1
|
Vogg MC, Buzgariu W, Suknovic NS, Galliot B. Cellular, Metabolic, and Developmental Dimensions of Whole-Body Regeneration in Hydra. Cold Spring Harb Perspect Biol 2021; 13:a040725. [PMID: 34230037 PMCID: PMC8635000 DOI: 10.1101/cshperspect.a040725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here we discuss the developmental and homeostatic conditions necessary for Hydra regeneration. Hydra is characterized by populations of adult stem cells paused in the G2 phase of the cell cycle, ready to respond to injury signals. The body column can be compared to a blastema-like structure, populated with multifunctional epithelial stem cells that show low sensitivity to proapoptotic signals, and high inducibility of autophagy that promotes resistance to stress and starvation. Intact Hydra polyps also exhibit a dynamic patterning along the oral-aboral axis under the control of homeostatic organizers whose activity results from regulatory loops between activators and inhibitors. As in bilaterians, injury triggers the immediate production of reactive oxygen species (ROS) signals that promote wound healing and contribute to the reactivation of developmental programs via cell death and the de novo formation of new organizing centers from somatic tissues. In aging Hydra, regeneration is rapidly lost as homeostatic conditions are no longer pro-regenerative.
Collapse
Affiliation(s)
- Matthias Christian Vogg
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Wanda Buzgariu
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Nenad Slavko Suknovic
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| |
Collapse
|
2
|
Yum S, Woo S, Lee A, Won H, Kim J. Hydra, a candidate for an alternative model in environmental genomics. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-014-0038-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Lapébie P, Ruggiero A, Barreau C, Chevalier S, Chang P, Dru P, Houliston E, Momose T. Differential responses to Wnt and PCP disruption predict expression and developmental function of conserved and novel genes in a cnidarian. PLoS Genet 2014; 10:e1004590. [PMID: 25233086 PMCID: PMC4169000 DOI: 10.1371/journal.pgen.1004590] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/09/2014] [Indexed: 11/19/2022] Open
Abstract
We have used Digital Gene Expression analysis to identify, without bilaterian bias, regulators of cnidarian embryonic patterning. Transcriptome comparison between un-manipulated Clytia early gastrula embryos and ones in which the key polarity regulator Wnt3 was inhibited using morpholino antisense oligonucleotides (Wnt3-MO) identified a set of significantly over and under-expressed transcripts. These code for candidate Wnt signaling modulators, orthologs of other transcription factors, secreted and transmembrane proteins known as developmental regulators in bilaterian models or previously uncharacterized, and also many cnidarian-restricted proteins. Comparisons between embryos injected with morpholinos targeting Wnt3 and its receptor Fz1 defined four transcript classes showing remarkable correlation with spatiotemporal expression profiles. Class 1 and 3 transcripts tended to show sustained expression at "oral" and "aboral" poles respectively of the developing planula larva, class 2 transcripts in cells ingressing into the endodermal region during gastrulation, while class 4 gene expression was repressed at the early gastrula stage. The preferential effect of Fz1-MO on expression of class 2 and 4 transcripts can be attributed to Planar Cell Polarity (PCP) disruption, since it was closely matched by morpholino knockdown of the specific PCP protein Strabismus. We conclude that endoderm and post gastrula-specific gene expression is particularly sensitive to PCP disruption while Wnt-/β-catenin signaling dominates gene regulation along the oral-aboral axis. Phenotype analysis using morpholinos targeting a subset of transcripts indicated developmental roles consistent with expression profiles for both conserved and cnidarian-restricted genes. Overall our unbiased screen allowed systematic identification of regionally expressed genes and provided functional support for a shared eumetazoan developmental regulatory gene set with both predicted and previously unexplored members, but also demonstrated that fundamental developmental processes including axial patterning and endoderm formation in cnidarians can involve newly evolved (or highly diverged) genes.
Collapse
Affiliation(s)
- Pascal Lapébie
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Antonella Ruggiero
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Carine Barreau
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Sandra Chevalier
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Patrick Chang
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Philippe Dru
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Evelyn Houliston
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| | - Tsuyoshi Momose
- Sorbonne Universités, UPMC Univ Paris 06, and CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanographique, Villefranche-sur-mer, France
| |
Collapse
|
4
|
Sahadevan S, Antonopoulos A, Haslam SM, Dell A, Ramaswamy S, Babu P. Unique, polyfucosylated glycan-receptor interactions are essential for regeneration of Hydra magnipapillata. ACS Chem Biol 2014; 9:147-55. [PMID: 23972202 DOI: 10.1021/cb400486t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell-cell communications, cell-matrix interactions, and cell migrations play a major role in regeneration. However, little is known about the molecular players involved in these critical events, especially cell surface molecules. Here, we demonstrate the role of specific glycan-receptor interactions in the regenerative process using Hydra magnipapillata as a model system. Global characterization of the N- and O-glycans expressed by H. magnipapillata using ultrasensitive mass spectrometry revealed mainly polyfucosylated LacdiNAc antennary structures. Affinity purification showed that a putative C-type lectin (accession number Q6SIX6) is a likely endogenous receptor for the novel polyfucosylated glycans. Disruption of glycan-receptor interactions led to complete shutdown of the regeneration machinery in live Hydra. A time-dependent, lack-of-regeneration phenotype observed upon incubation with exogenous fuco-lectins suggests the involvement of a polyfucose receptor-mediated signaling mechanism during regeneration. Thus, for the first time, the results presented here provide direct evidence for the role of polyfucosylated glycan-receptor interactions in the regeneration of H. magnipapillata.
Collapse
Affiliation(s)
- Sonu Sahadevan
- Institute
for Stem Cell Biology and Regenerative Medicine, NCBS-TIFR, Bangalore, 560065 India
| | | | - Stuart M. Haslam
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Anne Dell
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Subramanian Ramaswamy
- Institute
for Stem Cell Biology and Regenerative Medicine, NCBS-TIFR, Bangalore, 560065 India
- Glycomics
and Glycoproteomics, Centre for Cellular and Molecular Platforms, NCBS-TIFR, Bangalore, 560065 India
| | - Ponnusamy Babu
- Glycomics
and Glycoproteomics, Centre for Cellular and Molecular Platforms, NCBS-TIFR, Bangalore, 560065 India
| |
Collapse
|
5
|
Ambrosone A, Marchesano V, Tino A, Hobmayer B, Tortiglione C. Hymyc1 downregulation promotes stem cell proliferation in Hydra vulgaris. PLoS One 2012; 7:e30660. [PMID: 22292012 PMCID: PMC3264606 DOI: 10.1371/journal.pone.0030660] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 12/20/2011] [Indexed: 12/13/2022] Open
Abstract
Hydra is a unique model for studying the mechanisms underlying stem cell biology. The activity of the three stem cell lineages structuring its body constantly replenishes mature cells lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. In vertebrates, one of many genes that participate in regulating stem cell homeostasis is the protooncogene c-myc, which has been recently identified also in Hydra, and found expressed in the interstitial stem cell lineage. In the present paper, by developing a novel strategy of RNA interference-mediated gene silencing (RNAi) based on an enhanced uptake of small interfering RNAi (siRNA), we provide molecular and biological evidence for an unexpected function of the Hydra myc gene (Hymyc1) in the homeostasis of the interstitial stem cell lineage. We found that Hymyc1 inhibition impairs the balance between stem cell self renewal/differentiation, as shown by the accumulation of stem cell intermediate and terminal differentiation products in genetically interfered animals. The identical phenotype induced by the 10058-F4 inhibitor, a disruptor of c-Myc/Max dimerization, demonstrates the specificity of the RNAi approach. We show the kinetic and the reversible feature of Hymyc1 RNAi, together with the effects displayed on regenerating animals. Our results show the involvement of Hymyc1 in the control of interstitial stem cell dynamics, provide new clues to decipher the molecular control of the cell and tissue plasticity in Hydra, and also provide further insights into the complex myc network in higher organisms. The ability of Hydra cells to uptake double stranded RNA and to trigger a RNAi response lays the foundations of a comprehensive analysis of the RNAi response in Hydra allowing us to track back in the evolution and the origin of this process.
Collapse
Affiliation(s)
- Alfredo Ambrosone
- Istituto di Cibernetica “E Caianiello,” Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Valentina Marchesano
- Istituto di Cibernetica “E Caianiello,” Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Angela Tino
- Istituto di Cibernetica “E Caianiello,” Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Bert Hobmayer
- Zoological Institute and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Claudia Tortiglione
- Istituto di Cibernetica “E Caianiello,” Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
- * E-mail:
| |
Collapse
|
6
|
Steele RE, David CN, Technau U. A genomic view of 500 million years of cnidarian evolution. Trends Genet 2010; 27:7-13. [PMID: 21047698 DOI: 10.1016/j.tig.2010.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/23/2010] [Accepted: 10/08/2010] [Indexed: 01/29/2023]
Abstract
Cnidarians (corals, anemones, jellyfish and hydras) are a diverse group of animals of interest to evolutionary biologists, ecologists and developmental biologists. With the publication of the genome sequences of Hydra and Nematostella, whose last common ancestor was the stem cnidarian, researchers are beginning to see the genomic underpinnings of cnidarian biology. Cnidarians are known for the remarkable plasticity of their morphology and life cycles. This plasticity is reflected in the Hydra and Nematostella genomes, which differ to an exceptional degree in size, base composition, transposable element content and gene conservation. It is now known what cnidarian genomes, given 500 million years, are capable of; as we discuss here, the next challenge is to understand how this genomic history has led to the striking diversity seen in this group.
Collapse
Affiliation(s)
- Robert E Steele
- Department of Biological Chemistry and the Developmental Biology Center, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
7
|
Bosch TCG, Augustin R, Anton-Erxleben F, Fraune S, Hemmrich G, Zill H, Rosenstiel P, Jacobs G, Schreiber S, Leippe M, Stanisak M, Grötzinger J, Jung S, Podschun R, Bartels J, Harder J, Schröder JM. Uncovering the evolutionary history of innate immunity: the simple metazoan Hydra uses epithelial cells for host defence. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:559-569. [PMID: 19013190 DOI: 10.1016/j.dci.2008.10.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/10/2008] [Accepted: 10/13/2008] [Indexed: 05/27/2023]
Abstract
Although many properties of the innate immune system are shared among multicellular animals, the evolutionary origin remains poorly understood. Here we characterize the innate immune system in Hydra, one of the simplest multicellular animals known. In the complete absence of both protective mechanical barriers and mobile phagocytes, Hydra's epithelium is remarkably well equipped with potent antimicrobial peptides to prevent pathogen infection. Induction of antimicrobial peptide production is mediated by the interaction of a leucine-rich repeats (LRRs) domain containing protein with a TIR-domain containing protein lacking LRRs. Conventional Toll-like receptors (TLRs) are absent in the Hydra genome. Our findings support the hypothesis that the epithelium represents the ancient system of host defence.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
A systematic screening of peptide signaling molecules (<5000 da) in Hydra magnipapillata (the Hydra Peptide Project) was launched in 1993 and at least the first phase of the project ended in 2007. From the project a number of interesting suggestions and results have been obtained. First, a simple metazoan-like Hydra appears to contain a few hundred peptide signaling molecules: half of them neuropeptides and the rest epitheliopeptides that are produced by epithelial cells. Second, epitheliopeptides were identified for the first time in Hydra. Some exhibit morphogen-like activities, which accord with the notion that epithelial cells are primarily responsible for patterning in Hydra. A family of epitheliopeptides was involved in regulating neuron differentiation possibly through neuron-epithelial cell interaction. Third, many novel neuropeptides were identified. Most of them act directly on muscle cells inducing contraction or relaxation. Some were involved in cell differentiation and morphogenesis. During the course of this study, a number of important technical innovations (e.g. genetic manipulations in transgenic Hydra, high-throughput purification techniques, etc.) and expressed sequence tag (EST) and genome databases were introduced in Hydra research. They have already helped to identify and characterize novel peptides and will contribute even more to the Hydra Peptide Project in the near future.
Collapse
|
9
|
Löwenheim H. [Regenerative medicine. New therapeutic methods in otorhinolaryngology and head and neck surgery]. HNO 2008; 56:252-7. [PMID: 18283423 DOI: 10.1007/s00106-008-1693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- H Löwenheim
- Klinik für Hals-Nasen-Ohren-Heilkunde, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Deutschland.
| |
Collapse
|
10
|
Hayakawa E, Takahashi T, Nishimiya-Fujisawa C, Fujisawa T. A novel neuropeptide (FRamide) family identified by a peptidomic approach in Hydra magnipapillata. FEBS J 2007; 274:5438-48. [PMID: 17894820 DOI: 10.1111/j.1742-4658.2007.06071.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the course of systematic identification of peptide signaling molecules combined with the expressed sequence tag database from Hydra, we have identified a novel neuropeptide family that consists of two members with FRamide at the C-terminus; FRamide-1 (IPTGTLIFRamide) and FRamide-2 (APGSLLFRamide). The precursor sequence deduced from cDNA contained a single copy each of FRamide-1 and FRamide-2 precursor sequences. Expression analysis by whole-mount in situ hybridization showed that the gene was expressed in a subpopulation of neurons that were distributed throughout the body from tentacles to basal disk. Double in situ hybridization analysis showed that the expressing cell population was further subdivided into one population consisting of neurons expressing both the FRamide and Hym176 (neuropeptide) genes and the other consisting of neurons expressing only the FRamide gene. FRamide-1 evoked elongation of the body column of 'epithelial' Hydra that was composed of epithelial cells and gland cells but lacked all the cells in the interstitial stem cell lineage, including neurons. In contrast, FRamide-2 evoked body column contraction. These results suggest that both of the neuropeptides directly act on epithelial cells as neurotransmitters and regulate body movement in an axial direction.
Collapse
Affiliation(s)
- Eisuke Hayakawa
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | | | | |
Collapse
|
11
|
Bosch TCG. Why polyps regenerate and we don't: towards a cellular and molecular framework for Hydra regeneration. Dev Biol 2006; 303:421-33. [PMID: 17234176 DOI: 10.1016/j.ydbio.2006.12.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 11/30/2006] [Accepted: 12/06/2006] [Indexed: 11/27/2022]
Abstract
The basis for Hydra's enormous regeneration capacity is the "stem cellness" of its epithelium which continuously undergoes self-renewing mitotic divisions and also has the option to follow differentiation pathways. Now, emerging molecular tools have shed light on the molecular processes controlling these pathways. In this review I discuss how the modular tissue architecture may allow continuous replacement of cells in Hydra. I also describe the discovery and regulation of factors controlling the transition from self-renewing epithelial stem cells to differentiated cells.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| |
Collapse
|
12
|
Galliot B, Miljkovic-Licina M, de Rosa R, Chera S. Hydra, a niche for cell and developmental plasticity. Semin Cell Dev Biol 2006; 17:492-502. [PMID: 16807002 DOI: 10.1016/j.semcdb.2006.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The silencing of genes whose expression is restricted to specific cell types and/or specific regeneration stages opens avenues to decipher the molecular control of the cellular plasticity underlying head regeneration in hydra. In this review, we highlight recent studies that identified genes involved in the immediate cytoprotective function played by gland cells after amputation; the early dedifferentiation of digestive cells into blastema-like cells during head regeneration, and the early late proliferation of neuronal progenitors required for head patterning. Hence, developmental plasticity in hydra relies on spatially restricted and timely orchestrated cellular modifications, where the functions played by stem cells remain to be characterized.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Zoology and Animal Biology, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
13
|
Arvizu F, Aguilera A, Salgado LM. Activities of the protein kinases STK, PI3K, MEK, and ERK are required for the development of the head organizer in Hydra magnipapillata. Differentiation 2006; 74:305-12. [PMID: 16831199 DOI: 10.1111/j.1432-0436.2006.00078.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of the hydra's head and its hypostome has been studied at the molecular level. Many genes have been cloned from hydra as potential candidates that control the development of its head. Much work was performed on the mechanisms controlling expression of these genes in the position-dependent manner. Moreover, there have been data to support the involvement of three main signaling pathways that involve PKC, SRC, and PI3K kinases in the regulation of the head formation and in the expression of several head-specific genes. In this report, we present data supporting the participation of these three signaling pathways on the development of the hypostome. We used grafting experiments and inhibitors of the specific kinases to show the participation of these enzymes in hypostome formation. From our results, we postulate that these signal transduction pathways regulate the very early stages of the head development, most likely at the point when the cells start to differentiate to form the head organizer.
Collapse
|
14
|
Amimoto Y, Kodama R, Kobayakawa Y. Foot formation in Hydra: A novel gene, anklet, is involved in basal disk formation. Mech Dev 2006; 123:352-61. [PMID: 16644190 DOI: 10.1016/j.mod.2006.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/15/2006] [Accepted: 03/06/2006] [Indexed: 11/30/2022]
Abstract
We isolated a novel gene by a differential-display RT-PCR method comparing basal disk tissue and peduncle tissue in a species of Hydra, Pelmatohydra robusta, and we referred to it as anklet. The putative anklet product has a signal sequence in its N-terminus, and it has one MAC/PF domain and one EGF domain. In normal hydra, the expression of anklet was restricted in the periphery of the basal disk and the lowest region of the peduncle. In foot-regenerating animals, anklet was first expressed in the newly differentiated basal disk gland cells at the regenerating basal end, and then expression became restricted at the periphery of the regenerated basal disk and in the lowest region of the peduncle. This spatially specific expression pattern suggested that the product of the anklet gene plays a role in basal disk formation. We therefore examined the role played by the protein product of the anklet gene by suppressing the transcription level of anklet using an RNA-mediated interference (RNAi) method. Suppression of the level of expression of the anklet gene led to a decrease in basal disk size in normal hydra, and to a delay in basal disk regeneration in foot-amputated animals. These results suggested that anklet is involved in the formation and maintenance of the basal disk in hydra.
Collapse
Affiliation(s)
- Yasuko Amimoto
- Department of Biology, Faculty of Science, Kyushu University, Ropponmatsu 4-2-1, Chuo-ku, Fukuoka 810-8560, Japan
| | | | | |
Collapse
|
15
|
Chera S, de Rosa R, Miljkovic-Licina M, Dobretz K, Ghila L, Kaloulis K, Galliot B. Silencing of the hydra serine protease inhibitorKazal1gene mimics the humanSPINK1pancreatic phenotype. J Cell Sci 2006; 119:846-57. [PMID: 16478786 DOI: 10.1242/jcs.02807] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In hydra, the endodermal epithelial cells carry out the digestive function together with the gland cells that produce zymogens and express the evolutionarily conserved gene Kazal1. To assess the hydra Kazal1 function, we silenced gene expression through double-stranded RNA feeding. A progressive Kazal1 silencing affected homeostatic conditions as evidenced by the low budding rate and the induced animal death. Concomitantly, a dramatic disorganization followed by a massive death of gland cells was observed, whereas the cytoplasm of digestive cells became highly vacuolated. The presence of mitochondria and late endosomes within those vacuoles assigned them as autophagosomes. The enhanced Kazal1 expression in regenerating tips was strongly diminished in Kazal1(–) hydra, and the amputation stress led to an immediate disorganization of the gland cells, vacuolization of the digestive cells and death after prolonged silencing. This first cellular phenotype resulting from a gene knock-down in cnidarians suggests that the Kazal1 serine-protease-inhibitor activity is required to prevent excessive autophagy in intact hydra and to exert a cytoprotective function to survive the amputation stress. Interestingly, these functions parallel the pancreatic autophagy phenotype observed upon mutation within the Kazal domain of the SPINK1 and SPINK3 genes in human and mice, respectively.
Collapse
Affiliation(s)
- Simona Chera
- Department of Zoology and Animal Biology, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
16
|
Genikhovich G, Kürn U, Hemmrich G, Bosch TCG. Discovery of genes expressed in Hydra embryogenesis. Dev Biol 2006; 289:466-81. [PMID: 16337937 DOI: 10.1016/j.ydbio.2005.10.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 10/04/2005] [Accepted: 10/18/2005] [Indexed: 11/22/2022]
Abstract
Hydra's remarkable capacity to regenerate, to proliferate asexually by budding, and to form a pattern de novo from aggregates allows studying complex cellular and molecular processes typical for embryonic development. The underlying assumption is that patterning in adult hydra tissue relies on factors and genes which are active also during early embryogenesis. Previously, we reported that in Hydra the timing of expression of conserved regulatory genes, known to be involved in adult patterning, differs greatly in adults and embryos (Fröbius, A.C., Genikhovich, G., Kürn, U., Anton-Erxleben, F. and Bosch, T.C.G., 2003. Expression of developmental genes during early embryogenesis of Hydra. Dev. Genes Evol. 213, 445-455). Here, we describe an unbiased screening strategy to identify genes that are relevant to Hydra vulgaris embryogenesis. The approach yielded two sets of differentially expressed genes: one set was expressed exclusively or nearly exclusively in the embryos, while the second set was upregulated in embryos in comparison to adult polyps. Many of the genes identified in hydra embryos had no matches in the database. Among the conserved genes upregulated in embryos is the Hydra orthologue of Embryonic Ectoderm Development (HyEED). The expression pattern of HyEED in developing embryos suggests that interstitial stem cells in Hydra originate in the endoderm. Importantly, the observations uncover previously unknown differences in genes expressed by embryos and polyps and indicate that not only the timing of expression of developmental genes but also the genetic context is different in Hydra embryos compared to adults.
Collapse
Affiliation(s)
- Grigory Genikhovich
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | | | | | |
Collapse
|
17
|
Siebert S, Thomsen S, Reimer MM, Bosch TCG. Control of foot differentiation in Hydra: Phylogenetic footprinting indicates interaction of head, bud and foot patterning systems. Mech Dev 2005; 122:998-1007. [PMID: 15922570 DOI: 10.1016/j.mod.2005.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 04/27/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Homeodomain transcription factor CnNK-2 seems to play a major role in foot formation in Hydra. Recently, we reported in vitro evidence indicating that CnNK-2 has autoregulatory features and regulates expression of the morphogenetic peptide pedibin. We proposed that CnNK-2 and pedibin synergistically orchestrate foot differentiation processes. Here, we further analyzed the regulatory network controlling foot formation in Hydra. By phylogenetic footprinting we compared the CnNK-2 5'-flanking sequence from two closely related species, Hydra vulgaris and Hydra oligactis. Unexpectedly, we detected a highly conserved binding site for HNF-3beta, a vertebrate Forkhead transcription factor, in the CnNK-2 5'-flanking region. The Hydra HNF-3beta homolog budhead is predominantly expressed in the apical region of the body column and early during budding. Budhead is absent from tissue expressing CnNK-2 and thought to be involved in determining tissue for head differentiation. By electrophoretic mobility shift assays we demonstrate an in vitro interaction between recombinant budhead protein and the interspecific conserved HNF-3beta binding motif in the CnNK-2 5'-flanking region. Our results strengthen the view of CnNK-2 as an important regulator during foot patterning processes. Furtheron, they point to budhead as a candidate for a transcriptional regulator of CnNK-2 and to an interaction of foot and head patterning processes in Hydra on the molecular level.
Collapse
Affiliation(s)
- S Siebert
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | | | | | |
Collapse
|
18
|
Takahashi T, Hatta M, Yum S, Gee L, Ohtani M, Fujisawa T, Bode HR. Hym-301, a novel peptide, regulates the number of tentacles formed in hydra. Development 2005; 132:2225-34. [PMID: 15829526 DOI: 10.1242/dev.01792] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hym-301 is a peptide that was discovered as part of a project aimed at isolating novel peptides from hydra. We have isolated and characterized the gene Hym-301, which encodes this peptide. In an adult, the gene is expressed in the ectoderm of the tentacle zone and hypostome, but not in the tentacles. It is also expressed in the developing head during bud formation and head regeneration. Treatment of regenerating heads with the peptide resulted in an increase in the number of tentacles formed, while treatment with Hym-301 dsRNA resulted in a reduction of tentacles formed as the head developed during bud formation or head regeneration. The expression patterns plus these manipulations indicate the gene has a role in tentacle formation. Furthermore, treatment of epithelial animals indicates the gene directly affects the epithelial cells that form the tentacles. Raising the head activation gradient, a morphogenetic gradient that controls axial patterning in hydra, throughout the body column results in extending the range of Hym-301 expression down the body column. This indicates the range of expression of the gene appears to be controlled by this gradient. Thus,Hym-301 is involved in axial patterning in hydra, and specifically in the regulation of the number of tentacles formed.
Collapse
Affiliation(s)
- Toshio Takahashi
- Developmental Biology Center, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Bosch TCG. Ancient signals: peptides and the interpretation of positional information in ancestral metazoans. Comp Biochem Physiol B Biochem Mol Biol 2004; 136:185-96. [PMID: 14529745 DOI: 10.1016/s1096-4959(03)00226-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding the 'tool kit' that builds the most fundamental aspects of animal complexity requires data from the basal animals. Among the earliest diverging animal phyla are the Cnidaria which are the first in having a defined body plan including an axis, a nervous system and a tissue layer construction. Here I revise our understanding of patterning mechanism in cnidarians with special emphasis on the nature of positional signals in Hydra as perhaps the best studied model organism within this phylum. I show that (i) peptides play a major role as positional signals and in cell-cell communication; (ii) that intracellular signalling pathways in Hydra leading to activation of target genes are shared with all multicellular animals; (iii) that homeobox genes translate the positional signals; and (iv) that the signals are integrated by a complex genetic regulatory machinery that includes both novel cis regulatory elements as well as taxon specific target genes. On the basis of these results I present a model for the regulatory interactions required for axis formation in Hydra.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University, Olshausenstrasse 40, Kiel 24098, Germany.
| |
Collapse
|
20
|
Fedders H, Augustin R, Bosch TCG. A Dickkopf- 3-related gene is expressed in differentiating nematocytes in the basal metazoan Hydra. Dev Genes Evol 2004; 214:72-80. [PMID: 14727109 DOI: 10.1007/s00427-003-0378-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 12/09/2003] [Indexed: 11/25/2022]
Abstract
In vertebrate development the Dickkopf protein family carries out multiple functions and is represented by at least four different genes with distinct biological activities. In invertebrates such as Drosophila and Caenorhabditis, Dickkopf genes have so far not been identified. Here we describe the identification and characterization of a Dickkopf gene with a deduced amino acid sequence closely related to that of chicken Dkk-3 in the basal metazoan Hydra. HyDkk-3 appears to be the only Dickkopf gene in Hydra. The gene is expressed in the gastric region in nematocytes at a late differentiation stage. In silico searches of EST and genome databases indicated the absence of Dkk genes from the protostomes Drosophila and Caenorhabditis, whereas within the deuterostomes, a Dkk-3 gene could be identified in the genome of the urochordate Ciona intestinalis. The results indicate that at an early stage of evolution of multicellularity Dickkopf proteins have already played important roles as developmental signals. They also suggest that vertebrate Dkk-1, 2 and 4 may have originated from a common ancestor gene of Dkk-3.
Collapse
Affiliation(s)
- Henning Fedders
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24098, Kiel, Germany
| | | | | |
Collapse
|
21
|
Thomsen S, Till A, Wittlieb J, Beetz C, Khalturin K, Bosch TCG. Control of foot differentiation in Hydra: in vitro evidence that the NK-2 homeobox factor CnNK-2 autoregulates its own expression and uses pedibin as target gene. Mech Dev 2004; 121:195-204. [PMID: 15037320 DOI: 10.1016/j.mod.2003.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 11/05/2003] [Accepted: 12/10/2003] [Indexed: 11/19/2022]
Abstract
The foot of the simple metazoan Hydra is a highly dynamic body region of constant tissue movement, cell proliferation, determination and differentiation. Previously, two genes have been shown to participate in the development and differentiation of this body region: homeodomain factor CnNK-2 and signal peptide pedibin [Dev. Biol. 180 (1996) 473; Development 126 (1999) 517; Development 122 (1996) 1941; Mech. Dev. 106 (2001) 37]. CnNk-2 functions as transcriptional regulator and is responsive to changes in the positional value while the secreted peptide pedibin serves as "extrinsic" positional signal. Exposure of polyps to pedibin increases the spatial domain of CnNK-2 expression towards the gastric region, indicating that positional signals are integrated at the cis-regulatory region of CnNK-2. In the present study, to elucidate the molecular basis of the interaction of CnNK-2 and pedibin, we characterized the 5' regulatory regions of both genes. Within the CnNK-2 5' upstream region, electrophoretic mobility shift assays showed that putative NK-2 binding motifs are specifically bound by both nuclear protein from Hydra foot and by recombinant CnNK-2, suggesting that CnNK-2 might autoregulate its own expression. This is the first indication for an autoregulatory circuit in Hydra. In addition, we also identified NK-2 binding sites in the cis-regulatory region of the pedibin gene, indicating that this gene is one of the targets of the transcription factor CnNK-2. On the basis of these results, we present a model for the regulatory interactions required for patterning the basal end of the single axis in Hydra which postulates that CnNK-2 together with pedibin orchestrates foot specific differentiation.
Collapse
Affiliation(s)
- S Thomsen
- Zoological Institute, Christian-Albrechts University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Fröbius AC, Genikhovich G, Kürn U, Anton-Erxleben F, Bosch TCG. Expression of developmental genes during early embryogenesis of Hydra. Dev Genes Evol 2003; 213:445-55. [PMID: 12883882 DOI: 10.1007/s00427-003-0344-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Accepted: 06/16/2003] [Indexed: 10/26/2022]
Abstract
Hydra is a classical model to study key features of embryogenesis such as axial patterning and stem cell differentiation. In contrast to other organisms where these mechanisms are active only during embryonic development, in Hydra they can be studied in adults. The underlying assumption is that the machinery governing adult patterning mimics regulatory mechanisms which are also active during early embryogenesis. Whether, however, Hydra embryogenesis is governed by the same mechanisms which are controlling adult patterning, remains to be shown. In this paper, in precisely staged Hydra embryos, we examined the expression pattern of 15 regulatory genes shown previously to play a role in adult patterning and cell differentiation. RT-PCR revealed that most of the genes examined were expressed in rather late embryonic stages. In situ hybridization, nuclear run-on experiments, and staining of nucleolar organizer region-associated proteins indicated that genes expressed in early embryos are transcribed in the engulfed "nurse cells" (endocytes). This is the first direct evidence that endocytes in Hydra not only provide nutrients to the developing oocyte but also produce maternal factors critical for embryogenesis. Our findings are an initial step towards understanding the molecular machinery controlling embryogenesis of a key group of basal metazoans and raise the possibility that in Hydra there are differences in the mechanisms controlling embryogenesis and adult patterning.
Collapse
Affiliation(s)
- Andreas C Fröbius
- Zoological Institute, Christian-Albrechts-University Olshausenstrasse 40, 24098 Kiel, Germany
| | | | | | | | | |
Collapse
|
23
|
Löwenheim H. Regenerative Medicine for Diseases of the Head and Neck: Principles ofIn vivoRegeneration. DNA Cell Biol 2003; 22:571-92. [PMID: 14577910 DOI: 10.1089/104454903322405464] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The application of endogenous regeneration in regenerative medicine is based on the concept of inducing regeneration of damaged or lost tissues from residual tissues in situ. Therefore, endogenous regeneration is also termed in vivo regeneration as opposed to mechanisms of ex vivo regeneration which are applied, for example, in the field of tissue engineering. The basic science foundation for mechanisms of endogenous regeneration is provided by the field of regenerative biology. The ambitious vision for the application of endogenous regeneration in regenerative medicine is stimulated by investigations in the model organisms of regenerative biology, most notably hydra, planarians and urodeles. These model organisms demonstrate remarkable regenerative capabilities, which appear to be conserved over large phylogenetical stretches with convincing evidence for a homologue origin of an endogenous regenerative capability. Although the elucidation of the molecular and cellular mechanisms of these endogenous regenerative phenomena is still in its beginning, there are indications that these processes have potential to become useful for human benefit. Such indications also exist for particular applications in diseases of the head and neck region. As such epimorphic regeneration without blastema formation may be relevant to regeneration of sensorineural epithelia of the inner ear or the olphactory epithelium. Complex tissue lesions of the head and neck as they occur after trauma or tumor resections may be approached on the basis of relevant mechanisms in epimorphic regeneration with blastema formation.
Collapse
Affiliation(s)
- H Löwenheim
- Department of Otolaryngology-Head & Neck Surgery, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
24
|
Abstract
Hydra, a primitive metazoan, has a simple structure consisting of a head, body column, and foot aligned along a single oral-aboral axis. The body column has a high capacity for regeneration of both the head and foot. Because of the tissue dynamics that take place in adult Hydra, the processes governing axial patterning are continuously active to maintain the form of the animal. Regeneration in hydra is morphallactic and closely related to these axial patterning processes. As might be expected, analysis at the molecular level indicates that the same set of genes are involved in head regeneration and the maintenance of the head in the context of the tissue dynamics of the adult. The genes analyzed so far play roles in axial patterning processes in bilaterians.
Collapse
Affiliation(s)
- Hans R Bode
- Developmental Biology Center and Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA.
| |
Collapse
|
25
|
Abstract
Hydra has been well known for over 200 years for its remarkable regenerative capacity. In addition to small pieces excised from the body, reaggregates of dissociated single cells can also regenerate. Although the cellular events involved in the regeneration process have been well characterized, the underlying molecular mechanisms are yet to be uncovered. Recently, however, transcription factors and signaling molecules, both proteins and short peptides, have been identified and their role suggested in patterning and morphogenesis. In this article, a regeneration study at the tissue level is first described and then the importance of epithelial cells in regeneration is stressed. Finally, the recent study on morphogenetic peptides derived from epithelial cells is reviewed.
Collapse
Affiliation(s)
- Toshitaka Fujisawa
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Japan.
| |
Collapse
|
26
|
Kasahara S, Bosch TCG. Enhanced antibacterial activity in Hydra polyps lacking nerve cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2003; 27:79-85. [PMID: 12543122 DOI: 10.1016/s0145-305x(02)00073-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The nervous system evolved within cnidarians. When assessing antibacterial activity in the freshwater polyp Hydra, we observed a strong correlation between the number of neurons present and the antibacterial activity. Tissue lacking neurons had a drastically enhanced antibacterial activity against Gram-positive (Bacillus subtilis) and Gram-negative (E. coli) bacteria compared to control tissue. The results indicate direct and strong neural influences on immunity in the phylogenetically oldest animals having a nervous system.
Collapse
Affiliation(s)
- Shinji Kasahara
- Laboratory of Comparative Immunology, Department of Neurobiology, UCLA Medical Center, 90095-1763, Los Angeles, CA, USA
| | | |
Collapse
|
27
|
Fabila Y, Navarro L, Fujisawa T, Bode HR, Salgado LM. Selective inhibition of protein kinases blocks the formation of a new axis, the beginning of budding, in Hydra. Mech Dev 2002; 119:157-64. [PMID: 12464429 DOI: 10.1016/s0925-4773(02)00351-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In Hydra, head regeneration and bud formation appear to be very similar processes. The fact that there are genes whose expression is specific for one of the two processes suggests that they do not have identical molecular bases. We analyzed the signal transduction pathways regulating bud development using inhibitors of protein kinase C, Src, PI3K and ERK. The four inhibitors reversibly blocked bud formation in Hydra when applied before stage 1. Once the bud reached stage 3, three of them had no effect and the bud developed normally. The inhibitors blocked the expression of Budhead, an early head marker, and of CnOtx which are specific for bud formation. The results are in agreement with the central role of a signaling pathway mediated by Src on bud development.
Collapse
Affiliation(s)
- Y Fabila
- Department of Biochemistry, CINVESTAV-IPN, Mexico, Mexico
| | | | | | | | | |
Collapse
|
28
|
Bosch TC, Khalturin K. Patterning and cell differentiation inHydra: novel genes and the limits to conservation. CAN J ZOOL 2002. [DOI: 10.1139/z02-129] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the last few years more than 100 genes have been identified from Hydra, and well over 80 have been characterized. Since most genes are homologs of genes found in bilaterians, the genetic mechanisms for axial patterning and cell differentiation are evolutionarily conserved. This constitutes something of a paradox. If key developmental-control genes are the same in Hydra and all other organisms, how does one account for the marked differences in development and morphology of the different animal groups? How are taxon-specific features encoded? To examine whether in Hydra, in addition to conserved mechanisms, there are genetic features that control uniquely taxon-specific (Hydra/Hydrozoa/Cnidaria) aspects, we used an experimental strategy that does not require sequence data from related taxa. By means of this unbiased ("knowledge-independent") approach we have identified genes from Hydra encoding signal molecules and effector genes with no sequence similarity to genes in other organisms. When tested functionally, the novel genes were found to be essential for axial patterning and differentiation of Hydra-specific characteristics. Experimental analysis of the cis-regulatory apparatus of these novel genes reveals target sites for novel trans-acting factors. The use of unbiased screening approaches for several other organisms also reveals a large number of novel and taxon-specific genes of as yet unknown function. Thus, comparative data alone may not be sufficient for gaining a full understanding of the development of taxon-specific characteristics.
Collapse
|
29
|
Hoffmeister-Ullerich SAH, Herrmann D, Kielholz J, Schweizer M, Schaller HC. Isolation of a putative peroxidase, a target for factors controlling foot-formation in the coelenterate hydra. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4597-606. [PMID: 12230572 DOI: 10.1046/j.1432-1033.2002.03159.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In hydra, differentiated ectodermal cells of the foot region contain a peroxidase activity that can be used as a marker for foot-specific differentiation processes. Because the expression of the gene coding for the peroxidase must be tightly regulated during foot-specific differentiation, characterization of the protein and cloning of the corresponding gene should provide valuable tools for getting deeper insights into the regulation of foot-specific differentiation. In this paper we characterize the foot-specific peroxidase by biochemical, histochemical, and molecular biological methods. We show that it is localized in granules, and that it consists of a single component, the molecular mass of which is in the range of 43-45 kDa. Purification of the protein and subsequent cloning of its complementary DNA yielded two closely related clones, ppod1 and ppod2. Transcripts of ppod2 are abundant in the whole animal with the exception of the hypostome, the tentacles, and the foot; the expression of ppod1 matches exactly the localization of the foot-specific peroxidase.
Collapse
|
30
|
Abstract
Developmental processes in multicellular animals depend on an array of signal transduction pathways. Studies of model organisms have identified a number of such pathways and dissected them in detail. However, these model organisms are all bilaterians. Investigations of the roles of signal transduction pathways in the early-diverging metazoan Hydra have revealed that a number of the well-known developmental signaling pathways were already in place in the last common ancestor of Hydra and bilaterians. In addition to these shared pathways, it appears that developmental processes in Hydra make use of pathways involving a variety of peptides. Such pathways have not yet been identified as developmental regulators in more recently diverged animals. In this review I will summarize work to date on developmental signaling pathways in Hydra and discuss the future directions in which such work will need to proceed to realize the potential that lies in this simple animal.
Collapse
Affiliation(s)
- Robert E Steele
- Department of Biological Chemistry, University of California-Irvine, Irvine, CA 92627-1700, USA.
| |
Collapse
|
31
|
Miljkovic M, Mazet F, Galliot B. Cnidarian and bilaterian promoters can direct GFP expression in transfected hydra. Dev Biol 2002; 246:377-90. [PMID: 12051823 DOI: 10.1006/dbio.2002.0676] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complete sexual development is not easily amenable to experimentation in hydra. Therefore, the analysis of gene function and gene regulation requires the introduction of exogenous DNA in a large number of cells of the hydra polyps and the significant expression of reporter constructs in these cells. We present here the procedure whereby we coupled DNA injection into the gastric cavity to electroporation of the whole animal in order to efficiently transfect hydra polyps. We could detect GFP fluorescence in both endodermal and ectodermal cell layers of live animals and in epithelial as well as interstitial cell types of dissociated hydra. In addition, we could confirm GFP protein expression by showing colocalisation between GFP fluorescence and anti-GFP immunofluorescence. Finally, when a FLAG epitope was inserted in-frame with the GFP coding sequence, GFP fluorescence also colocalised with anti-FLAG immunofluorescence. This GFP expression in hydra cells was directed by various promoters, either homologous, like the hydra homeobox cnox-2 gene promoter, or heterologous, like the two nematode ribosomal protein S5 and L28 gene promoters, and the chicken beta-actin gene promoter. This strategy provides new tools for dissecting developmental molecular mechanisms in hydra; more specifically, the genetic regulations that take place in endodermal cells at the time budding or regeneration is initiated.
Collapse
Affiliation(s)
- Marijana Miljkovic
- Department of Zoology and Animal Biology, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Genève 4, Switzerland
| | | | | |
Collapse
|
32
|
Bosch TCG, Augustin R, Gellner K, Khalturin K, Lohmann JU. In vivo electroporation for genetic manipulations of whole Hydra polyps. Differentiation 2002; 70:140-7. [PMID: 12147133 DOI: 10.1046/j.1432-0436.2002.700403.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vivo electroporation is used to study gene regulation and gene function in the freshwater polyp Hydra. Although this approach has been used successfully by several investigators, efficacy and handling continue to present a problem. Here we show technical aspects of in vivo electroporation for introducing fluorescent dyes, plasmid DNA and double stranded RNA into Hydra polyps. We describe the fundamentals of the electroporation delivery system, discuss recent studies where this approach has been used successfully, compare it to alternative transfection methods such as lipofection, and identify future directions.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University, Olshausenstrasse, Kiel, Germany.
| | | | | | | | | |
Collapse
|
33
|
Hoffmeister-Ullerich SA. The foot formation stimulating peptide pedibin is also involved in patterning of the head in hydra. Mech Dev 2001; 106:37-45. [PMID: 11472833 DOI: 10.1016/s0925-4773(01)00401-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pedibin, a peptide of 21 amino acids, has been shown to stimulate foot formation in hydra, one of the simplest metazoan animals. The data presented here show that pedibin is synthesized as a precursor of 49 amino acids. A putative cleavage site precedes the peptide as purified from hydra tissue. The precursor, like pedibin, accelerates foot regeneration. Pedibin transcripts are concentrated in the foot region of hydra as expected, but are also present in the head region accumulating in the tentacle bases. The early appearance of pedibin transcripts during phases of cell fate specification like budding and regeneration implies that in hydra, pedibin plays an important role in patterning processes of foot and head. This is confirmed by the finding that pedibin also stimulates bud outgrowth.
Collapse
Affiliation(s)
- S A Hoffmeister-Ullerich
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
34
|
Abstract
Peptides serve as important signalling molecules in development and differentiation in the simple metazoan Hydra. A systematic approach (The Hydra Peptide Project) has revealed that Hydra contains several hundreds of peptide signalling molecules, some of which are neuropeptides and others emanate from epithelial cells. These peptides control biological processes as diverse as muscle contraction, neuron differentiation, and the positional value gradient. Signal peptides cause changes in cell behaviour by controlling target genes such as matrix metalloproteases. The abundance of peptides in Hydra raises the question of whether, in early metazoan evolution, cell-cell communication was based mainly on these small molecules rather than on the growth-factor-like cytokines that control differentiation and development in higher animals.
Collapse
Affiliation(s)
- T C Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Germany.
| | | |
Collapse
|
35
|
Alfred J. Headless Hydra get Heady. Nat Rev Genet 2000; 1:168. [PMID: 11252743 DOI: 10.1038/35042028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|