm also for theoretical and systems approaches to gene regulatory networks.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institute, Molecular Biology, University of Munich, Munich 80336, Germany
| | - Slobodan Barbaric
- Faculty of Food Technology and Biotechnology, Laboratory of Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
36
|
Sousa SB, Hennekam RC. Phenotype and genotype in Nicolaides-Baraitser syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:302-14. [PMID: 25169058 DOI: 10.1002/ajmg.c.31409] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nicolaides-Baraitser syndrome (NCBRS) is an intellectual disability (ID)/multiple congenital anomalies syndrome caused by non-truncating mutations in the ATPase region of SMARCA2, which codes for one of the two alternative catalytic subunits of the BAF chromatin remodeling complex. We analyzed 61 molecularly confirmed cases, including all previously reported patients (n = 47) and 14 additional unpublished individuals. NCBRS is clinically and genetically homogeneous. The cardinal features (ID, short stature, microcephaly, typical face, sparse hair, brachydactyly, prominent interphalangeal joints, behavioral problems and seizures), are almost universally present. There is variability however, as ID can range from severe to mild, and sparse hair may be present only in certain age groups. There may be a correlation between the severity of the ID and presence of seizures, absent speech, short stature and microcephaly. SMARCA2 mutations causing NCBRS are likely to act through a dominant-negative effect. There may be some genotype-phenotype correlations (mutations at domain VI with severe ID and seizures; mutations affecting residues Pro883, Leu946, and Ala1201 with mild phenotypes) but numbers are still too small to draw definitive conclusions.
Collapse
|
37
|
GTS1Induction Causes Derepression of Tup1-Cyc8-Repressing Genes and Chromatin Remodeling through the Interaction of Gts1p with Cyc8p. Biosci Biotechnol Biochem 2014; 75:740-7. [DOI: 10.1271/bbb.100860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Ji X, Li J, Zhu L, Cai J, Zhang J, Qu Y, Zhang H, Liu B, Zhao R, Zhu Z. CHD1L promotes tumor progression and predicts survival in colorectal carcinoma. J Surg Res 2013; 185:84-91. [PMID: 23746766 DOI: 10.1016/j.jss.2013.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/17/2013] [Accepted: 05/02/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND To evaluate the expression of chromodomain helicase/adenosine triphosphatase DNA binding protein 1-like gene (CHD1L) in colorectal carcinoma (CRC) and its clinical significance. Its oncogenic ability was also investigated. MATERIALS AND METHODS CHD1L amplification and overexpression were detected by fluorescence in situ hybridization, real-time reverse transcriptase-polymerase chain reaction, and immunohistochemistry in 86 patients with CRC. The correlation between the clinical characteristics and prognosis was also determined. To evaluate the tumorigenic ability of CHD1L, it was cloned into expression vector pcDNA3.1(+) and transfected into CRC cell line SW1116. Next, the changes in the biologic behavior of the CRC cells, including cell proliferation, adhesion, migration, and invasion, were examined. Apoptosis and the cell cycle of the CRC cells were detected using flow cytometry. RESULTS We have demonstrated that CHD1L is frequently amplified and overexpressed in CRC. Overexpression of CHD1L correlated with a large tumor size, deep tumor invasion, and a high histologic grade. It also conferred worse disease-free survival. CHD1L-transfected cells possessed a strong oncogenic ability, increasing the tumorigenicity in nude mice, which could be effectively suppressed by small interfering RNA against CHD1L. Functional studies showed that overexpression of CHD1L could promote G1/S-phase cells and inhibit apoptosis. CONCLUSIONS Our results suggest that CHD1L is the target oncogene within the 1q21 amplicon and plays a pivotal role in CRC pathogenesis.
Collapse
Affiliation(s)
- Xiaopin Ji
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jackson CA, Yadav N, Min S, Li J, Milliman EJ, Qu J, Chen YC, Yu MC. Proteomic analysis of interactors for yeast protein arginine methyltransferase Hmt1 reveals novel substrate and insights into additional biological roles. Proteomics 2013; 12:3304-14. [PMID: 22997150 DOI: 10.1002/pmic.201200132] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 01/07/2023]
Abstract
Protein arginine methylation is a PTM catalyzed by an evolutionarily conserved family of enzymes called protein arginine methyltransferases (PRMTs), with PRMT1 being the most conserved member of this enzyme family. This modification has emerged to be an important regulator of protein functions. To better understand the role of PRMTs in cellular pathways and functions, we have carried out a proteomic profiling experiment to comprehensively identify the physical interactors of Hmt1, the budding yeast homolog for human PRMT1. Using a dual-enzymatic digestion linear trap quadrupole/Orbitrap proteomic strategy, we identified a total of 108 proteins that specifically copurify with Hmt1 by tandem affinity purification. A reverse coimmunoprecipitation experiment was used to confirm Hmt1's physical association with Bre5, Mtr4, Snf2, Sum1, and Ssd1, five proteins that were identified as Hmt1-specific interactors in multiple biological replicates. To determine whether the identified Hmt1-interactors had the potential to act as an Hmt1 substrate, we used published bioinformatics algorithms that predict the presence and location of potential methylarginines for each identified interactor. One of the top hits from this analysis, Snf2, was experimentally confirmed as a robust substrate of Hmt1 in vitro. Overall, our data provide a feasible proteomic approach that aid in the better understanding of PRMT1's roles within a cell.
Collapse
Affiliation(s)
- Christopher A Jackson
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. Proc Natl Acad Sci U S A 2012; 109:19238-43. [PMID: 23134727 DOI: 10.1073/pnas.1213825109] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mutations in the CHD7 gene cause human developmental disorders including CHARGE syndrome. Genetic studies in model organisms have further established CHD7 as a central regulator of vertebrate development. Functional analysis of the CHD7 protein has been hampered by its large size. We used a dual-tag system to purify intact recombinant CHD7 protein and found that it is an ATP-dependent nucleosome remodeling factor. Biochemical analyses indicate that CHD7 has characteristics distinct from SWI/SNF- and ISWI-type remodelers. Further investigations show that CHD7 patient mutations have consequences that range from subtle to complete inactivation of remodeling activity, and that mutations leading to protein truncations upstream of amino acid 1899 of CHD7 are likely to cause a hypomorphic phenotype for remodeling. We propose that nucleosome remodeling is a key function for CHD7 during developmental processes and provide a molecular basis for predicting the impact of disease mutations on that function.
Collapse
|
41
|
Beato M, Vicent GP. Impact of chromatin structure and dynamics on PR signaling. The initial steps in hormonal gene regulation. Mol Cell Endocrinol 2012; 357:37-42. [PMID: 21945605 DOI: 10.1016/j.mce.2011.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/03/2011] [Accepted: 09/02/2011] [Indexed: 11/16/2022]
Abstract
Gene regulation requires access of transcription factors to DNA sequences of target genes, which is limited by the compaction of DNA in chromatin. Based on our studies on the Progesterone receptor (PR)-dependent hormonal induction of mouse mammary tumor virus (MMTV) promoter we found that remodeling of the various levels of chromatin organization is a complex and necessary prerequisite for regulation. Two consecutive cycles are essential for transcriptional activation, both involving the collaboration between activated protein kinases, histone modifying enzymes and ATP-dependent chromatin remodelers. The first cycle ends with the displacement of histone H1 and decompaction of higher order chromatin structure. The second cycle leads to the displacement of dimers of histones H2A and H2B resulting in opening of nucleosomes. In both cases the hormone receptor recruits an ATP-dependent chromatin remodeler, whose binding to chromatin is stabilized by distinct histone modifications. The final result is to facilitate full occupancy of the cis regulatory sites and access for the basal transcription machinery. Thus, activation of PR-target genes involves a very rapid coordination of enzymatic activities via crosstalk with various kinase-signaling pathways.
Collapse
Affiliation(s)
- Miguel Beato
- Centre de Regulació Genòmica and Universitat Pompeu Fabra, Dr. Aiguader 88, E-08003 Barcelona, Spain.
| | | |
Collapse
|
42
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
43
|
Moyle-Heyrman G, Viswanathan R, Widom J, Auble DT. Two-step mechanism for modifier of transcription 1 (Mot1) enzyme-catalyzed displacement of TATA-binding protein (TBP) from DNA. J Biol Chem 2012; 287:9002-12. [PMID: 22298788 DOI: 10.1074/jbc.m111.333484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The TATA box binding protein (TBP) is a central component of the transcription preinitiation complex, and its occupancy at a promoter is correlated with transcription levels. The TBP-promoter DNA complex contains sharply bent DNA and its interaction lifetime is limited by the ATP-dependent TBP displacement activity of the Snf2/Swi2 ATPase Mot1. Several mechanisms for Mot1 action have been proposed, but how it catalyzes TBP removal from DNA is unknown. To better understand the Mot1 mechanism, native gel electrophoresis and FRET were used to determine how Mot1 affects the trajectory of DNA in the TBP-DNA complex. Strikingly, in the absence of ATP, Mot1 acts to unbend DNA, whereas TBP remains closely associated with the DNA in a stable Mot1-TBP-DNA ternary complex. Interestingly, and in contrast to full-length Mot1, the isolated Mot1 ATPase domain binds DNA, and its affinity for DNA is nucleotide-dependent, suggesting parallels between the Mot1 mechanism and DNA translocation-based mechanisms of chromatin remodeling enzymes. Based on these findings, a model is presented for Mot1 that links a DNA conformational change with ATP-induced DNA translocation.
Collapse
|
44
|
Wu JI. Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer. Acta Biochim Biophys Sin (Shanghai) 2012; 44:54-69. [PMID: 22194014 DOI: 10.1093/abbs/gmr099] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian SWI/SNF like Brg1/Brm associated factors (BAF) chromatin-remodeling complexes are able to use energy derived from adenosine triphosphate (ATP) hydrolysis to change chromatin structures and regulate nuclear processes such as transcription. BAF complexes contain multiple subunits and the diverse subunit compositions provide functional specificities to BAF complexes. In this review, we summarize the functions of BAF subunits during mammalian development and in progression of various cancers. The mechanisms underlying the functional diversity and specificities of BAF complexes will be discussed.
Collapse
Affiliation(s)
- Jiang I Wu
- Department of Physiology and Developmental Biology, University of Texas Southwestern Medical Center at Dallas, 75390-9133, USA.
| |
Collapse
|
45
|
Furdas SD, Carlino L, Sippl W, Jung M. Inhibition of bromodomain-mediated protein–protein interactions as a novel therapeutic strategy. MEDCHEMCOMM 2012. [DOI: 10.1039/c1md00201e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecule inhibitors of acetyl lysine–bromodomain interactions emerge as novel epigenetic tools with potential for therapeutic approaches.
Collapse
Affiliation(s)
- Silviya D. Furdas
- Institute of Pharmaceutical Sciences
- Albert-Ludwigs-University of Freiburg
- Freiburg
- Germany
| | - Luca Carlino
- Department of Pharmaceutical Chemistry
- Martin-Luther University of Halle-Wittenberg
- Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry
- Martin-Luther University of Halle-Wittenberg
- Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences
- Albert-Ludwigs-University of Freiburg
- Freiburg
- Germany
| |
Collapse
|
46
|
Krishnamurthy M, Dugan A, Nwokoye A, Fung YH, Lancia JK, Majmudar CY, Mapp AK. Caught in the act: covalent cross-linking captures activator-coactivator interactions in vivo. ACS Chem Biol 2011; 6:1321-6. [PMID: 21977905 DOI: 10.1021/cb200308e] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently there are few methods suitable for the discovery and characterization of transient, moderate affinity protein-protein interactions in their native environment, despite their prominent role in a host of cellular functions including protein folding, signal transduction, and transcriptional activation. Here we demonstrate that a genetically encoded photoactivatable amino acid, p-benzoyl-l-phenylalanine, can be used to capture transient and/or low affinity binding partners in an in vivo setting. In this study, we focused on ensnaring the coactivator binding partners of the transcriptional activator VP16 in S. cerevisiae. The interactions between transcriptional activators and coactivators in eukaryotes are moderate in affinity and short-lived, and due in part to these characteristics, identification of the direct binding partners of activators in vivo has met with only limited success. We find through in vivo photo-cross-linking that VP16 contacts the Swi/Snf chromatin-remodeling complex through the ATPase Snf2(BRG1/BRM) and the subunit Snf5 with two distinct regions of the activation domain. An analogous experiment with Gal4 reveals that Snf2 is also a target of this activator. These results suggest that Snf2 may be a valuable target for small molecule probe discovery given the prominent role the Swi/Snf complex family plays in development and in disease. More significantly, the successful implementation of the in vivo cross-linking methodology in this setting demonstrates that it can be applied to the discovery and characterization of a broad range of transient and/or modest affinity protein-protein interactions.
Collapse
Affiliation(s)
- Malathy Krishnamurthy
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda Dugan
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adaora Nwokoye
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yik-Hong Fung
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jody K. Lancia
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chinmay Y. Majmudar
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna K Mapp
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
47
|
Galdieri L, Desai P, Vancura A. Facilitated assembly of the preinitiation complex by separated tail and head/middle modules of the mediator. J Mol Biol 2011; 415:464-74. [PMID: 22137896 DOI: 10.1016/j.jmb.2011.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 02/06/2023]
Abstract
Mediator is a general coactivator of RNA polymerase II (RNA pol II) bridging enhancer-bound transcriptional factors with RNA pol II. Mediator is organized in three distinct subcomplexes: head, middle, and tail modules. The head and middle modules interact with RNA pol II, and the tail module interacts with transcriptional activators. Deletion of one of the tail subunits SIN4 results in derepression of a subset of genes, including FLR1, by a largely unknown mechanism. Here we show that derepression of FLR1 transcription in sin4Δ cells occurs by enhanced recruitment of the mediator as well as Swi/Snf and SAGA complexes. The tail and head/middle modules of the mediator behave as separate complexes at the induced FLR1 promoter. While the tail module remains anchored to the promoter, the head/middle modules are also found in the coding region. The separation of the tail and head/middle modules in sin4Δ cells is also supported by the altered stoichiometry of the tail and head/middle modules at several tested promoters. Deletion of another subunit of the tail module MED2 in sin4Δ cells results in significantly decreased transcription of FLR1, pointing to the importance of the integrity of the separated tail module in derepression. All tested genes exhibited increased recruitment of the tail domain; however, only genes with increased occupancy of the head/middle modules also displayed increased transcription. The separated tail module thus represents a promiscuous transcriptional factor that binds to many different promoters and is necessary for derepression of FLR1 in sin4Δ cells.
Collapse
Affiliation(s)
- Luciano Galdieri
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | | | | |
Collapse
|
48
|
Sen P, Ghosh S, Pugh BF, Bartholomew B. A new, highly conserved domain in Swi2/Snf2 is required for SWI/SNF remodeling. Nucleic Acids Res 2011; 39:9155-66. [PMID: 21835776 PMCID: PMC3241646 DOI: 10.1093/nar/gkr622] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SWI/SNF is an ATP-dependent remodeler that mobilizes nucleosomes and has important roles in gene regulation. The catalytic subunit of SWI/SNF has an ATP-dependent DNA translocase domain that is essential for remodeling. Besides the DNA translocase domain there are other domains in the catalytic subunit of SWI/SNF that have important roles in mobilizing nucleosomes. One of these domains, termed SnAC (Snf2 ATP Coupling), is conserved in all eukaryotic SWI/SNF complexes and is located between the ATPase and A-T hook domains. Here, we show that the SnAC domain is essential for SWI/SNF activity. The SnAC domain is not required for SWI/SNF complex integrity, efficient nucleosome binding, or recruitment by acidic transcription activators. The SnAC domain is however required in vivo for transcription regulation by SWI/SNF as seen by alternative carbon source growth assays, northern analysis, and genome-wide expression profiling. The ATPase and nucleosome mobilizing activities of SWI/SNF are severely affected when the SnAC domain is removed or mutated. The SnAC domain positively regulates the catalytic activity of the ATPase domain of SWI/SNF to hydrolyze ATP without significantly affecting its affinity for ATP.
Collapse
Affiliation(s)
- Payel Sen
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Neckers Building, Carbondale, IL 62901-4413, USA
| | | | | | | |
Collapse
|
49
|
Chatterjee N, Sinha D, Lemma-Dechassa M, Tan S, Shogren-Knaak MA, Bartholomew B. Histone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms. Nucleic Acids Res 2011; 39:8378-91. [PMID: 21749977 PMCID: PMC3201869 DOI: 10.1093/nar/gkr535] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is a close relationship between histone acetylation and ATP-dependent chromatin remodeling that is not fully understood. We show that acetylation of histone H3 tails affects SWI/SNF (mating type switching/ sucrose non fermenting) and RSC (remodels structure of chromatin) remodeling in several distinct ways. Acetylation of the histone H3 N-terminal tail facilitated recruitment and nucleosome mobilization by the ATP-dependent chromatin remodelers SWI/SNF and RSC. Tetra-acetylated H3, but not tetra-acetylated H4 tails, increased the affinity of RSC and SWI/SNF for nucleosomes while also changing the subunits of SWI/SNF that interact with the H3 tail. The enhanced recruitment of SWI/SNF due to H3 acetylation is bromodomain dependent, but is not further enhanced by additional bromodomains found in RSC. The combined effect of H3 acetylation and transcription activators is greater than either separately which suggests they act in parallel to recruit SWI/SNF. Besides enhancing recruitment, H3 acetylation increased nucleosome mobilization and H2A/H2B displacement by RSC and SWI/SNF in a bromodomain dependent manner and to a lesser extent enhanced ATP hydrolysis independent of bromodomains. H3 and H4 acetylation did not stimulate disassembly of adjacent nucleosomes in short arrays by SWI/SNF or RSC. These data illustrate how histone acetylation modulates RSC and SWI/SNF function, and provide a mechanistic insight into their collaborative efforts to remodel chromatin.
Collapse
Affiliation(s)
- Nilanjana Chatterjee
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901-4413, USA
| | | | | | | | | | | |
Collapse
|
50
|
Minard LV, Lin LJ, Schultz MC. SWI/SNF and Asf1 independently promote derepression of the DNA damage response genes under conditions of replication stress. PLoS One 2011; 6:e21633. [PMID: 21738741 PMCID: PMC3124541 DOI: 10.1371/journal.pone.0021633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/03/2011] [Indexed: 12/19/2022] Open
Abstract
The histone chaperone Asf1 and the chromatin remodeler SWI/SNF have been separately implicated in derepression of the DNA damage response (DDR) genes in yeast cells treated with genotoxins that cause replication interference. Using genetic and biochemical approaches, we have tested if derepression of the DDR genes in budding yeast involves functional interplay between Asf1 and SWI/SNF. We find that Asf1 and SWI/SNF are both recruited to DDR genes under replication stress triggered by hydroxyurea, and have detected a soluble complex that contains Asf1 and the Snf2 subunit of SWI/SNF. SWI/SNF recruitment to DDR genes however does not require Asf1, and deletion of Snf2 does not affect Asf1 occupancy of DDR gene promoters. A checkpoint engagement defect is sufficient to explain the synthetic effect of deletion of ASF1 and SNF2 on derepression of the DDR genes in hydroxyurea-treated cells. Collectively, our results show that the DDR genes fall into a class in which Asf1 and SWI/SNF independently control transcriptional induction.
Collapse
Affiliation(s)
- Laura V. Minard
- Department of Biochemistry, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ling-ju Lin
- Department of Biochemistry, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael C. Schultz
- Department of Biochemistry, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|