1
|
Jayakrishnan M, Havlová M, Veverka V, Regnard C, Becker P. Genomic context-dependent histone H3K36 methylation by three Drosophila methyltransferases and implications for dedicated chromatin readers. Nucleic Acids Res 2024; 52:7627-7649. [PMID: 38813825 PMCID: PMC11260483 DOI: 10.1093/nar/gkae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024] Open
Abstract
Methylation of histone H3 at lysine 36 (H3K36me3) marks active chromatin. The mark is interpreted by epigenetic readers that assist transcription and safeguard the integrity of the chromatin fiber. The chromodomain protein MSL3 binds H3K36me3 to target X-chromosomal genes in male Drosophila for dosage compensation. The PWWP-domain protein JASPer recruits the JIL1 kinase to active chromatin on all chromosomes. Unexpectedly, depletion of K36me3 had variable, locus-specific effects on the interactions of those readers. This observation motivated a systematic and comprehensive study of K36 methylation in a defined cellular model. Contrasting prevailing models, we found that K36me1, K36me2 and K36me3 each contribute to distinct chromatin states. A gene-centric view of the changing K36 methylation landscape upon depletion of the three methyltransferases Set2, NSD and Ash1 revealed local, context-specific methylation signatures. Set2 catalyzes K36me3 predominantly at transcriptionally active euchromatin. NSD places K36me2/3 at defined loci within pericentric heterochromatin and on weakly transcribed euchromatic genes. Ash1 deposits K36me1 at regions with enhancer signatures. The genome-wide mapping of MSL3 and JASPer suggested that they bind K36me2 in addition to K36me3, which was confirmed by direct affinity measurement. This dual specificity attracts the readers to a broader range of chromosomal locations and increases the robustness of their actions.
Collapse
Affiliation(s)
- Muhunden Jayakrishnan
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Magdalena Havlová
- Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Catherine Regnard
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Peter B Becker
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
2
|
Paniagua N, Roberts CJ, Gonzalez LE, Monedero-Alonso D, Reinke V. The Upstream Sequence Transcription Complex dictates nucleosome positioning and promoter accessibility at piRNA genes in the C. elegans germ line. PLoS Genet 2024; 20:e1011345. [PMID: 38985845 PMCID: PMC11262695 DOI: 10.1371/journal.pgen.1011345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/22/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024] Open
Abstract
The piRNA pathway is a conserved germline-specific small RNA pathway that ensures genomic integrity and continued fertility. In C. elegans and other nematodes, Type-I piRNAs are expressed from >10,000 independently transcribed genes clustered within two discrete domains of 1.5 and 3.5 MB on Chromosome IV. Clustering of piRNA genes contributes to their germline-specific expression, but the underlying mechanisms are unclear. We analyze isolated germ nuclei to demonstrate that the piRNA genomic domains are located in a heterochromatin-like environment. USTC (Upstream Sequence Transcription Complex) promotes strong association of nucleosomes throughout piRNA clusters, yet organizes the local nucleosome environment to direct the exposure of individual piRNA genes. Localization of USTC to the piRNA domains depends upon the ATPase chromatin remodeler ISW-1, which maintains high nucleosome density across piRNA clusters and ongoing production of piRNA precursors. Overall, this work provides insight into how chromatin states coordinate transcriptional regulation over large genomic domains, with implications for global genome organization.
Collapse
Affiliation(s)
- Nancy Paniagua
- Department of Genetics, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - C. Jackson Roberts
- Department of Genetics, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - Lauren E. Gonzalez
- Department of Genetics, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - David Monedero-Alonso
- Department of Genetics, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven Connecticut, United States of America
| |
Collapse
|
3
|
Hu S, Liu Y, Zhang Q, Bai J, Xu C. A continuum of zinc finger transcription factor retention on native chromatin underlies dynamic genome organization. Mol Syst Biol 2024; 20:799-824. [PMID: 38745107 PMCID: PMC11220090 DOI: 10.1038/s44320-024-00038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Transcription factor (TF) residence on chromatin translates into quantitative transcriptional or structural outcomes on genome. Commonly used formaldehyde crosslinking fixes TF-DNA interactions cumulatively and compromises the measured occupancy level. Here we mapped the occupancy level of global or individual zinc finger TFs like CTCF and MAZ, in the form of highly resolved footprints, on native chromatin. By incorporating reinforcing perturbation conditions, we established S-score, a quantitative metric to proxy the continuum of CTCF or MAZ retention across different motifs on native chromatin. The native chromatin-retained CTCF sites harbor sequence features within CTCF motifs better explained by S-score than the metrics obtained from other crosslinking or native assays. CTCF retention on native chromatin correlates with local SUMOylation level, and anti-correlates with transcriptional activity. The S-score successfully delineates the otherwise-masked differential stability of chromatin structures mediated by CTCF, or by MAZ independent of CTCF. Overall, our study established a paradigm continuum of TF retention across binding sites on native chromatin, explaining the dynamic genome organization.
Collapse
Affiliation(s)
- Siling Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yangying Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qifan Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenhuan Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Silver BD, Willett CG, Maher KA, Wang D, Deal RB. Differences in transcription initiation directionality underlie distinctions between plants and animals in chromatin modification patterns at genes and cis-regulatory elements. G3 (BETHESDA, MD.) 2024; 14:jkae016. [PMID: 38253712 PMCID: PMC10917500 DOI: 10.1093/g3journal/jkae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Transcriptional initiation is among the first regulated steps controlling eukaryotic gene expression. High-throughput profiling of fungal and animal genomes has revealed that RNA Polymerase II often initiates transcription in both directions at the promoter transcription start site, but generally only elongates productively into the gene body. Additionally, Pol II can initiate transcription in both directions at cis-regulatory elements such as enhancers. These bidirectional RNA Polymerase II initiation events can be observed directly with methods that capture nascent transcripts, and they are also revealed indirectly by the presence of transcription-associated histone modifications on both sides of the transcription start site or cis-regulatory elements. Previous studies have shown that nascent RNAs and transcription-associated histone modifications in the model plant Arabidopsis thaliana accumulate mainly in the gene body, suggesting that transcription does not initiate widely in the upstream direction from genes in this plant. We compared transcription-associated histone modifications and nascent transcripts at both transcription start sites and cis-regulatory elements in A. thaliana, Drosophila melanogaster, and Homo sapiens. Our results provide evidence for mostly unidirectional RNA Polymerase II initiation at both promoters and gene-proximal cis-regulatory elements of A. thaliana, whereas bidirectional transcription initiation is observed widely at promoters in both D. melanogaster and H. sapiens, as well as cis-regulatory elements in Drosophila. Furthermore, the distribution of transcription-associated histone modifications around transcription start sites in the Oryza sativa (rice) and Glycine max (soybean) genomes suggests that unidirectional transcription initiation is the norm in these genomes as well. These results suggest that there are fundamental differences in transcriptional initiation directionality between flowering plant and metazoan genomes, which are manifested as distinct patterns of chromatin modifications around RNA polymerase initiation sites.
Collapse
Affiliation(s)
- Brianna D Silver
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | - Courtney G Willett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | - Kelsey A Maher
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dongxue Wang
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Silver BD, Willett CG, Maher KA, Wang D, Deal RB. Differences in transcription initiation directionality underlie distinctions between plants and animals in chromatin modification patterns at genes and cis-regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565513. [PMID: 37961418 PMCID: PMC10635121 DOI: 10.1101/2023.11.03.565513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Transcriptional initiation is among the first regulated steps controlling eukaryotic gene expression. High-throughput profiling of fungal and animal genomes has revealed that RNA Polymerase II (Pol II) often initiates transcription in both directions at the promoter transcription start site (TSS), but generally only elongates productively into the gene body. Additionally, Pol II can initiate transcription in both directions at cis-regulatory elements (CREs) such as enhancers. These bidirectional Pol II initiation events can be observed directly with methods that capture nascent transcripts, and they are also revealed indirectly by the presence of transcription-associated histone modifications on both sides of the TSS or CRE. Previous studies have shown that nascent RNAs and transcription-associated histone modifications in the model plant Arabidopsis thaliana accumulate mainly in the gene body, suggesting that transcription does not initiate widely in the upstream direction from genes in this plant. We compared transcription-associated histone modifications and nascent transcripts at both TSSs and CREs in Arabidopsis thaliana, Drosophila melanogaster, and Homo sapiens. Our results provide evidence for mostly unidirectional Pol II initiation at both promoters and gene-proximal CREs of Arabidopsis thaliana, whereas bidirectional transcription initiation is observed widely at promoters in both Drosophila melanogaster and Homo sapiens, as well as CREs in Drosophila. Furthermore, the distribution of transcription-associated histone modifications around TSSs in the Oryza sativa (rice) and Glycine max (soybean) genomes suggests that unidirectional transcription initiation is the norm in these genomes as well. These results suggest that there are fundamental differences in transcriptional initiation directionality between flowering plant and metazoan genomes, which are manifested as distinct patterns of chromatin modifications around RNA polymerase initiation sites.
Collapse
Affiliation(s)
- Brianna D. Silver
- Department of Biology, Emory University, Atlanta, GA 30322 USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322 USA
| | - Courtney G. Willett
- Department of Biology, Emory University, Atlanta, GA 30322 USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322 USA
| | - Kelsey A. Maher
- Department of Biology, Emory University, Atlanta, GA 30322 USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322 USA
| | - Dongxue Wang
- Department of Biology, Emory University, Atlanta, GA 30322 USA
| | - Roger B. Deal
- Department of Biology, Emory University, Atlanta, GA 30322 USA
| |
Collapse
|
6
|
Parisis N, Dans PD, Jbara M, Singh B, Schausi-Tiffoche D, Molina-Serrano D, Brun-Heath I, Hendrychová D, Maity SK, Buitrago D, Lema R, Nait Achour T, Giunta S, Girardot M, Talarek N, Rofidal V, Danezi K, Coudreuse D, Prioleau MN, Feil R, Orozco M, Brik A, Wu PYJ, Krasinska L, Fisher D. Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair. Nat Commun 2023; 14:5104. [PMID: 37607906 PMCID: PMC10444856 DOI: 10.1038/s41467-023-40843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 08/12/2023] [Indexed: 08/24/2023] Open
Abstract
Histone post-translational modifications promote a chromatin environment that controls transcription, DNA replication and repair, but surprisingly few phosphorylations have been documented. We report the discovery of histone H3 serine-57 phosphorylation (H3S57ph) and show that it is implicated in different DNA repair pathways from fungi to vertebrates. We identified CHK1 as a major human H3S57 kinase, and disrupting or constitutively mimicking H3S57ph had opposing effects on rate of recovery from replication stress, 53BP1 chromatin binding, and dependency on RAD52. In fission yeast, mutation of all H3 alleles to S57A abrogated DNA repair by both non-homologous end-joining and homologous recombination, while cells with phospho-mimicking S57D alleles were partly compromised for both repair pathways, presented aberrant Rad52 foci and were strongly sensitised to replication stress. Mechanistically, H3S57ph loosens DNA-histone contacts, increasing nucleosome mobility, and interacts with H3K56. Our results suggest that dynamic phosphorylation of H3S57 is required for DNA repair and recovery from replication stress, opening avenues for investigating the role of this modification in other DNA-related processes.
Collapse
Affiliation(s)
- Nikolaos Parisis
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
- BPMP, CNRS, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- Institut Jacques Monod, CNRS, University Paris Diderot, Paris, France
| | - Pablo D Dans
- IRB Barcelona, BIST, Barcelona, Spain
- Bioinformatics Unit, Institute Pasteur of Montevideo, Montevideo, Uruguay
- Department of Biological Sciences, CENUR North Riverside, University of the Republic (UdelaR), Salto, Uruguay
| | - Muhammad Jbara
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa, Israel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | - Denisa Hendrychová
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Suman Kumar Maity
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa, Israel
| | | | | | - Thiziri Nait Achour
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Simona Giunta
- The Rockefeller University, New York, NY, USA
- Laboratory of Genome Evolution, Department of Biology and Biotechnology "Charles Darwin", University of Rome Sapienza, Rome, Italy
| | - Michael Girardot
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Nicolas Talarek
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Valérie Rofidal
- BPMP, CNRS, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Katerina Danezi
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Damien Coudreuse
- IGDR, CNRS, University of Rennes, Rennes, France
- IBGC, CNRS, University of Bordeaux, Bordeaux, France
| | | | - Robert Feil
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
| | | | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa, Israel
| | - Pei-Yun Jenny Wu
- IGDR, CNRS, University of Rennes, Rennes, France
- IBGC, CNRS, University of Bordeaux, Bordeaux, France
| | - Liliana Krasinska
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France.
- Equipe labellisée Ligue contre le Cancer, Paris, France.
| | - Daniel Fisher
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France.
- Equipe labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
7
|
Ouyang K, Liang Q, Miao L, Zhang Z, Li Z. Genome-wide mapping of DNase I hypersensitive sites in pineapple leaves. Front Genet 2023; 14:1086554. [PMID: 37470036 PMCID: PMC10352800 DOI: 10.3389/fgene.2023.1086554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Pineapple [Ananas comosus (L.) Merr.] is the most economically important crop possessing crassulacean acid metabolism (CAM) photosynthesis which has a higher water use efficiency by control of nocturnal opening and diurnal closure of stomata. To provide novel insights into the diel regulatory landscape in pineapple leaves, we performed genome-wide mapping of DNase I hypersensitive sites (DHSs) in pineapple leaves at day (2a.m.) and night (10a.m.) using a simplified DNase-seq method. As a result, totally 33340 and 28753 DHSs were found in green-tip tissue, and 29597 and 40068 were identified in white-base tissue at 2a.m. and 10a.m., respectively. We observed that majority of the pineapple genes occupied less than two DHSs with length shorter than 1 kb, and the promotor DHSs showed a proximal trend to the transcription start site (>77% promotor DHSs within 1 kb). In addition, more intergenic DHSs were identified around transcription factors or transcription co-regulators (TFs/TCs) than other functional genes, indicating complex regulatory contexts around TFs/TCs. Through combined analysis of tissue preferential DHSs and genes, we respectively found 839 and 888 coordinately changed genes in green-tip at 2a.m. and 10a.m. (AcG2 and AcG10). Furthermore, AcG2-specific, AcG10-specific and common accessible DHSs were dissected from the total photosynthetic preferential DHSs, and the regulatory networks indicated dynamic regulations with multiple cis-regulatory elements occurred to genes preferentially expressed in photosynthetic tissues. Interestingly, binding motifs of several cycling TFs were identified in the DHSs of key CAM genes, revealing a circadian regulation to CAM coordinately diurnal expression. Our results provide a chromatin regulatory landscape in pineapple leaves during the day and night. This will provide important information to assist with deciphering the circadian regulation of CAM photosynthesis.
Collapse
Affiliation(s)
- Kai Ouyang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qifu Liang
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Li Miao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiliang Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhanjie Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Affandi T, Haas A, Ohm AM, Wright GM, Black JC, Reyland ME. PKCδ regulates chromatin remodeling and DNA repair through SIRT6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541991. [PMID: 37292592 PMCID: PMC10245827 DOI: 10.1101/2023.05.24.541991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein kinase C delta (PKCδ) is a ubiquitous kinase whose function is defined in part by localization to specific cellular compartments. Nuclear PKCδ is both necessary and sufficient for IR-induced apoptosis, while inhibition of PKCδ activity provides radioprotection in vivo. How nuclear PKCδ regulates DNA-damage induced cell death is poorly understood. Here we show that PKCδ regulates histone modification, chromatin accessibility, and double stranded break (DSB) repair through a mechanism that requires SIRT6. Overexpression of PKCδ promotes genomic instability and increases DNA damage and apoptosis. Conversely, depletion of PKCδ increases DNA repair via non-homologous end joining (NHEJ) and homologous recombination (HR) as evidenced by more rapid formation of NHEJ (DNA-PK) and HR (Rad51) DNA damage foci, increased expression of repair proteins, and increased repair of NHEJ and HR fluorescent reporter constructs. Nuclease sensitivity indicates that PKCδ depletion is associated with more open chromatin, while overexpression of PKCδ reduces chromatin accessibility. Epiproteome analysis revealed that PKCδ depletion increases chromatin associated H3K36me2, and reduces ribosylation of KDM2A and chromatin bound KDM2A. We identify SIRT6 as a downstream mediator of PKCδ. PKCδ-depleted cells have increased expression of SIRT6, and depletion of SIRT6 reverses the changes in chromatin accessibility, histone modification and NHEJ and HR DNA repair seen with PKCδ-depletion. Furthermore, depletion of SIRT6 reverses radioprotection in PKCδ-depleted cells. Our studies describe a novel pathway whereby PKCδ orchestrates SIRT6-dependent changes in chromatin accessibility to increase DNA repair, and define a mechanism for regulation of radiation-induced apoptosis by PKCδ.
Collapse
Affiliation(s)
- Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ami Haas
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela M. Ohm
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gregory M. Wright
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joshua C. Black
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary E. Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Yang N, Occean JR, Melters DP, Shi C, Wang L, Stransky S, Doyle ME, Cui CY, Delannoy M, Fan J, Slama E, Egan JM, De S, Cunningham SC, de Cabo R, Sidoli S, Dalal Y, Sen P. A hyper-quiescent chromatin state formed during aging is reversed by regeneration. Mol Cell 2023; 83:1659-1676.e11. [PMID: 37116496 PMCID: PMC10228348 DOI: 10.1016/j.molcel.2023.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 02/03/2023] [Accepted: 04/03/2023] [Indexed: 04/30/2023]
Abstract
Epigenetic alterations are a key hallmark of aging but have been limitedly explored in tissues. Here, using naturally aged murine liver as a model and extending to other quiescent tissues, we find that aging is driven by temporal chromatin alterations that promote a refractory cellular state and compromise cellular identity. Using an integrated multi-omics approach and the first direct visualization of aged chromatin, we find that globally, old cells show H3K27me3-driven broad heterochromatinization and transcriptional suppression. At the local level, site-specific loss of H3K27me3 over promoters of genes encoding developmental transcription factors leads to expression of otherwise non-hepatocyte markers. Interestingly, liver regeneration reverses H3K27me3 patterns and rejuvenates multiple molecular and physiological aspects of the aged liver.
Collapse
Affiliation(s)
- Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - James R Occean
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Daniël P Melters
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 21224, USA
| | - Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lin Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein School of Medicine, Bronx, NY 10461, USA
| | - Maire E Doyle
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Michael Delannoy
- JHU SOM Microscope Facility, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Eliza Slama
- Department of Surgery, Ascension Saint Agnes Hospital, Baltimore, MD 21229, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Steven C Cunningham
- Department of Surgery, Ascension Saint Agnes Hospital, Baltimore, MD 21229, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein School of Medicine, Bronx, NY 10461, USA
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 21224, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
10
|
Sanchez N, Gonzalez LE, Reinke V. The Upstream Sequence Transcription Complex Dictates Nucleosome Positioning and Promoter Accessibility at piRNA Genes in the C. elegans Germ Line. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540274. [PMID: 37215016 PMCID: PMC10197682 DOI: 10.1101/2023.05.10.540274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The piRNA pathway is a conserved germline-specific small RNA pathway that ensures genomic integrity and continued fertility. In C. elegans and other nematodes, Type-I piRNA precursor transcripts are expressed from over 10,000 small, independently regulated genes clustered within two discrete domains of 1.5 and 3.5 MB on Chromosome IV. These large clusters likely play a significant role in promoting germline-specific expression of piRNAs, but the underlying mechanisms are unclear. By examining the chromatin environment specifically in isolated germ nuclei, we demonstrate that piRNA clusters are located in closed chromatin, and confirm the enrichment for the inactive histone modification H3K27me3. We further show that the piRNA biogenesis factor USTC (Upstream Sequence Transcription Complex) plays two roles - it promotes a strong association of nucleosomes throughout the piRNA clusters, and it organizes the local nucleosome environment to direct the exposure of individual piRNA genes. Overall, this work reveals new insight into how chromatin state coordinates transcriptional regulation over large genomic domains, which has implications for understanding global genome organization in the germ line.
Collapse
Affiliation(s)
- Nancy Sanchez
- Department of Genetics, Yale University School of Medicine, New Haven CT 06520
| | - Lauren E Gonzalez
- Department of Genetics, Yale University School of Medicine, New Haven CT 06520
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven CT 06520
| |
Collapse
|
11
|
Yang N, Occean JR, Melters DP, Shi C, Wang L, Stransky S, Doyle ME, Cui CY, Delannoy M, Fan J, Slama E, Egan JM, De S, Cunningham SC, de Cabo R, Sidoli S, Dalal Y, Sen P. A hyper-quiescent chromatin state formed during aging is reversed by regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528512. [PMID: 36824822 PMCID: PMC9949032 DOI: 10.1101/2023.02.14.528512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Epigenetic alterations are a key hallmark of aging but have been limitedly explored in tissues. Here, using naturally aged murine liver as a model and extending to other quiescent tissues, we find that aging is driven by temporal chromatin alterations that promote a refractory cellular state and compromise cellular identity. Using an integrated multi-omics approach, and the first direct visualization of aged chromatin we find that globally, old cells show H3K27me3-driven broad heterochromatinization and transcription suppression. At the local level, site-specific loss of H3K27me3 over promoters of genes encoding developmental transcription factors leads to expression of otherwise non-hepatocyte markers. Interestingly, liver regeneration reverses H3K27me3 patterns and rejuvenates multiple molecular and physiological aspects of the aged liver.
Collapse
Affiliation(s)
- Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH; Baltimore, MD
| | - James R. Occean
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH; Baltimore, MD
| | - Daniël P. Melters
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH; Bethesda, MD
| | - Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH; Baltimore, MD
| | - Lin Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH; Baltimore, MD
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein School of Medicine; Bronx, NY
| | - Maire E. Doyle
- Laboratory of Clinical Investigation, National Institute on Aging, NIH; Baltimore, MD
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH; Baltimore, MD
| | - Michael Delannoy
- JHU SOM Microscope Facility, Johns Hopkins University; Baltimore, MD
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH; Baltimore, MD
| | - Eliza Slama
- Department of Surgery, Ascension Saint Agnes Hospital; Baltimore, MD
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH; Baltimore, MD
| | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH; Baltimore, MD
| | | | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH; Baltimore, MD
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein School of Medicine; Bronx, NY
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH; Bethesda, MD
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH; Baltimore, MD
| |
Collapse
|
12
|
Vital T, Wali A, Butler KV, Xiong Y, Foster JP, Marcel SS, McFadden AW, Nguyen VU, Bailey BM, Lamb KN, James LI, Frye SV, Mosely AL, Jin J, Pattenden SG, Davis IJ. MS0621, a novel small-molecule modulator of Ewing sarcoma chromatin accessibility, interacts with an RNA-associated macromolecular complex and influences RNA splicing. Front Oncol 2023; 13:1099550. [PMID: 36793594 PMCID: PMC9924231 DOI: 10.3389/fonc.2023.1099550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Ewing sarcoma is a cancer of children and young adults characterized by the critical translocation-associated fusion oncoprotein EWSR1::FLI1. EWSR1::FLI1 targets characteristic genetic loci where it mediates aberrant chromatin and the establishment of de novo enhancers. Ewing sarcoma thus provides a model to interrogate mechanisms underlying chromatin dysregulation in tumorigenesis. Previously, we developed a high-throughput chromatin-based screening platform based on the de novo enhancers and demonstrated its utility in identifying small molecules capable of altering chromatin accessibility. Here, we report the identification of MS0621, a molecule with previously uncharacterized mechanism of action, as a small molecule modulator of chromatin state at sites of aberrant chromatin accessibility at EWSR1::FLI1-bound loci. MS0621 suppresses cellular proliferation of Ewing sarcoma cell lines by cell cycle arrest. Proteomic studies demonstrate that MS0621 associates with EWSR1::FLI1, RNA binding and splicing proteins, as well as chromatin regulatory proteins. Surprisingly, interactions with chromatin and many RNA-binding proteins, including EWSR1::FLI1 and its known interactors, were RNA-independent. Our findings suggest that MS0621 affects EWSR1::FLI1-mediated chromatin activity by interacting with and altering the activity of RNA splicing machinery and chromatin modulating factors. Genetic modulation of these proteins similarly inhibits proliferation and alters chromatin in Ewing sarcoma cells. The use of an oncogene-associated chromatin signature as a target allows for a direct approach to screen for unrecognized modulators of epigenetic machinery and provides a framework for using chromatin-based assays for future therapeutic discovery efforts.
Collapse
Affiliation(s)
- Tamara Vital
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Aminah Wali
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kyle V. Butler
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joseph P. Foster
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shelsa S. Marcel
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Andrew W. McFadden
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Valerie U. Nguyen
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benton M. Bailey
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kelsey N. Lamb
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lindsey I. James
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen V. Frye
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amber L. Mosely
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Samantha G. Pattenden
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ian J. Davis
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
13
|
PARP1′s Involvement in RNA Polymerase II Elongation: Pausing and Releasing Regulation through the Integrator and Super Elongation Complex. Cells 2022; 11:cells11203202. [PMID: 36291070 PMCID: PMC9600911 DOI: 10.3390/cells11203202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
RNA polymerase elongation along the gene body is tightly regulated to ensure proper transcription and alternative splicing events. Understanding the mechanism and factors critical in regulating the rate of RNA polymerase II elongation and processivity is clearly important. Recently we showed that PARP1, a well-known DNA repair protein, when bound to chromatin, regulates RNA polymerase II elongation. However, the mechanism by which it does so is not known. In the current study, we aimed to tease out how PARP1 regulates RNAPII elongation. We show, both in vivo and in vitro, that PARP1 binds directly to the Integrator subunit 3 (IntS3), a member of the elongation Integrator complex. The association between the two proteins is mediated via the C-terminal domain of PARP1 to the C-terminal domain of IntS3. Interestingly, the occupancy of IntS3 along two PARP1 target genes mimicked that of PARP1, suggesting a role in its recruitment/assembly of elongation factors. Indeed, the knockdown of PARP1 resulted in differential chromatin association and gene occupancy of IntS3 and other key elongation factors. Most of these PARP1-mediated effects were due to the physical presence of PARP1 rather than its PARylation activity. These studies argue that PARP1 controls the progressive RNAPII elongation complexes. In summary, we present a platform to begin to decipher PARP1′s role in recruiting/scaffolding elongation factors along the gene body regions during RNA polymerase II elongation and gene regulation.
Collapse
|
14
|
Mikulski P, Wolff P, Lu T, Nielsen M, Echevarria EF, Zhu D, Questa JI, Saalbach G, Martins C, Dean C. VAL1 acts as an assembly platform co-ordinating co-transcriptional repression and chromatin regulation at Arabidopsis FLC. Nat Commun 2022; 13:5542. [PMID: 36130923 PMCID: PMC9492735 DOI: 10.1038/s41467-022-32897-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Polycomb (PcG) silencing is crucial for development, but how targets are specified remains incompletely understood. The cold-induced Polycomb Repressive Complex 2 (PRC2) silencing of Arabidopsis thaliana FLOWERING LOCUS C (FLC) provides an excellent system to elucidate PcG regulation. Association of the DNA binding protein VAL1 to FLC PcG nucleation regionis an important step. VAL1 co-immunoprecipitates APOPTOSIS AND SPLICING ASSOCIATED PROTEIN (ASAP) complex and PRC1. Here, we show that ASAP and PRC1 are necessary for co-transcriptional repression and chromatin regulation at FLC. ASAP mutants affect FLC transcription in warm conditions, but the rate of FLC silencing in the cold is unaffected. PRC1-mediated H2Aub accumulation increases at the FLC nucleation region during cold, but unlike the PRC2-delivered H3K27me3, does not spread across the locus. H2Aub thus involved in the transition to epigenetic silencing at FLC, facilitating H3K27me3 accumulation and long-term epigenetic memory. Overall, our work highlights the importance of VAL1 as an assembly platform co-ordinating activities necessary for epigenetic silencing at FLC.
Collapse
Affiliation(s)
- Pawel Mikulski
- Cell and Developmental Biology, John Innes Centre, Norwich, UK. .,Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Philip Wolff
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Tiancong Lu
- Cell and Developmental Biology, John Innes Centre, Norwich, UK.,State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mathias Nielsen
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | | - Danling Zhu
- Cell and Developmental Biology, John Innes Centre, Norwich, UK.,SUSTech-PKU Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Julia I Questa
- Cell and Developmental Biology, John Innes Centre, Norwich, UK.,Centre for Research in Agricultural Genomics, Barcelona, Spain
| | | | - Carlo Martins
- Biological Chemistry, John Innes Centre, Norwich, UK
| | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich, UK. .,MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
15
|
Kenworthy CA, Haque N, Liou SH, Chandris P, Wong V, Dziuba P, Lavis LD, Liu WL, Singer RH, Coleman RA. Bromodomains regulate dynamic targeting of the PBAF chromatin-remodeling complex to chromatin hubs. Biophys J 2022; 121:1738-1752. [PMID: 35364106 PMCID: PMC9117891 DOI: 10.1016/j.bpj.2022.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/20/2021] [Accepted: 03/24/2022] [Indexed: 11/12/2022] Open
Abstract
Chromatin remodelers actively target arrays of acetylated nucleosomes at select enhancers and promoters to facilitate or shut down the repeated recruitment of RNA polymerase II during transcriptional bursting. It is poorly understood how chromatin remodelers such as PBAF dynamically target different chromatin states inside a live cell. Our live-cell single-molecule fluorescence microscopy study reveals chromatin hubs throughout the nucleus where PBAF rapidly cycles on and off the genome. Deletion of PBAF's bromodomains impairs targeting and stable engagement of chromatin in hubs. Dual color imaging reveals that PBAF targets both euchromatic and heterochromatic hubs with distinct genome-binding kinetic profiles that mimic chromatin stability. Removal of PBAF's bromodomains stabilizes H3.3 binding within chromatin, indicating that bromodomains may play a direct role in remodeling of the nucleosome. Our data suggests that PBAF's dynamic bromodomain-mediated engagement of a nucleosome may reflect the chromatin-remodeling potential of differentially bound chromatin states.
Collapse
Affiliation(s)
- Charles A Kenworthy
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York
| | - Nayem Haque
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York
| | - Shu-Hao Liou
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York
| | - Panagiotis Chandris
- Section on High Resolution Optical Imaging, National Institute on Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Vincent Wong
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York
| | - Patrycja Dziuba
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | - Wei-Li Liu
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York
| | - Robert H Singer
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | - Robert A Coleman
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York.
| |
Collapse
|
16
|
Rico T, Gilles M, Chauderlier A, Comptdaer T, Magnez R, Chwastyniak M, Drobecq H, Pinet F, Thuru X, Buée L, Galas MC, Lefebvre B. Tau Stabilizes Chromatin Compaction. Front Cell Dev Biol 2021; 9:740550. [PMID: 34722523 PMCID: PMC8551707 DOI: 10.3389/fcell.2021.740550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
An extensive body of literature suggested a possible role of the microtubule-associated protein Tau in chromatin functions and/or organization in neuronal, non-neuronal, and cancer cells. How Tau functions in these processes remains elusive. Here we report that Tau expression in breast cancer cell lines causes resistance to the anti-cancer effects of histone deacetylase inhibitors, by preventing histone deacetylase inhibitor-inducible gene expression and remodeling of chromatin structure. We identify Tau as a protein recognizing and binding to core histone when H3 and H4 are devoid of any post-translational modifications or acetylated H4 that increases the Tau's affinity. Consistent with chromatin structure alterations in neurons found in frontotemporal lobar degeneration, Tau mutations did not prevent histone deacetylase-inhibitor-induced higher chromatin structure remodeling by suppressing Tau binding to histones. In addition, we demonstrate that the interaction between Tau and histones prevents further histone H3 post-translational modifications induced by histone deacetylase-inhibitor treatment by maintaining a more compact chromatin structure. Altogether, these results highlight a new cellular role for Tau as a chromatin reader, which opens new therapeutic avenues to exploit Tau biology in neuronal and cancer cells.
Collapse
Affiliation(s)
- Thomas Rico
- Univ. Lille, INSERM, CHU-Lille, Lille Neuroscience and Cognition, UMR-S1172, Alzheimer and Tauopathies, Lille, France
| | - Melissa Gilles
- Univ. Lille, INSERM, CHU-Lille, Lille Neuroscience and Cognition, UMR-S1172, Alzheimer and Tauopathies, Lille, France
| | - Alban Chauderlier
- Univ. Lille, INSERM, CHU-Lille, Lille Neuroscience and Cognition, UMR-S1172, Alzheimer and Tauopathies, Lille, France
| | - Thomas Comptdaer
- Univ. Lille, INSERM, CHU-Lille, Lille Neuroscience and Cognition, UMR-S1172, Alzheimer and Tauopathies, Lille, France
| | - Romain Magnez
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR 9020, UMR 1277, Canther, Platform of Integrative Chemical Biology, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Maggy Chwastyniak
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées Au Vieillissement, Lille, France
| | - Herve Drobecq
- Univ. Lille, CNRS UMR 9017, INSERM U1019, CHRU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Florence Pinet
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées Au Vieillissement, Lille, France
| | - Xavier Thuru
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR 9020, UMR 1277, Canther, Platform of Integrative Chemical Biology, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Luc Buée
- Univ. Lille, INSERM, CHU-Lille, Lille Neuroscience and Cognition, UMR-S1172, Alzheimer and Tauopathies, Lille, France
| | - Marie-Christine Galas
- Univ. Lille, INSERM, CHU-Lille, Lille Neuroscience and Cognition, UMR-S1172, Alzheimer and Tauopathies, Lille, France
| | - Bruno Lefebvre
- Univ. Lille, INSERM, CHU-Lille, Lille Neuroscience and Cognition, UMR-S1172, Alzheimer and Tauopathies, Lille, France
| |
Collapse
|
17
|
Hansen JC, Maeshima K, Hendzel MJ. The solid and liquid states of chromatin. Epigenetics Chromatin 2021; 14:50. [PMID: 34717733 PMCID: PMC8557566 DOI: 10.1186/s13072-021-00424-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
The review begins with a concise description of the principles of phase separation. This is followed by a comprehensive section on phase separation of chromatin, in which we recount the 60 years history of chromatin aggregation studies, discuss the evidence that chromatin aggregation intrinsically is a physiologically relevant liquid-solid phase separation (LSPS) process driven by chromatin self-interaction, and highlight the recent findings that under specific solution conditions chromatin can undergo liquid-liquid phase separation (LLPS) rather than LSPS. In the next section of the review, we discuss how certain chromatin-associated proteins undergo LLPS in vitro and in vivo. Some chromatin-binding proteins undergo LLPS in purified form in near-physiological ionic strength buffers while others will do so only in the presence of DNA, nucleosomes, or chromatin. The final section of the review evaluates the solid and liquid states of chromatin in the nucleus. While chromatin behaves as an immobile solid on the mesoscale, nucleosomes are mobile on the nanoscale. We discuss how this dual nature of chromatin, which fits well the concept of viscoelasticity, contributes to genome structure, emphasizing the dominant role of chromatin self-interaction.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan.
| | - Michael J Hendzel
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Tadijan A, Precazzini F, Hanžić N, Radić M, Gavioli N, Vlašić I, Ozretić P, Pinto L, Škreblin L, Barban G, Slade N, Ciribilli Y. Altered Expression of Shorter p53 Family Isoforms Can Impact Melanoma Aggressiveness. Cancers (Basel) 2021; 13:cancers13205231. [PMID: 34680379 PMCID: PMC8533715 DOI: 10.3390/cancers13205231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 02/05/2023] Open
Abstract
Cutaneous melanoma is the most aggressive form of skin cancer. Despite the significant advances in the management of melanoma in recent decades, it still represents a challenge for clinicians. The TP53 gene, the guardian of the genome, which is altered in more than 50% of human cancers, is rarely mutated in melanoma. More recently, researchers started to appreciate the importance of shorter p53 isoforms as potential modifiers of the p53-dependent responses. We analyzed the expression of p53 and p73 isoforms both at the RNA and protein level in a panel of melanoma-derived cell lines with different TP53 and BRAF status, in normal conditions or upon treatment with common anti-cancer DNA damaging agents or targeted therapy. Using lentiviral vectors, we also generated stable clones of H1299 p53 null cells over-expressing the less characterized isoforms Δ160p53α, Δ160p53β, and Δ160p53γ. Further, we obtained two melanoma-derived cell lines resistant to BRAF inhibitor vemurafenib. We observed that melanoma cell lines expressed a wide array of p53 and p73 isoforms, with Δ160p53α as the most variable one. We demonstrated for the first time that Δ160p53α, and to a lesser extent Δ160p53β, can be recruited on chromatin, and that Δ160p53γ can localize in perinuclear foci; moreover, all Δ160p53 isoforms can stimulate proliferation and in vitro migration. Lastly, vemurafenib-resistant melanoma cells showed an altered expression of p53 and p73 isoforms, namely an increased expression of potentially pro-oncogenic Δ40p53β and a decrease in tumor-suppressive TAp73β. We therefore propose that p53 family isoforms can play a role in melanoma cells' aggressiveness.
Collapse
Affiliation(s)
- Ana Tadijan
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (A.T.); (N.H.); (M.R.); (I.V.); (L.Š.)
| | - Francesca Precazzini
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Povo, TN, Italy; (F.P.); (N.G.); (L.P.); (G.B.)
- Laboratory of RNA Biology and Biotechnology, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Povo, TN, Italy
| | - Nikolina Hanžić
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (A.T.); (N.H.); (M.R.); (I.V.); (L.Š.)
| | - Martina Radić
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (A.T.); (N.H.); (M.R.); (I.V.); (L.Š.)
| | - Nicolò Gavioli
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Povo, TN, Italy; (F.P.); (N.G.); (L.P.); (G.B.)
| | - Ignacija Vlašić
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (A.T.); (N.H.); (M.R.); (I.V.); (L.Š.)
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Lia Pinto
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Povo, TN, Italy; (F.P.); (N.G.); (L.P.); (G.B.)
| | - Lidija Škreblin
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (A.T.); (N.H.); (M.R.); (I.V.); (L.Š.)
| | - Giulia Barban
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Povo, TN, Italy; (F.P.); (N.G.); (L.P.); (G.B.)
| | - Neda Slade
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (A.T.); (N.H.); (M.R.); (I.V.); (L.Š.)
- Correspondence: (N.S.); (Y.C.)
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Povo, TN, Italy; (F.P.); (N.G.); (L.P.); (G.B.)
- Correspondence: (N.S.); (Y.C.)
| |
Collapse
|
19
|
Fang K, Li T, Huang Y, Jin VX. NucHMM: a method for quantitative modeling of nucleosome organization identifying functional nucleosome states distinctly associated with splicing potentiality. Genome Biol 2021; 22:250. [PMID: 34446075 PMCID: PMC8390234 DOI: 10.1186/s13059-021-02465-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 08/12/2021] [Indexed: 01/01/2023] Open
Abstract
We develop a novel computational method, NucHMM, to identify functional nucleosome states associated with cell type-specific combinatorial histone marks and nucleosome organization features such as phasing, spacing and positioning. We test it on publicly available MNase-seq and ChIP-seq data in MCF7, H1, and IMR90 cells and identify 11 distinct functional nucleosome states. We demonstrate these nucleosome states are distinctly associated with the splicing potentiality of skipping exons. This advances our understanding of the chromatin function at the nucleosome level and offers insights into the interplay between nucleosome organization and splicing processes.
Collapse
Affiliation(s)
- Kun Fang
- Department of Molecular Medicine, UTHSA-UTSA Joint Biomedical Engineering Program, San Antonio, TX, 78229, USA
| | - Tianbao Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yufei Huang
- Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
20
|
Markus H, Zhao J, Contente-Cuomo T, Stephens MD, Raupach E, Odenheimer-Bergman A, Connor S, McDonald BR, Moore B, Hutchins E, McGilvrey M, de la Maza MC, Van Keuren-Jensen K, Pirrotte P, Goel A, Becerra C, Von Hoff DD, Celinski SA, Hingorani P, Murtaza M. Analysis of recurrently protected genomic regions in cell-free DNA found in urine. Sci Transl Med 2021; 13:13/581/eaaz3088. [PMID: 33597261 DOI: 10.1126/scitranslmed.aaz3088] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 07/16/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Cell-free DNA (cfDNA) in urine is a promising analyte for noninvasive diagnostics. However, urine cfDNA is highly fragmented. Whether characteristics of these fragments reflect underlying genomic architecture is unknown. Here, we characterized fragmentation patterns in urine cfDNA using whole-genome sequencing. Size distribution of urine cfDNA fragments showed multiple strong peaks between 40 and 120 base pairs (bp) with a modal size of 81- and sharp 10-bp periodicity, suggesting transient protection from complete degradation. These properties were robust to preanalytical perturbations, such as at-home collection and delay in processing. Genome-wide sequencing coverage of urine cfDNA fragments revealed recurrently protected regions (RPRs) conserved across individuals, with partial overlap with nucleosome positioning maps inferred from plasma cfDNA. The ends of cfDNA fragments clustered upstream and downstream of RPRs, and nucleotide frequencies of fragment ends indicated enzymatic digestion of urine cfDNA. Compared to plasma, fragmentation patterns in urine cfDNA showed greater correlation with gene expression and chromatin accessibility in epithelial cells of the urinary tract. We determined that tumor-derived urine cfDNA exhibits a higher frequency of aberrant fragments that end within RPRs. By comparing the fraction of aberrant fragments and nucleotide frequencies of fragment ends, we identified urine samples from cancer patients with an area under the curve of 0.89. Our results revealed nonrandom genomic positioning of urine cfDNA fragments and suggested that analysis of fragmentation patterns across recurrently protected genomic loci may serve as a cancer diagnostic.
Collapse
Affiliation(s)
- Havell Markus
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Jun Zhao
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA.,Phoenix Children's Hospital, Phoenix, AZ 85016, USA
| | | | | | | | | | - Sydney Connor
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | - Bethine Moore
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | | | | | | - Patrick Pirrotte
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Ajay Goel
- Baylor Scott and White Research Institute, Baylor University Medical Center, Dallas, TX 75204, USA.,City of Hope, Duarte, CA 91010, USA
| | - Carlos Becerra
- Baylor Scott and White Research Institute, Baylor University Medical Center, Dallas, TX 75204, USA
| | | | - Scott A Celinski
- Baylor Scott and White Research Institute, Baylor University Medical Center, Dallas, TX 75204, USA.,Department of Surgery, Baylor University Medical Center, Dallas, TX 75214, USA
| | | | - Muhammed Murtaza
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA.
| |
Collapse
|
21
|
Huang S, Zhu S, Kumar P, MacMicking JD. A phase-separated nuclear GBPL circuit controls immunity in plants. Nature 2021; 594:424-429. [PMID: 34040255 PMCID: PMC8478157 DOI: 10.1038/s41586-021-03572-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/21/2021] [Indexed: 02/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a central paradigm for understanding how membraneless organelles compartmentalize diverse cellular activities in eukaryotes1-3. Here we identify a superfamily of plant guanylate-binding protein (GBP)-like GTPases (GBPLs) that assemble LLPS-driven condensates within the nucleus to protect against infection and autoimmunity. In Arabidopsis thaliana, two members of this family-GBPL1 and GBPL3-undergo phase-transition behaviour to control transcriptional responses as part of an allosteric switch that is triggered by exposure to biotic stress. GBPL1, a pseudo-GTPase, sequesters catalytically active GBPL3 under basal conditions but is displaced by GBPL3 LLPS when it enters the nucleus following immune cues to drive the formation of unique membraneless organelles termed GBPL defence-activated condensates (GDACs) that we visualized by in situ cryo-electron tomography. Within these mesoscale GDAC structures, native GBPL3 directly bound defence-gene promoters and recruited specific transcriptional coactivators of the Mediator complex and RNA polymerase II machinery to massively reprogram host gene expression for disease resistance. Together, our study identifies a GBPL circuit that reinforces the biological importance of phase-separated condensates, in this case, as indispensable players in plant defence.
Collapse
Affiliation(s)
- Shuai Huang
- Howard Hughes Medical Institute, New Haven, CT, USA.,Yale Systems Biology Institute, West Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Shiwei Zhu
- Howard Hughes Medical Institute, New Haven, CT, USA.,Yale Systems Biology Institute, West Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Pradeep Kumar
- Howard Hughes Medical Institute, New Haven, CT, USA.,Yale Systems Biology Institute, West Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - John D. MacMicking
- Howard Hughes Medical Institute, New Haven, CT, USA.,Yale Systems Biology Institute, West Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.,Correspondence and requests for materials should be addressed to J.D.M.,
| |
Collapse
|
22
|
Lin Y, Zhao H, Kotlarz M, Jiang J. Enhancer-mediated reporter gene expression in Arabidopsis thaliana: a forward genetic screen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:661-671. [PMID: 33547831 DOI: 10.1111/tpj.15189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Gene expression is controlled and regulated by interactions between cis-regulatory DNA elements (CREs) and regulatory proteins. Enhancers are one of the most important classes of CREs in eukaryotes. Eukaryotic genes, especially those related to development or responses to environmental cues, are often regulated by multiple enhancers in different tissues and/or at different developmental stages. Remarkably, little is known about the molecular mechanisms by which enhancers regulate gene expression in plants. We identified a distal enhancer, CREβ, which regulates the expression of AtDGK7, which encodes a diacylglycerol kinase in Arabidopsis. We developed a transgenic line containing the luciferase reporter gene (LUC) driven by CREβ fused with a minimal cauliflower mosaic virus (CaMV) 35S promoter. The CREβ enhancer was shown to play a role in the response to osmotic pressure of the LUC reporter gene. A forward genetic screen pipeline based on the transgenic line was established to generate mutations associated with altered expression of the LUC reporter gene. We identified a suite of mutants with variable LUC expression levels as well as different segregation patterns of the mutations in populations. We demonstrate that this pipeline will allow us to identify trans-regulatory factors associated with CREβ function as well as those acting in the regulation of the endogenous AtDGK7 gene.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Hunan Agriculture University, Changsha, 410128, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Magdalena Kotlarz
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| |
Collapse
|
23
|
Federation AJ, Nandakumar V, Searle BC, Stergachis A, Wang H, Pino LK, Merrihew G, Ting YS, Howard N, Kutyavin T, MacCoss MJ, Stamatoyannopoulos JA. Highly Parallel Quantification and Compartment Localization of Transcription Factors and Nuclear Proteins. Cell Rep 2021; 30:2463-2471.e5. [PMID: 32101728 DOI: 10.1016/j.celrep.2020.01.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/15/2019] [Accepted: 01/28/2020] [Indexed: 01/12/2023] Open
Abstract
Transcription factors and other chromatin-associated proteins are difficult to quantify comprehensively. Here, we combine facile nuclear sub-fractionation with data-independent acquisition mass spectrometry to achieve rapid, sensitive, and highly parallel quantification of the nuclear proteome in human cells. We apply this approach to quantify the response to acute degradation of BET bromodomains, revealing unexpected chromatin regulatory dynamics. The method is simple and enables system-level study of previously inaccessible chromatin and genome regulators.
Collapse
Affiliation(s)
| | - Vivek Nandakumar
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Brian C Searle
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Andrew Stergachis
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Hao Wang
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Lindsay K Pino
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Gennifer Merrihew
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Ying S Ting
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Nicholas Howard
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Tanya Kutyavin
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Michael J MacCoss
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA.
| | - John A Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA; University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Rao S, Ahmad K, Ramachandran S. Cooperative binding between distant transcription factors is a hallmark of active enhancers. Mol Cell 2021; 81:1651-1665.e4. [PMID: 33705711 DOI: 10.1016/j.molcel.2021.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022]
Abstract
Enhancers harbor binding motifs that recruit transcription factors (TFs) for gene activation. While cooperative binding of TFs at enhancers is known to be critical for transcriptional activation of a handful of developmental enhancers, the extent of TF cooperativity genome-wide is unknown. Here, we couple high-resolution nuclease footprinting with single-molecule methylation profiling to characterize TF cooperativity at active enhancers in the Drosophila genome. Enrichment of short micrococcal nuclease (MNase)-protected DNA segments indicates that the majority of enhancers harbor two or more TF-binding sites, and we uncover protected fragments that correspond to co-bound sites in thousands of enhancers. From the analysis of co-binding, we find that cooperativity dominates TF binding in vivo at the majority of active enhancers. Cooperativity is highest between sites spaced 50 bp apart, indicating that cooperativity occurs without apparent protein-protein interactions. Our findings suggest nucleosomes promoting cooperativity because co-binding may effectively clear nucleosomes and promote enhancer function.
Collapse
Affiliation(s)
- Satyanarayan Rao
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
25
|
van Mierlo G, Vermeulen M. Chromatin Proteomics to Study Epigenetics - Challenges and Opportunities. Mol Cell Proteomics 2021; 20:100056. [PMID: 33556626 PMCID: PMC7973309 DOI: 10.1074/mcp.r120.002208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulation of gene expression is essential for the functioning of all eukaryotic organisms. Understanding gene expression regulation requires determining which proteins interact with regulatory elements in chromatin. MS-based analysis of chromatin has emerged as a powerful tool to identify proteins associated with gene regulation, as it allows studying protein function and protein complex formation in their in vivo chromatin-bound context. Total chromatin isolated from cells can be directly analyzed using MS or further fractionated into transcriptionally active and inactive chromatin prior to MS-based analysis. Newly formed chromatin that is assembled during DNA replication can also be specifically isolated and analyzed. Furthermore, capturing specific chromatin domains facilitates the identification of previously unknown transcription factors interacting with these domains. Finally, in recent years, advances have been made toward identifying proteins that interact with a single genomic locus of interest. In this review, we highlight the power of chromatin proteomics approaches and how these provide complementary alternatives compared with conventional affinity purification methods. Furthermore, we discuss the biochemical challenges that should be addressed to consolidate and expand the role of chromatin proteomics as a key technology in the context of gene expression regulation and epigenetics research in health and disease. An overview of proteomics methods to study chromatin and gene regulation. Strength and limitations of the different approaches are highlighted. An outlook on the outstanding challenges for chromatin proteomics. Future directions for chromatin proteomics are discussed.
Collapse
Affiliation(s)
- Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
| |
Collapse
|
26
|
Bhattacharjee A, Srivastava PL, Nath O, Jain M. Genome-wide discovery of OsHOX24-binding sites and regulation of desiccation stress response in rice. PLANT MOLECULAR BIOLOGY 2021; 105:205-214. [PMID: 33025523 DOI: 10.1007/s11103-020-01078-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
OsHOX24 mediates regulation of desiccation stress response via complex regulatory network as indicated by its binding to several target genes including transcription factors in rice. HD-ZIP I subfamily of homeobox transcription factors (TFs) are involved in abiotic stress responses and plant development. Previously, we demonstrated the role of OsHOX24, a member of HD-ZIP I subfamily, in abiotic stress responses. In this study, we identified downstream targets of OsHOX24 under control and desiccation stress conditions via chromatin immunoprecipitation-sequencing (ChIP-seq) approach in wild-type and OsHOX24 over-expression transgenic in rice. OsHOX24-binding sites in each sample and differential binding sites between the samples were detected at various genomic locations, including genic and intergenic regions. Gene ontology enrichment analysis revealed that OsHOX24 direct target genes were involved in several biological processes, including plant development, ABA-mediated signalling pathway, ubiquitin-dependent protein catabolic process, ion transport, abiotic and biotic stress responses besides transcriptional and translational regulation. The enrichment of several cis-regulatory motifs representing binding sites of other TFs, such as ABFs, ERF1, MYB1, LTREs and SORLIP2, suggested the involvement of OsHOX24 in a complex regulatory network. These findings indicate that OsHOX24-mediated desiccation stress regulation involves modulation of a plethora of target genes, which participate in diverse pathways in rice.
Collapse
Affiliation(s)
- Annapurna Bhattacharjee
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prabhakar Lal Srivastava
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Onkar Nath
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
27
|
Sebestyén E, Marullo F, Lucini F, Petrini C, Bianchi A, Valsoni S, Olivieri I, Antonelli L, Gregoretti F, Oliva G, Ferrari F, Lanzuolo C. SAMMY-seq reveals early alteration of heterochromatin and deregulation of bivalent genes in Hutchinson-Gilford Progeria Syndrome. Nat Commun 2020; 11:6274. [PMID: 33293552 PMCID: PMC7722762 DOI: 10.1038/s41467-020-20048-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome is a genetic disease caused by an aberrant form of Lamin A resulting in chromatin structure disruption, in particular by interfering with lamina associated domains. Early molecular alterations involved in chromatin remodeling have not been identified thus far. Here, we present SAMMY-seq, a high-throughput sequencing-based method for genome-wide characterization of heterochromatin dynamics. Using SAMMY-seq, we detect early stage alterations of heterochromatin structure in progeria primary fibroblasts. These structural changes do not disrupt the distribution of H3K9me3 in early passage cells, thus suggesting that chromatin rearrangements precede H3K9me3 alterations described at later passages. On the other hand, we observe an interplay between changes in chromatin accessibility and Polycomb regulation, with site-specific H3K27me3 variations and transcriptional dysregulation of bivalent genes. We conclude that the correct assembly of lamina associated domains is functionally connected to the Polycomb repression and rapidly lost in early molecular events of progeria pathogenesis.
Collapse
Affiliation(s)
- Endre Sebestyén
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Fabrizia Marullo
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Federica Lucini
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | | | - Andrea Bianchi
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sara Valsoni
- IRCCS Santa Lucia Foundation, Rome, Italy
- Institute for High Performance Computing and Networking, National Research Council, Naples, Italy
| | - Ilaria Olivieri
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Laura Antonelli
- Institute for High Performance Computing and Networking, National Research Council, Naples, Italy
| | - Francesco Gregoretti
- Institute for High Performance Computing and Networking, National Research Council, Naples, Italy
| | - Gennaro Oliva
- Institute for High Performance Computing and Networking, National Research Council, Naples, Italy
| | - Francesco Ferrari
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy.
- Institute of Molecular Genetics, National Research Council, Pavia, Italy.
| | - Chiara Lanzuolo
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.
| |
Collapse
|
28
|
HIV-1 Gag Forms Ribonucleoprotein Complexes with Unspliced Viral RNA at Transcription Sites. Viruses 2020; 12:v12111281. [PMID: 33182496 PMCID: PMC7696413 DOI: 10.3390/v12111281] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023] Open
Abstract
The ability of the retroviral Gag protein of Rous sarcoma virus (RSV) to transiently traffic through the nucleus is well-established and has been implicated in genomic RNA (gRNA) packaging Although other retroviral Gag proteins (human immunodeficiency virus type 1, HIV-1; feline immunodeficiency virus, FIV; Mason-Pfizer monkey virus, MPMV; mouse mammary tumor virus, MMTV; murine leukemia virus, MLV; and prototype foamy virus, PFV) have also been observed in the nucleus, little is known about what, if any, role nuclear trafficking plays in those viruses. In the case of HIV-1, the Gag protein interacts in nucleoli with the regulatory protein Rev, which facilitates nuclear export of gRNA. Based on the knowledge that RSV Gag forms viral ribonucleoprotein (RNPs) complexes with unspliced viral RNA (USvRNA) in the nucleus, we hypothesized that the interaction of HIV-1 Gag with Rev could be mediated through vRNA to form HIV-1 RNPs. Using inducible HIV-1 proviral constructs, we visualized HIV-1 Gag and USvRNA in discrete foci in the nuclei of HeLa cells by confocal microscopy. Two-dimensional co-localization and RNA-immunoprecipitation of fractionated cells revealed that interaction of nuclear HIV-1 Gag with USvRNA was specific. Interestingly, treatment of cells with transcription inhibitors reduced the number of HIV-1 Gag and USvRNA nuclear foci, yet resulted in an increase in the degree of Gag co-localization with USvRNA, suggesting that Gag accumulates on newly synthesized viral transcripts. Three-dimensional imaging analysis revealed that HIV-1 Gag localized to the perichromatin space and associated with USvRNA and Rev in a tripartite RNP complex. To examine a more biologically relevant cell, latently infected CD4+ T cells were treated with prostratin to stimulate NF-κB mediated transcription, demonstrating striking localization of full-length Gag at HIV-1 transcriptional burst site, which was labelled with USvRNA-specific riboprobes. In addition, smaller HIV-1 RNPs were observed in the nuclei of these cells. These data suggest that HIV-1 Gag binds to unspliced viral transcripts produced at the proviral integration site, forming vRNPs in the nucleus.
Collapse
|
29
|
Sato H, Singer RH, Greally JM. Quantitative Kinetic Analyses of Histone Turnover Using Imaging and Flow Cytometry. Bio Protoc 2020; 10:e3738. [PMID: 33043098 PMCID: PMC7546534 DOI: 10.21769/bioprotoc.3738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/21/2020] [Accepted: 06/18/2020] [Indexed: 11/02/2022] Open
Abstract
Dynamic histone changes occur as a central part of chromatin regulation. Deposition of histone variants and post-translational modifications of histones are strongly associated with properties of chromatin status. Characterizing the kinetics of histone variants allows important insights into transcription regulation, chromatin maintenance and other chromatin properties. Here we provide a protocol of quantitative and sensitive approaches to test the timing of incorporation and dissociation of histones using a two-color SNAP-labeling system, labelling pre-existing and newly-incorporated histones distinctly. Together with cell cycle synchronization methods and cell cycle markers, this approach enables a pulse-chase analysis to determine the turnover of histone variants during the cell cycle, detected using imaging or flow cytometry methods at single cell resolution. As well as testing global histone turnover, cell cycle-dependent cellular localization of histone variants can be also addressed using imaging approaches.
Collapse
Affiliation(s)
- Hanae Sato
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn. VA 20147, USA
| | - John M. Greally
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
30
|
Abstract
Cell-free DNA (cfDNA) has the potential to enable non-invasive detection of disease states and progression. Beyond its sequence, cfDNA also represents the nucleosomal landscape of cell(s)-of-origin and captures the dynamics of the epigenome. In this review, we highlight the emergence of cfDNA epigenomic methods that assess disease beyond the scope of mutant tumour genotyping. Detection of tumour mutations is the gold standard for sequencing methods in clinical oncology. However, limitations inherent to mutation targeting in cfDNA, and the possibilities of uncovering molecular mechanisms underlying disease, have made epigenomics of cfDNA an exciting alternative. We discuss the epigenomic information revealed by cfDNA, and how epigenomic methods exploit cfDNA to detect and characterize cancer. Future applications of cfDNA epigenomic methods to act complementarily and orthogonally to current clinical practices has the potential to transform cancer management and improve cancer patient outcomes.
Collapse
Affiliation(s)
| | | | - Srinivas Ramachandran
- RNA Bioscience Initiative, and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Mail Stop: 8101, 12801 East 17th Avenue L18–9102, Aurora, CO 80045, USA
| |
Collapse
|
31
|
Hainer SJ, Kaplan CD. Specialized RSC: Substrate Specificities for a Conserved Chromatin Remodeler. Bioessays 2020; 42:e2000002. [PMID: 32490565 PMCID: PMC7329613 DOI: 10.1002/bies.202000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/11/2020] [Indexed: 01/16/2023]
Abstract
The remodel the structure of chromatin (RSC) nucleosome remodeling complex is a conserved chromatin regulator with roles in chromatin organization, especially over nucleosome depleted regions therefore functioning in gene expression. Recent reports in Saccharomyces cerevisiae have identified specificities in RSC activity toward certain types of nucleosomes. RSC has now been shown to preferentially evict nucleosomes containing the histone variant H2A.Z in vitro. Furthermore, biochemical activities of distinct RSC complexes has been found to differ when their nucleosome substrate is partially unraveled. Mammalian BAF complexes, the homologs of yeast RSC and SWI/SNF complexes, are also linked to nucleosomes with H2A.Z, but this relationship may be complex and extent of conservation remains to be determined. The interplay of remodelers with specific nucleosome substrates and regulation of remodeler outcomes by nucleosome composition are tantalizing questions given the wave of structural data emerging for RSC and other SWI/SNF family remodelers.
Collapse
Affiliation(s)
- Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
32
|
Mass Spectrometry to Study Chromatin Compaction. BIOLOGY 2020; 9:biology9060140. [PMID: 32604817 PMCID: PMC7345930 DOI: 10.3390/biology9060140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
Abstract
Chromatin accessibility is a major regulator of gene expression. Histone writers/erasers have a critical role in chromatin compaction, as they “flag” chromatin regions by catalyzing/removing covalent post-translational modifications on histone proteins. Anomalous chromatin decondensation is a common phenomenon in cells experiencing aging and viral infection. Moreover, about 50% of cancers have mutations in enzymes regulating chromatin state. Numerous genomics methods have evolved to characterize chromatin state, but the analysis of (in)accessible chromatin from the protein perspective is not yet in the spotlight. We present an overview of the most used approaches to generate data on chromatin accessibility and then focus on emerging methods that utilize mass spectrometry to quantify the accessibility of histones and the rest of the chromatin bound proteome. Mass spectrometry is currently the method of choice to quantify entire proteomes in an unbiased large-scale manner; accessibility on chromatin of proteins and protein modifications adds an extra quantitative layer to proteomics dataset that assist more informed data-driven hypotheses in chromatin biology. We speculate that this emerging new set of methods will enhance predictive strength on which proteins and histone modifications are critical in gene regulation, and which proteins occupy different chromatin states in health and disease.
Collapse
|
33
|
Deblois G, Tonekaboni SAM, Grillo G, Martinez C, Kao YI, Tai F, Ettayebi I, Fortier AM, Savage P, Fedor AN, Liu X, Guilhamon P, Lima-Fernandes E, Murison A, Kuasne H, Ba-alawi W, Cescon DW, Arrowsmith CH, De Carvalho DD, Haibe-Kains B, Locasale JW, Park M, Lupien M. Epigenetic Switch–Induced Viral Mimicry Evasion in Chemotherapy-Resistant Breast Cancer. Cancer Discov 2020; 10:1312-1329. [DOI: 10.1158/2159-8290.cd-19-1493] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/20/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
|
34
|
Ramani V, Qiu R, Shendure J. High Sensitivity Profiling of Chromatin Structure by MNase-SSP. Cell Rep 2020; 26:2465-2476.e4. [PMID: 30811994 PMCID: PMC6582983 DOI: 10.1016/j.celrep.2019.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/07/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
A complete view of eukaryotic gene regulation requires that we accurately delineate how transcription factors (TFs) and nucleosomes are arranged along linear DNA in a sensitive, unbiased manner. Here we introduce MNase-SSP, a single-stranded sequencing library preparation method for nuclease-digested chromatin that enables simultaneous mapping of TF and nucleosome positions. As a proof of concept, we apply MNase-SSP toward the genome-wide, high-resolution mapping of nucleosome and TF occupancy in murine embryonic stem cells (mESCs). Compared with existing MNase-seq protocols, MNase-SSP markedly enriches for short DNA fragments, enabling detection of binding by subnucleosomal particles and TFs, in addition to nucleosomes. From these same data, we identify multiple, sequence-dependent binding modes of the architectural TF Ctcf and extend this analysis to the TF Nrsf/ Rest. Looking forward, we anticipate that single stranded protocol (SSP) adaptations of any protein-DNA interaction mapping technique (e.g., ChIP-exo and CUT&RUN) will enhance the information content of the resulting data. Ramani et al. describe MNase-SSP, a single-stranded DNA sequencing library preparation method for profiling chromatin structure. MNase-SSP libraries harbor diminished sequence bias and capture shorter DNA fragments compared to traditional MNase-seq libraries. Applying MNase-SSP to murine embryonic stem cells enables simultaneous analysis of nucleosomal, subnucleosomal, and transcription factor-DNA interactions genome-wide.
Collapse
Affiliation(s)
- Vijay Ramani
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| | - Ruolan Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
35
|
Tan X, Ravasio A, Ong HT, Wu J, Hew CL. White spot syndrome viral protein VP9 alters the cellular higher-order chromatin structure. FASEB Bioadv 2020; 2:264-279. [PMID: 32259052 PMCID: PMC7133739 DOI: 10.1096/fba.2019-00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 10/26/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
Viral protein 9 (VP9) is a non-structural protein of white spot syndrome virus (WSSV) highly expressed during the early stage of infection. The crystal structure of VP9 suggests that the polymers of VP9 dimers resemble a DNA mimic, but its function remains elusive. In this study, we demonstrated that VP9 impedes histones binding to DNA via single-molecule manipulation. We established VP9 expression in HeLa cells due to the lack of a WSSV-susceptible cell line, and observed abundant VP9 in the nucleus, which mirrors its distribution in the hemocytes of WSSV-infected shrimp. VP9 expression increased the dynamics and rotational mobility of histones in stable H3-GFP HeLa cells as revealed by fluorescent recovery after photobleaching and fluorescence anisotropy imaging, which suggested a loosened compaction of chromatin structure. Successive salt fractionation showed that a prominent population of histones was solubilized in high salt concentrations, which implies alterations of bulk chromatin structure. Southern blotting identified that VP9 alters juxtacentromeric chromatin structures to be more accessible to micrococcal nuclease digestion. RNA microarray revealed that VP9 expression also leads to significant changes of cellular gene expression. Our findings provide evidence that VP9 alters the cellular higher-order chromatin structure, uncovering a potential strategy adopted by WSSV to facilitate its replication.
Collapse
Affiliation(s)
- Xi Tan
- Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
- Present address:
School of Basic Medical SciencesGuizhou University of Traditional Chinese MedicineGuiyangGuizhou ProvinceChina
| | - Andrea Ravasio
- Institute for Biological and Medical EngineeringSchools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Hui T. Ong
- Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
| | - Jinlu Wu
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Choy L. Hew
- Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
36
|
Wissink EM, Vihervaara A, Tippens ND, Lis JT. Nascent RNA analyses: tracking transcription and its regulation. Nat Rev Genet 2019; 20:705-723. [PMID: 31399713 PMCID: PMC6858503 DOI: 10.1038/s41576-019-0159-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
The programmes that direct an organism's development and maintenance are encoded in its genome. Decoding of this information begins with regulated transcription of genomic DNA into RNA. Although transcription and its control can be tracked indirectly by measuring stable RNAs, it is only by directly measuring nascent RNAs that the immediate regulatory changes in response to developmental, environmental, disease and metabolic signals are revealed. Multiple complementary methods have been developed to quantitatively track nascent transcription genome-wide at nucleotide resolution, all of which have contributed novel insights into the mechanisms of gene regulation and transcription-coupled RNA processing. Here we critically evaluate the array of strategies used for investigating nascent transcription and discuss the recent conceptual advances they have provided.
Collapse
Affiliation(s)
- Erin M Wissink
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Anniina Vihervaara
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Nathaniel D Tippens
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
37
|
Chromatin dynamics and the transcriptional competence of HSV-1 genomes during lytic infections. PLoS Pathog 2019; 15:e1008076. [PMID: 31725813 PMCID: PMC6855408 DOI: 10.1371/journal.ppat.1008076] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
During latent infections with herpes simplex virus 1 (HSV-1), viral transcription is restricted and the genomes are mostly maintained in silenced chromatin, whereas in lytically infected cells all viral genes are transcribed and the genomes are dynamically chromatinized. Histones in the viral chromatin bear markers of silenced chromatin at early times in lytic infection or of active transcription at later times. The virion protein VP16 activates transcription of the immediate-early (IE) genes by recruiting transcription activators and chromatin remodelers to their promoters. Two IE proteins, ICP0 and ICP4 which modulate chromatin epigenetics, then activate transcription of early and late genes. Although chromatin is involved in the mechanism of activation of HSV- transcription, its precise role is not entirely understood. In the cellular genome, chromatin dynamics often modulate transcription competence whereas promoter-specific transcription factors determine transcription activity. Here, biophysical fractionation of serially digested HSV-1 chromatin followed by short-read deep sequencing indicates that nuclear HSV-1 DNA has different biophysical properties than protein-free or encapsidated HSV-1 DNA. The entire HSV-1 genomes in infected cells were equally accessible. The accessibility of transcribed or non-transcribed genes under any given condition did not differ, and each gene was entirely sampled in both the most and least accessible chromatin. However, HSV-1 genomes fractionated differently under conditions of generalized or restricted transcription. Approximately 1/3 of the HSV-1 DNA including fully sampled genes resolved to the most accessible chromatin when HSV-1 transcription was active, but such enrichment was reduced to only 3% under conditions of restricted HSV-1 transcription. Short sequences of restricted accessibility separated genes with different transcription levels. Chromatin dynamics thus provide a first level of regulation on HSV-1 transcription, dictating the transcriptional competency of the genomes during lytic infections, whereas the transcription of individual genes is then most likely activated by specific transcription factors. Moreover, genes transcribed to different levels are separated by short sequences with limited accessibility. Although chromatin epigenetics modulate transcription of the nuclear replicating DNA viruses, and play major roles in the process of establishment of, and reactivation from, latency, the specific mechanisms of this modulation are not totally clear. Chromatin often regulates the transcriptional competency of cellular genes, rather than the actual level of transcription of individual genes. Here, we show that chromatin dynamics regulate the transcription competency of entire herpes simplex virus 1 (HSV-1) genomes, rather than the actual transcription level of individual genes. Moreover, CTCF/ insulator containing sequences flanking the immediate-early gene loci are more inaccessible when these genes are highly transcribed in a context of little transcription from the rest of the genome than when no gene was highly transcribed or all genes were. We postulate that chromatin dynamics modulate the transcriptional competency of the HSV-1 genome. Genes in genomes rendered transcriptionally inactive by chromatin dynamics cannot be transcribed, whereas transcription of individual genes, or of group of genes, is regulated separately in the transcriptionally competent genomes.
Collapse
|
38
|
Identifying DNase I hypersensitive sites using multi-features fusion and F-score features selection via Chou's 5-steps rule. Biophys Chem 2019; 253:106227. [DOI: 10.1016/j.bpc.2019.106227] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 01/12/2023]
|
39
|
Chen FX, Smith ER, Shilatifard A. Born to run: control of transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2019; 19:464-478. [PMID: 29740129 DOI: 10.1038/s41580-018-0010-5] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The dynamic regulation of transcription elongation by RNA polymerase II (Pol II) is an integral part of the implementation of gene expression programmes during development. In most metazoans, the majority of transcribed genes exhibit transient pausing of Pol II at promoter-proximal regions, and the release of Pol II into gene bodies is controlled by many regulatory factors that respond to environmental and developmental cues. Misregulation of the elongation stage of transcription is implicated in cancer and other human diseases, suggesting that mechanistic understanding of transcription elongation control is therapeutically relevant. In this Review, we discuss the features, establishment and maintenance of Pol II pausing, the transition into productive elongation, the control of transcription elongation by enhancers and by factors of other cellular processes, such as topoisomerases and poly(ADP-ribose) polymerases (PARPs), and the potential of therapeutic targeting of the elongation stage of transcription by Pol II.
Collapse
Affiliation(s)
- Fei Xavier Chen
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edwin R Smith
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
40
|
Zheng D, Wang L, Chen L, Pan X, Lin K, Fang Y, Wang XE, Zhang W. Salt-Responsive Genes are Differentially Regulated at the Chromatin Levels Between Seedlings and Roots in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:1790-1803. [PMID: 31111914 DOI: 10.1093/pcp/pcz095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
The elucidation of epigenetic responses of salt-responsive genes facilitates understanding of the underlying mechanisms that confer salt tolerance in rice. However, it is still largely unknown how epigenetic mechanisms are associated with the expression of salt-responsive genes in rice and other crops. In this study, we reported tissue-specific gene expression and tissue-specific changes in chromatin modifications or signatures between seedlings and roots in response to salt treatment. Our study indicated that among six of individual mark examined (H3K4me3, H3K27me3, H4K12ac, H3K9ac, H3K27ac and H3K36me3), a positive association between salt-related changes in histone marks and the expression of differentially expressed genes (DEGs) was observed only for H3K9ac and H4K12ac in seedlings and H3K36me3 in roots. In contrast, chromatin states (CSs) with combinations of six histone modification marks played crucial roles in the differential expression of salt-responsive genes between seedlings and roots. Most importantly, CS7 containing the bivalent marks H3K4me3 and H3K27me3, with a mutual exclusion of functions with each other, displayed distinct functions in the expression of DEGs in both tissues. Specifically, H3K27me3 in CS7 mainly suppressed the expression of DEGs in roots, while H3K4me3 affected the expression of down- and up-regulated genes, possibly by antagonizing the repressive role of H3K27me3 in seedlings. Our findings indicate distinct impacts of the CSs on the differential expression of salt-responsive genes between seedlings and roots in rice, which provides an important background for understanding chromatin-based epigenetic mechanisms that might confer salt tolerance in plants.
Collapse
Affiliation(s)
- Dongyang Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Lei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Lifen Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Xiucai Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Kande Lin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Yuan Fang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Xiu-E Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
41
|
Zeng Z, Zhang W, Marand AP, Zhu B, Buell CR, Jiang J. Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato. Genome Biol 2019; 20:123. [PMID: 31208436 PMCID: PMC6580510 DOI: 10.1186/s13059-019-1731-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cold stress can greatly affect plant growth and development. Plants have developed special systems to respond to and tolerate cold stress. While plant scientists have discovered numerous genes involved in responses to cold stress, few studies have been dedicated to investigation of genome-wide chromatin dynamics induced by cold or other abiotic stresses. RESULTS Genomic regions containing active cis-regulatory DNA elements can be identified as DNase I hypersensitive sites (DHSs). We develop high-resolution DHS maps in potato (Solanum tuberosum) using chromatin isolated from tubers stored under room (22 °C) and cold (4 °C) conditions. We find that cold stress induces a large number of DHSs enriched in genic regions which are frequently associated with differential gene expression in response to temperature variation. Surprisingly, active genes show enhanced chromatin accessibility upon cold stress. A large number of active genes in cold-stored tubers are associated with the bivalent H3K4me3-H3K27me3 mark in gene body regions. Interestingly, upregulated genes associated with the bivalent mark are involved in stress response, whereas downregulated genes with the bivalent mark are involved in developmental processes. In addition, we observe that the bivalent mark-associated genes are more accessible than others upon cold stress. CONCLUSIONS Collectively, our results suggest that cold stress induces enhanced chromatin accessibility and bivalent histone modifications of active genes. We hypothesize that in cold-stored tubers, the bivalent H3K4me3-H3K27me3 mark represents a distinct chromatin environment with greater accessibility, which may facilitate the access of regulatory proteins required for gene upregulation or downregulation in response to cold stress.
Collapse
Affiliation(s)
- Zixian Zeng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Wenli Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, 210095, Jiangsu, China
| | - Alexandre P Marand
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.
| |
Collapse
|
42
|
Giaimo BD, Ferrante F, Herchenröther A, Hake SB, Borggrefe T. The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 2019; 12:37. [PMID: 31200754 PMCID: PMC6570943 DOI: 10.1186/s13072-019-0274-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/23/2019] [Indexed: 01/04/2023] Open
Abstract
The histone variant H2A.Z is involved in several processes such as transcriptional control, DNA repair, regulation of centromeric heterochromatin and, not surprisingly, is implicated in diseases such as cancer. Here, we review the recent developments on H2A.Z focusing on its role in transcriptional activation and repression. H2A.Z, as a replication-independent histone, has been studied in several model organisms and inducible mammalian model systems. Its loading machinery and several modifying enzymes have been recently identified, and some of the long-standing discrepancies in transcriptional activation and/or repression are about to be resolved. The buffering functions of H2A.Z, as supported by genome-wide localization and analyzed in several dynamic systems, are an excellent example of transcriptional control. Posttranslational modifications such as acetylation and ubiquitination of H2A.Z, as well as its specific binding partners, are in our view central players in the control of gene expression. Understanding the key-mechanisms in either turnover or stabilization of H2A.Z-containing nucleosomes as well as defining the H2A.Z interactome will pave the way for therapeutic applications in the future.
Collapse
Affiliation(s)
| | - Francesca Ferrante
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Andreas Herchenröther
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392, Giessen, Germany
| | - Sandra B Hake
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392, Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|
43
|
Jahan S, Beacon TH, He S, Gonzalez C, Xu W, Delcuve GP, Jia S, Hu P, Davie JR. Chromatin organization of transcribed genes in chicken polychromatic erythrocytes. Gene 2019; 699:80-87. [DOI: 10.1016/j.gene.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
|
44
|
Azevedo J, Picart C, Dureau L, Pontier D, Jaquinod-Kieffer S, Hakimi MA, Lagrange T. UAP56 associates with DRM2 and is localized to chromatin in Arabidopsis. FEBS Open Bio 2019; 9:973-985. [PMID: 30951268 PMCID: PMC6487834 DOI: 10.1002/2211-5463.12627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 11/17/2022] Open
Abstract
Repeated sequence expression and transposable element mobilization are tightly controlled by multilayer processes, which include DNA 5′‐cytosine methylation. The RNA‐directed DNA methylation (RdDM) pathway, which uses siRNAs to guide sequence‐specific directed DNA methylation, emerged specifically in plants. RdDM ensures DNA methylation maintenance on asymmetric CHH sites and specifically initiates de novo methylation in all cytosine sequence contexts through the action of DRM DNA methyltransferases, of which DRM2 is the most prominent. The RdDM pathway has been well described, but how DRM2 is recruited onto DNA targets and associates with other RdDM factors remains unknown. To address these questions, we developed biochemical approaches to allow the identification of factors that may escape genetic screens, such as proteins encoded by multigenic families. Through both conventional and affinity purification of DRM2, we identified DEAD box RNA helicases U2AF56 Associated Protein 56 (UAP56a/b), which are widespread among eukaryotes, as new DRM2 partners. We have shown that, similar to DRM2 and other RdDM actors, UAP56 has chromatin‐associated protein properties. We confirmed this association both in vitro and in vivo in reproductive tissues. In addition, our experiments also suggest that UAP56 may exhibit differential distribution in cells depending on plant organ. While originally identified for its role in splicing, our study suggests that UAP56 may also have other roles, and our findings allow us to initiate discussion about its potential role in the RdDM pathway.
Collapse
Affiliation(s)
- Jacinthe Azevedo
- LGDP-UMR5096, CNRS, Perpignan, France.,LGDP-UMR5096, Université de Perpignan Via Domitia, France
| | - Claire Picart
- LGDP-UMR5096, CNRS, Perpignan, France.,LGDP-UMR5096, Université de Perpignan Via Domitia, France
| | - Laurent Dureau
- LGDP-UMR5096, CNRS, Perpignan, France.,LGDP-UMR5096, Université de Perpignan Via Domitia, France
| | - Dominique Pontier
- LGDP-UMR5096, CNRS, Perpignan, France.,LGDP-UMR5096, Université de Perpignan Via Domitia, France
| | - Sylvie Jaquinod-Kieffer
- Laboratoire Biologie Grande Echelle, Institut de Biosciences et Biotechnologies de Grenoble, UMR_S 1038, CEA, INSERM, Université Grenoble Alpes, France
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, France
| | - Thierry Lagrange
- LGDP-UMR5096, CNRS, Perpignan, France.,LGDP-UMR5096, Université de Perpignan Via Domitia, France
| |
Collapse
|
45
|
Ren J, Finney R, Ni K, Cam M, Muegge K. The chromatin remodeling protein Lsh alters nucleosome occupancy at putative enhancers and modulates binding of lineage specific transcription factors. Epigenetics 2019; 14:277-293. [PMID: 30861354 PMCID: PMC6557562 DOI: 10.1080/15592294.2019.1582275] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Dynamic regulation of chromatin accessibility is a key feature of cellular differentiation during embryogenesis, but the precise factors that control access to chromatin remain largely unknown. Lsh/HELLS is critical for normal development and mutations of Lsh in human cause the ICF (Immune deficiency, Centromeric instability, Facial anomalies) syndrome, a severe immune disorder with multiple organ deficiencies. We report here that Lsh, previously known to regulate DNA methylation level, has a genome wide chromatin remodeling function. Using micrococcal nuclease (MNase)-seq analysis, we demonstrate that Lsh protects MNase accessibility at transcriptional regulatory regions characterized by DNase I hypersensitivity and certain histone 3 (H3) tail modifications associated with enhancers. Using an auxin-inducible degron system, allowing proteolytical degradation of Lsh, we show that Lsh mediated changes in nucleosome occupancy are independent of DNA methylation level and are characterized by reduced H3 occupancy. While Lsh mediated nucleosome occupancy prevents binding sites for transcription factors in wild type cells, depletion of Lsh leads to an increase in binding of ectopically expressed tissue specific transcription factors to their respective binding sites. Our data suggests that Lsh mediated chromatin remodeling can modulate nucleosome positioning at a subset of putative enhancers contributing to the preservation of cellular identity through regulation of accessibility.
Collapse
Affiliation(s)
- Jianke Ren
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Richard Finney
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kai Ni
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
- Frederick National Laboratory for Cancer Research, Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| |
Collapse
|
46
|
Aprile-Garcia F, Tomar P, Hummel B, Khavaran A, Sawarkar R. Nascent-protein ubiquitination is required for heat shock–induced gene downregulation in human cells. Nat Struct Mol Biol 2019; 26:137-146. [DOI: 10.1038/s41594-018-0182-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
|
47
|
Sakai A, Sugiyama S. Experience-dependent transcriptional regulation in juvenile brain development. Dev Growth Differ 2019; 60:473-482. [PMID: 30368782 DOI: 10.1111/dgd.12571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022]
Abstract
During brain development, once primary neural networks are formed, they are largely sculpted by environmental stimuli. The juvenile brain has a unique time window termed the critical period, in which neuronal circuits are remodeled by experience. Accumulating evidence indicates that abnormal rewiring of circuits in early life contributes to various neurodevelopmental disorders at later stages of life. Recent studies implicate two important aspects for activation of the critical period, both of which are experience-dependent: (a) proper excitatory/inhibitory (E/I) balance of neural circuit achieved during developmental trajectory of inhibitory interneurons, and (b) epigenetic regulation allowing flexible gene expression for neuronal plasticity. In this review, we discuss the molecular mechanisms of juvenile brain plasticity from the viewpoints of transcriptional and chromatin regulation, with a focus on Otx2 homeoprotein. Depending on experience, Otx2 is transported into cortical parvalbumin-positive interneurons (PV cells), where it induces PV cell maturation to activate the critical period. Understanding the unique behavior and function of Otx2 as a "messenger" of experience should therefore provide insights into mechanisms of juvenile brain development. Recently identified downstream targets of Otx2 suggest novel roles of Otx2 in homeostasis of PV cells, and, moreover, in regulation of chromatin state, which is important for neuronal plasticity. We further discuss epigenetic changes during postnatal brain development spanning the critical period. Different aspects of chromatin regulation may underlie experience-dependent neuronal development and plasticity.
Collapse
Affiliation(s)
- Akiko Sakai
- Laboratory of Neuronal Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sayaka Sugiyama
- Laboratory of Neuronal Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
48
|
Baudement MO, Cournac A, Court F, Seveno M, Parrinello H, Reynes C, Sabatier R, Bouschet T, Yi Z, Sallis S, Tancelin M, Rebouissou C, Cathala G, Lesne A, Mozziconacci J, Journot L, Forné T. High-salt-recovered sequences are associated with the active chromosomal compartment and with large ribonucleoprotein complexes including nuclear bodies. Genome Res 2018; 28:1733-1746. [PMID: 30287550 PMCID: PMC6211644 DOI: 10.1101/gr.237073.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
Abstract
The mammalian cell nucleus contains numerous discrete suborganelles named nuclear bodies. While recruitment of specific genomic regions into these large ribonucleoprotein (RNP) complexes critically contributes to higher-order functional chromatin organization, such regions remain ill-defined. We have developed the high-salt–recovered sequences-sequencing (HRS-seq) method, a straightforward genome-wide approach whereby we isolated and sequenced genomic regions associated with large high-salt insoluble RNP complexes. By using mouse embryonic stem cells (ESCs), we showed that these regions essentially correspond to the most highly expressed genes, and to cis-regulatory sequences like super-enhancers, that belong to the active A chromosomal compartment. They include both cell-type–specific genes, such as pluripotency genes in ESCs, and housekeeping genes associated with nuclear bodies, such as histone and snRNA genes that are central components of Histone Locus Bodies and Cajal bodies. We conclude that HRSs are associated with the active chromosomal compartment and with large RNP complexes including nuclear bodies. Association of such chromosomal regions with nuclear bodies is in agreement with the recently proposed phase separation model for transcription control and might thus play a central role in organizing the active chromosomal compartment in mammals.
Collapse
Affiliation(s)
| | | | - Franck Court
- IGMM, Université de Montpellier, CNRS, F-34293, Montpellier, France
| | - Marie Seveno
- IGMM, Université de Montpellier, CNRS, F-34293, Montpellier, France
| | - Hugues Parrinello
- MGX, Université de Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | - Christelle Reynes
- IGF, Université de Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | - Robert Sabatier
- IGF, Université de Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | - Tristan Bouschet
- IGF, Université de Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | - Zhou Yi
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75252, Paris, France
| | - Sephora Sallis
- IGMM, Université de Montpellier, CNRS, F-34293, Montpellier, France
| | | | | | - Guy Cathala
- IGMM, Université de Montpellier, CNRS, F-34293, Montpellier, France
| | - Annick Lesne
- IGMM, Université de Montpellier, CNRS, F-34293, Montpellier, France.,Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75252, Paris, France
| | - Julien Mozziconacci
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75252, Paris, France
| | - Laurent Journot
- MGX, Université de Montpellier, CNRS, INSERM, F-34094, Montpellier, France.,IGF, Université de Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | - Thierry Forné
- IGMM, Université de Montpellier, CNRS, F-34293, Montpellier, France
| |
Collapse
|
49
|
A microfluidic device for isolating intact chromosomes from single mammalian cells and probing their folding stability by controlling solution conditions. Sci Rep 2018; 8:13684. [PMID: 30209290 PMCID: PMC6135817 DOI: 10.1038/s41598-018-31975-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Chromatin folding shows spatio-temporal fluctuations in living undifferentiated cells, but fixed spatial heterogeneity in differentiated cells. However, little is known about variation in folding stability along the chromatin fibres during differentiation. In addition, effective methods to investigate folding stability at the single cell level are lacking. In the present study, we developed a microfluidic device that enables non-destructive isolation of chromosomes from single mammalian cells as well as real-time microscopic monitoring of the partial unfolding and stretching of individual chromosomes with increasing salt concentrations under a gentle flow. Using this device, we compared the folding stability of chromosomes between non-differentiated and differentiated cells and found that the salt concentration which induces the chromosome unfolding was lower (≤500 mM NaCl) for chromosomes derived from undifferentiated cells, suggesting that the chromatin folding stability of these cells is lower than that of differentiated cells. In addition, individual unfolded chromosomes, i.e., chromatin fibres, were stretched to 150–800 µm non-destructively under 750 mM NaCl and showed distributions of highly/less folded regions along the fibres. Thus, our technique can provide insights into the aspects of chromatin folding that influence the epigenetic control of cell differentiation.
Collapse
|
50
|
Skene PJ, Henikoff JG, Henikoff S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat Protoc 2018; 13:1006-1019. [PMID: 29651053 DOI: 10.1038/nprot.2018.015] [Citation(s) in RCA: 460] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cleavage under targets and release using nuclease (CUT&RUN) is an epigenomic profiling strategy in which antibody-targeted controlled cleavage by micrococcal nuclease releases specific protein-DNA complexes into the supernatant for paired-end DNA sequencing. As only the targeted fragments enter into solution, and the vast majority of DNA is left behind, CUT&RUN has exceptionally low background levels. CUT&RUN outperforms the most widely used chromatin immunoprecipitation (ChIP) protocols in resolution, signal-to-noise ratio and depth of sequencing required. In contrast to ChIP, CUT&RUN is free of solubility and DNA accessibility artifacts and has been used to profile insoluble chromatin and to detect long-range 3D contacts without cross-linking. Here, we present an improved CUT&RUN protocol that does not require isolation of nuclei and provides high-quality data when starting with only 100 cells for a histone modification and 1,000 cells for a transcription factor. From cells to purified DNA, CUT&RUN requires less than a day at the laboratory bench and requires no specialized skills.
Collapse
Affiliation(s)
- Peter J Skene
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Howard Hughes Medical Institute, Seattle, Washington, USA
| | - Jorja G Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Howard Hughes Medical Institute, Seattle, Washington, USA
| |
Collapse
|