1
|
Powell SK, Kulakova K, Kennedy S. A Review of the Molecular Landscape of Adenoid Cystic Carcinoma of the Lacrimal Gland. Int J Mol Sci 2023; 24:13755. [PMID: 37762061 PMCID: PMC10530759 DOI: 10.3390/ijms241813755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) has a worldwide incidence of three to four cases per million population. Although more cases occur in the minor and major salivary glands, it is the most common lacrimal gland malignancy. ACC has a low-grade, indolent histological appearance, but is relentlessly progressive over time and has a strong proclivity to recur and/or metastasise. Current treatment options are limited to complete surgical excision and adjuvant radiotherapy. Intra-arterial systemic therapy is a recent innovation. Recurrent/metastatic disease is common due to perineural invasion, and it is largely untreatable as it is refractory to conventional chemotherapeutic agents. Given the rarity of this tumour, the molecular mechanisms that govern disease pathogenesis are poorly understood. There is an unmet, critical need to develop effective, personalised targeted therapies for the treatment of ACC in order to reduce morbidity and mortality associated with the disease. This review details the evidence relating to the molecular underpinnings of ACC of the lacrimal gland, including the MYB-NFIB chromosomal translocations, Notch-signalling pathway aberrations, DNA damage repair gene mutations and epigenetic modifications.
Collapse
Affiliation(s)
- Sarah Kate Powell
- Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland; (K.K.); (S.K.)
| | - Karina Kulakova
- Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland; (K.K.); (S.K.)
- Department of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland
| | - Susan Kennedy
- Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland; (K.K.); (S.K.)
- National Ophthalmic Pathology Laboratory, D04 T6F6 Dublin, Ireland
| |
Collapse
|
2
|
Xiong X, Liu J, Rao Y. Whole Genome Resequencing Helps Study Important Traits in Chickens. Genes (Basel) 2023; 14:1198. [PMID: 37372379 DOI: 10.3390/genes14061198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The emergence of high-throughput sequencing technology promotes life science development, provides technical support to analyze many life mechanisms, and presents new solutions to previously unsolved problems in genomic research. Resequencing technology has been widely used for genome selection and research on chicken population structure, genetic diversity, evolutionary mechanisms, and important economic traits caused by genome sequence differences since the release of chicken genome sequence information. This article elaborates on the factors influencing whole genome resequencing and the differences between these factors and whole genome sequencing. It reviews the important research progress in chicken qualitative traits (e.g., frizzle feather and comb), quantitative traits (e.g., meat quality and growth traits), adaptability, and disease resistance, and provides a theoretical basis to study whole genome resequencing in chickens.
Collapse
Affiliation(s)
- Xinwei Xiong
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang 330032, China
| | - Jianxiang Liu
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang 330032, China
| | - Yousheng Rao
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang 330032, China
| |
Collapse
|
3
|
Yang C, Cui X, Xu L, Zhang Q, Tang S, Zhang M, Xie N. Highly precise breakpoint detection of chromosome balanced translocation in chronic myelogenous leukaemia: Case series. J Cell Mol Med 2022; 26:4721-4726. [PMID: 35903038 PMCID: PMC9443941 DOI: 10.1111/jcmm.17500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic myelogenous leukaemia (CML) has a special phenomenon of chromosome translocation, which is called Philadelphia chromosome translocation. However, the detailed connection of this structure is troublesome and expensive to be identified. Low‐coverage whole genome sequencing (LCWGS) could not only detect the previously unknown chromosomal translocation, but also provide the breakpoint candidate small region (with an accuracy of ±200 bases). Importantly, the sequencing cost of LCWGS is about US$300. Then, with the Sanger DNA sequencing, the precise breakpoint can be determined at a single base level. In our project, with LCWGS, BCR and ABL1 are successfully identified to be disrupted in three CML patients (at chr22:23,632,356 and chr9:133,590,450; chr22:23,633,748 and chr9:133,635,781; chr22: 23,631,831 and chr9:133,598,513, respectively). Due to the reconnection after chromosome breakage, classical fusion gene (BCR::ABL1) was found in bone marrow and peripheral blood. The precise breakpoints were helpful to investigate the pathogenic mechanism of CML and could better guide the classification of CML subtypes. This LCWGS method is universal and can be used to detect all diseases related to chromosome variation, such as solid tumours, liquid tumours and birth defects.
Collapse
Affiliation(s)
- Chuanchun Yang
- Guangdong Medical University, Zhanjiang, China.,CheerLand Biological Technology Co., Ltd, Shenzhen, China
| | - Xiaoli Cui
- CheerLand Biological Technology Co., Ltd, Shenzhen, China
| | - Lei Xu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qian Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shanmei Tang
- CheerLand Biological Technology Co., Ltd, Shenzhen, China
| | - Mengmeng Zhang
- CheerLand Biological Technology Co., Ltd, Shenzhen, China
| | - Ni Xie
- Guangdong Medical University, Zhanjiang, China.,Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
4
|
Iannucci A, Makunin AI, Lisachov AP, Ciofi C, Stanyon R, Svartman M, Trifonov VA. Bridging the Gap between Vertebrate Cytogenetics and Genomics with Single-Chromosome Sequencing (ChromSeq). Genes (Basel) 2021; 12:124. [PMID: 33478118 PMCID: PMC7835784 DOI: 10.3390/genes12010124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 01/23/2023] Open
Abstract
The study of vertebrate genome evolution is currently facing a revolution, brought about by next generation sequencing technologies that allow researchers to produce nearly complete and error-free genome assemblies. Novel approaches however do not always provide a direct link with information on vertebrate genome evolution gained from cytogenetic approaches. It is useful to preserve and link cytogenetic data with novel genomic discoveries. Sequencing of DNA from single isolated chromosomes (ChromSeq) is an elegant approach to determine the chromosome content and assign genome assemblies to chromosomes, thus bridging the gap between cytogenetics and genomics. The aim of this paper is to describe how ChromSeq can support the study of vertebrate genome evolution and how it can help link cytogenetic and genomic data. We show key examples of ChromSeq application in the refinement of vertebrate genome assemblies and in the study of vertebrate chromosome and karyotype evolution. We also provide a general overview of the approach and a concrete example of genome refinement using this method in the species Anolis carolinensis.
Collapse
Affiliation(s)
- Alessio Iannucci
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (C.C.); (R.S.)
| | - Alexey I. Makunin
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK;
- Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia;
| | - Artem P. Lisachov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, 625003 Tyumen, Russia;
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Claudio Ciofi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (C.C.); (R.S.)
| | - Roscoe Stanyon
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (C.C.); (R.S.)
| | - Marta Svartman
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | | |
Collapse
|
5
|
Flach J, Shumilov E, Joncourt R, Porret N, Novak U, Pabst T, Bacher U. Current concepts and future directions for hemato-oncologic diagnostics. Crit Rev Oncol Hematol 2020; 151:102977. [DOI: 10.1016/j.critrevonc.2020.102977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/22/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
|
6
|
David D, Freixo JP, Fino J, Carvalho I, Marques M, Cardoso M, Piña-Aguilar RE, Morton CC. Comprehensive clinically oriented workflow for nucleotide level resolution and interpretation in prenatal diagnosis of de novo apparently balanced chromosomal translocations in their genomic landscape. Hum Genet 2020; 139:531-543. [PMID: 32030560 PMCID: PMC10501484 DOI: 10.1007/s00439-020-02121-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/28/2020] [Indexed: 12/27/2022]
Abstract
We present a comprehensive clinically oriented workflow for large-insert genome sequencing (liGS)-based nucleotide level resolution and interpretation of de novo (dn) apparently balanced chromosomal abnormalities (BCA) in prenatal diagnosis (PND). Retrospective or concomitant with conventional PND and liGS, molecular and newly developed clinically inspired bioinformatic tools (TAD-GConTool and CNV-ConTool) are applied to analyze and assess the functional and phenotypic outcome of dn structural variants (dnSVs). Retrospective analysis of four phenotype-associated dnSVs identified during conventional PND precisely reveal the genomic elements disrupted by the translocation breakpoints. Identification of autosomal dominant disease due to the disruption of ANKS1B and WDR26 by t(12;17)(q23.1;q21.33)dn and t(1;3)(q24.11;p25.3)dn breakpoints, respectively, substantiated the proposed workflow. We then applied this workflow to two ongoing prenatal cases with apparently balanced dnBCAs: 46,XX,t(16;17)(q24;q21.3)dn referred for increased risk on combined first trimester screening and 46,XY,t(2;19)(p13;q13.1)dn referred due to a previous trisomy 21 pregnancy. Translocation breakpoints in the t(16;17) involve ANKRD11 and WNT3 and disruption of ANKRD11 resulted in KBG syndrome confirmed in postnatal follow-up. Breakpoints in the t(2;19) are within ATP6V1B1 and the 3' UTR of CEP89, and are not interpreted to cause disease. Genotype-phenotype correlation confirms the causative role of WDR26 in the Skraban-Deardorff and 1q41q42 microdeletion phenocopy syndromes, and that disruption of ANKS1B causes ANKS1B haploinsufficiency syndrome. In sum, we show that an liGS-based approach can be realized in PND care providing additional information concerning clinical outcomes of dnBCAs in patients with such rearrangements.
Collapse
Affiliation(s)
- Dezső David
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
| | - João P Freixo
- Department of Medical Genetics, Central Lisbon Hospital Center (CHLC), Lisbon, Portugal
| | - Joana Fino
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Inês Carvalho
- Department of Medical Genetics, Central Lisbon Hospital Center (CHLC), Lisbon, Portugal
| | - Mariana Marques
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Manuela Cardoso
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Raul E Piña-Aguilar
- Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Cynthia C Morton
- Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Manchester Academic Health Science Center, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Dong Z, Zhao X, Li Q, Yang Z, Xi Y, Alexeev A, Shen H, Wang O, Ruan J, Ren H, Wei H, Qi X, Li J, Zhu X, Zhang Y, Dai P, Kong X, Kirkconnell K, Alferov O, Giles S, Yamtich J, Kermani BG, Dong C, Liu P, Mi Z, Zhang W, Xu X, Drmanac R, Choy KW, Jiang Y. Development of coupling controlled polymerizations by adapter-ligation in mate-pair sequencing for detection of various genomic variants in one single assay. DNA Res 2020; 26:313-325. [PMID: 31173071 PMCID: PMC6704401 DOI: 10.1093/dnares/dsz011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
The diversity of disease presentations warrants one single assay for detection and delineation of various genomic disorders. Herein, we describe a gel-free and biotin-capture-free mate-pair method through coupling Controlled Polymerizations by Adapter-Ligation (CP-AL). We first demonstrated the feasibility and ease-of-use in monitoring DNA nick translation and primer extension by limiting the nucleotide input. By coupling these two controlled polymerizations by a reported non-conventional adapter-ligation reaction 3′ branch ligation, we evidenced that CP-AL significantly increased DNA circularization efficiency (by 4-fold) and was applicable for different sequencing methods but at a faction of current cost. Its advantages were further demonstrated by fully elimination of small-insert-contaminated (by 39.3-fold) with a ∼50% increment of physical coverage, and producing uniform genome/exome coverage and the lowest chimeric rate. It achieved single-nucleotide variants detection with sensitivity and specificity up to 97.3 and 99.7%, respectively, compared with data from small-insert libraries. In addition, this method can provide a comprehensive delineation of structural rearrangements, evidenced by a potential diagnosis in a patient with oligo-atheno-terato-spermia. Moreover, it enables accurate mutation identification by integration of genomic variants from different aberration types. Overall, it provides a potential single-integrated solution for detecting various genomic variants, facilitating a genetic diagnosis in human diseases.
Collapse
Affiliation(s)
- Zirui Dong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xia Zhao
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Qiaoling Li
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Zhenjun Yang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yang Xi
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | | | - Hanjie Shen
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Ou Wang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jie Ruan
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Han Ren
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | | | - Xiaojuan Qi
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jiguang Li
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Xiaofan Zhu
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | | | - Peng Dai
- Genetics and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | - Chao Dong
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Pengjuan Liu
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Zilan Mi
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Wenwei Zhang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Guangdong High-Throughput Sequencing Research Center, Shenzhen, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Radoje Drmanac
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
- Complete Genomics Inc., San Jose, CA, USA
- To whom correspondence should be addressed. Tel. +1 4086482560 3079. Fax. +1 4086482549. (Y.J.); Tel. +852 35053099. Fax. +852 26360008. (K.W.C.); Tel. +1 4088389539. Fax. +1 4086482549. (R.D.)
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- The Chinese University of Hong Kong—Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
- To whom correspondence should be addressed. Tel. +1 4086482560 3079. Fax. +1 4086482549. (Y.J.); Tel. +852 35053099. Fax. +852 26360008. (K.W.C.); Tel. +1 4088389539. Fax. +1 4086482549. (R.D.)
| | - Yuan Jiang
- Complete Genomics Inc., San Jose, CA, USA
- To whom correspondence should be addressed. Tel. +1 4086482560 3079. Fax. +1 4086482549. (Y.J.); Tel. +852 35053099. Fax. +852 26360008. (K.W.C.); Tel. +1 4088389539. Fax. +1 4086482549. (R.D.)
| |
Collapse
|
8
|
Dai Z, Li T, Li J, Han Z, Pan Y, Tang S, Diao X, Luo M. High-throughput long paired-end sequencing of a Fosmid library by PacBio. PLANT METHODS 2019; 15:142. [PMID: 31788019 PMCID: PMC6878638 DOI: 10.1186/s13007-019-0525-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Large insert paired-end sequencing technologies are important tools for assembling genomes, delineating associated breakpoints and detecting structural rearrangements. To facilitate the comprehensive detection of inter- and intra-chromosomal structural rearrangements or variants (SVs) and complex genome assembly with long repeats and segmental duplications, we developed a new method based on single-molecule real-time synthesis sequencing technology for generating long paired-end sequences of large insert DNA libraries. RESULTS A Fosmid vector, pHZAUFOS3, was developed with the following new features: (1) two 18-bp non-palindromic I-SceI sites flank the cloning site, and another two sites are present in the skeleton of the vector, allowing long DNA inserts (and the long paired-ends in this paper) to be recovered as single fragments and the vector (~ 8 kb) to be fragmented into 2-3 kb fragments by I-SceI digestion and therefore was effectively removed from the long paired-ends (5-10 kb); (2) the chloramphenicol (Cm) resistance gene and replicon (oriV), necessary for colony growth, are located near the two sides of the cloning site, helping to increase the proportion of the paired-end fragments to single-end fragments in the paired-end libraries. Paired-end libraries were constructed by ligating the size-selected, mechanically sheared pooled Fosmid DNA fragments to the Ampicillin (Amp) resistance gene fragment and screening the colonies with Cm and Amp. We tested this method on yeast and Setaria italica Yugu1. Fosmid-size paired-ends with an average length longer than 2 kb for each end were generated. The N50 scaffold lengths of the de novo assemblies of the yeast and S. italica Yugu1 genomes were significantly improved. Five large and five small structural rearrangements or assembly errors spanning tens of bp to tens of kb were identified in S. italica Yugu1 including deletions, inversions, duplications and translocations. CONCLUSIONS We developed a new method for long paired-end sequencing of large insert libraries, which can efficiently improve the quality of de novo genome assembly and identify large and small structural rearrangements or assembly errors.
Collapse
Affiliation(s)
- Zhaozhao Dai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tong Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jiadong Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhifei Han
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yonglong Pan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10081 China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10081 China
| | - Meizhong Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
9
|
Zhang S, Liang F, Lei C, Wu J, Fu J, Yang Q, Luo X, Yu G, Wang D, Zhang Y, Lu D, Sun X, Liang Y, Xu C. Long-read sequencing and haplotype linkage analysis enabled preimplantation genetic testing for patients carrying pathogenic inversions. J Med Genet 2019; 56:741-749. [PMID: 31439719 PMCID: PMC6860410 DOI: 10.1136/jmedgenet-2018-105976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/31/2019] [Accepted: 06/13/2019] [Indexed: 01/04/2023]
Abstract
Background Preimplantation genetic testing (PGT) has already been applied in patients known to carry chromosomal structural variants to improve the clinical outcome of assisted reproduction. However, conventional molecular techniques are not capable of reliably distinguishing embryos that carry balanced inversion from those with a normal karyotype. We aim to evaluate the use of long-read sequencing in combination with haplotype linkage analysis to address this challenge. Methods Long-read sequencing on Oxford Nanopore platform was employed to identify the precise positions of inversion break points in four patients. Comprehensive chromosomal screening and genome-wide haplotype linkage analysis were performed based on SNP microarray. The haplotypes, including the break point regions, the whole chromosomes involved in the inversion and the corresponding homologous chromosomes, were established using informative SNPs. Results All the inversion break points were successfully identified by long-read sequencing and validated by Sanger sequencing, and on average only 13 bp differences were observed between break points inferred by long-read sequencing and Sanger sequencing. Eighteen blastocysts were biopsied and tested, in which 10 were aneuploid or unbalanced and eight were diploid with normal or balanced inversion karyotypes. Diploid embryos were transferred back to patients, the predictive results of the current methodology were consistent with fetal karyotypes of amniotic fluid or cord blood. Conclusions Nanopore long-read sequencing is a powerful method to assay chromosomal inversions and identify exact break points. Identification of inversion break points combined with haplotype linkage analysis is an efficient strategy to distinguish embryos with normal or balanced inversion karyotypes, facilitating PGT applications.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Fan Liang
- GrandOmics Biosciences, Beijing, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Junping Wu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jing Fu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qi Yang
- GrandOmics Biosciences, Beijing, China
| | - Xiao Luo
- GrandOmics Biosciences, Beijing, China
| | | | | | - Yueping Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Daru Lu
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yu Liang
- GrandOmics Biosciences, Beijing, China
| | - Congjian Xu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Choy KW, Wang H, Shi M, Chen J, Yang Z, Zhang R, Yan H, Wang Y, Chen S, Chau MHK, Cao Y, Chan OYM, Kwok YK, Zhu Y, Chen M, Leung TY, Dong Z. Prenatal Diagnosis of Fetuses With Increased Nuchal Translucency by Genome Sequencing Analysis. Front Genet 2019; 10:761. [PMID: 31475041 PMCID: PMC6706460 DOI: 10.3389/fgene.2019.00761] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Increased nuchal translucency (NT) is an important biomarker associated with increased risk of fetal structural anomalies. It is known to be contributed by a wide range of genetic etiologies from single-nucleotide variants to those affecting millions of base pairs. Currently, prenatal diagnosis is routinely performed by karyotyping and chromosomal microarray analysis (CMA); however, both of them have limited resolution. The diversity of the genetic etiologies warrants an integrated assay such as genome sequencing (GS) for comprehensive detection of genomic variants. Herein, we aim to evaluate the feasibility of applying GS in prenatal diagnosis for the fetuses with increased NT. Methods: We retrospectively applied GS (> 30-fold) for fetuses with increased NT (≥3.5 mm) who underwent routine prenatal diagnosis. Detection of single-nucleotide variants, copy number variants, and structural rearrangements was performed simultaneously, and the results were integrated for interpretation in accordance with the guidelines of the American College of Medical Genetics and Genomics. Pathogenic or likely pathogenic (P/LP) variants were selected for validation and parental confirmation, when available. Results: Overall, 50 fetuses were enrolled, including 34 cases with isolated increased NT and 16 cases with other fetal structural malformations. Routine CMA and karyotyping reported eight P/LP CNVs, yielding a diagnostic rate of 16.0% (8/50). In comparison, GS provided a twofold increase in diagnostic yield (32.0%, 16/50), including one mosaic turner syndrome, eight cases with microdeletions/microduplications, and seven cases with P/LP point mutations. Moreover, GS identified two cryptic insertions and two inversions. Follow-up study further demonstrated the potential pathogenicity of an apparently balanced insertion that disrupted an OMIM autosomal dominant disease-causing gene at the insertion site. Conclusions: Our study demonstrates that applying GS in fetuses with increased NT can comprehensively detect and delineate the various genomic variants that are causative to the diseases. Importantly, prenatal diagnosis by GS doubled the diagnostic yield compared with routine protocols. Given a comparable turnaround time and less DNA required, our study provides strong evidence to facilitate GS in prenatal diagnosis, particularly in fetuses with increased NT.
Collapse
Affiliation(s)
- Kwong Wai Choy
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Huilin Wang
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Mengmeng Shi
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenjun Yang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Rui Zhang
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Huanchen Yan
- Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanfang Wang
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Shaoyun Chen
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Matthew Hoi Kin Chau
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Cao
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Olivia Y M Chan
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yvonne K Kwok
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuanfang Zhu
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Min Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tak Yeung Leung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Zirui Dong
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Gabur I, Chawla HS, Snowdon RJ, Parkin IAP. Connecting genome structural variation with complex traits in crop plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:733-750. [PMID: 30448864 DOI: 10.1007/s00122-018-3233-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/07/2018] [Indexed: 05/05/2023]
Abstract
Structural genome variation is a major determinant of useful trait diversity. We describe how genome analysis methods are enabling discovery of trait-associated structural variants and their potential impact on breeding. As our understanding of complex crop genomes continues to grow, there is growing evidence that structural genome variation plays a major role in determining traits important for breeding and agriculture. Identifying the extent and impact of structural variants in crop genomes is becoming increasingly feasible with ongoing advances in the sophistication of genome sequencing technologies, particularly as it becomes easier to generate accurate long sequence reads on a genome-wide scale. In this article, we discuss the origins of structural genome variation in crops from ancient and recent genome duplication and polyploidization events and review high-throughput methods to assay such variants in crop populations in order to find associations with phenotypic traits. There is increasing evidence from such studies that gene presence-absence and copy number variation resulting from segmental chromosome exchanges may be at the heart of adaptive variation of crops to counter abiotic and biotic stress factors. We present examples from major crops that demonstrate the potential of pangenomic diversity as a key resource for future plant breeding for resilience and sustainability.
Collapse
Affiliation(s)
- Iulian Gabur
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N OX2, Canada
| |
Collapse
|
12
|
Holubar M, Sahoo MK, Huang C, Mohamed-Hadley A, Liu Y, Waggoner JJ, Troy SB, García-García L, Ferreyra-Reyes L, Maldonado Y, Pinsky BA. Deep sequencing prompts the modification of a real-time RT-PCR for the serotype-specific detection of polioviruses. J Virol Methods 2018; 264:38-43. [PMID: 30447245 PMCID: PMC6320388 DOI: 10.1016/j.jviromet.2018.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/03/2022]
Abstract
Deep sequencing distinguished poliovirus from non-polio enterovirus C (NPEV-C). Low rRT-PCR specificity resulted in false-positive Sabin 2 in stool with NPEV-C. Modification of a multiplex rRT-PCR restored poliovirus serotype specificity.
Polioviruses are members of the Enterovirus C species and asymptomatic fecal shedding allows for their transmission and persistence in a community, as well as the emergence of vaccine-derived polioviruses. Using three serotype-specific real-time RT-PCR (rRT-PCR) assays, the shedding and circulation of oral poliovirus vaccine (OPV) strains was previously investigated in a prospective cohort of Mexican children, their contacts, and nearby sewage. Subsequently, a deep sequencing approach targeting the P1 genomic region was applied to characterize OPV strains previously detected by rRT-PCR. Amplifiable RNA was obtained for sequencing from 40.3% (58/144) of stool samples and 71.4% (15/21) of sewage using nucleic acids extracted directly from primary rRT-PCR-positive specimens. Sequencing detected one or more OPV serotypes in 62.1% (36/58) of stool and 53.3% (8/15) of sewage samples. All stool and sewage samples in which poliovirus was not detected by deep sequencing contained at least one non-polio enterovirus C (NPEV-C) strain. To improve screening specificity, a modified, two-step, OPV serotype-specific multiplex rRT-PCR was evaluated. In stool specimens, the overall agreement between the original assays and the multiplex was 70.3%. By serotype, the overall agreement was 95.7% for OPV serotype-1 (S1), 65.6% for S2, and 96.1% for S3. Furthermore, most original rRT-PCR positive/multiplex rRT-PCR negative results were collected in the summer and fall months, consistent with NPEV-C circulation patterns. In conclusion, this deep sequencing approach allowed for the characterization of OPV sequences directly from clinical samples and facilitated the implementation of a more specific multiplex rRT-PCR for OPV detection and serotyping.
Collapse
Affiliation(s)
- Marisa Holubar
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - ChunHong Huang
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, United States
| | - Alisha Mohamed-Hadley
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Yuanyuan Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Jesse J Waggoner
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | | | | | | - Yvonne Maldonado
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, United States
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States; Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
13
|
Steininger A, Ebert G, Becker BV, Assaf C, Möbs M, Schmidt CA, Grabarczyk P, Jensen LR, Przybylski GK, Port M, Kuss AW, Ullmann R. Genome-Wide Analysis of Interchromosomal Interaction Probabilities Reveals Chained Translocations and Overrepresentation of Translocation Breakpoints in Genes in a Cutaneous T-Cell Lymphoma Cell Line. Front Oncol 2018; 8:183. [PMID: 29900125 PMCID: PMC5988852 DOI: 10.3389/fonc.2018.00183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
In classical models of tumorigenesis, the accumulation of tumor promoting chromosomal aberrations is described as a gradual process. Next-generation sequencing-based methods have recently revealed complex patterns of chromosomal aberrations, which are beyond explanation by these classical models of karyotypic evolution of tumor genomes. Thus, the term chromothripsis has been introduced to describe a phenomenon, where temporarily and spatially confined genomic instability results in dramatic chromosomal rearrangements limited to segments of one or a few chromosomes. Simultaneously arising and misrepaired DNA double-strand breaks are also the cause of another phenomenon called chromoplexy, which is characterized by the presence of chained translocations and interlinking deletion bridges involving several chromosomes. In this study, we demonstrate the genome-wide identification of chromosomal translocations based on the analysis of translocation-associated changes in spatial proximities of chromosome territories on the example of the cutaneous T-cell lymphoma cell line Se-Ax. We have used alterations of intra- and interchromosomal interaction probabilities as detected by genome-wide chromosome conformation capture (Hi-C) to infer the presence of translocations and to fine-map their breakpoints. The outcome of this analysis was subsequently compared to datasets on DNA copy number alterations and gene expression. The presence of chained translocations within the Se-Ax genome, partly connected by intervening deletion bridges, indicates a role of chromoplexy in the etiology of this cutaneous T-cell lymphoma. Notably, translocation breakpoints were significantly overrepresented in genes, which highlight gene-associated biological processes like transcription or other gene characteristics as a possible cause of the observed complex rearrangements. Given the relevance of chromosomal aberrations for basic and translational research, genome-wide high-resolution analysis of structural chromosomal aberrations will gain increasing importance.
Collapse
Affiliation(s)
- Anne Steininger
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Grit Ebert
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Benjamin V Becker
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Chalid Assaf
- Department of Dermatology and Venerology, Helios Klinikum Krefeld, Krefeld, Germany
| | - Markus Möbs
- Berlin Institute of Health, Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian A Schmidt
- Clinic for Internal Medicine C, University Medicine Greifswald, Greifswald, Germany
| | - Piotr Grabarczyk
- Clinic for Internal Medicine C, University Medicine Greifswald, Greifswald, Germany
| | - Lars R Jensen
- Human Molecular Genetics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Andreas W Kuss
- Human Molecular Genetics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
14
|
Matsubara K, Iwasaki Y, Nishiki I, Nomura K, Fujiwara A. Identification of genetic linkage group 1-linked sequences in Japanese eel (Anguilla japonica) by single chromosome sorting and sequencing. PLoS One 2018; 13:e0197040. [PMID: 29738551 PMCID: PMC5940218 DOI: 10.1371/journal.pone.0197040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/25/2018] [Indexed: 11/18/2022] Open
Abstract
Japanese eel (Anguilla japonica) constitutes one of the most important food fish in Japan; accordingly, genome sequencing and linkage mapping have been conducted for the purpose of artificial cultivation. In the next stage, integration of genomic sequences within linkage groups (LG) is required to construct higher-resolution genetic markers for quantitative trait loci mapping and selective breeding of beneficial traits in farming. In order to identify LG1-linked scaffolds from the draft genome assembly (323,776 scaffolds) reported previously, we attempted to isolate chromosomes corresponding to LG1 by flow sorting and subsequent analyses. Initially, single chromosomes were randomly collected by chromosome sorting and subjected to whole-genome amplification (WGA). A total of 60 WGA samples were screened by PCR with primers for a known LG1-linked scaffold, and five positive WGA samples were sequenced by next-generation sequencing (NGS). Following reference mapping analysis of the NGS reads, four of the five WGA samples were found to be enriched by LG1-linked sequences. These samples were cytogenetically assigned to chromosome 5 by fluorescence in situ hybridization. Using blastn searches with 82,081 contigs constructed from the NGS reads of the four WGA samples as queries, 2323 scaffolds were identified as putative LG1-linked scaffolds from the draft genome assembly. The total length of the putative LG1-linked scaffolds was 99.0 Mb, comparable to the estimated DNA amounts of chromosome 5 (91.1 Mb). These results suggest that the methodology developed herein is applicable to isolate specific chromosome DNAs and integrate unanchored scaffold sequences onto a particular LG and chromosome even in teleost fishes, in which isolation of specific chromosomes by flow sorting is generally difficult owing to similar morphologies, sizes, and GC-contents among chromosomes in the genome. The putative LG1-linked scaffolds of Japanese eel contain a total of 6833 short tandem repeats which will be available for higher-resolution linkage mapping.
Collapse
Affiliation(s)
- Kazumi Matsubara
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Yuki Iwasaki
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Issei Nishiki
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Kazuharu Nomura
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Minami-ise, Mie, Japan
| | - Atushi Fujiwara
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
15
|
Shumilov E, Flach J, Kohlmann A, Banz Y, Bonadies N, Fiedler M, Pabst T, Bacher U. Current status and trends in the diagnostics of AML and MDS. Blood Rev 2018; 32:508-519. [PMID: 29728319 DOI: 10.1016/j.blre.2018.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023]
Abstract
Diagnostics of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) have recently been experiencing extensive modifications regarding the incorporation of next-generation sequencing (NGS) strategies into established diagnostic algorithms, classification and risk stratification systems, and minimal residual disease (MRD) detection. Considering the increasing arsenal of targeted therapies (e.g. FLT3 or IDH1/IDH2 inhibitors) for AML, timely and comprehensive molecular mutation screening has arrived in daily practice. Next-generation flow strategies allow for immunophenotypic minimal residual disease (MRD) monitoring with very high sensitivity. At the same time, standard diagnostic tools such as cytomorphology or conventional cytogenetics remain cornerstones for the diagnostic workup of myeloid malignancies. Herein, we summarize the most recent advances and new trends for the diagnostics of AML and MDS, discuss the difficulties, which accompany the integration of these new methods and their results into daily routine, and aim to define the role hemato-oncologists may play in this new diagnostic era.
Collapse
Affiliation(s)
- Evgenii Shumilov
- Department of Hematology and Medical Oncology, University Medicine Göttingen (UMG), Göttingen, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Alexander Kohlmann
- Precision Medicine and Genomics, Innovative Medicines and Early Development, AstraZeneca, Cambridge, UK
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Nicolas Bonadies
- University Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, Inselspital, Bern, Bern University Hospital, University of Bern, Switzerland
| | - Martin Fiedler
- Center of Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland.
| | - Ulrike Bacher
- University Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland; Center of Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
16
|
Cosemans N, Vandenhove L, Maljaars J, Van Esch H, Devriendt K, Baldwin A, Fryns JP, Noens I, Peeters H. ZNF462 and KLF12 are disrupted by a de novo translocation in a patient with syndromic intellectual disability and autism spectrum disorder. Eur J Med Genet 2018; 61:376-383. [PMID: 29427787 DOI: 10.1016/j.ejmg.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/21/2017] [Accepted: 02/03/2018] [Indexed: 01/11/2023]
Abstract
We describe a patient with a de novo balanced translocation 46,XY,t(9; 13)(q31.2; q22.1) and autism spectrum disorder, intellectual disability, a metopic craniosynostosis, a corpus callosum dysgenesis and dysmorphic facial features, most notably ptosis. Breakpoint mapping was performed by means of targeted locus amplification (TLA) and sequencing, because conventional breakpoint mapping by means of fluorescent in situ hybridization and long-range PCR was hampered by a complex submicroscopic rearrangement. The translocation breakpoints directly affected the genes KLF12 (chromosome 13) and ZNF462 (chromosome 9). The latter gene was disrupted by multiple breakpoints, resulting in the loss of three fragments and a rearrangement of the remaining fragments. Therefore, haploinsufficiency of ZNF462 was assumed. Loss-of-function variants in ZNF462 have recently been published by Weiss et al. (2017) in a series of eight patients from six independent families delineating the ZNF462-associated phenotype. The latter closely matches with the clinical features of the current translocation patient. Besides, no direct evidence for an association of KLF12 to the phenotypic features was found. Therefore, we conclude that the phenotype of the current patient is mainly caused by the disruption of ZNF462. We present clinical data from birth to adulthood and data on the cognitive and behavioral profile of the current patient which may add to a more precise counseling and surveillance of development in young children with ZNF462 mutations. In addition, the current case illustrates that TLA is an efficient method for determining complex chromosomal breakpoints.
Collapse
Affiliation(s)
- Nele Cosemans
- Center for Human Genetics, University Hospital Leuven, KU Leuven, Leuven, Belgium; Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Laura Vandenhove
- Center for Human Genetics, University Hospital Leuven, KU Leuven, Leuven, Belgium; Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Jarymke Maljaars
- Parenting and Special Education Research Unit, KU Leuven, Leuven, Belgium; Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Hilde Van Esch
- Center for Human Genetics, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Center for Human Genetics, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | | | - Jean-Pierre Fryns
- Center for Human Genetics, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Ilse Noens
- Parenting and Special Education Research Unit, KU Leuven, Leuven, Belgium; Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Hilde Peeters
- Center for Human Genetics, University Hospital Leuven, KU Leuven, Leuven, Belgium; Leuven Autism Research (LAuRes), Leuven, Belgium.
| |
Collapse
|
17
|
Low-pass single-chromosome sequencing of human small supernumerary marker chromosomes (sSMCs) and Apodemus B chromosomes. Chromosoma 2018; 127:301-311. [PMID: 29380046 DOI: 10.1007/s00412-018-0662-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
Supernumerary chromosomes sporadically arise in many eukaryotic species as a result of genomic rearrangements. If present in a substantial part of species population, those are called B chromosomes, or Bs. This is the case for 70 mammalian species, most of which are rodents. In humans, the most common types of extra chromosomes, sSMCs (small supernumerary marker chromosomes), are diagnosed in approximately 1 of 2000 postnatal cases. Due to low frequency in population, human sSMCs are not considered B chromosomes. Genetic content of both B-chromosomes and sSMCs in most cases remains understudied. Here, we apply microdissection of single chromosomes with subsequent low-pass sequencing on Ion Torrent PGM and Illumina MiSeq to identify unique and repetitive DNA sequences present in a single human sSMC and several B chromosomes in mice Apodemus flavicollis and Apodemus peninsulae. The pipeline for sequencing data analysis was made available in Galaxy interface as an addition to previously published command-line version. Human sSMC was attributed to the proximal part of chromosome 15 long arm, and breakpoints leading to its formation were located into satellite DNA arrays. Genetic content of Apodemus B chromosomes was species-specific, and minor alterations were observed in both species. Common features of Bs in these Apodemus species were satellite DNA and ERV enrichment, as well as the presence of the vaccinia-related kinase gene Vrk1. Understanding of the non-essential genome elements content provides important insights into genome evolution in general.
Collapse
|
18
|
Fève K, Foissac S, Pinton A, Mompart F, Esquerré D, Faraut T, Yerle M, Riquet J. Identification of a t(3;4)(p1.3;q1.5) translocation breakpoint in pigs using somatic cell hybrid mapping and high-resolution mate-pair sequencing. PLoS One 2017; 12:e0187617. [PMID: 29121641 PMCID: PMC5679599 DOI: 10.1371/journal.pone.0187617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/23/2017] [Indexed: 02/02/2023] Open
Abstract
Reciprocal translocations are the most frequently occurring constitutional structural rearrangements in mammalian genomes. In phenotypically normal pigs, an incidence of 1/200 is estimated for such rearrangements. Even if constitutional translocations do not necessarily induce defects and diseases, they are responsible for significant economic losses in domestic animals due to reproduction failures. Over the last 30 years, advances in molecular and cytogenetic technologies have led to major improvements in the resolution of the characterization of translocation events. Characterization of translocation breakpoints helps to decipher the mechanisms that lead to such rearrangements and the functions of the genes that are involved in the translocation. Here, we describe the fine characterization of a reciprocal translocation t(3;4) (p1.3;q1.5) detected in a pig line. The breakpoint was identified at the base-pair level using a positional cloning and chromosome walking strategy in somatic cell hybrids that were generated from an animal that carries this translocation. We show that this translocation occurs within the ADAMTSL4 gene and results in a loss of expression in homozygous carriers. In addition, by taking this translocation as a model, we used a whole-genome next-generation mate-pair sequencing approach on pooled individuals to evaluate this strategy for high-throughput screening of structural rearrangements.
Collapse
Affiliation(s)
- Katia Fève
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Sylvain Foissac
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Alain Pinton
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Florence Mompart
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Diane Esquerré
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Thomas Faraut
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Martine Yerle
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Juliette Riquet
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
19
|
Wang Y, Wu N, Liu D, Jin Y. Recurrent Fusion Genes in Leukemia: An Attractive Target for Diagnosis and Treatment. Curr Genomics 2017; 18:378-384. [PMID: 29081694 PMCID: PMC5635644 DOI: 10.2174/1389202918666170329110349] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/23/2016] [Accepted: 02/14/2016] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Since the first fusion gene was discovered decades ago, a considerable number of fusion genes have been detected in leukemia. The majority of them are generated through chromosomal rearrangement or abnormal transcription. With the development of techniques, high-throughput sequencing method makes it possible to detect fusion genes systematically in multiple human cancers. Owing to their biological significance and tumor-specific expression, some of the fusion genes are attractive diagnostic tools and therapeutic targets. Tyrosine kinase inhibitors (TKI) targeting BCR-ABL1 fusions have been widely used to treat CML. The combination of ATRA and ATO targeting PML-RARA fusions has proven to be effective in acute promyelocytic leukemia (APL). Moreover, therapy with high dose cytarabine (HDAC) has significantly improved the prognosis of core binding factor (CBF) acute myeloid leukemia (AML) patients. Therefore, studies on fusion genes may benefit patients with leukemia by providing more diagnostic markers and therapies in the future. CONCLUSION The presented review focuses on the history of fusion genes, mechanisms of formation, and treatments against specific fusion genes in leukemia.
Collapse
Affiliation(s)
- Yuhui Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Nan Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Duo Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
20
|
Simioni M, Artiguenave F, Meyer V, Sgardioli IC, Viguetti-Campos NL, Lopes Monlleó I, Maciel-Guerra AT, Steiner CE, Gil-da-Silva-Lopes VL. Genomic Investigation of Balanced Chromosomal Rearrangements in Patients with Abnormal Phenotypes. Mol Syndromol 2017; 8:187-194. [PMID: 28690484 DOI: 10.1159/000477084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 11/19/2022] Open
Abstract
Balanced chromosomal rearrangements (BCR) are associated with abnormal phenotypes in approximately 6% of balanced translocations and 9.4% of balanced inversions. Abnormal phenotypes can be caused by disruption of genes at the breakpoints, deletions, or positional effects. Conventional cytogenetic techniques have a limited resolution and do not enable a thorough genetic investigation. Molecular techniques applied to BCR carriers can contribute to the characterization of this type of chromosomal rearrangement and to the phenotype-genotype correlation. Fifteen individuals among 35 with abnormal phenotypes and BCR were selected for further investigation by molecular techniques. Chromosomal rearrangements involved 11 reciprocal translocations, 3 inversions, and 1 balanced insertion. Array genomic hybridization (AGH) was performed and genomic imbalances were detected in 20% of the cases, 1 at a rearrangement breakpoint and 2 further breakpoints in other chromosomes. Alterations were further confirmed by FISH and associated with the phenotype of the carriers. In the analyzed cases not showing genomic imbalances by AGH, next-generation sequencing (NGS), using whole genome libraries, prepared following the Illumina TruSeq DNA PCR-Free protocol (Illumina®) and then sequenced on an Illumina HiSEQ 2000 as 150-bp paired-end reads, was done. The NGS results suggested breakpoints in 7 cases that were similar or near those estimated by karyotyping. The genes overlapping 6 breakpoint regions were analyzed. Follow-up of BCR carriers would improve the knowledge about these chromosomal rearrangements and their consequences.
Collapse
Affiliation(s)
- Milena Simioni
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Ilária C Sgardioli
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Nilma L Viguetti-Campos
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabella Lopes Monlleó
- Clinical Genetics Service, Faculty of Medicine, University Hospital, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Andréa T Maciel-Guerra
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carlos E Steiner
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Vera L Gil-da-Silva-Lopes
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
21
|
Detection of Emerging Vaccine-Related Polioviruses by Deep Sequencing. J Clin Microbiol 2017; 55:2162-2171. [PMID: 28468861 PMCID: PMC5483918 DOI: 10.1128/jcm.00144-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Oral poliovirus vaccine can mutate to regain neurovirulence. To date, evaluation of these mutations has been performed primarily on culture-enriched isolates by using conventional Sanger sequencing. We therefore developed a culture-independent, deep-sequencing method targeting the 5′ untranslated region (UTR) and P1 genomic region to characterize vaccine-related poliovirus variants. Error analysis of the deep-sequencing method demonstrated reliable detection of poliovirus mutations at levels of <1%, depending on read depth. Sequencing of viral nucleic acids from the stool of vaccinated, asymptomatic children and their close contacts collected during a prospective cohort study in Veracruz, Mexico, revealed no vaccine-derived polioviruses. This was expected given that the longest duration between sequenced sample collection and the end of the most recent national immunization week was 66 days. However, we identified many low-level variants (<5%) distributed across the 5′ UTR and P1 genomic region in all three Sabin serotypes, as well as vaccine-related viruses with multiple canonical mutations associated with phenotypic reversion present at high levels (>90%). These results suggest that monitoring emerging vaccine-related poliovirus variants by deep sequencing may aid in the poliovirus endgame and efforts to ensure global polio eradication.
Collapse
|
22
|
Nilsson D, Pettersson M, Gustavsson P, Förster A, Hofmeister W, Wincent J, Zachariadis V, Anderlid BM, Nordgren A, Mäkitie O, Wirta V, Käller M, Vezzi F, Lupski JR, Nordenskjöld M, Lundberg ES, Carvalho CMB, Lindstrand A. Whole-Genome Sequencing of Cytogenetically Balanced Chromosome Translocations Identifies Potentially Pathological Gene Disruptions and Highlights the Importance of Microhomology in the Mechanism of Formation. Hum Mutat 2017; 38:180-192. [PMID: 27862604 PMCID: PMC5225243 DOI: 10.1002/humu.23146] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/01/2016] [Indexed: 11/07/2022]
Abstract
Most balanced translocations are thought to result mechanistically from nonhomologous end joining or, in rare cases of recurrent events, by nonallelic homologous recombination. Here, we use low-coverage mate pair whole-genome sequencing to fine map rearrangement breakpoint junctions in both phenotypically normal and affected translocation carriers. In total, 46 junctions from 22 carriers of balanced translocations were characterized. Genes were disrupted in 48% of the breakpoints; recessive genes in four normal carriers and known dominant intellectual disability genes in three affected carriers. Finally, seven candidate disease genes were disrupted in five carriers with neurocognitive disabilities (SVOPL, SUSD1, TOX, NCALD, SLC4A10) and one XX-male carrier with Tourette syndrome (LYPD6, GPC5). Breakpoint junction analyses revealed microhomology and small templated insertions in a substantive fraction of the analyzed translocations (17.4%; n = 4); an observation that was substantiated by reanalysis of 37 previously published translocation junctions. Microhomology associated with templated insertions is a characteristic seen in the breakpoint junctions of rearrangements mediated by error-prone replication-based repair mechanisms. Our data implicate that a mechanism involving template switching might contribute to the formation of at least 15% of the interchromosomal translocation events.
Collapse
Affiliation(s)
- Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 21 Solna, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Peter Gustavsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Alisa Förster
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland
| | - Valtteri Wirta
- SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, 171 71 Stockholm, Sweden
| | - Max Käller
- SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, 171 71 Stockholm, Sweden
| | - Francesco Vezzi
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, 171 21 Stockholm, Sweden
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, 77030 Houston TX, USA
- Texas Children’s Hospital, 77030 Houston TX, USA
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Elisabeth Syk Lundberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Claudia M. B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, 77030 Houston TX, USA
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
23
|
Accurate Breakpoint Mapping in Apparently Balanced Translocation Families with Discordant Phenotypes Using Whole Genome Mate-Pair Sequencing. PLoS One 2017; 12:e0169935. [PMID: 28072833 PMCID: PMC5225008 DOI: 10.1371/journal.pone.0169935] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Familial apparently balanced translocations (ABTs) segregating with discordant phenotypes are extremely challenging for interpretation and counseling due to the scarcity of publications and lack of routine techniques for quick investigation. Recently, next generation sequencing has emerged as an efficacious methodology for precise detection of translocation breakpoints. However, studies so far have mainly focused on de novo translocations. The present study focuses specifically on familial cases in order to shed some light to this diagnostic dilemma. Whole-genome mate-pair sequencing (WG-MPS) was applied to map the breakpoints in nine two-way ABT carriers from four families. Translocation breakpoints and patient-specific structural variants were validated by Sanger sequencing and quantitative Real Time PCR, respectively. Identical sequencing patterns and breakpoints were identified in affected and non-affected members carrying the same translocations. PTCD1, ATP5J2-PTCD1, CADPS2, and STPG1 were disrupted by the translocations in three families, rendering them initially as possible disease candidate genes. However, subsequent mutation screening and structural variant analysis did not reveal any pathogenic mutations or unique variants in the affected individuals that could explain the phenotypic differences between carriers of the same translocations. In conclusion, we suggest that NGS-based methods, such as WG-MPS, can be successfully used for detailed mapping of translocation breakpoints, which can also be used in routine clinical investigation of ABT cases. Unlike de novo translocations, no associations were determined here between familial two-way ABTs and the phenotype of the affected members, in which the presence of cryptic imbalances and complex chromosomal rearrangements has been excluded. Future whole-exome or whole-genome sequencing will potentially reveal unidentified mutations in the patients underlying the discordant phenotypes within each family. In addition, larger studies are needed to determine the exact percentage for phenotypic risk in families with ABTs.
Collapse
|
24
|
Hu L, Cheng D, Gong F, Lu C, Tan Y, Luo K, Wu X, He W, Xie P, Feng T, Yang K, Lu G, Lin G. Reciprocal Translocation Carrier Diagnosis in Preimplantation Human Embryos. EBioMedicine 2016; 14:139-147. [PMID: 27840008 PMCID: PMC5161423 DOI: 10.1016/j.ebiom.2016.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 12/31/2022] Open
Abstract
Preimplantation genetic diagnosis (PGD) is widely applied in reciprocal translocation carriers to increase the chance for a successful live birth. However, reciprocal translocation carrier embryos were seldom discriminated from the normal ones mainly due to the technique restriction. Here we established a clinical applicable approach to identify precise breakpoint of reciprocal translocation and to further distinguish normal embryos in PGD. In the preclinical phase, rearrangement breakpoints and adjacent single nucleotide polymorphisms (SNPs) were characterized by next-generation sequencing following microdissecting junction region (MicroSeq) from 8 reciprocal translocation carriers. Junction-spanning PCR and sequencing further discovered precise breakpoints. The precise breakpoints were identified in 7/8 patients and we revealed that translocations in 6 patients caused 9 gene disruptions. In the clinical phase of embryo analysis, informative SNPs were chosen for linkage analyses combined with PCR analysis of the breakpoints to identify the carrier embryos. From 15 blastocysts diagnosed to be chromosomal balanced, 13 blastocysts were identified to be carriers and 2 to be normal. Late prenatal diagnoses for five carriers and one normal fetus confirmed the carrier diagnosis results. Our results suggest that MicroSeq can accurately evaluate the genetic risk of translocation carriers and carrier screen is possible in later PGD treatment.
Collapse
Affiliation(s)
- Liang Hu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; National Engineering and Research Center of Human Stem Cells, Changsha 410013, China
| | - Dehua Cheng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Fei Gong
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Changfu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Yueqiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; National Engineering and Research Center of Human Stem Cells, Changsha 410013, China
| | - Keli Luo
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Xianhong Wu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Wenbing He
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Pingyuan Xie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; National Engineering and Research Center of Human Stem Cells, Changsha 410013, China
| | - Tao Feng
- Peking Jabrehoo Med Tech., Ltd., Beijing 100089, China
| | - Kai Yang
- Peking Jabrehoo Med Tech., Ltd., Beijing 100089, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; National Engineering and Research Center of Human Stem Cells, Changsha 410013, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; National Engineering and Research Center of Human Stem Cells, Changsha 410013, China.
| |
Collapse
|
25
|
Vrána J, Cápal P, Šimková H, Karafiátová M, Čížková J, Doležel J. Flow Analysis and Sorting of Plant Chromosomes. CURRENT PROTOCOLS IN CYTOMETRY 2016; 78:5.3.1-5.3.43. [PMID: 27723090 DOI: 10.1002/cpcy.9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Analysis and sorting of plant chromosomes (plant flow cytogenetics) is a special application of flow cytometry in plant genomics and its success depends critically on sample quality. This unit describes the methodology in a stepwise manner, starting with the induction of cell cycle synchrony and accumulation of dividing cells in mitotic metaphase, and continues with the preparation of suspensions of intact mitotic chromosomes, flow analysis and sorting of chromosomes, and finally processing of the sorted chromosomes. Each step of the protocol is described in detail as some procedures have not been used widely. Supporting histograms are presented as well as hints on dealing with plant material; the utility of sorted chromosomes for plant genomics is also discussed. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| |
Collapse
|
26
|
Liang D, Wang Y, Ji X, Hu H, Zhang J, Meng L, Lin Y, Ma D, Jiang T, Jiang H, Asan, Song L, Guo J, Hu P, Xu Z. Clinical application of whole-genome low-coverage next-generation sequencing to detect and characterize balanced chromosomal translocations. Clin Genet 2016; 91:605-610. [PMID: 27491356 DOI: 10.1111/cge.12844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/31/2016] [Accepted: 08/01/2016] [Indexed: 11/28/2022]
Abstract
Individuals carrying balanced translocations have a high risk of birth defects, recurrent spontaneous abortions and infertility. Thus, the detection and characterization of balanced translocations is important to reveal the genetic background of the carriers and to provide proper genetic counseling. Next-generation sequencing (NGS), which has great advantages over other methods such as karyotyping and fluorescence in situ hybridization (FISH), has been used to detect disease-associated breakpoints. Herein, to evaluate the application of this technology to detect balanced translocations in the clinic, we performed a parental study for prenatal cases with unbalanced translocations. Eight candidate families with potential balanced translocations were investigated using two strategies in parallel, low-coverage whole-genome sequencing (WGS) followed-up by Sanger sequencing and G-banding karyotype coupled with FISH. G-banding analysis revealed three balanced translocations, and FISH detected two cryptic submicroscopic balanced translocations. Consistently, WGS detected five balanced translocations and mapped all the breakpoints by Sanger sequencing. Analysis of the breakpoints revealed that six genes were disrupted in the four apparently healthy carriers. In summary, our result suggested low-coverage WGS can detect balanced translocations reliably and can map breakpoints precisely compared with conventional procedures. WGS may replace cytogenetic methods in the diagnosis of balanced translocation carriers in the clinic.
Collapse
Affiliation(s)
- D Liang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Y Wang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - X Ji
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - H Hu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - J Zhang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - L Meng
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Y Lin
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - D Ma
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - T Jiang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - H Jiang
- Clinical Laboratory of BGI Health, BGI, Shenzhen, China
| | - Asan
- Binhai Genomics Institute, BGI-Tianjin, BGI-shenzhen, Tianjin, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-shenzhen, Tianjin, China
| | - L Song
- Binhai Genomics Institute, BGI-Tianjin, BGI-shenzhen, Tianjin, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-shenzhen, Tianjin, China
| | - J Guo
- Binhai Genomics Institute, BGI-Tianjin, BGI-shenzhen, Tianjin, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-shenzhen, Tianjin, China
| | - P Hu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Z Xu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Xu XJ, Lv F, Liu Y, Wang JY, Song YW, Asan, Wang JW, Song LJ, Jiang Y, Wang O, Xia WB, Xing XP, Li M. A cryptic balanced translocation involving COL1A2 gene disruption cause a rare type of osteogenesis imperfecta. Clin Chim Acta 2016; 460:33-9. [DOI: 10.1016/j.cca.2016.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/11/2016] [Indexed: 12/25/2022]
|
28
|
Makunin AI, Kichigin IG, Larkin DM, O’Brien PCM, Ferguson-Smith MA, Yang F, Proskuryakova AA, Vorobieva NV, Chernyaeva EN, O’Brien SJ, Graphodatsky AS, Trifonov VA. Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing. BMC Genomics 2016; 17:618. [PMID: 27516089 PMCID: PMC4982142 DOI: 10.1186/s12864-016-2933-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/12/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND B chromosomes are dispensable and variable karyotypic elements found in some species of animals, plants and fungi. They often originate from duplications and translocations of host genomic regions or result from hybridization. In most species, little is known about their DNA content. Here we perform high-throughput sequencing and analysis of B chromosomes of roe deer and brocket deer, the only representatives of Cetartiodactyla known to have B chromosomes. RESULTS In this study we developed an approach to identify genomic regions present on chromosomes by high-throughput sequencing of DNA generated from flow-sorted chromosomes using degenerate-oligonucleotide-primed PCR. Application of this method on small cattle autosomes revealed a previously described KIT gene region translocation associated with colour sidedness. Implementing this approach to B chromosomes from two cervid species, Siberian roe deer (Capreolus pygargus) and grey brocket deer (Mazama gouazoubira), revealed dramatically different genetic content: roe deer B chromosomes consisted of two duplicated genomic regions (a total of 1.42-1.98 Mbp) involving three genes, while grey brocket deer B chromosomes contained 26 duplicated regions (a total of 8.28-9.31 Mbp) with 34 complete and 21 partial genes, including KIT and RET protooncogenes, previously found on supernumerary chromosomes in canids. Sequence variation analysis of roe deer B chromosomes revealed a high frequency of mutations and increased heterozygosity due to either amplification within B chromosomes or divergence between different Bs. In contrast, grey brocket deer B chromosomes were found to be more homogeneous and resembled autosomes in patterns of sequence variation. Similar tendencies were observed in repetitive DNA composition. CONCLUSIONS Our data demonstrate independent origins of B chromosomes in the grey brocket and roe deer. We hypothesize that the B chromosomes of these two cervid species represent different stages of B chromosome sequences evolution: probably nascent and similar to autosomal copies in brocket deer, highly derived in roe deer. Based on the presence of the same orthologous protooncogenes in canids and brocket deer Bs we argue that genomic regions involved in B chromosome formation are not random. In addition, our approach is also applicable to the characterization of other evolutionary and clinical rearrangements.
Collapse
Affiliation(s)
- Alexey I. Makunin
- Institute of Molecular and Cell Biology, Novosibirsk, Russia
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | | | - Patricia C. M. O’Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, Cambridge University, Cambridge, UK
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, Cambridge University, Cambridge, UK
| | | | | | | | - Ekaterina N. Chernyaeva
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Stephen J. O’Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Alexander S. Graphodatsky
- Institute of Molecular and Cell Biology, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir A. Trifonov
- Institute of Molecular and Cell Biology, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
29
|
Sahebi M, Hanafi MM, Azizi P, Hakim A, Ashkani S, Abiri R. Suppression Subtractive Hybridization Versus Next-Generation Sequencing in Plant Genetic Engineering: Challenges and Perspectives. Mol Biotechnol 2016; 57:880-903. [PMID: 26271955 DOI: 10.1007/s12033-015-9884-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Suppression subtractive hybridization (SSH) is an effective method to identify different genes with different expression levels involved in a variety of biological processes. This method has often been used to study molecular mechanisms of plants in complex relationships with different pathogens and a variety of biotic stresses. Compared to other techniques used in gene expression profiling, SSH needs relatively smaller amounts of the initial materials, with lower costs, and fewer false positives present within the results. Extraction of total RNA from plant species rich in phenolic compounds, carbohydrates, and polysaccharides that easily bind to nucleic acids through cellular mechanisms is difficult and needs to be considered. Remarkable advancement has been achieved in the next-generation sequencing (NGS) field. As a result of progress within fields related to molecular chemistry and biology as well as specialized engineering, parallelization in the sequencing reaction has exceptionally enhanced the overall read number of generated sequences per run. Currently available sequencing platforms support an earlier unparalleled view directly into complex mixes associated with RNA in addition to DNA samples. NGS technology has demonstrated the ability to sequence DNA with remarkable swiftness, therefore allowing previously unthinkable scientific accomplishments along with novel biological purposes. However, the massive amounts of data generated by NGS impose a substantial challenge with regard to data safe-keeping and analysis. This review examines some simple but vital points involved in preparing the initial material for SSH and introduces this method as well as its associated applications to detect different novel genes from different plant species. This review evaluates general concepts, basic applications, plus the probable results of NGS technology in genomics, with unique mention of feasible potential tools as well as bioinformatics.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Plantation Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia,
| | | | | | | | | | | |
Collapse
|
30
|
FOROOTAN SHIVASEYED, BUTLER JOEM, GARDENER DEREK, BAIRD ALISONE, DODSON ANDREW, DARBY ALISTAIR, KENNY JOHN, HALL NEIL, COSSINS ANDREWR, FOSTER CHRISTOPHERS, GOSDEN CHRISTINEM. Transcriptome sequencing of human breast cancer reveals aberrant intronic transcription in amplicons and dysregulation of alternative splicing with major therapeutic implications. Int J Oncol 2015; 48:130-44. [DOI: 10.3892/ijo.2015.3222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/31/2015] [Indexed: 11/05/2022] Open
|
31
|
Weckselblatt B, Rudd MK. Human Structural Variation: Mechanisms of Chromosome Rearrangements. Trends Genet 2015; 31:587-599. [PMID: 26209074 PMCID: PMC4600437 DOI: 10.1016/j.tig.2015.05.010] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/05/2023]
Abstract
Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation.
Collapse
Affiliation(s)
- Brooke Weckselblatt
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
32
|
Zhang G, Wang J, Yang J, Li W, Deng Y, Li J, Huang J, Hu S, Zhang B. Comparison and evaluation of two exome capture kits and sequencing platforms for variant calling. BMC Genomics 2015; 16:581. [PMID: 26242175 PMCID: PMC4524363 DOI: 10.1186/s12864-015-1796-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 07/23/2015] [Indexed: 12/30/2022] Open
Abstract
Background To promote the clinical application of next-generation sequencing, it is important to obtain accurate and consistent variants of target genomic regions at low cost. Ion Proton, the latest updated semiconductor-based sequencing instrument from Life Technologies, is designed to provide investigators with an inexpensive platform for human whole exome sequencing that achieves a rapid turnaround time. However, few studies have comprehensively compared and evaluated the accuracy of variant calling between Ion Proton and Illumina sequencing platforms such as HiSeq 2000, which is the most popular sequencing platform for the human genome. The Ion Proton sequencer combined with the Ion TargetSeq™ Exome Enrichment Kit together make up TargetSeq-Proton, whereas SureSelect-Hiseq is based on the Agilent SureSelect Human All Exon v4 Kit and the HiSeq 2000 sequencer. Results Here, we sequenced exonic DNA from four human blood samples using both TargetSeq-Proton and SureSelect-HiSeq. We then called variants in the exonic regions that overlapped between the two exome capture kits (33.6 Mb). The rates of shared variant loci called by two sequencing platforms were from 68.0 to 75.3 % in four samples, whereas the concordance of co-detected variant loci reached 99 %. Sanger sequencing validation revealed that the validated rate of concordant single nucleotide polymorphisms (SNPs) (91.5 %) was higher than the SNPs specific to TargetSeq-Proton (60.0 %) or specific to SureSelect-HiSeq (88.3 %). With regard to 1-bp small insertions and deletions (InDels), the Sanger sequencing validated rates of concordant variants (100.0 %) and SureSelect-HiSeq-specific (89.6 %) were higher than those of TargetSeq-Proton-specific (15.8 %). Conclusions In the sequencing of exonic regions, a combination of using of two sequencing strategies (SureSelect-HiSeq and TargetSeq-Proton) increased the variant calling specificity for concordant variant loci and the sensitivity for variant loci called by any one platform. However, for the sequencing of platform-specific variants, the accuracy of variant calling by HiSeq 2000 was higher than that of Ion Proton, specifically for the InDel detection. Moreover, the variant calling software also influences the detection of SNPs and, specifically, InDels in Ion Proton exome sequencing. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1796-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Core Genomic Facility and CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianfeng Wang
- Core Genomic Facility and CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jin Yang
- Core Genomic Facility and CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wenjie Li
- Core Genomic Facility and CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yutian Deng
- Core Genomic Facility and CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing Li
- Core Genomic Facility and CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jun Huang
- Core Genomic Facility and CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Songnian Hu
- Core Genomic Facility and CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bing Zhang
- Core Genomic Facility and CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
33
|
Weckselblatt B, Hermetz KE, Rudd MK. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res 2015; 25:937-47. [PMID: 26070663 PMCID: PMC4484391 DOI: 10.1101/gr.191247.115] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/15/2015] [Indexed: 12/17/2022]
Abstract
Unbalanced translocations are a relatively common type of copy number variation and a major contributor to neurodevelopmental disorders. We analyzed the breakpoints of 57 unique unbalanced translocations to investigate the mechanisms of how they form. Fifty-one are simple unbalanced translocations between two different chromosome ends, and six rearrangements have more than three breakpoints involving two to five chromosomes. Sequencing 37 breakpoint junctions revealed that simple translocations have between 0 and 4 base pairs (bp) of microhomology (n = 26), short inserted sequences (n = 8), or paralogous repeats (n = 3) at the junctions, indicating that translocations do not arise primarily from nonallelic homologous recombination but instead form most often via nonhomologous end joining or microhomology-mediated break-induced replication. Three simple translocations fuse genes that are predicted to produce in-frame transcripts of SIRPG-WWOX, SMOC2-PROX1, and PIEZO2-MTA1, which may lead to gain of function. Three complex translocations have inversions, insertions, and multiple breakpoint junctions between only two chromosomes. Whole-genome sequencing and fluorescence in situ hybridization analysis of two de novo translocations revealed at least 18 and 33 breakpoints involving five different chromosomes. Breakpoint sequencing of one maternally inherited translocation involving four chromosomes uncovered multiple breakpoints with inversions and insertions. All of these breakpoint junctions had 0-4 bp of microhomology consistent with chromothripsis, and both de novo events occurred on paternal alleles. Together with other studies, these data suggest that germline chromothripsis arises in the paternal genome and may be transmitted maternally. Breakpoint sequencing of our large collection of chromosome rearrangements provides a comprehensive analysis of the molecular mechanisms behind translocation formation.
Collapse
Affiliation(s)
- Brooke Weckselblatt
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Karen E Hermetz
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
34
|
Smith SD, Kawash JK, Grigoriev A. GROM-RD: resolving genomic biases to improve read depth detection of copy number variants. PeerJ 2015; 3:e836. [PMID: 25802807 PMCID: PMC4369336 DOI: 10.7717/peerj.836] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/23/2015] [Indexed: 12/21/2022] Open
Abstract
Amplifications or deletions of genome segments, known as copy number variants (CNVs), have been associated with many diseases. Read depth analysis of next-generation sequencing (NGS) is an essential method of detecting CNVs. However, genome read coverage is frequently distorted by various biases of NGS platforms, which reduce predictive capabilities of existing approaches. Additionally, the use of read depth tools has been somewhat hindered by imprecise breakpoint identification. We developed GROM-RD, an algorithm that analyzes multiple biases in read coverage to detect CNVs in NGS data. We found non-uniform variance across distinct GC regions after using existing GC bias correction methods and developed a novel approach to normalize such variance. Although complex and repetitive genome segments complicate CNV detection, GROM-RD adjusts for repeat bias and uses a two-pipeline masking approach to detect CNVs in complex and repetitive segments while improving sensitivity in less complicated regions. To overcome a typical weakness of RD methods, GROM-RD employs a CNV search using size-varying overlapping windows to improve breakpoint resolution. We compared our method to two widely used programs based on read depth methods, CNVnator and RDXplorer, and observed improved CNV detection and breakpoint accuracy for GROM-RD. GROM-RD is available at http://grigoriev.rutgers.edu/software/.
Collapse
Affiliation(s)
- Sean D Smith
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University , Camden, NJ , USA
| | - Joseph K Kawash
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University , Camden, NJ , USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University , Camden, NJ , USA
| |
Collapse
|
35
|
Soong CP, Breuer GA, Hannon RA, Kim SD, Salem AF, Wang G, Yu R, Carriero NJ, Bjornson R, Sundaram RK, Bindra RS. Development of a novel method to create double-strand break repair fingerprints using next-generation sequencing. DNA Repair (Amst) 2014; 26:44-53. [PMID: 25547252 DOI: 10.1016/j.dnarep.2014.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/05/2014] [Accepted: 12/09/2014] [Indexed: 11/15/2022]
Abstract
Efficient DNA double-strand break (DSB) repair is a critical determinant of cell survival in response to DNA damaging agents, and it plays a key role in the maintenance of genomic integrity. Homologous recombination (HR) and non-homologous end-joining (NHEJ) represent the two major pathways by which DSBs are repaired in mammalian cells. We now understand that HR and NHEJ repair are composed of multiple sub-pathways, some of which still remain poorly understood. As such, there is great interest in the development of novel assays to interrogate these key pathways, which could lead to the development of novel therapeutics, and a better understanding of how DSBs are repaired. Furthermore, assays which can measure repair specifically at endogenous chromosomal loci are of particular interest, because of an emerging understanding that chromatin interactions heavily influence DSB repair pathway choice. Here, we present the design and validation of a novel, next-generation sequencing-based approach to study DSB repair at chromosomal loci in cells. We demonstrate that NHEJ repair "fingerprints" can be identified using our assay, which are dependent on the status of key DSB repair proteins. In addition, we have validated that our system can be used to detect dynamic shifts in DSB repair activity in response to specific perturbations. This approach represents a unique alternative to many currently available DSB repair assays, which typical rely on the expression of reporter genes as an indirect read-out for repair. As such, we believe this tool will be useful for DNA repair researchers to study NHEJ repair in a high-throughput and sensitive manner, with the capacity to detect subtle changes in DSB repair patterns that was not possible previously.
Collapse
Affiliation(s)
- Chen-Pang Soong
- Department of Internal Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Gregory A Breuer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Ryan A Hannon
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Savina D Kim
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Ahmed F Salem
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Guilin Wang
- Yale Center for Genomic Analysis (YCGA), Orange, CT 06477, United States
| | - Ruoxi Yu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Nicholas J Carriero
- Department of Computer Science, Yale University, New Haven, CT 06511, United States
| | - Robert Bjornson
- Department of Computer Science, Yale University, New Haven, CT 06511, United States
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, United States.
| |
Collapse
|
36
|
Kloosterman WP, Hochstenbach R. Deciphering the pathogenic consequences of chromosomal aberrations in human genetic disease. Mol Cytogenet 2014; 7:100. [PMID: 25606056 PMCID: PMC4299681 DOI: 10.1186/s13039-014-0100-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/08/2014] [Indexed: 01/14/2023] Open
Abstract
Chromosomal aberrations include translocations, deletions, duplications, inversions, aneuploidies and complex rearrangements. They underlie genetic disease in roughly 15% of patients with multiple congenital abnormalities and/or mental retardation (MCA/MR). In genetic diagnostics, the pathogenicity of chromosomal aberrations in these patients is typically assessed based on criteria such as phenotypic similarity to other patients with the same or overlapping aberration, absence in healthy individuals, de novo occurrence, and protein coding gene content. However, a thorough understanding of the molecular mechanisms that lead to MCA/MR as a result of chromosome aberrations is often lacking. Chromosome aberrations can affect one or more genes in a complex manner, such as by changing the regulation of gene expression, by disrupting exons, and by creating fusion genes. The precise delineation of breakpoints by whole-genome sequencing enables the construction of local genomic architecture and facilitates the prediction of the molecular determinants of the patient's phenotype. Here, we review current methods for breakpoint identification and their impact on the interpretation of chromosome aberrations in patients with MCA/MR. In addition, we discuss opportunities to dissect disease mechanisms based on large-scale genomic technologies and studies in model organisms.
Collapse
Affiliation(s)
- Wigard P Kloosterman
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, P.O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Ron Hochstenbach
- Department of Medical Genetics, Genome Diagnostics, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
37
|
Jancuskova T, Plachy R, Zemankova L, Hardekopf DW, Stika J, Zejskova L, Praulich I, Kreuzer KA, Rothe A, Othman MA, Kosyakova N, Pekova S. Molecular characterization of the rare translocation t(3;10)(q26;q21) in an acute myeloid leukemia patient. Mol Cytogenet 2014; 7:47. [PMID: 25071866 PMCID: PMC4113123 DOI: 10.1186/1755-8166-7-47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/02/2014] [Indexed: 01/17/2023] Open
Abstract
Background In acute myeloid leukemia (AML), the MDS1 and EVI1 complex locus - MECOM, also known as the ecotropic virus integration site 1 - EVI1, located in band 3q26, can be rearranged with a variety of partner chromosomes and partner genes. Here we report on a 57-year-old female with AML who presented with the rare translocation t(3;10)(q26;q21) involving the MECOM gene. Our aim was to identify the fusion partner on chromosome 10q21 and to characterize the precise nucleotide sequence of the chromosomal breakpoint. Methods Cytogenetic and molecular-cytogenetic techniques, chromosome microdissection, next generation sequencing, long-range PCR and direct Sanger sequencing were used to map the chromosomal translocation. Results Using a combination of cytogenetic and molecular approaches, we mapped the t(3;10)(q26;q21) to the single nucleotide level, revealing a fusion of the MECOM gene (3q26.2) and C10orf107 (10q21.2). Conclusions The approach described here opens up new possibilities in characterizing acquired as well as congenital chromosomal aberrations. In addition, DNA sequences of chromosomal breakpoints may be a useful tool for unique molecular minimal residual disease target identification in acute leukemia patients.
Collapse
Affiliation(s)
- Tereza Jancuskova
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - Radek Plachy
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - Lucie Zemankova
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - David Warren Hardekopf
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - Jiri Stika
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - Lenka Zejskova
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - Inka Praulich
- Department I of Internal Medicine, University at Cologne, Kerpener Str., Cologne, Germany
| | - Karl-Anton Kreuzer
- Department I of Internal Medicine, University at Cologne, Kerpener Str., Cologne, Germany
| | - Achim Rothe
- Oncological Therapy Center, Buchforststr., Cologne, Germany
| | - Moneeb Ak Othman
- Jena University Hospital, Institute of Human Genetics, Kollegiengasse 10, Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Institute of Human Genetics, Kollegiengasse 10, Jena, Germany
| | - Sona Pekova
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| |
Collapse
|
38
|
Abstract
Differences between plant genomes range from single nucleotide polymorphisms to large-scale duplications, deletions and rearrangements. The large polymorphisms are termed structural variants (SVs). SVs have received significant attention in human genetics and were found to be responsible for various chronic diseases. However, little effort has been directed towards understanding the role of SVs in plants. Many recent advances in plant genetics have resulted from improvements in high-resolution technologies for measuring SVs, including microarray-based techniques, and more recently, high-throughput DNA sequencing. In this review we describe recent reports of SV in plants and describe the genomic technologies currently used to measure these SVs.
Collapse
|
39
|
Ordulu Z, Wong K, Currall B, Ivanov A, Pereira S, Althari S, Gusella J, Talkowski M, Morton C. Describing sequencing results of structural chromosome rearrangements with a suggested next-generation cytogenetic nomenclature. Am J Hum Genet 2014; 94:695-709. [PMID: 24746958 DOI: 10.1016/j.ajhg.2014.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022] Open
Abstract
With recent rapid advances in genomic technologies, precise delineation of structural chromosome rearrangements at the nucleotide level is becoming increasingly feasible. In this era of "next-generation cytogenetics" (i.e., an integration of traditional cytogenetic techniques and next-generation sequencing), a consensus nomenclature is essential for accurate communication and data sharing. Currently, nomenclature for describing the sequencing data of these aberrations is lacking. Herein, we present a system called Next-Gen Cytogenetic Nomenclature, which is concordant with the International System for Human Cytogenetic Nomenclature (2013). This system starts with the alignment of rearrangement sequences by BLAT or BLAST (alignment tools) and arrives at a concise and detailed description of chromosomal changes. To facilitate usage and implementation of this nomenclature, we are developing a program designated BLA(S)T Output Sequence Tool of Nomenclature (BOSToN), a demonstrative version of which is accessible online. A standardized characterization of structural chromosomal rearrangements is essential both for research analyses and for application in the clinical setting.
Collapse
|
40
|
|
41
|
Dong Z, Jiang L, Yang C, Hu H, Wang X, Chen H, Choy KW, Hu H, Dong Y, Hu B, Xu J, Long Y, Cao S, Chen H, Wang WJ, Jiang H, Xu F, Yao H, Xu X, Liang Z. A robust approach for blind detection of balanced chromosomal rearrangements with whole-genome low-coverage sequencing. Hum Mutat 2014; 35:625-36. [PMID: 24610732 DOI: 10.1002/humu.22541] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/25/2014] [Indexed: 11/06/2022]
Abstract
Balanced chromosomal rearrangement (or balanced chromosome abnormality, BCA) is a common chromosomal structural variation. Next-generation sequencing has been reported to detect BCA-associated breakpoints with the aid of karyotyping. However, the complications associated with this approach and the requirement for cytogenetics information has limited its application. Here, we provide a whole-genome low-coverage sequencing approach to detect BCA events independent of knowing the affected regions and with low false positives. First, six samples containing BCAs were used to establish a detection protocol and assess the efficacy of different library construction approaches. By clustering anomalous read pairs and filtering out the false-positive results with a control cohort and the concomitant mapping information, we could directly detect BCA events for each sample. Through optimizing the read depth, BCAs in all samples could be blindly detected with only 120 million read pairs per sample for data from a small-insert library and 30 million per sample for data from nonsize-selected mate-pair library. This approach was further validated using another 13 samples that contained BCAs. Our approach advances the application of high-throughput whole-genome low-coverage analysis for robust BCA detection-especially for clinical samples-without the need for karyotyping.
Collapse
|
42
|
Blake J, Riddell A, Theiss S, Gonzalez AP, Haase B, Jauch A, Janssen JWG, Ibberson D, Pavlinic D, Moog U, Benes V, Runz H. Sequencing of a patient with balanced chromosome abnormalities and neurodevelopmental disease identifies disruption of multiple high risk loci by structural variation. PLoS One 2014; 9:e90894. [PMID: 24625750 PMCID: PMC3953210 DOI: 10.1371/journal.pone.0090894] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/06/2014] [Indexed: 01/31/2023] Open
Abstract
Balanced chromosome abnormalities (BCAs) occur at a high frequency in healthy and diseased individuals, but cost-efficient strategies to identify BCAs and evaluate whether they contribute to a phenotype have not yet become widespread. Here we apply genome-wide mate-pair library sequencing to characterize structural variation in a patient with unclear neurodevelopmental disease (NDD) and complex de novo BCAs at the karyotype level. Nucleotide-level characterization of the clinically described BCA breakpoints revealed disruption of at least three NDD candidate genes (LINC00299, NUP205, PSMD14) that gave rise to abnormal mRNAs and could be assumed as disease-causing. However, unbiased genome-wide analysis of the sequencing data for cryptic structural variation was key to reveal an additional submicroscopic inversion that truncates the schizophrenia- and bipolar disorder-associated brain transcription factor ZNF804A as an equally likely NDD-driving gene. Deep sequencing of fluorescent-sorted wild-type and derivative chromosomes confirmed the clinically undetected BCA. Moreover, deep sequencing further validated a high accuracy of mate-pair library sequencing to detect structural variants larger than 10 kB, proposing that this approach is powerful for clinical-grade genome-wide structural variant detection. Our study supports previous evidence for a role of ZNF804A in NDD and highlights the need for a more comprehensive assessment of structural variation in karyotypically abnormal individuals and patients with neurocognitive disease to avoid diagnostic deception.
Collapse
Affiliation(s)
- Jonathon Blake
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Andrew Riddell
- Flow Cytometry Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Susanne Theiss
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | | | - Bettina Haase
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | | | - David Ibberson
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
- CellNetworks Sequencing Core Facility, University of Heidelberg, Heidelberg, Germany
| | - Dinko Pavlinic
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Ute Moog
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Heiko Runz
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg/EMBL, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
43
|
Talkowski ME, Minikel EV, Gusella JF. Autism spectrum disorder genetics: diverse genes with diverse clinical outcomes. Harv Rev Psychiatry 2014; 22:65-75. [PMID: 24614762 PMCID: PMC9369102 DOI: 10.1097/hrp.0000000000000002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The last several years have seen unprecedented advances in deciphering the genetic etiology of autism spectrum disorders (ASDs). Heritability studies have repeatedly affirmed a contribution of genetic factors to the overall disease risk. Technical breakthroughs have enabled the search for these genetic factors via genome-wide surveys of a spectrum of potential sequence variations, from common single-nucleotide polymorphisms to essentially private chromosomal abnormalities. Studies of copy-number variation have identified significant roles for both recurrent and nonrecurrent large dosage imbalances, although they have rarely revealed the individual genes responsible. More recently, discoveries of rare point mutations and characterization of balanced chromosomal abnormalities have pinpointed individual ASD genes of relatively strong effect, including both loci with strong a priori biological relevance and those that would have otherwise been unsuspected as high-priority biological targets. Evidence has also emerged for association with many common variants, each adding a small individual contribution to ASD risk. These findings collectively provide compelling empirical data that the genetic basis of ASD is highly heterogeneous, with hundreds of genes capable of conferring varying degrees of risk, depending on their nature and the predisposing genetic alteration. Moreover, many genes that have been implicated in ASD also appear to be risk factors for related neurodevelopmental disorders, as well as for a spectrum of psychiatric phenotypes. While some ASD genes have evident functional significance, like synaptic proteins such as the SHANKs, neuroligins, and neurexins, as well as fragile x mental retardation-associated proteins, ASD genes have also been discovered that do not present a clear mechanism of specific neurodevelopmental dysfunction, such as regulators of chromatin modification and global gene expression. In its sum, the progress from genetic studies to date has been remarkable and increasingly rapid, but the interactive impact of strong-effect genetic lesions coupled with weak-effect common polymorphisms has not yet led to a unified understanding of ASD pathogenesis or explained its highly variable clinical expression. With an increasingly firm genetic foundation, the coming years will hopefully see equally rapid advances in elucidating the functional consequences of ASD genes and their interactions with environmental/experiential factors, supporting the development of rational interventions.
Collapse
Affiliation(s)
- Michael E Talkowski
- From Harvard Medical School (Drs. Talkowski and Gusella); Department of Neurology (Drs. Talkowski and Gusella), Psychiatric and Neurodevelopmental Genetics Unit (Dr. Talkowski) and Molecular Neurogenetics Unit, Center for Human Genetic Research (Drs. Talkowski and Gusella, and Mr. Minikel), Massachusetts General Hospital, Boston, MA
| | | | | |
Collapse
|
44
|
Doležel J, Vrána J, Cápal P, Kubaláková M, Burešová V, Šimková H. Advances in plant chromosome genomics. Biotechnol Adv 2014; 32:122-36. [DOI: 10.1016/j.biotechadv.2013.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 01/09/2023]
|
45
|
Iżykowska K, Zawada M, Nowicka K, Grabarczyk P, Braun FC, Delin M, Möbs M, Beyer M, Sterry W, Schmidt CA, Przybylski GK. Identification of Multiple Complex Rearrangements Associated with Deletions in the 6q23-27 Region in Sézary Syndrome. J Invest Dermatol 2013; 133:2617-2625. [DOI: 10.1038/jid.2013.188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/24/2013] [Accepted: 03/29/2013] [Indexed: 11/09/2022]
|
46
|
Vergult S, Van Binsbergen E, Sante T, Nowak S, Vanakker O, Claes K, Poppe B, Van der Aa N, van Roosmalen MJ, Duran K, Tavakoli-Yaraki M, Swinkels M, van den Boogaard MJ, van Haelst M, Roelens F, Speleman F, Cuppen E, Mortier G, Kloosterman WP, Menten B. Mate pair sequencing for the detection of chromosomal aberrations in patients with intellectual disability and congenital malformations. Eur J Hum Genet 2013; 22:652-9. [PMID: 24105367 DOI: 10.1038/ejhg.2013.220] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/13/2013] [Accepted: 08/29/2013] [Indexed: 12/20/2022] Open
Abstract
Recently, microarrays have replaced karyotyping as a first tier test in patients with idiopathic intellectual disability and/or multiple congenital abnormalities (ID/MCA) in many laboratories. Although in about 14-18% of such patients, DNA copy-number variants (CNVs) with clinical significance can be detected, microarrays have the disadvantage of missing balanced rearrangements, as well as providing no information about the genomic architecture of structural variants (SVs) like duplications and complex rearrangements. Such information could possibly lead to a better interpretation of the clinical significance of the SV. In this study, the clinical use of mate pair next-generation sequencing was evaluated for the detection and further characterization of structural variants within the genomes of 50 ID/MCA patients. Thirty of these patients carried a chromosomal aberration that was previously detected by array CGH or karyotyping and suspected to be pathogenic. In the remaining 20 patients no causal SVs were found and only benign aberrations were detected by conventional techniques. Combined cluster and coverage analysis of the mate pair data allowed precise breakpoint detection and further refinement of previously identified balanced and (complex) unbalanced aberrations, pinpointing the causal gene for some patients. We conclude that mate pair sequencing is a powerful technology that can provide rapid and unequivocal characterization of unbalanced and balanced SVs in patient genomes and can be essential for the clinical interpretation of some SVs.
Collapse
Affiliation(s)
- Sarah Vergult
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Ellen Van Binsbergen
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tom Sante
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Silke Nowak
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | - Kathleen Claes
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Bruce Poppe
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Nathalie Van der Aa
- Department for Medical Genetics, University Hospital of Antwerp, Antwerp, Belgium
| | - Markus J van Roosmalen
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karen Duran
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Marielle Swinkels
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Mieke van Haelst
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Edwin Cuppen
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Geert Mortier
- 1] Center for Medical Genetics, Ghent University, Ghent, Belgium [2] Department for Medical Genetics, University Hospital of Antwerp, Antwerp, Belgium
| | - Wigard P Kloosterman
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Björn Menten
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
47
|
BAIT: Organizing genomes and mapping rearrangements in single cells. Genome Med 2013; 5:82. [PMID: 24028793 PMCID: PMC3971352 DOI: 10.1186/gm486] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/09/2013] [Indexed: 12/30/2022] Open
Abstract
Strand-seq is a single-cell sequencing technique to finely map sister chromatid exchanges (SCEs) and other rearrangements. To analyze these data, we introduce BAIT, software which assigns templates and identifies and localizes SCEs. We demonstrate BAIT can refine completed reference assemblies, identifying approximately 21 Mb of incorrectly oriented fragments and placing over half (2.6 Mb) of the orphan fragments in mm10/GRCm38. BAIT also stratifies scaffold-stage assemblies, potentially accelerating the assembling and finishing of reference genomes. BAIT is available at http://sourceforge.net/projects/bait/.
Collapse
|
48
|
Jancuskova T, Plachy R, Stika J, Zemankova L, Hardekopf DW, Liehr T, Kosyakova N, Cmejla R, Zejskova L, Kozak T, Zak P, Zavrelova A, Havlikova P, Karas M, Junge A, Ramel C, Pekova S. A method to identify new molecular markers for assessing minimal residual disease in acute leukemia patients. Leuk Res 2013; 37:1363-73. [PMID: 23870092 DOI: 10.1016/j.leukres.2013.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 05/20/2013] [Accepted: 06/05/2013] [Indexed: 01/13/2023]
Abstract
Acute leukemias (AL) comprise a heterogeneous group of hematologic malignancies, and individual patient responses to treatment can be difficult to predict. Monitoring of minimal residual disease (MRD) is thus very important and holds great potential for improving treatment strategies. Common MRD targets include recurrent cytogenetic abnormalities and mutations in important hematological genes; unfortunately well-characterized targets are lacking in many AL patients. Here we demonstrate a technical approach for the identification and mapping of novel clone-specific chromosomal abnormalities down to the nucleotide level. We used molecular cytogenetics, chromosome microdissection, amplification of the microdissected material, and next-generation sequencing to develop PCR-based MRD assays based on unique breakpoint sequences.
Collapse
Affiliation(s)
- Tereza Jancuskova
- Chambon, Laboratory for Molecular Diagnostics, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yamatani H, Sato Y, Masuda Y, Kato Y, Morita R, Fukunaga K, Nagamura Y, Nishimura M, Sakamoto W, Tanaka A, Kusaba M. NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll - protein complexes during leaf senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:652-62. [PMID: 23432654 DOI: 10.1111/tpj.12154] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/02/2013] [Accepted: 02/12/2013] [Indexed: 05/21/2023]
Abstract
Yellowing/chlorophyll breakdown is a prominent phenomenon in leaf senescence, and is associated with the degradation of chlorophyll - protein complexes. From a rice mutant population generated by ionizing radiation, we isolated nyc4-1, a stay-green mutant with a defect in chlorophyll breakdown during leaf senescence. Using gene mapping, nyc4-1 was found to be linked to two chromosomal regions. We extracted Os07g0558500 as a candidate for NYC4 via gene expression microarray analysis, and concluded from further evidence that disruption of the gene by a translocation-related event causes the nyc4 phenotype. Os07g0558500 is thought to be the ortholog of THF1 in Arabidopsis thaliana. The thf1 mutant leaves show variegation in a light intensity-dependent manner. Surprisingly, the Fv /Fm value remained high in nyc4-1 during the dark incubation, suggesting that photosystem II retained its function. Western blot analysis revealed that, in nyc4-1, the PSII core subunits D1 and D2 were significantly retained during leaf senescence in comparison with wild-type and other non-functional stay-green mutants, including sgr-2, a mutant of the key regulator of chlorophyll degradation SGR. The role of NYC4 in degradation of chlorophyll and chlorophyll - protein complexes during leaf senescence is discussed.
Collapse
Affiliation(s)
- Hiroshi Yamatani
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bartenhagen C, Dugas M. RSVSim: an R/Bioconductor package for the simulation of structural variations. Bioinformatics 2013; 29:1679-81. [DOI: 10.1093/bioinformatics/btt198] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|