1
|
Abstract
Programmed DNA elimination (PDE) occurs in various metazoans. Parasitic nematodes have long been the major experimental model for PDE investigation. New studies have reported that some genetically tractable free-living nematodes also undergo PDE, paving the way for understanding the molecular mechanisms of PDE in metazoans.
Collapse
Affiliation(s)
- Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|
3
|
Nie X, Chen Y, Li W, Lu Y. Anti-aging properties of Dendrobium nobile Lindl.: From molecular mechanisms to potential treatments. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112839. [PMID: 32268205 DOI: 10.1016/j.jep.2020.112839] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/21/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium Nobile Lindl. (DNL) is one of the central herbs in traditional Chinese medicine which mainly distributes in Guizhou, Yunnan, Guangxi and other sub-tropical areas south of the Yangtze River. In the past decades, it has been used to treat tumors, hyperglycemia, hyperlipidemia, and diseases of the nervous system that may be caused by aging. AIM OF THE REVIEW The purpose of this review is to summarize the anti-aging information of DNL from the molecular mechanism level, including classic theories related to aging, main chemical components, pharmacological research and anti-aging theory based on traditional Chinese medicine theory, for exploring the future development and clinical treatment. MATERIALS AND METHODS The information in this paper has been collected from the scientific literature databases including PubMed, Google Scholar, Web of Science, Science Direct, Springer, China National Knowledge Infrastructure, published books, Ph.D. and M.S. dissertations systematically. RESULTS In this paper, we have reviewed the several mechanisms underlying the potential effects of DNL on the prevention of aging, including the scavenging of free radicals for oxidation, delaying of DNA impairment, inhibition of apoptosis, and alteration of DNA methylation. Together with the theory of telomeres, this review also has summarized recent research progress in the use of DNL and its traditional efficacy. CONCLUSIONS We conclude that "strengthening Yin and benefiting the spirit", "thickening the intestine and stomach", "lightning the body and prolonging the life-span", and delaying aging, are key effects of DNL that can be used to combat age-related diseases (ARDs) such as Alzheimer's disease, hyperlipidemia, and diabetes. This review provides a reference for future study of ARDs and the clinical application of DNL.
Collapse
Affiliation(s)
- Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| | - Yu Chen
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Yanliu Lu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
4
|
Li Y, Chen X, Wu K, Pan J, Long H, Yan Y. Characterization of Simple Sequence Repeats (SSRs) in Ciliated Protists Inferred by Comparative Genomics. Microorganisms 2020; 8:microorganisms8050662. [PMID: 32370063 PMCID: PMC7285179 DOI: 10.3390/microorganisms8050662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/02/2023] Open
Abstract
Simple sequence repeats (SSRs) are prevalent in the genomes of all organisms. They are widely used as genetic markers, and are insertion/deletion mutation hotspots, which directly influence genome evolution. However, little is known about such important genomic components in ciliated protists, a large group of unicellular eukaryotes with extremely long evolutionary history and genome diversity. With recent publications of multiple ciliate genomes, we start to get a chance to explore perfect SSRs with motif size 1-100 bp and at least three motif repeats in nine species of two ciliate classes, Oligohymenophorea and Spirotrichea. We found that homopolymers are the most prevalent SSRs in these A/T-rich species, with AAA (lysine, charged amino acid; also seen as an SSR with one-adenine motif repeated three times) being the codons repeated at the highest frequencies in coding SSR regions, consistent with the widespread alveolin proteins rich in lysine repeats as found in Tetrahymena. Micronuclear SSRs are universally more abundant than the macronuclear ones of the same motif-size, except for the 8-bp-motif SSRs in extensively fragmented chromosomes. Both the abundance and A/T content of SSRs decrease as motif-size increases, while the abundance is positively correlated with the A/T content of the genome. Also, smaller genomes have lower proportions of coding SSRs out of all SSRs in Paramecium species. This genome-wide and cross-species analysis reveals the high diversity of SSRs and reflects the rapid evolution of these simple repetitive elements in ciliate genomes.
Collapse
|
5
|
Duharcourt S, Sperling L. The Challenges of Genome-Wide Studies in a Unicellular Eukaryote With Two Nuclear Genomes. Methods Enzymol 2018; 612:101-126. [PMID: 30502938 DOI: 10.1016/bs.mie.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We present here methods to study a eukaryotic microorganism with two nuclear genomes, both originating from the same zygotic genome. Paramecium, like other ciliates, is characterized by nuclear dimorphism, which is the presence of two types of nuclei with distinct organization and functions in the same cytoplasm. The two diploid germline micronuclei (MIC) undergo meiosis and fertilization to transmit the genetic information across sexual generations. The highly polyploid somatic macronucleus (MAC) contains a reduced version of the genome optimized for gene expression. Reproducible programmed DNA elimination of about 30% of the complexity of the 100Mb MIC genome occurs during development of the MAC along with endoreplication to 800 copies. Large regions that contain transposable elements and other repeats are eliminated, and short single copy remnants of transposable elements, which often interrupt coding sequences, are precisely excised to restore functional open reading frames. Genome-wide studies of this process require access to MIC DNA which has long been impossible. The breakthrough with respect to this technical obstacle came with development of a MIC purification protocol involving a critical step of flow cytometry to sort nuclei representing only 0.5% of total genomic DNA. Here, we provide a step-by-step protocol and important tips for purifying nuclei, and present the methods developed for downstream analysis of NGS data.
Collapse
Affiliation(s)
- Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR7592, Sorbonne Paris Cité, Paris, France.
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| |
Collapse
|
6
|
Hamilton EP, Kapusta A, Huvos PE, Bidwell SL, Zafar N, Tang H, Hadjithomas M, Krishnakumar V, Badger JH, Caler EV, Russ C, Zeng Q, Fan L, Levin JZ, Shea T, Young SK, Hegarty R, Daza R, Gujja S, Wortman JR, Birren BW, Nusbaum C, Thomas J, Carey CM, Pritham EJ, Feschotte C, Noto T, Mochizuki K, Papazyan R, Taverna SD, Dear PH, Cassidy-Hanley DM, Xiong J, Miao W, Orias E, Coyne RS. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. eLife 2016; 5. [PMID: 27892853 PMCID: PMC5182062 DOI: 10.7554/elife.19090] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena's germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum.
Collapse
Affiliation(s)
- Eileen P Hamilton
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Piroska E Huvos
- Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, United States
| | | | - Nikhat Zafar
- J. Craig Venter Institute, Rockville, United States
| | - Haibao Tang
- J. Craig Venter Institute, Rockville, United States
| | | | | | | | | | - Carsten Russ
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Qiandong Zeng
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Lin Fan
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Joshua Z Levin
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Terrance Shea
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Sarah K Young
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Ryan Hegarty
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Riza Daza
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Sharvari Gujja
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Jennifer R Wortman
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Bruce W Birren
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Chad Nusbaum
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Clayton M Carey
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Tomoko Noto
- Institute of Molecular Biotechnology, Vienna, Austria
| | | | - Romeo Papazyan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Paul H Dear
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Jie Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | | |
Collapse
|
7
|
Wang N, Rizvydeen S, Vahedi M, Vargas Gonzalez DM, Allred AL, Perry DW, Mirabito PM, Kirk KE. Novel telomere-anchored PCR approach for studying sexual stage telomeres in Aspergillus nidulans. PLoS One 2014; 9:e99491. [PMID: 24927411 PMCID: PMC4057176 DOI: 10.1371/journal.pone.0099491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022] Open
Abstract
Telomere length varies between germline and somatic cells of the same organism, leading to the hypothesis that telomeres are lengthened during meiosis. However, little is known about the meiotic telomere length in many organisms. In the filamentous fungus Aspergillus nidulans, the telomere lengths in hyphae and asexual spores are invariant. No study using existing techniques has determined the telomere length of the sexual ascospores due to the relatively low abundance of pure meiotic cells in A. nidulans and the small quantity of DNA present. To address this, we developed a simple and sensitive PCR strategy to measure the telomere length of A. nidulans meiotic cells. This novel technique, termed “telomere-anchored PCR,” measures the length of the telomere on chromosome II-L using a small fraction of the DNA required for the traditional terminal restriction fragment (TRF) Southern analysis. Using this approach, we determined that the A. nidulans ascospore telomere length is virtually identical to telomeres of other cell types from this organism, approximately 110 bp, indicating that a surprisingly strict telomere length regulation exists in the major cell types of A. nidulans. When the hyphal telomeres were measured in a telomerase reverse transcriptase (TERT) knockout strain, small decreases in length were readily detected. Thus, this technique can detect telomeres in relatively rare cell types and is particularly sensitive in measuring exceptionally short telomeres. This rapid and inexpensive telomere-anchored PCR method potentially can be utilized in other filamentous fungi and types of organisms.
Collapse
Affiliation(s)
- Nengding Wang
- Biology Department, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Saajidha Rizvydeen
- Biology Department, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Mithaq Vahedi
- Biology Department, Lake Forest College, Lake Forest, Illinois, United States of America
| | | | - Amanda L. Allred
- Biology Department, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Dustin W. Perry
- Biology Department, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter M. Mirabito
- Biology Department, University of Kentucky, Lexington, Kentucky, United States of America
| | - Karen E. Kirk
- Biology Department, Lake Forest College, Lake Forest, Illinois, United States of America
- * E-mail:
| |
Collapse
|
8
|
The 3' overhangs at Tetrahymena thermophila telomeres are packaged by four proteins, Pot1a, Tpt1, Pat1, and Pat2. EUKARYOTIC CELL 2013; 13:240-5. [PMID: 24297442 DOI: 10.1128/ec.00275-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although studies with the ciliate Tetrahymena thermophila have played a central role in advancing our understanding of telomere biology and telomerase mechanisms and composition, the full complement of Tetrahymena telomere proteins has not yet been identified. Previously, we demonstrated that in Tetrahymena, the telomeric 3' overhang is protected by a three-protein complex composed of Pot1a, Tpt1, and Pat1. Here we show that Tpt1 and Pat1 associate with a fourth protein, Pat2 (Pot1 associated Tetrahymena 2). Mass spectrometry of proteins copurifying with Pat1 or Tpt1 identified peptides from Pat2, Pot1a, Tpt1, and Pat1. The lack of other proteins copurifying with Pat1 or Tpt1 implies that the overhang is protected by a four-protein Pot1a-Tpt1-Pat1-Pat2 complex. We verified that Pat2 localizes to telomeres, but we were unable to detect direct binding to telomeric DNA. Cells depleted of Pat2 continue to divide, but the telomeres exhibit gradual shortening. The lack of growth arrest indicates that, in contrast to Pot1a and Tpt1, Pat2 is not required for the sequestration of the telomere from the DNA repair machinery. Instead, Pat2 is needed to regulate telomere length, most likely by acting in conjunction with Pat1 to allow telomerase access to the telomere.
Collapse
|
9
|
Mason PJ, Perdigones N. Telomere biology and translational research. Transl Res 2013; 162:333-42. [PMID: 24070997 PMCID: PMC4021592 DOI: 10.1016/j.trsl.2013.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Philip J Mason
- Division of Hematology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA.
| | | |
Collapse
|
10
|
Abstract
Nuclear dualism is a characteristic feature of the ciliated protozoa. Tetrahymena have two different nuclei in each cell. The larger, polyploid, somatic macronucleus (MAC) is the site of transcriptional activity in the vegetatively growing cell. The smaller, diploid micronucleus (MIC) is transcriptionally inactive in vegetative cells, but is transcriptionally active in mating cells and responsible for the genetic continuity during sexual reproduction. Although the MICs and MACs develop from mitotic products of a common progenitor and reside in a common cytoplasm, they are different from one another in almost every respect.
Collapse
Affiliation(s)
- Kathleen M Karrer
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
11
|
Kirk KE, Christ C, McGuire JM, Paul AG, Vahedi M, Stuart KR, Cole ES. Abnormal micronuclear telomeres lead to an unusual cell cycle checkpoint and defects in Tetrahymena oral morphogenesis. EUKARYOTIC CELL 2008; 7:1712-23. [PMID: 18469136 PMCID: PMC2568063 DOI: 10.1128/ec.00393-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 04/16/2008] [Indexed: 11/20/2022]
Abstract
Telomere mutants have been well studied with respect to telomerase and the role of telomere binding proteins, but they have not been used to explore how a downstream morphogenic event is related to the mutated telomeric DNA. We report that alterations at the telomeres can have profound consequences on organellar morphogenesis. Specifically, a telomerase RNA mutation termed ter1-43AA results in the loss of germ line micronuclear telomeres in the binucleate protozoan Tetrahymena thermophila. These cells also display a micronuclear mitotic arrest, characterized by an extreme delay in anaphase with an elongated, condensed chromatin and a mitotic spindle apparatus. This anaphase defect suggests telomere fusions and consequently a spindle rather than a DNA damage checkpoint. Most surprisingly, these mutants exhibit unique, dramatic defects in the formation of the cell's oral apparatus. We suggest that micronuclear telomere loss leads to a "dynamic pause" in the program of cortical development, which may reveal an unusual cell cycle checkpoint.
Collapse
Affiliation(s)
- Karen E Kirk
- Department of Biology, Lake Forest College, Lake Forest, Illinois 60045, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Xu L, Blackburn EH. Human cancer cells harbor T-stumps, a distinct class of extremely short telomeres. Mol Cell 2008; 28:315-27. [PMID: 17964269 DOI: 10.1016/j.molcel.2007.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 08/24/2007] [Accepted: 10/04/2007] [Indexed: 10/22/2022]
Abstract
Using a modified single telomere length analysis protocol (STELA) to clone and examine the sequence composition of individual human XpYp telomeres, we discovered a distinct class of extremely short telomeres in human cancer cells with active telomerase. We name them "t-stumps," to distinguish them from the well-regulated longer bulk telomeres. T-stumps contained arrangements of telomeric repeat variants and a minimal run of seven canonical telomeric TTAGGG repeats, but all could bind at least one TRF1 or TRF2 in vitro. The abundance of t-stumps was unaffected by ATM alteration but could be changed by manipulating telomerase catalytic subunit (hTERT) levels in cancer cells. We propose that in the setting of active telomerase and compromised checkpoints characteristic of human cancer cells, t-stumps define the minimal telomeric unit that can still be protected by a TRF1/TRF2-capping complex and, further, that hTERT (or telomerase) may have a role in protecting t-stumps.
Collapse
Affiliation(s)
- Lifeng Xu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143-2200, USA
| | | |
Collapse
|
13
|
Juranek SA, Lipps HJ. New Insights into the Macronuclear Development in Ciliates. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 262:219-51. [PMID: 17631190 DOI: 10.1016/s0074-7696(07)62005-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During macronuclear differentiation in ciliated protozoa, most amazing "DNA gymnastics" takes place, which includes DNA excision, DNA elimination, DNA reorganization, and DNA-specific amplification. Although the morphological events occurring during macronuclear development are well described, a detailed knowledge of the molecular mechanisms and the regulation of this differentiation process is still missing. However, recently several models have been proposed for the molecular regulation of macronuclear differentiation, but these models have yet to be verified experimentally. The scope of this review is to summarize recent discoveries in different ciliate species and to compare and discuss the different models proposed. Results obtained in these studies are not only relevant for our understanding of nuclear differentiation in ciliates, but also for cellular differentiation in eukaryotic organisms in general as well as for other disciplines such as bioinformatics and computational biology.
Collapse
Affiliation(s)
- Stefan A Juranek
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
14
|
Kuo HF, Olsen KM, Richards EJ. Natural variation in a subtelomeric region of Arabidopsis: implications for the genomic dynamics of a chromosome end. Genetics 2006; 173:401-17. [PMID: 16547105 PMCID: PMC1461430 DOI: 10.1534/genetics.105.055202] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Accepted: 03/07/2006] [Indexed: 11/18/2022] Open
Abstract
We investigated genome dynamics at a chromosome end in the model plant Arabidopsis thaliana through a study of natural variation in 35 wild accessions. We focused on the single-copy subtelomeric region of chromosome 1 north (approximately 3.5 kb), which represents the relatively simple organization of subtelomeric regions in this species. PCR fragment-length variation across the subtelomeric region indicated that the 1.4-kb distal region showed elevated structural variation relative to the centromere-proximal region. Examination of nucleotide sequences from this 1.4-kb region revealed diverse DNA rearrangements, including an inversion, several deletions, and an insertion of a retrotransposon LTR. The structures at the deletion and inversion breakpoints are characteristic of simple deletion-associated nonhomologous end-joining (NHEJ) events. There was strong linkage disequilibrium between the distal subtelomeric region and the proximal telomere, which contains degenerate and variant telomeric repeats. Variation in the proximal telomere was characterized by the expansion and deletion of blocks of repeats. Our sample of accessions documented two independent chromosome-healing events associated with terminal deletions of the subtelomeric region as well as the capture of a scrambled mitochondrial DNA segment in the proximal telomeric array. This natural variation study highlights the variety of genomic events that drive the fluidity of chromosome termini.
Collapse
Affiliation(s)
- Hui-Fen Kuo
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
15
|
Cassidy-Hanley D, Bisharyan Y, Fridman V, Gerber J, Lin C, Orias E, Orias JD, Ryder H, Vong L, Hamilton EP. Genome-wide characterization of Tetrahymena thermophila chromosome breakage sites. II. Physical and genetic mapping. Genetics 2005; 170:1623-31. [PMID: 15956676 PMCID: PMC1449751 DOI: 10.1534/genetics.104.031435] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 05/10/2005] [Indexed: 11/18/2022] Open
Abstract
The chromosomes of the macronuclear (expressed) genome of Tetrahymena thermophila are generated by developmental fragmentation of the five micronuclear (germline) chromosomes. This fragmentation is site specific, directed by a conserved chromosome breakage sequence (Cbs element). An accompanying article in this issue reports the development of a successful scheme for the genome-wide cloning and identification of functional chromosome breakage sites. This article reports the physical and genetic characterization of 30 functional chromosome breakage junctions. Unique sequence tags and physical sizes were obtained for the pair of macronuclear chromosomes generated by fragmentation at each Cbs. Cbs-associated polymorphisms were used to genetically map 11 junctions to micronuclear linkage groups and macronuclear coassortment groups. Two pairs of junctions showed statistically significant similarity of the sequences flanking the Cbs, suggestive of relatively recent duplications of entire Cbs junctions during Tetrahymena genome evolution. Two macronuclear chromosomes that lose at least one end in an age-related manner were also identified. The whole-genome shotgun sequencing of the Tetrahymena macronucleus has recently been completed at The Institute for Genome Research (TIGR). By providing unique sequence from natural ends of macronuclear chromosomes, Cbs junctions will provide useful sequence tags for relating macro- and micronuclear genetic, physical, and whole-genome sequence maps.
Collapse
Affiliation(s)
- Donna Cassidy-Hanley
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Loidl J, Scherthan H. Organization and pairing of meiotic chromosomes in the ciliate Tetrahymena thermophila. J Cell Sci 2004; 117:5791-801. [PMID: 15522890 DOI: 10.1242/jcs.01504] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During meiotic prophase in the ciliate Tetrahymena thermophila micronuclei dramatically elongate and form thread-like crescents. The arrangement of the chromosomes within the crescent as well as the timing of chromosome pairing and recombination with respect to the elongation process have been subjects of ongoing debate. Here, we addressed these issues by means of fluorescence in situ hybridization, labeling of individual chromosomes by BrdU (BrdU-painting) and by immunostaining of the recombination protein, Rad51. BrdU-painting indicated that chromosomes are arranged as parallel bundles within the crescent, and telomere-directed fluorescent in situ hybridization (FISH) revealed that most if not all telomeres are assembled near one end of the developing crescent. Prior to full crescent formation, Rad51 localizes to chromatin as numerous foci. Locus-specific FISH demonstrated that close pairing of homologues only occurs in the full crescent. Meiotic DNA double-strand break formation and the initiation of recombination thus seem to precede close pairing. A synaptonemal complex was not detected. We conclude that the chromosomes adopt a polarized arrangement within the crescent, probably resembling the classical bouquet arrangement. Furthermore, we propose that the elongated shape of meiotic micronuclei promotes the parallel arrangement of chromosomes and supports the juxtaposition of homologous regions in the absence of a synaptonemal complex. Several pieces of evidence indicate the presence of one to four chiasmata per bivalent, which would call for crossover interference to explain regular bivalent formation in spite of this low mean number. Tetrahymena might, therefore, pose a case of interference in the absence of a synaptonemal complex.
Collapse
Affiliation(s)
- Josef Loidl
- Institute of Botany, University of Vienna, Rennweg 14, 1030 Vienna, Austria.
| | | |
Collapse
|
17
|
McGuire JM, Gana JA, Petcherskaia M, Kirk KE. Protein binding to expanded telomere repeats in Tetrahymena thermophila. J Eukaryot Microbiol 2003; 50:341-8. [PMID: 14563172 DOI: 10.1111/j.1550-7408.2003.tb00146.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The ends of eukaryotic chromosomes are protected by DNA-protein structures called telomeres. Telomeric DNA is highly conserved, usually consisting of long tracts of a repeating G-rich sequence. Tetrahymena thermophila telomeric DNA consists of alternating blocks of GGGG and TT sequences (i.e. a G4T2 repeat sequence). We examined the relative importance of the guanine and thymine elements of the repeat sequence in promoting in vitro binding by T. thermophila proteins. We identified single- and, for the first time, double-stranded telomere binding activities from a crude T. thermophila protein extract and tested the binding of these activities to altered telomere repeat sequences. All deletions or substitutions made to the guanine element virtually abolished binding, indicating that four G's are essential for recognition by the binding activity. However, G's alone are not sufficient for efficient binding, as elimination of the thymine element dramatically reduced binding. By contrast, substantial expansion of the thymine element was well tolerated, even though one such change, G4T4, is lethal in vivo. We tested up to a four-fold expansion of the thymine element and found that highly efficient binding was still achieved. These results suggest a minimal recognition sequence for T. thermophila proteins, with the T element providing an important spacer between essential G elements.
Collapse
Affiliation(s)
- Jennifer M McGuire
- Department of Biology, Lake Forest College, 555 N. Sheridan Road, Lake Forest, Illinois 60045, USA
| | | | | | | |
Collapse
|
18
|
Cheng YL, Chang WL, Lee SC, Liu YG, Lin HC, Chen CJ, Yen CY, Yu DS, Lin SZ, Harn HJ. Acetone extract of Bupleurum scorzonerifolium inhibits proliferation of A549 human lung cancer cells via inducing apoptosis and suppressing telomerase activity. Life Sci 2003; 73:2383-94. [PMID: 12941440 DOI: 10.1016/s0024-3205(03)00648-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bupleuri radix, a traditional Chinese herb, has been widely used to treat liver diseases such as hepatitis and cirrhosis. The acetone extract of Bupleurum scorzonerifolium (AE-BS) showed a dose-dependently antiproliferative effect on the proliferation of A549 human lung cancer cells. The IC(50) of AE-BS, i.e., the concentration required to inhibit proliferation of A549 cells, was 59 +/- 4.5 microg/ml on day 1. The IC(50) of AE-BS for WI38 human normal lung fibroblast cells, however, was significant higher than that for A549 cells (150 +/- 16 microg/ml, p< 0.01). After 72 hours of exposure, AE-BS (60 microg/ml) significantly reduced A549 cell proliferation to 33 +/- 3.2% of control. In TUNEL assay, A549 cells treated with AE-BS showed typical morphologic features of apoptosis, and the percentage of apoptotic cells was approximately 38 % on day 1. In the TRAP assay, AE-BS-treated cells demonstrated significantly lower telomerase activity on day 3. This result indicates that the AE-BS could suppress the proliferation of lung cancer cells via inhibition of telomerase activity and activation of apoptosis.
Collapse
Affiliation(s)
- Yeung-Leung Cheng
- Graduate Institution of Medical Science, and Department of Surgery, Tr-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Petcherskaia M, McGuire JM, Pherson JM, Kirk KE. Loss of cap structure causes mitotic defect in Tetrahymena thermophila telomerase mutants. Chromosoma 2003; 111:429-37. [PMID: 12707780 DOI: 10.1007/s00412-003-0233-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Revised: 12/16/2002] [Accepted: 12/16/2002] [Indexed: 11/30/2022]
Abstract
Mutation of the telomeric repeat sequence has severe cellular consequences in a variety of systems. A Tetrahymena thermophila telomerase template mutant, ter1-43AA, displays an acute mitotic chromosome segregation defect. In the study described here we investigated the molecular basis for this lethality. Although cloned ter1-43AA macronuclear telomeres had long tracts of wild-type G4T2 repeats, they were capped by a mixture of G4T3 repeats, shown previously to be non-lethal, and G4T4 repeats, the telomeric sequence normally found in hypotrichous ciliates such as Oxytricha. To test further the functionality of the G4T4 repeat sequence in T. thermophila, we devised a new template mutation, ter1-44+AA, that resulted in more uniform synthesis of this sequence at telomere caps in vivo. The ter1-44+AA mutant displayed the most severe mitotic defect reported to date, with up to 85% of the population having micronuclei in anaphase, providing firm evidence that the hypotrich repeat sequence is not functional in Tetrahymena. Surprisingly, in spite of the telomeric sequence mutation, neither the ter1-43AA nor ter1-44+AA mutant displayed any significant loss of telomere length regulation. These results demonstrate that loss of telomere cap integrity, rather than length regulation, leads to the anaphase defect.
Collapse
|
20
|
Barry JD, Ginger ML, Burton P, McCulloch R. Why are parasite contingency genes often associated with telomeres? Int J Parasitol 2003; 33:29-45. [PMID: 12547344 DOI: 10.1016/s0020-7519(02)00247-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Contingency genes are common in pathogenic microbes and enable, through pre-emptive mutational events, rapid, clonal switches in phenotype that are conducive to survival and proliferation in hosts. Antigenic variation, which is a highly successful survival strategy employed by eubacterial and eukaryotic pathogens, involves large repertoires of distinct contingency genes that are expressed differentially, enabling evasion of host acquired immunity. Most, but not all, antigenic variation systems make extensive use of subtelomeres. Study of model systems has shown that subtelomeres have unusual properties, including reversible silencing of genes mediated by proteins binding to the telomere, and engagement in ectopic recombination with other subtelomeres. There is a general theory that subtelomeric location confers a capacity for gene diversification through such recombination, although experimental evidence is that there is no increased mitotic recombination at such loci and that sequence homogenisation occurs. Possible benefits of subtelomeric location for pathogen contingency systems are reversible gene silencing, which could contribute to systems for gene switching and mutually exclusive expression, and ectopic recombination, leading to gene family diversification. We examine, in several antigenic variation systems, what possible benefits apply.
Collapse
Affiliation(s)
- J D Barry
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Anderson College, 56 Dumbarton Road, UK.
| | | | | | | |
Collapse
|
21
|
Abstract
Telomerase adds telomeric DNA repeats to telomeric termini using a sequence within its RNA subunit as a template. We characterized two mutations in the Kluyveromyces lactis telomerase RNA gene (TER1) template. Each initially produced normally regulated telomeres. One mutation, ter1-AA, had a cryptic defect in length regulation that was apparent only if the mutant gene was transformed into a TER1 deletion strain to permit extensive replacement of basal wild-type repeats with mutant repeats. This mutant differs from previously studied delayed elongation mutants in a number of properties. The second mutation, TER1-Bcl, which generates a BclI restriction site in newly synthesized telomeric repeats, was indistinguishable from wild type in all phenotypes assayed: cell growth, telomere length, and in vivo telomerase fidelity. TER1-Bcl cells demonstrated that the outer halves of the telomeric repeat tracts turn over within a few hundred cell divisions, while the innermost few repeats typically resisted turnover for at least 3000 cell divisions. Similarly deep but incomplete turnover was also observed in two other TER1 template mutants with highly elongated telomeres. These results indicate that most DNA turnover in functionally normal telomeres is due to gradual replicative sequence loss and additions by telomerase but that there are other processes that also contribute to turnover.
Collapse
Affiliation(s)
- Michael J McEachern
- Department of Genetics, Life Sciences Building, University of Georgia, Athens, Georgia 30602-7223, USA.
| | | | | |
Collapse
|
22
|
Abstract
Telomeres are DNA and protein structures that form complexes protecting the ends of chromosomes. Understanding of the mechanisms maintaining telomeres and insights into their function have advanced considerably in recent years. This review summarizes the currently known components of the telomere/telomerase functional complex, and focuses on how they act in the control of processes occurring at telomeres. These include processes acting on the telomeric DNA and on telomeric proteins. Key among them are DNA replication and elongation of one telomeric DNA strand by telomerase. In some situations, homologous recombination of telomeric and subtelomeric DNA is induced. All these processes act to replenish or restore telomeres. Conversely, degradative processes that shorten telomeric DNA, and nonhomologous end-joining of telomeric DNA, can lead to loss of telomere function and genomic instability. Hence they too must normally be tightly controlled.
Collapse
Affiliation(s)
- M J McEachern
- University of Georgia, Department of Genetics, Athens, Georgia, 30602, USA.
| | | | | |
Collapse
|
23
|
Miller MC, Collins K. The Tetrahymena p80/p95 complex is required for proper telomere length maintenance and micronuclear genome stability. Mol Cell 2000; 6:827-37. [PMID: 11090621 DOI: 10.1016/s1097-2765(05)00078-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The telomerase enzyme adds simple sequence repeats to chromosome ends. Telomerases share two essential subunits, telomerase RNA and telomerase reverse transcriptase, that associate with species-specific proteins of predominantly unknown functions. The Tetrahymena p80/p95 complex can coimmunopurify active telomerase from cell extract, and recombinant p80/p95 can interact directly with telomerase RNA and single-stranded telomeric DNA in vitro. Here, we test the functions of p80/p95 in vivo. Surprisingly, telomerase RNA accumulation and telomerase activity in cell extract are unaffected by loss of the genes encoding p80/p95. However, in the absence of p80/p95, telomeres become elongated in both macronuclei and micronuclei. Micronuclear chromosome maintenance is also compromised. These findings suggest that p80/p95 functions to maintain appropriate telomere length and micronuclear genomic stability but does so in a manner different than previously anticipated.
Collapse
Affiliation(s)
- M C Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA
| | | |
Collapse
|
24
|
Blackburn E, Gilley D, Ware T, Bhattacharyya A, Kirk K, Wang H. Studying the telomerase RNA in Tetrahymena. Methods Cell Biol 1999; 62:417-32. [PMID: 10503207 DOI: 10.1016/s0091-679x(08)61546-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- E Blackburn
- Department of Microbiology and Immunology, University of California, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- K M Karrer
- Department of Biology, Marquette University, Milwaukee, Wisconsin 53201, USA
| |
Collapse
|
26
|
Abstract
The telomeric d(GGGGTT).d(AACCCC) repeat tracts (G4T2 repeats) in Tetrahymena thermophila macronuclei were shown previously to be packaged in a non-nucleosomal DNA-protein complex. Here, we demonstrate that these telomeric repeats, together with a short region of the immediately adjacent non-telomeric sequence, exist in two distinct types of chromatin. The non-nucleosomal complex (type I complex) comprises approximately 90 to 97% of telomeric DNA, has no apparent underlying periodic nucleosomal substructure, and includes the whole telomeric tract as well as the immediately adjacent sequence. Type II chromatin, comprising the remaining approximately 3 to 10% of the total telomeric DNA, consists of tightly packed nucleosomes clustered at the inner border of the telomeric tracts, with a periodicity of 154(+/-3) bp. This packing is similar to that of telomeric nucleosomes in vertebrates. However, in contrast to the unstability of vertebrate telomeric mononucleosomes, the T. thermophila mononucleosomes were stable to micrococcal nuclease digestion. During the natural lengthening of the T. thermophila telomeric DNA tracts that occurs in vegetatively dividing cells, the overall ratio of type I and type II chromatin did not change. However, type I complex expanded with the length of the telomeric DNA repeat tract, and the number of telomeric nucleosomes increased from an average of one, up to three to four, per telomeric tract. This finding of telomeric nucleosomes in T. thermophila suggests that the difference between vertebrates and lower eukaryotes in telomeric chromatin structure is quantitative rather than qualitative. We propose that deposition of nucleosomes competes with non-nucleosomal complex formation on telomeric DNA, resulting in a sub-population of chimeric telomeres containing inner nucleosomes abutting a distal, variable length of type I complex.
Collapse
Affiliation(s)
- P Cohen
- Department of Microbiology and Immunology and Department of Biochemistry and Biophysics, University of California San Francisco, 513 Parnassus, San Francisco, Box 0414, USA
| | | |
Collapse
|
27
|
Bhattacharyya A, Blackburn EH. A functional telomerase RNA swap in vivo reveals the importance of nontemplate RNA domains. Proc Natl Acad Sci U S A 1997; 94:2823-7. [PMID: 9096304 PMCID: PMC20280 DOI: 10.1073/pnas.94.7.2823] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/1997] [Indexed: 02/04/2023] Open
Abstract
The ribonucleoprotein (RNP) enzyme telomerase is required for replication of eukaryotic chromosomal termini. The RNA moiety of telomerase is essential for enzyme function and provides the template for telomeric DNA synthesis. However, the roles of its nontemplate domains have not been explored. Here we demonstrate that a novel interspecies telomerase RNA swap in vivo creates a functional but aberrant telomerase. Telomerase RNA from the ciliate Glaucoma chattoni was expressed in Tetrahymena thermophila cells. The telomerase RNAs from these two species have almost superimposable secondary structures. The template region base sequence is identical in the two RNAs, but elsewhere their sequences differ by 49%. This hybrid telomerase RNP was enzymatically active but added only short stretches of telomeric repeat tracts in vivo and in vitro. This new enzyme also had a strong, aberrant DNA cleavage activity in vitro. Thus, molecular interactions in the RNP involving nontemplate RNA domains affect specific aspects of telomerase enzyme function, raising the possibility that they may regulate telomerase activity.
Collapse
Affiliation(s)
- A Bhattacharyya
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0414, USA
| | | |
Collapse
|
28
|
Bhattacharyya A, Blackburn EH. Aspergillus nidulans maintains short telomeres throughout development. Nucleic Acids Res 1997; 25:1426-31. [PMID: 9060439 PMCID: PMC146599 DOI: 10.1093/nar/25.7.1426] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report the identification and cloning of the telomeres of the filamentous fungus,Aspergillus nidulans. We have identified three classes of cloned chromosomal ends based on the telomere-associated sequences (TASs) and demonstrated that the telomeric repeat sequence is TTAGGG, identical to that found in vertebrates, including humans, and some lower eukaryotes. One category of telomere clones was found to contain internal, variant TAAGGG repeats. The A.nidulans telomeric tract length is strikingly short (4-22 repeats). We demonstrate that telomere length is remarkably stable in different cell types and at altered growth temperatures, suggesting a highly regulated mechanism for length control.
Collapse
Affiliation(s)
- A Bhattacharyya
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA.
| | | |
Collapse
|
29
|
Kirk KE, Harmon BP, Reichardt IK, Sedat JW, Blackburn EH. Block in anaphase chromosome separation caused by a telomerase template mutation. Science 1997; 275:1478-81. [PMID: 9045613 DOI: 10.1126/science.275.5305.1478] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Telomeres are essential for chromosome stability, but their functions at specific cell-cycle stages are unknown. Telomeres are now shown to have a role in chromosome separation during mitosis. In telomeric DNA mutants of Tetrahymena thermophila, created by expression of a telomerase RNA with an altered template sequence, division of the germline nucleus was severely delayed or blocked in anaphase. The mutant chromatids failed to separate completely at the midzone, becoming stretched to up to twice their normal length. These results suggest a physical block in mutant telomere separation.
Collapse
Affiliation(s)
- K E Kirk
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0414, USA
| | | | | | | | | |
Collapse
|
30
|
Coyne RS, Chalker DL, Yao MC. Genome downsizing during ciliate development: nuclear division of labor through chromosome restructuring. Annu Rev Genet 1996; 30:557-78. [PMID: 8982465 DOI: 10.1146/annurev.genet.30.1.557] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ciliated protozoa divide the labor of germline and somatic genetic functions between two distinct nuclei. The development of the somatic (macro-) nucleus from the germinal (micro-) nucleus occurs during sexual reproduction and involves large-scale, genetic reorganization including site-specific chromosome breakage and DNA deletion. This intriguing process has been extensively studied in Tetrahymena thermophila. Characterization of cis-acting sequences, putative protein factors, and possible reaction intermediates has begun to shed light on the underlying mechanisms of genome rearrangement. This article summarizes the current understanding of this phenomenon and discusses its origin and biological function. We postulate that ciliate nuclear restructuring serves to segregate the two essential functions of chromosomes: the transmission and expression of genetic information.
Collapse
Affiliation(s)
- R S Coyne
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
31
|
Wicky C, Villeneuve AM, Lauper N, Codourey L, Tobler H, Müller F. Telomeric repeats (TTAGGC)n are sufficient for chromosome capping function in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1996; 93:8983-8. [PMID: 8799140 PMCID: PMC38581 DOI: 10.1073/pnas.93.17.8983] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Telomeres are specialized structures located at the ends of linear eukaryotic chromosomes that ensure their complete replication and protect them from fusion and degradation. We report here the characterization of the telomeres of the nematode Caenorhabditis elegans. We show that the chromosomes terminate in 4-9 kb of tandem repeats of the sequence TTAGGC. Furthermore, we have isolated clones corresponding to 11 of the 12 C. elegans telomeres. Their subtelomeric sequences are all different from each other, demonstrating that the terminal TTAGGC repeats are sufficient for general chromosomal capping functions. Finally, we demonstrate that the me8 meiotic mutant, which is defective in X chromosome crossing over and segregation, bears a terminal deficiency, that was healed by the addition of telomeric repeats, presumably by the activity of a telomerase enzyme. The 11 cloned telomeres represent an important advance for the completion of the physical map and for the determination of the entire sequence of the C. elegans genome.
Collapse
Affiliation(s)
- C Wicky
- Institute of Zoology, University of Fribourg, Switzerland
| | | | | | | | | | | |
Collapse
|