1
|
Bhatt PA, Gurav TP, Kondhare KR, Giri AP. MYB proteins: Versatile regulators of plant development, stress responses, and secondary metabolite biosynthetic pathways. Int J Biol Macromol 2025; 288:138588. [PMID: 39672414 DOI: 10.1016/j.ijbiomac.2024.138588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
MYB proteins are ubiquitous in nature, regulating key aspects of plant growth and development. Although MYB proteins are known for regulating genes involved in secondary metabolite biosynthesis, particularly phenylpropanoids, their roles in terpenoid, glucosinolate, and alkaloid biosynthesis remain less understood. This review explores the structural and functional differences between activator and repressor MYB proteins along with their roles in plant growth, development, stress responses, and secondary metabolite production. MYB proteins serve as central hubs in protein-protein interaction networks that regulate expression of numerous genes involved in the adaptation of plants to varying environmental conditions. Thus, we also highlight key interacting partners of MYB proteins and their roles in these adaptation mechanisms. We further discuss the mechanisms regulating MYB proteins, including autoregulation, epigenetics, and post-transcriptional and post-translational modifications. Overall, we propose MYB proteins as versatile regulators for improving plant traits, stress responses, and secondary metabolite production.
Collapse
Affiliation(s)
- Preshita A Bhatt
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Tanuja P Gurav
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Wijnbergen D, Johari M, Ozisik O, 't Hoen PAC, Ehrhart F, Baudot A, Evelo CT, Udd B, Roos M, Mina E. Multi-omics analysis in inclusion body myositis identifies mir-16 responsible for HLA overexpression. Orphanet J Rare Dis 2025; 20:27. [PMID: 39815348 PMCID: PMC11737257 DOI: 10.1186/s13023-024-03526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Inclusion Body Myositis is an acquired muscle disease. Its pathogenesis is unclear due to the co-existence of inflammation, muscle degeneration and mitochondrial dysfunction. We aimed to provide a more advanced understanding of the disease by combining multi-omics analysis with prior knowledge. We applied molecular subnetwork identification to find highly interconnected subnetworks with a high degree of change in Inclusion Body Myositis. These could be used as hypotheses for potential pathomechanisms and biomarkers that are implicated in this disease. RESULTS Our multi-omics analysis resulted in five subnetworks that exhibit changes in multiple omics layers. These subnetworks are related to antigen processing and presentation, chemokine-mediated signaling, immune response-signal transduction, rRNA processing, and mRNA splicing. An interesting finding is that the antigen processing and presentation subnetwork links the underexpressed miR-16-5p to overexpressed HLA genes by negative expression correlation. In addition, the rRNA processing subnetwork contains the RPS18 gene, which is not differentially expressed, but has significant variant association. The RPS18 gene could potentially play a role in the underexpression of the genes involved in 18 S ribosomal RNA processing, which it is highly connected to. CONCLUSIONS Our analysis highlights the importance of interrogating multiple omics to enhance knowledge discovery in rare diseases. We report five subnetworks that can provide additional insights into the molecular pathogenesis of Inclusion Body Myositis. Our analytical workflow can be reused as a method to study disease mechanisms involved in other diseases when multiple omics datasets are available.
Collapse
Affiliation(s)
- Daphne Wijnbergen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Mridul Johari
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
- Folkhälsen Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Ozan Ozisik
- Université Paris Cité, INSERM U976, Paris, France
| | - Peter A C 't Hoen
- Department of Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics - BiGCaT, NUTRIM/MHeNs, Maastricht University, Maastricht, The Netherlands
| | - Anaïs Baudot
- Aix Marseille University, INSERM, MMG, Marseille, France
- CNRS, Marseille, France
- Barcelona Supercomputing Centre, Barcelona, Spain
| | - Chris T Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Bjarne Udd
- Folkhälsen Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Tampere Neuromuscular Center, University Hospital, Tampere, Finland
| | - Marco Roos
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Eleni Mina
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Shah SZ, Perry TN, Graziadei A, Cecatiello V, Kaliyappan T, Misiaszek AD, Müller CW, Ramsay EP, Vannini A. Structural insights into distinct mechanisms of RNA polymerase II and III recruitment to snRNA promoters. Nat Commun 2025; 16:141. [PMID: 39747245 PMCID: PMC11696126 DOI: 10.1038/s41467-024-55553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
RNA polymerase III (Pol III) transcribes short, essential RNAs, including the U6 small nuclear RNA (snRNA). At U6 snRNA genes, Pol III is recruited by the snRNA Activating Protein Complex (SNAPc) and a Brf2-containing TFIIIB complex, forming a pre-initiation complex (PIC). Uniquely, SNAPc also recruits Pol II at the remaining splicesosomal snRNA genes (U1, 2, 4 and 5). The mechanism of SNAPc cross-polymerase engagement and the role of the SNAPC2 and SNAPC5 subunits remain poorly defined. Here, we present cryo-EM structures of the full-length SNAPc-containing Pol III PIC assembled on the U6 snRNA promoter in the open and melting states at 3.2-4.2 Å resolution. The structural comparison revealed differences with the Saccharomyces cerevisiae Pol III PIC and the basis of selective SNAPc engagement within Pol III and Pol II PICs. Additionally, crosslinking mass spectrometry localizes SNAPC2 and SNAPC5 near the promoter DNA, expanding upon existing descriptions of snRNA Pol III PIC structure.
Collapse
Affiliation(s)
| | | | | | | | | | - Agata D Misiaszek
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | | |
Collapse
|
4
|
Vilstrup AP, Gupta A, Rasmussen AJ, Ebert A, Riedelbauch S, Lukassen MV, Hayashi R, Andersen P. A germline PAF1 paralog complex ensures cell type-specific gene expression. Genes Dev 2024; 38:866-886. [PMID: 39332828 PMCID: PMC11535153 DOI: 10.1101/gad.351930.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
Animal germline development and fertility rely on paralogs of general transcription factors that recruit RNA polymerase II to ensure cell type-specific gene expression. It remains unclear whether gene expression processes downstream from such paralog-based transcription is distinct from that of canonical RNA polymerase II genes. In Drosophila, the testis-specific TBP-associated factors (tTAFs) activate over a thousand spermatocyte-specific gene promoters to enable meiosis and germ cell differentiation. Here, we show that efficient termination of tTAF-activated transcription relies on testis-specific paralogs of canonical polymerase-associated factor 1 complex (PAF1C) proteins, which form a testis-specific PAF1C (tPAF). Consequently, tPAF mutants show aberrant expression of hundreds of downstream genes due to read-in transcription. Furthermore, tPAF facilitates expression of Y-linked male fertility factor genes and thus serves to maintain spermatocyte-specific gene expression. Consistently, tPAF is required for the segregation of meiotic chromosomes and male fertility. Supported by comparative in vivo protein interaction assays, we provide a mechanistic model for the functional divergence of tPAF and the PAF1C and identify transcription termination as a developmentally regulated process required for germline-specific gene expression.
Collapse
Affiliation(s)
- Astrid Pold Vilstrup
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Archica Gupta
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Anna Jon Rasmussen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Anja Ebert
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Sebastian Riedelbauch
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Rippei Hayashi
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Acton, Australian Capital Territory 2601, Australia;
| | - Peter Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| |
Collapse
|
5
|
Su Y, Wu J, Chen W, Shan J, Chen D, Zhu G, Ge S, Liu Y. Spliceosomal snRNAs, the Essential Players in pre-mRNA Processing in Eukaryotic Nucleus: From Biogenesis to Functions and Spatiotemporal Characteristics. Adv Biol (Weinh) 2024; 8:e2400006. [PMID: 38797893 DOI: 10.1002/adbi.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Spliceosomal small nuclear RNAs (snRNAs) are a fundamental class of non-coding small RNAs abundant in the nucleoplasm of eukaryotic cells, playing a crucial role in splicing precursor messenger RNAs (pre-mRNAs). They are transcribed by DNA-dependent RNA polymerase II (Pol II) or III (Pol III), and undergo subsequent processing and 3' end cleavage to become mature snRNAs. Numerous protein factors are involved in the transcription initiation, elongation, termination, splicing, cellular localization, and terminal modification processes of snRNAs. The transcription and processing of snRNAs are regulated spatiotemporally by various mechanisms, and the homeostatic balance of snRNAs within cells is of great significance for the growth and development of organisms. snRNAs assemble with specific accessory proteins to form small nuclear ribonucleoprotein particles (snRNPs) that are the basal components of spliceosomes responsible for pre-mRNA maturation. This article provides an overview of the biological functions, biosynthesis, terminal structure, and tissue-specific regulation of snRNAs.
Collapse
Affiliation(s)
- Yuan Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaming Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Junling Shan
- Department of basic medicine, Guangxi Medical University of Nursing College, Nanning, Guangxi, 530021, China
| | - Dan Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Guangyu Zhu
- Guangxi Medical University Hospital of Stomatology, Nanning, Guangxi, 530021, China
| | - Shengchao Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
6
|
Girardini KN, Olthof AM, Kanadia RN. Introns: the "dark matter" of the eukaryotic genome. Front Genet 2023; 14:1150212. [PMID: 37260773 PMCID: PMC10228655 DOI: 10.3389/fgene.2023.1150212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
The emergence of introns was a significant evolutionary leap that is a major distinguishing feature between prokaryotic and eukaryotic genomes. While historically introns were regarded merely as the sequences that are removed to produce spliced transcripts encoding functional products, increasingly data suggests that introns play important roles in the regulation of gene expression. Here, we use an intron-centric lens to review the role of introns in eukaryotic gene expression. First, we focus on intron architecture and how it may influence mechanisms of splicing. Second, we focus on the implications of spliceosomal snRNAs and their variants on intron splicing. Finally, we discuss how the presence of introns and the need to splice them influences transcription regulation. Despite the abundance of introns in the eukaryotic genome and their emerging role regulating gene expression, a lot remains unexplored. Therefore, here we refer to introns as the "dark matter" of the eukaryotic genome and discuss some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Kaitlin N. Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
| | - Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
7
|
Sun J, Li X, Hou X, Cao S, Cao W, Zhang Y, Song J, Wang M, Wang H, Yan X, Li Z, Roeder RG, Wang W. Structural basis of human SNAPc recognizing proximal sequence element of snRNA promoter. Nat Commun 2022; 13:6871. [PMID: 36369505 PMCID: PMC9652321 DOI: 10.1038/s41467-022-34639-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
In eukaryotes, small nuclear RNAs (snRNAs) function in many fundamental cellular events such as precursor messenger RNA splicing, gene expression regulation, and ribosomal RNA processing. The snRNA activating protein complex (SNAPc) exclusively recognizes the proximal sequence element (PSE) at snRNA promoters and recruits RNA polymerase II or III to initiate transcription. In view that homozygous gene-knockout of SNAPc core subunits causes mouse embryonic lethality, functions of SNAPc are almost housekeeping. But so far, the structural insight into how SNAPc assembles and regulates snRNA transcription initiation remains unclear. Here we present the cryo-electron microscopy structure of the essential part of human SNAPc in complex with human U6-1 PSE at an overall resolution of 3.49 Å. This structure reveals the three-dimensional features of three conserved subunits (N-terminal domain of SNAP190, SNAP50, and SNAP43) and explains how they are assembled into a stable mini-SNAPc in PSE-binding state with a "wrap-around" mode. We identify three important motifs of SNAP50 that are involved in both major groove and minor groove recognition of PSE, in coordination with the Myb domain of SNAP190. Our findings further elaborate human PSE sequence conservation and compatibility for SNAPc recognition, providing a clear framework of snRNA transcription initiation, especially the U6 system.
Collapse
Affiliation(s)
- Jianfeng Sun
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China ,grid.134907.80000 0001 2166 1519Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, 10065 USA
| | - Xue Li
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Xuben Hou
- grid.27255.370000 0004 1761 1174School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Sujian Cao
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Wenjin Cao
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Ye Zhang
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Jinyang Song
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Manfu Wang
- grid.512077.6Wuxi Biortus Biosciences Co. Ltd., Jiangyin, 214437 China
| | - Hao Wang
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Xiaodong Yan
- grid.512077.6Wuxi Biortus Biosciences Co. Ltd., Jiangyin, 214437 China
| | - Zengpeng Li
- grid.453137.70000 0004 0406 0561Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
| | - Robert G. Roeder
- grid.134907.80000 0001 2166 1519Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, 10065 USA
| | - Wei Wang
- grid.27255.370000 0004 1761 1174Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174Interventional Medicine Department, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033 China
| |
Collapse
|
8
|
Guiro J, Fagbemi M, Tellier M, Zaborowska J, Barker S, Fournier M, Murphy S. CAPTURE of the Human U2 snRNA Genes Expands the Repertoire of Associated Factors. Biomolecules 2022; 12:704. [PMID: 35625631 PMCID: PMC9138887 DOI: 10.3390/biom12050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
In order to identify factors involved in transcription of human snRNA genes and 3' end processing of the transcripts, we have carried out CRISPR affinity purification in situ of regulatory elements (CAPTURE), which is deadCas9-mediated pull-down, of the tandemly repeated U2 snRNA genes in human cells. CAPTURE enriched many factors expected to be associated with these human snRNA genes including RNA polymerase II (pol II), Cyclin-Dependent Kinase 7 (CDK7), Negative Elongation Factor (NELF), Suppressor of Ty 5 (SPT5), Mediator 23 (MED23) and several subunits of the Integrator Complex. Suppressor of Ty 6 (SPT6); Cyclin K, the partner of Cyclin-Dependent Kinase 12 (CDK12) and Cyclin-Dependent Kinase 13 (CDK13); and SWI/SNF chromatin remodelling complex-associated SWI/SNF-related, Matrix-associated, Regulator of Chromatin (SMRC) factors were also enriched. Several polyadenylation factors, including Cleavage and Polyadenylation Specificity Factor 1 (CPSF1), Cleavage Stimulation Factors 1 and 2 (CSTF1,and CSTF2) were enriched by U2 gene CAPTURE. We have already shown by chromatin immunoprecipitation (ChIP) that CSTF2-and Pcf11 and Ssu72, which are also polyadenylation factors-are associated with the human U1 and U2 genes. ChIP-seq and ChIP-qPCR confirm the association of SPT6, Cyclin K, and CDK12 with the U2 genes. In addition, knockdown of SPT6 causes loss of subunit 3 of the Integrator Complex (INTS3) from the U2 genes, indicating a functional role in snRNA gene expression. CAPTURE has therefore expanded the repertoire of transcription and RNA processing factors associated with these genes and helped to identify a functional role for SPT6.
Collapse
Affiliation(s)
- Joana Guiro
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| | - Mathias Fagbemi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| | - Justyna Zaborowska
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| | - Stephanie Barker
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| | - Marjorie Fournier
- Advanced Proteomics Facility, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| |
Collapse
|
9
|
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat Rev Mol Cell Biol 2022; 23:603-622. [PMID: 35505252 DOI: 10.1038/s41580-022-00476-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.
Collapse
|
10
|
Alternate Roles of Sox Transcription Factors beyond Transcription Initiation. Int J Mol Sci 2021; 22:ijms22115949. [PMID: 34073089 PMCID: PMC8198692 DOI: 10.3390/ijms22115949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Sox proteins are known as crucial transcription factors for many developmental processes and for a wide range of common diseases. They were believed to specifically bind and bend DNA with other transcription factors and elicit transcriptional activation or repression activities in the early stage of transcription. However, their functions are not limited to transcription initiation. It has been showed that Sox proteins are involved in the regulation of alternative splicing regulatory networks and translational control. In this review, we discuss the current knowledge on how Sox transcription factors such as Sox2, Sry, Sox6, and Sox9 allow the coordination of co-transcriptional splicing and also the mechanism of SOX4-mediated translational control in the context of RNA polymerase III.
Collapse
|
11
|
Thiedig K, Weisshaar B, Stracke R. Functional and evolutionary analysis of the Arabidopsis 4R-MYB protein SNAPc4 as part of the SNAP complex. PLANT PHYSIOLOGY 2021; 185:1002-1020. [PMID: 33693812 PMCID: PMC8133616 DOI: 10.1093/plphys/kiaa067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Transcription initiation of the genes coding for small nuclear RNA (snRNA) has been extensively analyzed in humans and fruit fly, but only a single ortholog of a snRNA-activating protein complex (SNAPc) subunit has so far been characterized in plants. The genome of the model plant Arabidopsis thaliana encodes orthologs of all three core SNAPc subunits, including A. thaliana SNAP complex 4 (AtSNAPc4)-a 4R-MYB-type protein with four-and-a-half adjacent MYB repeat units. We report the conserved role of AtSNAPc4 as subunit of a protein complex involved in snRNA gene transcription and present genetic evidence that AtSNAPc4 is an essential gene in gametophyte and zygote development. We present experimental evidence that the three A. thaliana SNAPc subunits assemble into a SNAP complex and demonstrate the binding of AtSNAPc4 to snRNA promoters. In addition, co-localization studies show a link between AtSNAPc4 accumulation and Cajal bodies, known to aggregate at snRNA gene loci in humans. Moreover, we show the strong evolutionary conservation of single-copy 4R-MYB/SNAPc4 genes in a broad range of eukaryotes and present additional shared protein features besides the MYB domain, suggesting a conservation of the snRNA transcription initiation machinery along the course of the eukaryotic evolution.
Collapse
Affiliation(s)
- Katharina Thiedig
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Bernd Weisshaar
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| |
Collapse
|
12
|
Assembly of SNAPc, Bdp1, and TBP on the U6 snRNA Gene Promoter in Drosophila melanogaster. Mol Cell Biol 2020; 40:MCB.00641-19. [PMID: 32253345 DOI: 10.1128/mcb.00641-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/27/2020] [Indexed: 01/03/2023] Open
Abstract
U6 snRNA is transcribed by RNA polymerase III (Pol III) and has an external upstream promoter that consists of a TATA sequence recognized by the TBP subunit of the Pol III basal transcription factor IIIB and a proximal sequence element (PSE) recognized by the small nuclear RNA activating protein complex (SNAPc). Previously, we found that Drosophila melanogaster SNAPc (DmSNAPc) bound to the U6 PSE can recruit the Pol III general transcription factor Bdp1 to form a stable complex with the DNA. Here, we show that DmSNAPc-Bdp1 can recruit TBP to the U6 promoter, and we identify a region of Bdp1 that is sufficient for TBP recruitment. Moreover, we find that this same region of Bdp1 cross-links to nucleotides within the U6 PSE at positions that also cross-link to DmSNAPc. Finally, cross-linking mass spectrometry reveals likely interactions of specific DmSNAPc subunits with Bdp1 and TBP. These data, together with previous findings, have allowed us to build a more comprehensive model of the DmSNAPc-Bdp1-TBP complex on the U6 promoter that includes nearly all of DmSNAPc, a portion of Bdp1, and the conserved region of TBP.
Collapse
|
13
|
Abstract
RNA polymerase II (Pol II) transcribes all protein-coding genes and many noncoding RNAs in eukaryotic genomes. Although Pol II is a complex, 12-subunit enzyme, it lacks the ability to initiate transcription and cannot consistently transcribe through long DNA sequences. To execute these essential functions, an array of proteins and protein complexes interact with Pol II to regulate its activity. In this review, we detail the structure and mechanism of over a dozen factors that govern Pol II initiation (e.g., TFIID, TFIIH, and Mediator), pausing, and elongation (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis for Pol II transcription regulation has advanced rapidly in the past decade, largely due to technological innovations in cryoelectron microscopy. Here, we summarize a wealth of structural and functional data that have enabled a deeper understanding of Pol II transcription mechanisms; we also highlight mechanistic questions that remain unanswered or controversial.
Collapse
Affiliation(s)
- Allison C Schier
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
14
|
Greber BJ, Nogales E. The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications. Subcell Biochem 2019; 93:143-192. [PMID: 31939151 DOI: 10.1007/978-3-030-28151-9_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription is a highly regulated process that supplies living cells with coding and non-coding RNA molecules. Failure to properly regulate transcription is associated with human pathologies, including cancers. RNA polymerase II is the enzyme complex that synthesizes messenger RNAs that are then translated into proteins. In spite of its complexity, RNA polymerase requires a plethora of general transcription factors to be recruited to the transcription start site as part of a large transcription pre-initiation complex, and to help it gain access to the transcribed strand of the DNA. This chapter reviews the structure and function of these eukaryotic transcription pre-initiation complexes, with a particular emphasis on two of its constituents, the multisubunit complexes TFIID and TFIIH. We also compare the overall architecture of the RNA polymerase II pre-initiation complex with those of RNA polymerases I and III, involved in transcription of ribosomal RNA and non-coding RNAs such as tRNAs and snRNAs, and discuss the general, conserved features that are applicable to all eukaryotic RNA polymerase systems.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
15
|
Tourigny JP, Saleh MM, Schumacher K, Devys D, Zentner GE. Mediator Is Essential for Small Nuclear and Nucleolar RNA Transcription in Yeast. Mol Cell Biol 2018; 38:e00296-18. [PMID: 30275344 PMCID: PMC6275182 DOI: 10.1128/mcb.00296-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/13/2018] [Accepted: 09/21/2018] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic RNA polymerase II (RNAPII) transcribes mRNA genes and non-protein-coding RNA (ncRNA) genes, including those encoding small nuclear and nucleolar RNAs (sn/snoRNAs). In metazoans, RNAPII transcription of sn/snoRNAs is facilitated by a number of specialized complexes, but no such complexes have been discovered in yeast. It has been proposed that yeast sn/snoRNA and mRNA expression relies on a set of common factors, but the extent to which regulators of mRNA genes function at yeast sn/snoRNA genes is unclear. Here, we investigated a potential role for the Mediator complex, essential for mRNA gene transcription, in sn/snoRNA gene transcription. We found that Mediator maps to sn/snoRNA gene regulatory regions and that rapid depletion of the essential structural subunit Med14 strongly reduces RNAPII and TFIIB occupancy as well as nascent transcription of sn/snoRNA genes. Deletion of Med3 and Med15, subunits of the activator-interacting Mediator tail module, does not affect Mediator recruitment to or RNAPII and TFIIB occupancy of sn/snoRNA genes. Our analyses suggest that Mediator promotes PIC formation and transcription at sn/snoRNA genes, expanding the role of this critical regulator beyond its known functions in mRNA gene transcription and demonstrating further mechanistic similarity between the transcription of mRNA and sn/snoRNA genes.
Collapse
Affiliation(s)
- Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Moustafa M Saleh
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Kenny Schumacher
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- UMR7104, Centre National de la Recherche Scientifique, Illkirch, France
- U964, Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- UMR7104, Centre National de la Recherche Scientifique, Illkirch, France
- U964, Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, USA
| |
Collapse
|
16
|
Guiro J, Murphy S. Regulation of expression of human RNA polymerase II-transcribed snRNA genes. Open Biol 2018; 7:rsob.170073. [PMID: 28615474 PMCID: PMC5493778 DOI: 10.1098/rsob.170073] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
In addition to protein-coding genes, RNA polymerase II (pol II) transcribes numerous genes for non-coding RNAs, including the small-nuclear (sn)RNA genes. snRNAs are an important class of non-coding RNAs, several of which are involved in pre-mRNA splicing. The molecular mechanisms underlying expression of human pol II-transcribed snRNA genes are less well characterized than for protein-coding genes and there are important differences in expression of these two gene types. Here, we review the DNA features and proteins required for efficient transcription of snRNA genes and co-transcriptional 3′ end formation of the transcripts.
Collapse
Affiliation(s)
- Joana Guiro
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Verma N, Hurlburt AM, Wolfe A, Kim MK, Kang YS, Kang JJ, Stumph WE. Bdp1 interacts with SNAPc bound to a U6, but not U1, snRNA gene promoter element to establish a stable protein-DNA complex. FEBS Lett 2018; 592:2489-2498. [PMID: 29932462 DOI: 10.1002/1873-3468.13169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/17/2018] [Indexed: 12/15/2022]
Abstract
In metazoans, U6 small nuclear RNA (snRNA) gene promoters utilize a proximal sequence element (PSE) recognized by the small nuclear RNA-activating protein complex (SNAPc). SNAPc interacts with the transcription factor TFIIIB, which consists of the subunits TBP, Brf1 (Brf2 in vertebrates), and Bdp1. Here, we show that, in Drosophila melanogaster, DmSNAPc directly recruits Bdp1 to the U6 promoter, and we identify an 87-residue region of Bdp1 involved in this interaction. Importantly, Bdp1 recruitment requires that DmSNAPc be bound to a U6 PSE rather than a U1 PSE. This is consistent with the concept that DmSNAPc adopts different conformations on U6 and U1 PSEs, which lead to the subsequent recruitment of distinct general transcription factors and RNA polymerases for U6 and U1 gene transcription.
Collapse
Affiliation(s)
- Neha Verma
- Department of Biology, Molecular Biology Institute, San Diego State University, CA, USA
| | - Ann Marie Hurlburt
- Department of Biology, Molecular Biology Institute, San Diego State University, CA, USA
| | - Angela Wolfe
- Department of Chemistry and Biochemistry, Molecular Biology Institute, San Diego State University, CA, USA
| | - Mun Kyoung Kim
- Department of Chemistry and Biochemistry, Molecular Biology Institute, San Diego State University, CA, USA
| | - Yoon Soon Kang
- Department of Chemistry and Biochemistry, Molecular Biology Institute, San Diego State University, CA, USA
| | - Jin Joo Kang
- Department of Chemistry and Biochemistry, Molecular Biology Institute, San Diego State University, CA, USA
| | - William E Stumph
- Department of Chemistry and Biochemistry, Molecular Biology Institute, San Diego State University, CA, USA
| |
Collapse
|
18
|
Meersseman C, Letaief R, Léjard V, Rebours E, Guillocheau G, Esquerré D, Djari A, Chamberlain A, Vander Jagt C, Klopp C, Boussaha M, Renand G, Maftah A, Petit D, Rocha D. Genetic variability of the activity of bidirectional promoters: a pilot study in bovine muscle. DNA Res 2017; 24:221-233. [PMID: 28338730 PMCID: PMC5499805 DOI: 10.1093/dnares/dsx004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Bidirectional promoters are regulatory regions co-regulating the expression of two neighbouring genes organized in a head-to-head orientation. In recent years, these regulatory regions have been studied in many organisms; however, no investigation to date has been done to analyse the genetic variation of the activity of this type of promoter regions. In our study, we conducted an investigation to first identify bidirectional promoters sharing genes expressed in bovine Longissimus thoracis and then to find genetic variants affecting the activity of some of these bidirectional promoters. Combining bovine gene information and expression data obtained using RNA-Seq, we identified 120 putative bidirectional promoters active in bovine muscle. We experimentally validated in vitro 16 of these bidirectional promoters. Finally, using gene expression and whole-genome genotyping data, we explored the variability of the activity in muscle of the identified bidirectional promoters and discovered genetic variants affecting their activity. We found that the expression level of 77 genes is correlated with the activity of 12 bidirectional promoters. We also identified 57 single nucleotide polymorphisms associated with the activity of 5 bidirectional promoters. To our knowledge, our study is the first analysis in any species of the genetic variability of the activity of bidirectional promoters.
Collapse
Affiliation(s)
- Cédric Meersseman
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,GMA, INRA, Université de Limoges, 87060 Limoges, France
| | - Rabia Letaief
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Véronique Léjard
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Emmanuelle Rebours
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Gabriel Guillocheau
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Diane Esquerré
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326 Castanet Tolosan, France
| | - Anis Djari
- SIGENAE, UR 875, INRA, 31362 Castanet-Tolosan, France
| | - Amanda Chamberlain
- Dairy Futures Cooperative Research Centre, AgriBio, Bundoora, Victoria, Australia.,AgriBio, Department of Economic Development, Jobs, Transport & Resources, Victoria, Australia
| | - Christy Vander Jagt
- Dairy Futures Cooperative Research Centre, AgriBio, Bundoora, Victoria, Australia.,AgriBio, Department of Economic Development, Jobs, Transport & Resources, Victoria, Australia
| | | | - Mekki Boussaha
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Gilles Renand
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Daniel Petit
- GMA, INRA, Université de Limoges, 87060 Limoges, France
| | - Dominique Rocha
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
19
|
Ohtani M. Transcriptional regulation of snRNAs and its significance for plant development. JOURNAL OF PLANT RESEARCH 2017; 130:57-66. [PMID: 27900551 DOI: 10.1007/s10265-016-0883-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/01/2016] [Indexed: 05/05/2023]
Abstract
Small nuclear RNA (snRNA) represents a distinct class of non-coding RNA molecules. As these molecules have fundamental roles in RNA metabolism, including pre-mRNA splicing and ribosomal RNA processing, it is essential that their transcription be tightly regulated in eukaryotic cells. The genome of each organism contains hundreds of snRNA genes. Although the structures of these genes are highly diverse among organisms, the trans-acting factors that regulate snRNA transcription are evolutionarily conserved. Recent studies of the Arabidopsis thaliana srd2-1 mutant, which is defective in the snRNA transcription factor, provide insight into the physiological significance of snRNA regulation in plant development. Here, I review the current understanding of the molecular mechanisms underlying snRNA transcription.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| |
Collapse
|
20
|
Dumay-Odelot H, Durrieu-Gaillard S, El Ayoubi L, Parrot C, Teichmann M. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription. Transcription 2015; 5:e27526. [PMID: 25764111 DOI: 10.4161/trns.27526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- a INSERM U869; University of Bordeaux; Institut Européen de Chimie et Biologie (IECB); 33607 Pessac, France
| | | | | | | | | |
Collapse
|
21
|
Ohtani M, Takebayashi A, Hiroyama R, Xu B, Kudo T, Sakakibara H, Sugiyama M, Demura T. Cell dedifferentiation and organogenesis in vitro require more snRNA than does seedling development in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2015; 128:371-80. [PMID: 25740809 DOI: 10.1007/s10265-015-0704-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Small nuclear RNA (snRNA) is a class of non-coding RNAs that processes pre-mRNA and rRNA. Transcription of abundant snRNA species is regulated by the snRNA activating protein complex (SNAPc), which is conserved among multicellular organisms including plants. SRD2, a putative subunit of SNAPc in Arabidopsis thaliana, is essential for development, and the point mutation srd2-1 causes severe defects in hypocotyl dedifferentiation and de novo meristem formation. Based on phenotypic analysis of srd2-1 mutant plants, we previously proposed that snRNA content is a limiting factor in dedifferentiation in plant cells. Here, we performed functional complementation analysis of srd2-1 using transgenic srd2-1 Arabidopsis plants harboring SRD2 homologs from Populus trichocarpa (poplar), Nicotiana tabacum (tobacco), Oryza sativa (rice), the moss Physcomitrella patens, and Homo sapiens (human) under the control of the Arabidopsis SRD2 promoter. Only rice SRD2 suppressed the faulty tissue culture responses of srd2-1, and restore the snRNA levels; however, interestingly, all SRD2 homologs except poplar SRD2 rescued the srd2-1 defects in seedling development. These findings demonstrated that cell dedifferentiation and organogenesis induced during tissue culture require higher snRNA levels than does seedling development.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kang YS, Kurano M, Stumph WE. The Myb domain of the largest subunit of SNAPc adopts different architectural configurations on U1 and U6 snRNA gene promoter sequences. Nucleic Acids Res 2014; 42:12440-54. [PMID: 25324315 PMCID: PMC4227766 DOI: 10.1093/nar/gku905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The small nuclear RNA (snRNA) activating protein complex (SNAPc) is essential for transcription of genes that encode the snRNAs. Drosophila melanogaster SNAPc (DmSNAPc) consists of three subunits (DmSNAP190, DmSNAP50 and DmSNAP43) that form a stable complex that recognizes an snRNA gene promoter element called the PSEA. Although all three subunits are required for sequence-specific DNA binding activity, only DmSNAP190 possesses a canonical DNA binding domain consisting of 4.5 tandem Myb repeats homologous to the Myb repeats in the DNA binding domain of the Myb oncoprotein. In this study, we use site-specific protein–DNA photo-cross-linking technology followed by site-specific protein cleavage to map domains of DmSNAP190 that interact with specific phosphate positions in the U6 PSEA. The results indicate that at least two DmSNAP190 Myb repeats contact the DNA in a significantly different manner when DmSNAPc binds to a U6 PSEA versus a U1 PSEA, even though the two PSEA sequences differ at only 5 of 21 nucleotide positions. The results are consistent with a model in which the specific DNA sequences of the U1 and U6 PSEAs differentially alter the conformation of DmSNAPc, leading to the subsequent recruitment of different RNA polymerases to the U1 and U6 gene promoters.
Collapse
Affiliation(s)
- Yoon Soon Kang
- Department of Chemistry and Biochemistry, Molecular Biology Institute, San Diego State University, San Diego, CA 92182-1030, USA
| | - Michelle Kurano
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182-1030, USA
| | - William E Stumph
- Department of Chemistry and Biochemistry, Molecular Biology Institute, San Diego State University, San Diego, CA 92182-1030, USA
| |
Collapse
|
23
|
O'Reilly D, Kuznetsova OV, Laitem C, Zaborowska J, Dienstbier M, Murphy S. Human snRNA genes use polyadenylation factors to promote efficient transcription termination. Nucleic Acids Res 2013; 42:264-75. [PMID: 24097444 PMCID: PMC3874203 DOI: 10.1093/nar/gkt892] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II transcribes both protein coding and non-coding RNA genes and, in yeast, different mechanisms terminate transcription of the two gene types. Transcription termination of mRNA genes is intricately coupled to cleavage and polyadenylation, whereas transcription of small nucleolar (sno)/small nuclear (sn)RNA genes is terminated by the RNA-binding proteins Nrd1, Nab3 and Sen1. The existence of an Nrd1-like pathway in humans has not yet been demonstrated. Using the U1 and U2 genes as models, we show that human snRNA genes are more similar to mRNA genes than yeast snRNA genes with respect to termination. The Integrator complex substitutes for the mRNA cleavage and polyadenylation specificity factor complex to promote cleavage and couple snRNA 3′-end processing with termination. Moreover, members of the associated with Pta1 (APT) and cleavage factor I/II complexes function as transcription terminators for human snRNA genes with little, if any, role in snRNA 3′-end processing. The gene-specific factor, proximal sequence element-binding transcription factor (PTF), helps clear the U1 and U2 genes of nucleosomes, which provides an easy passage for pol II, and the negative elongation factor facilitates termination at the end of the genes where nucleosome levels increase. Thus, human snRNA genes may use chromatin structure as an additional mechanism to promote efficient transcription termination in vivo.
Collapse
Affiliation(s)
- Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK and CGAT, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | |
Collapse
|
24
|
Verma N, Hung KH, Kang JJ, Barakat NH, Stumph WE. Differential utilization of TATA box-binding protein (TBP) and TBP-related factor 1 (TRF1) at different classes of RNA polymerase III promoters. J Biol Chem 2013; 288:27564-27570. [PMID: 23955442 DOI: 10.1074/jbc.c113.503094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the fruit fly Drosophila melanogaster, RNA polymerase III transcription was found to be dependent not upon the canonical TATA box-binding protein (TBP) but instead upon the TBP-related factor 1 (TRF1) (Takada, S., Lis, J. T., Zhou, S., and Tjian, R. (2000) Cell 101, 459-469). Here we confirm that transcription of fly tRNA genes requires TRF1. However, we unexpectedly find that U6 snRNA gene promoters are occupied primarily by TBP in cells and that knockdown of TBP, but not TRF1, inhibits U6 transcription in cells. Moreover, U6 transcription in vitro effectively utilizes TBP, whereas TBP cannot substitute for TRF1 to promote tRNA transcription in vitro. Thus, in fruit flies, different classes of RNA polymerase III promoters differentially utilize TBP and TRF1 for the initiation of transcription.
Collapse
Affiliation(s)
- Neha Verma
- Molecular Biology Institute; Departments of Biology
| | - Ko-Hsuan Hung
- Molecular Biology Institute; Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - Jin Joo Kang
- Molecular Biology Institute; Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - Nermeen H Barakat
- Molecular Biology Institute; Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - William E Stumph
- Molecular Biology Institute; Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030.
| |
Collapse
|
25
|
Gjidoda A, Henry RW. RNA polymerase III repression by the retinoblastoma tumor suppressor protein. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:385-92. [PMID: 23063750 PMCID: PMC3549324 DOI: 10.1016/j.bbagrm.2012.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 12/29/2022]
Abstract
The retinoblastoma (RB) tumor suppressor protein regulates multiple pathways that influence cell growth, and as a key regulatory node, its function is inactivated in most cancer cells. In addition to its canonical roles in cell cycle control, RB functions as a global repressor of RNA polymerase (Pol) III transcription. Indeed, Pol III transcripts accumulate in cancer cells and their heightened levels are implicated in accelerated growth associated with RB dysfunction. Herein we review the mechanisms of RB repression for the different types of Pol III genes. For type 1 and type 2 genes, RB represses transcription through direct contacts with the core transcription machinery, notably Brf1-TFIIIB, and inhibits preinitiation complex formation and Pol III recruitment. A contrasting model for type 3 gene repression indicates that RB regulation involves stable and simultaneous promoter association by RB, the general transcription machinery including SNAPc, and Pol III, suggesting that RB may impede Pol III promoter escape or elongation. Interestingly, analysis of published genomic association data for RB and Pol III revealed added regulatory complexity for Pol III genes both during active growth and during arrested growth associated with quiescence and senescence. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Alison Gjidoda
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824
| | - R. William Henry
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824
| |
Collapse
|
26
|
Andersen PK, Jensen TH, Lykke-Andersen S. Making ends meet: coordination between RNA 3'-end processing and transcription initiation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:233-46. [PMID: 23450686 DOI: 10.1002/wrna.1156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RNA polymerase II (RNAPII)-mediated gene transcription initiates at promoters and ends at terminators. Transcription termination is intimately connected to 3'-end processing of the produced RNA and already when loaded at the promoter, RNAPII starts to become configured for this downstream event. Conversely, RNAPII is 'reset' as part of the 3'-end processing/termination event, thus preparing the enzyme for its next round of transcription--possibly on the same gene. There is both direct and circumstantial evidence for preferential recycling of RNAPII from the gene terminator back to its own promoter, which supposedly increases the efficiency of the transcription process under conditions where RNAPII levels are rate limiting. Here, we review differences and commonalities between initiation and 3'-end processing/termination processes on various types of RNAPII transcribed genes. In doing so, we discuss the requirements for efficient 3'-end processing/termination and how these may relate to proper recycling of RNAPII.
Collapse
Affiliation(s)
- Pia K Andersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
27
|
Tsukaya H, Byrne ME, Horiguchi G, Sugiyama M, Van Lijsebettens M, Lenhard M. How do 'housekeeping' genes control organogenesis?--Unexpected new findings on the role of housekeeping genes in cell and organ differentiation. JOURNAL OF PLANT RESEARCH 2013; 126:3-15. [PMID: 22922868 DOI: 10.1007/s10265-012-0518-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/31/2012] [Indexed: 05/08/2023]
Abstract
In recent years, an increasing number of mutations in what would appear to be 'housekeeping genes' have been identified as having unexpectedly specific defects in multicellular organogenesis. This is also the case for organogenesis in seed plants. Although it is not surprising that loss-of-function mutations in 'housekeeping' genes result in lethality or growth retardation, it is surprising when (1) the mutant phenotype results from the loss of function of a 'housekeeping' gene and (2) the mutant phenotype is specific. In this review, by defining housekeeping genes as those encoding proteins that work in basic metabolic and cellular functions, we discuss unexpected links between housekeeping genes and specific developmental processes. In a surprising number of cases housekeeping genes coding for enzymes or proteins with functions in basic cellular processes such as transcription, post-transcriptional modification, and translation affect plant development.
Collapse
Affiliation(s)
- Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Doherty MT, Kang YS, Lee C, Stumph WE. Architectural arrangement of the small nuclear RNA (snRNA)-activating protein complex 190 subunit (SNAP190) on U1 snRNA gene promoter DNA. J Biol Chem 2012; 287:39369-79. [PMID: 23038247 PMCID: PMC3501025 DOI: 10.1074/jbc.m112.407775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/01/2012] [Indexed: 11/06/2022] Open
Abstract
Myb repeats ∼52 amino acid residues in length were first characterized in the oncogenic Myb transcription factor, which contains three tandem Myb repeats in its DNA-binding domain. Proteins of this family normally contain either one, two, or three tandem Myb repeats that are involved in protein-DNA interactions. The small nuclear RNA (snRNA)-activating protein complex (SNAPc) is a heterotrimeric transcription factor that is required for expression of small nuclear RNA genes. This complex binds to an essential promoter element, the proximal sequence element, centered ∼50 base pairs upstream of the transcription start site of snRNA genes. SNAP190, the largest subunit of SNAPc, uncharacteristically contains 4.5 tandem Myb repeats. Little is known about the arrangement of the Myb repeats in the SNAPc-DNA complex, and it has not been clear whether all 4.5 Myb repeats contact the DNA. By using a site-specific protein-DNA photo-cross-linking assay, we have now mapped specific nucleotides where each of the Myb repeats of Drosophila melanogaster SNAP190 interacts with a U1 snRNA gene proximal sequence element. The results reveal the topological arrangement of the 4.5 SNAP190 Myb repeats relative to the DNA and to each other when SNAP190 is bound to a U1 promoter as a subunit of SNAPc.
Collapse
Affiliation(s)
| | - Yoon Soon Kang
- Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - Cheryn Lee
- Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - William E. Stumph
- Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| |
Collapse
|
29
|
Requirement for SNAPC1 in transcriptional responsiveness to diverse extracellular signals. Mol Cell Biol 2012; 32:4642-50. [PMID: 22966203 DOI: 10.1128/mcb.00906-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initiation of transcription of RNA polymerase II (RNAPII)-dependent genes requires the participation of a host of basal transcription factors. Among genes requiring RNAPII for transcription, small nuclear RNAs (snRNAs) display a further requirement for a factor known as snRNA-activating protein complex (SNAPc). The scope of the biological function of SNAPc and its requirement for transcription of protein-coding genes has not been elucidated. To determine the genome-wide occupancy of SNAPc, we performed chromatin immunoprecipitation followed by high-throughput sequencing using antibodies against SNAPC4 and SNAPC1 subunits. Interestingly, while SNAPC4 occupancy was limited to snRNA genes, SNAPC1 chromatin residence extended beyond snRNA genes to include a large number of transcriptionally active protein-coding genes. Notably, SNAPC1 occupancy on highly active genes mirrored that of elongating RNAPII extending through the bodies and 3' ends of protein-coding genes. Inhibition of transcriptional elongation resulted in the loss of SNAPC1 from the 3' ends of genes, reflecting a functional association between SNAPC1 and elongating RNAPII. Importantly, while depletion of SNAPC1 had a small effect on basal transcription, it diminished the transcriptional responsiveness of a large number of genes to two distinct extracellular stimuli, epidermal growth factor (EGF) and retinoic acid (RA). These results highlight a role for SNAPC1 as a general transcriptional coactivator that functions through elongating RNAPII.
Collapse
|
30
|
Zaborowska J, Taylor A, Roeder RG, Murphy S. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes. Transcription 2012; 3:92-104. [PMID: 22441827 PMCID: PMC3337830 DOI: 10.4161/trns.19783] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.
Collapse
Affiliation(s)
| | - Alice Taylor
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology; The Rockefeller University; New York, NY USA
| | - Shona Murphy
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| |
Collapse
|
31
|
Selvakumar T, Gjidoda A, Hovde SL, Henry RW. Regulation of human RNA polymerase III transcription by DNMT1 and DNMT3a DNA methyltransferases. J Biol Chem 2012; 287:7039-50. [PMID: 22219193 DOI: 10.1074/jbc.m111.285601] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human small nuclear RNA (snRNA) and small cytoplasmic RNA (scRNA) gene families encode diverse non-coding RNAs that influence cellular growth and division. Many snRNA and scRNA genes are related via their compact and yet powerful promoters that support RNA polymerase III transcription. We have utilized the human U6 snRNA gene family to examine the mechanism for regulated transcription of these potent transcription units. Analysis of nine U6 family members showed enriched CpG density within the promoters of actively transcribed loci relative to inert genes, implying a relationship between gene potency and DNA methylation. Indeed, both pharmacological inhibition of DNA methyltransferase (DNMT) activity and the forced diminution of DNMT-1, DNMT-3a, and DNMT-3b by siRNA targeting resulted in increased U6 levels in asynchronously growing MCF7 adenocarcinoma cells. In vitro transcription assays further showed that template methylation impedes U6 transcription by RNA polymerase III. Both DNMT-1 and DNMT-3a were detected at the U6-1 locus by chromatin immunoprecipitation directly linking these factors to RNA polymerase III regulation. Despite this association, the endogenous U6-1 locus was not substantially methylated in actively growing cells. However, both DNMT occupancy and low frequency methylation were correlated with increased Retinoblastoma tumor suppressor (RB) expression, suggesting that the RB status can influence specific epigenetic marks.
Collapse
Affiliation(s)
- Tharakeswari Selvakumar
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
32
|
Extra-transcriptional functions of RNA Polymerase III complexes: TFIIIC as a potential global chromatin bookmark. Gene 2011; 493:169-75. [PMID: 21986035 DOI: 10.1016/j.gene.2011.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 11/21/2022]
Abstract
RNA polymerase III (Pol III) is one of three eukaryotic transcription complexes, and was identified as the complex responsible for production of transfer RNA and a limited number of other small RNAs. Pol III transcription at tRNA genes (tDNAs) requires the binding of two transcription factor complexes, TFIIIC and TFIIIB. Recent evidence points to a larger role for the Pol III transcription system in various other nuclear processes, including effects on nucleosome positioning, global genome and sub-nuclear organization, and direct effects on RNA polymerase II (Pol II) transcription. These effects are perhaps mediated by recruitment of a host of other chromatin proteins, including Pol II transcription factors and chromatin enzymes. Extra-TFIIIC sites (ETC sites) are chromosomal locations bound by TFIIIC without the rest of the Pol III complex, and bound TFIIIC alone is also able to mediate additional functions. These so called "extra-transcriptional effects" of the Pol III system are reviewed here, and a model is put forth suggesting that the TFIIIC transcription factor may act as a stably bound, global "bookmark" within chromatin to establish, maintain, or demarcate chromatin states as cells divide or change gene expression patterns.
Collapse
|
33
|
Carrière L, Graziani S, Alibert O, Ghavi-Helm Y, Boussouar F, Humbertclaude H, Jounier S, Aude JC, Keime C, Murvai J, Foglio M, Gut M, Gut I, Lathrop M, Soutourina J, Gérard M, Werner M. Genomic binding of Pol III transcription machinery and relationship with TFIIS transcription factor distribution in mouse embryonic stem cells. Nucleic Acids Res 2011; 40:270-83. [PMID: 21911356 PMCID: PMC3245943 DOI: 10.1093/nar/gkr737] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RNA polymerase (Pol) III synthesizes the tRNAs, the 5S ribosomal RNA and a small number of untranslated RNAs. In vitro, it also transcribes short interspersed nuclear elements (SINEs). We investigated the distribution of Pol III and its associated transcription factors on the genome of mouse embryonic stem cells using a highly specific tandem ChIP-Seq method. Only a subset of the annotated class III genes was bound and thus transcribed. A few hundred SINEs were associated with the Pol III transcription machinery. We observed that Pol III and its transcription factors were present at 30 unannotated sites on the mouse genome, only one of which was conserved in human. An RNA was associated with >80% of these regions. More than 2200 regions bound by TFIIIC transcription factor were devoid of Pol III. These sites were associated with cohesins and often located close to CTCF-binding sites, suggesting that TFIIIC might cooperate with these factors to organize the chromatin. We also investigated the genome-wide distribution of the ubiquitous TFIIS variant, TCEA1. We found that, as in Saccharomyces cerevisiae, TFIIS is associated with class III genes and also with SINEs suggesting that TFIIS is a Pol III transcription factor in mammals.
Collapse
Affiliation(s)
- Lucie Carrière
- Commissariat à l'Energie Atomique et aux Energies Alternatives, iBiTec-S, F-91191 Gif-sur-Yvette cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
One function--multiple mechanisms: the manifold activities of p53 as a transcriptional repressor. J Biomed Biotechnol 2011; 2011:464916. [PMID: 21436991 PMCID: PMC3062963 DOI: 10.1155/2011/464916] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/17/2011] [Indexed: 12/31/2022] Open
Abstract
Maintenance of genome integrity is a dynamic process involving complex regulation systems. Defects in one or more of these pathways could result in cancer. The most important tumor-suppressor is the transcription factor p53, and its functional inactivation is frequently observed in many tumor types. The tumor suppressive function of p53 is mainly attributed to its ability to regulate numerous target genes at the transcriptional level. While the mechanism of transcriptional induction by p53 is well characterized, p53-dependent repression is not understood in detail. Here, we review the manifold mechanisms of p53 as a transcriptional repressor. We classify two different categories of repressed genes based on the underlying mechanism, and novel mechanisms which involve regulation through noncoding RNAs are discussed. The complete elucidation of p53 functions is important for our understanding of its tumor-suppressor activity and, therefore, represents the key for the development of novel therapeutic approaches.
Collapse
|
35
|
Hung KH, Stumph WE. Regulation of snRNA gene expression by the Drosophila melanogaster small nuclear RNA activating protein complex (DmSNAPc). Crit Rev Biochem Mol Biol 2010; 46:11-26. [PMID: 20925482 DOI: 10.3109/10409238.2010.518136] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The small nuclear RNAs (snRNAs) are an essential class of non-coding RNAs first identified over 30 years ago. Many of the well-characterized snRNAs are involved in RNA processing events. However, it is now evident that other small RNAs, synthesized using similar mechanisms, play important roles at many stages of gene expression. The accurate and efficient control of the expression of snRNA (and related) genes is thus critical for cell survival. All snRNA genes share a very similar promoter structure, and their transcription is dependent upon the same multi-subunit transcription factor, termed the snRNA activating protein complex (SNAPc). Despite those similarities, some snRNA genes are transcribed by RNA polymerase II (Pol II), but others are transcribed by RNA polymerase III (Pol III). Thus snRNA genes provide a unique opportunity to understand how RNA polymerase specificity is determined and how distinct transcription machineries can interact with a common factor. This review will describe efforts taken toward solving those questions by using the fruit fly as a model organism. Drosophila melanogaster SNAPc (DmSNAPc) binds to a proximal sequence element (PSEA) present in both Pol II and Pol III snRNA promoters. Just a few differences in nucleotide sequence in the Pol II and Pol III PSEAs play a major role in determining RNA polymerase specificity. Furthermore, these same nucleotide differences result in alternative conformations of DmSNAPc on Pol II and Pol III snRNA gene promoters. It seems likely that these DNA-induced alternative DmSNAPc conformations are responsible for the differential recruitment of the distinct transcriptional machineries.
Collapse
Affiliation(s)
- Ko-Hsuan Hung
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-1030, USA
| | | |
Collapse
|
36
|
Dumay-Odelot H, Durrieu-Gaillard S, Da Silva D, Roeder RG, Teichmann M. Cell growth- and differentiation-dependent regulation of RNA polymerase III transcription. Cell Cycle 2010; 9:3687-99. [PMID: 20890107 DOI: 10.4161/cc.9.18.13203] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RNA polymerase III transcribes small untranslated RNAs that fulfill essential cellular functions in regulating transcription, RNA processing, translation and protein translocation. RNA polymerase III transcription activity is tightly regulated during the cell cycle and coupled to growth control mechanisms. Furthermore, there are reports of changes in RNA polymerase III transcription activity during cellular differentiation, including the discovery of a novel isoform of human RNA polymerase III that has been shown to be specifically expressed in undifferentiated human H1 embryonic stem cells. Here, we review major regulatory mechanisms of RNA polymerase III transcription during the cell cycle, cell growth and cell differentiation.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- Institut Européen de Chimie et Biologie (I.E.C.B.), Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, Pessac, France
| | | | | | | | | |
Collapse
|
37
|
Hung KH, Titus M, Chiang SC, Stumph WE. A map of Drosophila melanogaster small nuclear RNA-activating protein complex (DmSNAPc) domains involved in subunit assembly and DNA binding. J Biol Chem 2009; 284:22568-79. [PMID: 19556241 DOI: 10.1074/jbc.m109.027961] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of genes coding for the small nuclear RNAs (snRNAs) is dependent upon a unique transcription factor known as the small nuclear RNA-activating protein complex (SNAPc). SNAPc binds to an essential proximal sequence element located about 40-65 base pairs upstream of the snRNA transcription start site. In the fruit fly Drosophila melanogaster, DmSNAPc contains three distinct polypeptides (DmSNAP190, DmSNAP50, and DmSNAP43) that are stably associated with each other and bind to the DNA as a complex. We have used mutational analysis to identify domains within each subunit that are involved in complex formation with the other two subunits in vivo. We have also identified domains in each subunit required for sequence-specific DNA binding. With one exception, domains required for subunit-subunit interactions lie in the most evolutionarily conserved regions of the proteins. However, DNA binding by DmSNAPc is dependent not only upon the conserved regions but is also highly dependent upon domains outside the conserved regions. Comparison with functional domains identified in human SNAPc indicates many parallels but also reveals significant differences in this ancient yet rapidly evolving system.
Collapse
Affiliation(s)
- Ko-Hsuan Hung
- Molecular Biology Institute, Department of Biology, San Diego State University, San Diego, California 92182-1030, USA
| | | | | | | |
Collapse
|
38
|
Lai HT, Kang YS, Stumph WE. Subunit stoichiometry of the Drosophila melanogaster small nuclear RNA activating protein complex (SNAPc). FEBS Lett 2008; 582:3734-8. [PMID: 18948103 DOI: 10.1016/j.febslet.2008.09.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/22/2008] [Accepted: 09/27/2008] [Indexed: 11/28/2022]
Abstract
Small nuclear RNA activating protein complex (SNAPc) is a multi-subunit transcription factor required for expression of small nuclear RNA genes. This protein binds to a promoter element located approximately 40-65 bp upstream of the transcription start site. In Drosophila melanogaster, DmSNAPc contains three distinct polypeptide subunits: DmSNAP190, DmSNAP50, and DmSNAP43. The subunit stoichiometry in SNAPc complexed with DNA has not been examined. Therefore, the ability of differently tagged but otherwise identical subunits to associate with each other into the same protein-DNA complex was assayed by antibody super-shift analysis. The results reveal that DmSNAPc contains only a single copy of each of the three subunits.
Collapse
Affiliation(s)
- Hsien-Tsung Lai
- Department of Biology, San Diego State University, San Diego, CA 92182-1030, United States
| | | | | |
Collapse
|
39
|
Different functional modes of p300 in activation of RNA polymerase III transcription from chromatin templates. Mol Cell Biol 2008; 28:5764-76. [PMID: 18644873 DOI: 10.1128/mcb.01262-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional coactivators that regulate the activity of human RNA polymerase III (Pol III) in the context of chromatin have not been reported. Here, we describe a completely defined in vitro system for transcription of a human tRNA gene assembled into a chromatin template. Transcriptional activation and histone acetylation in this system depend on recruitment of p300 by general initiation factor TFIIIC, thus providing a new paradigm for recruitment of histone-modifying coactivators. Beyond its role as a chromatin-modifying factor, p300 displays an acetyltransferase-independent function at the level of preinitiation complex assembly. Thus, direct interaction of p300 with TFIIIC stabilizes binding of TFIIIC to core promoter elements and results in enhanced transcriptional activity on histone-free templates. Additional studies show that p300 is recruited to the promoters of actively transcribed tRNA and U6 snRNA genes in vivo. These studies identify TFIIIC as a recruitment factor for p300 and thus may have important implications for the emerging concept that tRNA genes or TFIIIC binding sites act as chromatin barriers to prohibit spreading of silenced heterochromatin domains.
Collapse
|
40
|
Barakat NH, Stumph WE. TBP recruitment to the U1 snRNA gene promoter is disrupted by substituting a U6 proximal sequence element A (PSEA) for the U1 PSEA. FEBS Lett 2008; 582:2413-6. [PMID: 18547530 DOI: 10.1016/j.febslet.2008.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 05/28/2008] [Accepted: 06/01/2008] [Indexed: 11/19/2022]
Abstract
Transcription of Drosophila U1 or U6 snRNAs by RNA polymerases II and III respectively requires a unique approximately 21 base-pair promoter element termed the proximal sequence element A (PSEA) recognized by the snRNA activating protein complex (DmSNAPc). A five-nucleotide substitution that changed the U1 PSEA to a U6 PSEA inactivated the U1 promoter. Chromatin immunoprecipitation assays indicated this substitution did not affect DmSNAPc DNA binding but instead interfered with SNAPc recruitment of TBP to the TATA-less U1 promoter. These findings support a model wherein sequence differences between the U1 and U6 PSEAs induce distinct DmSNAPc conformational states involved in RNA polymerase selectivity.
Collapse
Affiliation(s)
- Nermeen H Barakat
- Department of Chemistry and Biochemistry and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-1030, United States
| | | |
Collapse
|
41
|
Jawdekar GW, Henry RW. Transcriptional regulation of human small nuclear RNA genes. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:295-305. [PMID: 18442490 PMCID: PMC2684849 DOI: 10.1016/j.bbagrm.2008.04.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 01/06/2023]
Abstract
The products of human snRNA genes have been frequently described as performing housekeeping functions and their synthesis refractory to regulation. However, recent studies have emphasized that snRNA and other related non-coding RNA molecules control multiple facets of the central dogma, and their regulated expression is critical to cellular homeostasis during normal growth and in response to stress. Human snRNA genes contain compact and yet powerful promoters that are recognized by increasingly well-characterized transcription factors, thus providing a premier model system to study gene regulation. This review summarizes many recent advances deciphering the mechanism by which the transcription of human snRNA and related genes are regulated.
Collapse
Affiliation(s)
- Gauri W. Jawdekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095
| | - R. William Henry
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
42
|
Ohtani M, Demura T, Sugiyama M. Differential requirement for the function of SRD2, an snRNA transcription activator, in various stages of plant development. PLANT MOLECULAR BIOLOGY 2008; 66:303-314. [PMID: 18064403 DOI: 10.1007/s11103-007-9271-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 11/25/2007] [Indexed: 05/25/2023]
Abstract
Small nuclear RNA (snRNA) is a class of eukaryotic noncoding RNAs, which have essential roles in pre-mRNA splicing and rRNA processing. As these functions are fundamental to cell activities, the regulation of snRNA transcription should be a vital issue for all eukaryotes. Here we address developmental control of snRNA transcription and its significance through the analysis of the SRD2 gene of Arabidopsis (Arabidopsis thaliana), which encodes an activator of snRNA transcription. In young seedlings, a high level of SRD2 expression was observed in shoot and root apical meristems, leaf primordia, and root stele tissues, where a large amount of snRNA accumulated. In mature plants, SRD2 was highly expressed in developing leaves and flowers as well as apical meristems. Mutations in the SRD2 gene interfered with many, but not all, aspects of development in the regions that showed strong expression of SRD2. Of note, establishment of the fully active state of apical meristems in the seedling stage was very sensitive to the srd2-1 mutation, while maintenance of the established meristems was substantially insensitive. These results demonstrated differential requirement for the SRD2 function in various stages of plant development.
Collapse
Affiliation(s)
- Misato Ohtani
- Plant Science Center, RIKEN, Yokohama 230-0045, Japan
| | | | | |
Collapse
|
43
|
Gu L, Husain-Ponnampalam R, Hoffmann-Benning S, Henry RW. The protein kinase CK2 phosphorylates SNAP190 to negatively regulate SNAPC DNA binding and human U6 transcription by RNA polymerase III. J Biol Chem 2007; 282:27887-96. [PMID: 17670747 DOI: 10.1074/jbc.m702269200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human U6 small nuclear RNA gene transcription by RNA polymerase III requires the general transcription factor SNAP(C), which binds to human small nuclear RNA core promoter elements and nucleates pre-initiation complex assembly with the Brf2-TFIIIB complex. Multiple components in this pathway are phosphorylated by the protein kinase CK2, including the Bdp1 subunit of the Brf2-TFIIIB complex, and RNA polymerase III, with negative and positive outcomes for U6 transcription, respectively. However, a role for CK2 phosphorylation of SNAP(C) in U6 transcription has not been defined. In this report, we investigated the role of CK2 in modulating the transcriptional properties of SNAP(C) and demonstrate that within SNAP(C), CK2 phosphorylates the N-terminal half of the SNAP190 subunit at two regions (amino acids 20-63 and 514-545) that each contain multiple CK2 consensus sites. SNAP190 phosphorylation by CK2 inhibits both SNAP(C) DNA binding and U6 transcription activity. Mutational analyses of SNAP190 support a model wherein CK2 phosphorylation triggers an allosteric inhibition of the SNAP190 Myb DNA binding domain.
Collapse
Affiliation(s)
- Liping Gu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
44
|
Rollins J, Veras I, Cabarcas S, Willis I, Schramm L. Human Maf1 negatively regulates RNA polymerase III transcription via the TFIIB family members Brf1 and Brf2. Int J Biol Sci 2007; 3:292-302. [PMID: 17505538 PMCID: PMC1865091 DOI: 10.7150/ijbs.3.292] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 04/24/2007] [Indexed: 11/05/2022] Open
Abstract
RNA polymerase III (RNA pol III) transcribes many of the small structural RNA molecules involved in processing and translation, thereby regulating the growth rate of a cell. Initiation of pol III transcription requires the evolutionarily conserved pol III initiation factor TFIIIB. TFIIIB is the molecular target of regulation by tumor suppressors, including p53, RB and the RB-related pocket proteins. However, our understanding of negative regulation of human TFIIIB-mediated transcription by other proteins is limited. In this study we characterize a RNA pol III luciferase assay and further demonstrate in vivo that a human homolog of yeast Maf1 represses RNA pol III transcription. Additionally, we show that Maf1 repression of RNA pol III transcription occurs via TFIIIB, specifically through the TFIIB family members Brf1 and Brf2.
Collapse
Affiliation(s)
- Janet Rollins
- 1. Department of Biological Sciences, St. John's University, Queens NY, USA
| | - Ingrid Veras
- 1. Department of Biological Sciences, St. John's University, Queens NY, USA
| | - Stephanie Cabarcas
- 1. Department of Biological Sciences, St. John's University, Queens NY, USA
| | - Ian Willis
- 2. Department of Biochemistry, Albert Einstein College of Medicine, Bronx NY, USA
| | - Laura Schramm
- 1. Department of Biological Sciences, St. John's University, Queens NY, USA
| |
Collapse
|
45
|
Hernandez G, Valafar F, Stumph WE. Insect small nuclear RNA gene promoters evolve rapidly yet retain conserved features involved in determining promoter activity and RNA polymerase specificity. Nucleic Acids Res 2006; 35:21-34. [PMID: 17148477 PMCID: PMC1761439 DOI: 10.1093/nar/gkl982] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In animals, most small nuclear RNAs (snRNAs) are synthesized by RNA polymerase II (Pol II), but U6 snRNA is synthesized by RNA polymerase III (Pol III). In Drosophila melanogaster, the promoters for the Pol II-transcribed snRNA genes consist of approximately 21 bp PSEA and approximately 8 bp PSEB. U6 genes utilize a PSEA but have a TATA box instead of the PSEB. The PSEAs of the two classes of genes bind the same protein complex, DmSNAPc. However, the PSEAs that recruit Pol II and Pol III differ in sequence at a few nucleotide positions that play an important role in determining RNA polymerase specificity. We have now performed a bioinformatic analysis to examine the conservation and divergence of the snRNA gene promoter elements in other species of insects. The 5' half of the PSEA is well-conserved, but the 3' half is divergent. Moreover, within each species positions exist where the PSEAs of the Pol III-transcribed genes differ from those of the Pol II-transcribed genes. Interestingly, the specific positions vary among species. Nevertheless, we speculate that these nucleotide differences within the 3' half of the PSEA act similarly to induce conformational alterations in DNA-bound SNAPc that result in RNA polymerase specificity.
Collapse
Affiliation(s)
- Genaro Hernandez
- Department of Chemistry and Biochemistry, San Diego State University5500 Campanile Drive, San Diego, CA 92182-1030, USA
- Department of Computer Science, San Diego State University5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | - Faramarz Valafar
- Department of Computer Science, San Diego State University5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | - William E. Stumph
- Department of Chemistry and Biochemistry, San Diego State University5500 Campanile Drive, San Diego, CA 92182-1030, USA
- To whom correspondence should be addressed. Tel: +1 619 594 5575; Fax: +1 619 594-4634;
| |
Collapse
|
46
|
Jawdekar GW, Hanzlowsky A, Hovde SL, Jelencic B, Feig M, Geiger JH, Henry RW. The unorthodox SNAP50 zinc finger domain contributes to cooperative promoter recognition by human SNAPC. J Biol Chem 2006; 281:31050-60. [PMID: 16901896 DOI: 10.1074/jbc.m603810200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human small nuclear RNA gene transcription by RNA polymerases II and III depends upon promoter recognition by the SNAPC general transcription factor. DNA binding by SNAPC involves direct DNA contacts by the SNAP190 subunit in cooperation with SNAP50 and SNAP43. The data presented herein shows that SNAP50 plays an important role in DNA binding by SNAPC through its zinc finger domain. The SNAP50 zinc finger domain contains 15 cysteine and histidine residues configured in two potential zinc coordination arrangements. Individual alanine substitution of each cysteine and histidine residue demonstrated that eight sites are important for DNA binding by SNAPC. However, metal binding studies revealed that SNAPC contains a single zinc atom indicating that only one coordination site functions as a zinc finger. Of the eight residues critical for DNA binding, four cysteine residues were also essential for both U1 and U6 transcription by RNA polymerase II and III, respectively. Surprisingly, the remaining four residues, although critical for U1 transcription could support partial U6 transcription. DNA binding studies showed that defects in DNA binding by SNAPC alone could be suppressed through cooperative DNA binding with another member of the RNA polymerase III general transcription machinery, TFIIIB. These results suggest that these eight cysteine and histidine residues perform different functions during DNA binding with those residues involved in zinc coordination likely performing a dominant role in domain stabilization and the others involved in DNA binding. These data further define the unorthodox SNAP50 zinc finger region as an evolutionarily conserved DNA binding domain.
Collapse
Affiliation(s)
- Gauri W Jawdekar
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Hanzlowsky A, Jelencic B, Jawdekar G, Hinkley CS, Geiger JH, Henry RW. Co-expression of multiple subunits enables recombinant SNAPC assembly and function for transcription by human RNA polymerases II and III. Protein Expr Purif 2006; 48:215-23. [PMID: 16603380 PMCID: PMC2714255 DOI: 10.1016/j.pep.2006.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/07/2006] [Accepted: 02/19/2006] [Indexed: 11/21/2022]
Abstract
Human small nuclear (sn) RNA genes are transcribed by either RNA polymerase II or III depending upon the arrangement of their core promoter elements. Regardless of polymerase specificity, these genes share a requirement for a general transcription factor called the snRNA activating protein complex or SNAP(C). This multi-subunit complex recognizes the proximal sequence element (PSE) commonly found in the upstream promoters of human snRNA genes. SNAP(C) consists of five subunits: SNAP190, SNAP50, SNAP45, SNAP43, and SNAP19. Previous studies have shown that a partial SNAP(C) composed of SNAP190 (1-514), SNAP50, and SNAP43 expressed in baculovirus is capable of PSE-specific DNA binding and transcription of human snRNA genes by RNA polymerases II and III. Expression in a baculovirus system yields active complex but the concentration of such material is insufficient for many bio-analytical methods. Herein, we describe the co-expression in Escherichia coli of a partial SNAP(C) containing SNAP190 (1-505), SNAP50, SNAP43, and SNAP19. The co-expressed complex binds DNA specifically and recruits TBP to U6 promoter DNA. Importantly, this partial complex functions in reconstituted transcription of both human U1 and U6 snRNA genes by RNA polymerases II and III, respectively. This co-expression system will facilitate the functional characterization of this unusual multi-protein transcription factor that plays an important early role for transcription by two different polymerases.
Collapse
Affiliation(s)
- Andrej Hanzlowsky
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Blanka Jelencic
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Gauri Jawdekar
- Department of Microbiology and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Craig S. Hinkley
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - James H. Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Corresponding authors. Fax: +1 517 353 9334. E-mail addresses: (J.H. Geiger), (R.W. Henry)
| | - R. William Henry
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Corresponding authors. Fax: +1 517 353 9334. E-mail addresses: (J.H. Geiger), (R.W. Henry)
| |
Collapse
|
48
|
Lai HT, Chen H, Li C, McNamara-Schroeder KJ, Stumph WE. The PSEA promoter element of the Drosophila U1 snRNA gene is sufficient to bring DmSNAPc into contact with 20 base pairs of downstream DNA. Nucleic Acids Res 2005; 33:6579-86. [PMID: 16314318 PMCID: PMC1292993 DOI: 10.1093/nar/gki972] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most of the major spliceosomal small nuclear RNAs (snRNAs) (i.e. U1, U2, U4 and U5) are synthesized by RNA polymerase II (pol II). In Drosophila melanogaster, the 5'-flanking DNA of these genes contains two conserved elements: the proximal sequence element A (PSEA) and the proximal sequence element B (PSEB). The PSEA is essential for transcription and is recognized by DmSNAPc, a multi-subunit protein complex. Previous site-specific protein-DNA photo-cross-linking assays demonstrated that one of the subunits of DmSNAPc, DmSNAP43, remains in close contact with the DNA for 20 bp beyond the 3' end of the PSEA, a region that contains the PSEB. The current work demonstrates that mutation of the PSEB does not abolish the cross-linking of DmSNAP43 to the PSEB. Thus the U1 PSEA alone is capable of bringing DmSNAP43 into close contact with this downstream DNA. However, mutation of the PSEB perturbs the cross-linking pattern. In concordance with these findings, PSEB mutations result in a 2- to 4-fold reduction in U1 promoter activity when assayed by transient transfection.
Collapse
Affiliation(s)
| | | | - Cheng Li
- Department of Chemistry and Biochemistry, San Diego State UniversitySan Diego, CA 92182-1030, USA
| | | | - William E. Stumph
- Department of Chemistry and Biochemistry, San Diego State UniversitySan Diego, CA 92182-1030, USA
- To whom correspondence should be addressed. Tel: +1 619 594 5575; Fax: +1 619 594 4634;
| |
Collapse
|
49
|
Ohtani M, Sugiyama M. Involvement of SRD2-mediated activation of snRNA transcription in the control of cell proliferation competence in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:479-90. [PMID: 16098103 DOI: 10.1111/j.1365-313x.2005.02469.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The transcription machinery of small nuclear RNA (snRNA) genes has been investigated extensively in human cell-free systems, but its physiological function in vivo has not been addressed. This paper demonstrates the physiological role of an activator of snRNA transcription using a temperature-sensitive mutant of Arabidopsis thaliana, srd2. Phenotypic characteristics of the srd2 mutant suggest that the SRD2 gene participates in the control of competence in cell proliferation. The SRD2 gene encodes a nuclear protein that shares sequence similarity with the human SNAP50 protein, which is a subunit of SNAPc and is required for snRNA transcription in vitro. Our results, obtained from analysis of snRNA expression in the srd2 mutant, indicate that the SRD2 protein functions in the upregulation of transcription of snRNA genes, the promoters of which contain the upstream sequence element, to elevate cell proliferation competence.
Collapse
Affiliation(s)
- Misato Ohtani
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo 112-0001, Japan
| | | |
Collapse
|
50
|
Gu L, Esselman WJ, Henry RW. Cooperation between small nuclear RNA-activating protein complex (SNAPC) and TATA-box-binding protein antagonizes protein kinase CK2 inhibition of DNA binding by SNAPC. J Biol Chem 2005; 280:27697-704. [PMID: 15955816 DOI: 10.1074/jbc.m503206200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase CK2 regulates RNA polymerase III transcription of human U6 small nuclear RNA (snRNA) genes both negatively and positively depending upon whether the general transcription machinery or RNA polymerase III is preferentially phosphorylated. Human U1 snRNA genes share similar promoter architectures as that of U6 genes but are transcribed by RNA polymerase II. Herein, we report that CK2 inhibits U1 snRNA gene transcription by RNA polymerase II. Decreased levels of endogenous CK2 correlates with increased U1 expression, whereas CK2 associates with U1 gene promoters, indicating that it plays a direct role in U1 gene regulation. CK2 phosphorylates the general transcription factor small nuclear RNA-activating protein complex (SNAP(C)) that is required for both RNA polymerase II and III transcription, and SNAP(C) phosphorylation inhibits binding to snRNA gene promoters. However, restricted promoter access by phosphorylated SNAP(C) can be overcome by cooperative interactions with TATA-box-binding protein at a U6 promoter but not at a U1 promoter. Thus, CK2 may have the capacity to differentially regulate U1 and U6 transcription even though SNAP(C) is universally utilized for human snRNA gene transcription.
Collapse
Affiliation(s)
- Liping Gu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|