1
|
Bird KA, Brock JR, Grabowski PP, Harder AM, Healy AL, Shu S, Barry K, Boston L, Daum C, Guo J, Lipzen A, Walstead R, Grimwood J, Schmutz J, Lu C, Comai L, McKay JK, Pires JC, Edger PP, Lovell JT, Kliebenstein DJ. Allopolyploidy expanded gene content but not pangenomic variation in the hexaploid oilseed Camelina sativa. Genetics 2025; 229:1-44. [PMID: 39545504 DOI: 10.1093/genetics/iyae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Ancient whole-genome duplications are believed to facilitate novelty and adaptation by providing the raw fuel for new genes. However, it is unclear how recent whole-genome duplications may contribute to evolvability within recent polyploids. Hybridization accompanying some whole-genome duplications may combine divergent gene content among diploid species. Some theory and evidence suggest that polyploids have a greater accumulation and tolerance of gene presence-absence and genomic structural variation, but it is unclear to what extent either is true. To test how recent polyploidy may influence pangenomic variation, we sequenced, assembled, and annotated 12 complete, chromosome-scale genomes of Camelina sativa, an allohexaploid biofuel crop with 3 distinct subgenomes. Using pangenomic comparative analyses, we characterized gene presence-absence and genomic structural variation both within and between the subgenomes. We found over 75% of ortholog gene clusters are core in C. sativa and <10% of sequence space was affected by genomic structural rearrangements. In contrast, 19% of gene clusters were unique to one subgenome, and the majority of these were Camelina specific (no ortholog in Arabidopsis). We identified an inversion that may contribute to vernalization requirements in winter-type Camelina and an enrichment of Camelina-specific genes with enzymatic processes related to seed oil quality and Camelina's unique glucosinolate profile. Genes related to these traits exhibited little presence-absence variation. Our results reveal minimal pangenomic variation in this species and instead show how hybridization accompanied by whole-genome duplication may benefit polyploids by merging diverged gene content of different species.
Collapse
Affiliation(s)
- Kevin A Bird
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Jordan R Brock
- Department of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | - Paul P Grabowski
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Avril M Harder
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Adam L Healy
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - LoriBeth Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Jie Guo
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Rachel Walstead
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, University of Montana, Bozeman, MT 59715, USA
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - John K McKay
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | |
Collapse
|
2
|
Munjal NS, Dey G, Parthasarathi KTS, Chauhan K, Pai K, Patole MS, Pawar H, Sharma J. A Proteogenomic Approach for the Identification of Virulence Factors in Leishmania Parasites. Methods Mol Biol 2025; 2859:279-296. [PMID: 39436608 DOI: 10.1007/978-1-0716-4152-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Identifying new genes involved in virulence and drug resistance may hold the key to a better understanding of parasitic diseases. The proteogenomic profiling of various Leishmania species, the causative agents of leishmaniasis, has identified several novel genes, N- and C-terminal extensions of proteins, and corrections of existing gene models. Various virulence factors (VFs) responsible for leishmaniasis have been previously annotated through a proteogenomic approach, including the C-terminal extension of heat shock protein 70 (HSP70). Furthermore, the diversity of VFs across Leishmania donovani, L. infantum, L. major, and L. mexicana was determined using phylogenetic analysis. Moreover, protein-protein interaction networks (PPINs) of VFs with HSPs aid in making significant biological interpretations. Overall, an integrated omics approach involving proteogenomics was used to identify and study the relationship among VFs with other interacting proteins, including HSPs. This chapter provides a step-by-step guide to the identification of new genes in Leishmania using a proteogenomic approach and their functional assignment using a bioinformatics-based approach.
Collapse
Affiliation(s)
| | - Gourav Dey
- Institute of Bioinformatics, Bangalore, India
| | - K T Shreya Parthasarathi
- Institute of Bioinformatics, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kshipra Chauhan
- School of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, India
| | - Kalpana Pai
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | | | - Harsh Pawar
- Biomedical and Life Sciences Division, Lancaster University, Lancaster, UK
| | - Jyoti Sharma
- Institute of Bioinformatics, Bangalore, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
3
|
Ahmad EM, Abdelsamad A, El-Shabrawi HM, El-Awady MAM, Aly MAM, El-Soda M. In-silico identification of putatively functional intergenic small open reading frames in the cucumber genome and their predicted response to biotic and abiotic stresses. PLANT, CELL & ENVIRONMENT 2024; 47:5330-5342. [PMID: 39189930 DOI: 10.1111/pce.15104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/13/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024]
Abstract
The availability of high-throughput sequencing technologies increased our understanding of different genomes. However, the genomes of all living organisms still have many unidentified coding sequences. The increased number of missing small open reading frames (sORFs) is due to the length threshold used in most gene identification tools, which is true in the genic and, more importantly and surprisingly, in the intergenic regions. Scanning the cucumber genome intergenic regions revealed 420 723 sORF. We excluded 3850 sORF with similarities to annotated cucumber proteins. To propose the functionality of the remaining 416 873 sORF, we calculated their codon adaptation index (CAI). We found 398 937 novel sORF (nsORF) with CAI ≥ 0.7 that were further used for downstream analysis. Searching against the Rfam database revealed 109 nsORFs similar to multiple RNA families. Using SignalP-5.0 and NLS, identified 11 592 signal peptides. Five predicted proteins interacting with Meloidogyne incognita and Powdery mildew proteins were selected using published transcriptome data of host-pathogen interactions. Gene ontology enrichment interpreted the function of those proteins, illustrating that nsORFs' expression could contribute to the cucumber's response to biotic and abiotic stresses. This research highlights the importance of previously overlooked nsORFs in the cucumber genome and provides novel insights into their potential functions.
Collapse
Affiliation(s)
- Esraa M Ahmad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed Abdelsamad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hattem M El-Shabrawi
- Plant Biotechnology Department, Genetic Engineering & Biotechnology Division, National Research Center, Giza, Egypt
| | | | - Mohammed A M Aly
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Carey SB, Aközbek L, Lovell JT, Jenkins J, Healey AL, Shu S, Grabowski P, Yocca A, Stewart A, Jones T, Barry K, Rajasekar S, Talag J, Scutt C, Lowry PP, Munzinger J, Knox EB, Soltis DE, Soltis PS, Grimwood J, Schmutz J, Leebens-Mack J, Harkess A. ZW sex chromosome structure in Amborella trichopoda. NATURE PLANTS 2024; 10:1944-1954. [PMID: 39587314 DOI: 10.1038/s41477-024-01858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024]
Abstract
Sex chromosomes have evolved hundreds of times across the flowering plant tree of life; their recent origins in some members of this clade can shed light on the early consequences of suppressed recombination, a crucial step in sex chromosome evolution. Amborella trichopoda, the sole species of a lineage that is sister to all other extant flowering plants, is dioecious with a young ZW sex determination system. Here we present a haplotype-resolved genome assembly, including highly contiguous assemblies of the Z and W chromosomes. We identify a ~3-megabase sex-determination region (SDR) captured in two strata that includes a ~300-kilobase inversion that is enriched with repetitive sequences and contains a homologue of the Arabidopsis METHYLTHIOADENOSINE NUCLEOSIDASE (MTN1-2) genes, which are known to be involved in fertility. However, the remainder of the SDR does not show patterns typically found in non-recombining SDRs, such as repeat accumulation and gene loss. These findings are consistent with the hypothesis that dioecy is derived in Amborella and the sex chromosome pair has not significantly degenerated.
Collapse
Affiliation(s)
- Sarah B Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Laramie Aközbek
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Adam L Healey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paul Grabowski
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alan Yocca
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Ada Stewart
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Teresa Jones
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Jayson Talag
- Arizona Genomics Institute, University of Arizona, Tucson, AZ, USA
| | - Charlie Scutt
- Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon-1, CNRS, INRA, Lyon, France
| | - Porter P Lowry
- Missouri Botanical Garden, St Louis, MO, USA
- Institut de Systématique, Évolution, et Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, Paris, France
| | - Jérôme Munzinger
- AMAP, Univ. Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France
| | - Eric B Knox
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| |
Collapse
|
5
|
Mir Drikvand R, Sohrabi SM, Sohrabi SS, Samiei K. Molecular Identification and Characterization of Hevein Antimicrobial Peptide Genes in Two-Row and Six-Row Cultivars of Barley (Hordeum vulgare L.). Biochem Genet 2024; 62:5092-5114. [PMID: 38386212 DOI: 10.1007/s10528-024-10695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Heveins are one of the most important groups of plant antimicrobial peptides. So far, various roles in plant growth and development and in response to biotic and abiotic stresses have reported for heveins. The present study aimed to identify and characterize the hevein genes in two-row and six-row cultivars of barley. In total, thirteen hevein genes were identified in the genome of two-row and six-row cultivars of barley. The identified heveins were identical in two-row and six-row cultivars of barley and showed a high similarity with heveins from other plant species. The hevein coding sequences produced open reading frames (ORFs) ranged from 342 to 1002 bp. Most of the identified hevein genes were intronless, and the others had only one intron. The hevein ORFs produced proteins ranged from 113 to 333 amino acids. Search for conserved functional domains showed CBD and LYZ domains in barley heveins. All barley heveins comprised extracellular signal peptides ranged from 19 to 35 amino acids. The phylogenetic analysis divided barley heveins into two groups. The promoter analysis showed regulatory elements with different frequencies between two-row and six-row cultivars. These cis-acting elements included elements related to growth and development, hormone response, and environmental stresses. The expression analysis showed high expression level of heveins in root and reproductive organs of both two-row and six-row cultivars. The expression analysis also showed that barley heveins is induced by both biotic and abiotic stresses. The results of antimicrobial activity prediction showed the highest antimicrobial activity in CBD domain of barley heveins. The findings of the current study can improve our knowledge about the role of hevein genes in plant and can be used for future studies.
Collapse
Affiliation(s)
- Reza Mir Drikvand
- Department of Plant Genetics and Breeding, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran.
| | - Seyyed Mohsen Sohrabi
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Shahid Chamran University, Ahvaz, Iran
| | - Seyed Sajad Sohrabi
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Kamran Samiei
- Department of Plant Genetics and Breeding, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran
| |
Collapse
|
6
|
Espina MJC, Lovell JT, Jenkins J, Shu S, Sreedasyam A, Jordan BD, Webber J, Boston L, Brůna T, Talag J, Goodstein D, Grimwood J, Stacey G, Cannon SB, Lorenz AJ, Schmutz J, Stupar RM. Assembly, comparative analysis, and utilization of a single haplotype reference genome for soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1221-1235. [PMID: 39276372 DOI: 10.1111/tpj.17026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Cultivar Williams 82 has served as the reference genome for the soybean research community since 2008, but is known to have areas of genomic heterogeneity among different sub-lines. This work provides an updated assembly (version Wm82.a6) derived from a specific sub-line known as Wm82-ISU-01 (seeds available under USDA accession PI 704477). The genome was assembled using Pacific BioSciences HiFi reads and integrated into chromosomes using HiC. The 20 soybean chromosomes assembled into a genome of 1.01Gb, consisting of 36 contigs. The genome annotation identified 48 387 gene models, named in accordance with previous assembly versions Wm82.a2 and Wm82.a4. Comparisons of Wm82.a6 with other near-gapless assemblies of Williams 82 reveal large regions of genomic heterogeneity, including regions of differential introgression from the cultivar Kingwa within approximately 30 Mb and 25 Mb segments on chromosomes 03 and 07, respectively. Additionally, our analysis revealed a previously unknown large (>20 Mb) heterogeneous region in the pericentromeric region of chromosome 12, where Wm82.a6 matches the 'Williams' haplotype while the other two near-gapless assemblies do not match the haplotype of either parent of Williams 82. In addition to the Wm82.a6 assembly, we also assembled the genome of 'Fiskeby III,' a rich resource for abiotic stress resistance genes. A genome comparison of Wm82.a6 with Fiskeby III revealed the nucleotide and structural polymorphisms between the two genomes within a QTL region for iron deficiency chlorosis resistance. The Wm82.a6 and Fiskeby III genomes described here will enhance comparative and functional genomics capacities and applications in the soybean community.
Collapse
Affiliation(s)
- Mary Jane C Espina
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
- Lawrence Berkeley National Laboratory, Department of Energy Joint Genome Institute, Berkeley, California, 94720, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
| | - Shengqiang Shu
- Lawrence Berkeley National Laboratory, Department of Energy Joint Genome Institute, Berkeley, California, 94720, USA
| | - Avinash Sreedasyam
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
- Lawrence Berkeley National Laboratory, Department of Energy Joint Genome Institute, Berkeley, California, 94720, USA
| | - Brandon D Jordan
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture - Agricultural Research Service, Ames, Iowa, 50011, USA
| | - Jenell Webber
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
| | - LoriBeth Boston
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
| | - Tomáš Brůna
- Lawrence Berkeley National Laboratory, Department of Energy Joint Genome Institute, Berkeley, California, 94720, USA
| | - Jayson Talag
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| | - David Goodstein
- Lawrence Berkeley National Laboratory, Department of Energy Joint Genome Institute, Berkeley, California, 94720, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
| | - Gary Stacey
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture - Agricultural Research Service, Ames, Iowa, 50011, USA
| | - Aaron J Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
- Lawrence Berkeley National Laboratory, Department of Energy Joint Genome Institute, Berkeley, California, 94720, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, 55108, USA
| |
Collapse
|
7
|
Wang C, Ding W, Chen F, Zhang K, Hou Y, Wang G, Xu W, Wang Y, Qu S. Mapping and transcriptomic profiling reveal that the KNAT6 gene is involved in the dark green peel colour of mature pumpkin fruit (Cucurbita maxima L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:225. [PMID: 39287784 DOI: 10.1007/s00122-024-04741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
KEY MESSAGE We identified a 580 bp deletion of CmaKNAT6 coding region influences peel colour of mature Cucurbita maxima fruit. Peel colour is an important agronomic characteristic affecting commodity quality in Cucurbit plants. Genetic mapping of fruit peel colour promotes molecular breeding and provides an important basis for understanding the regulatory mechanism in Cucurbit plants. In the present study, the Cucurbita maxima inbred line '9-6' which has a grey peel colour and 'U3-3-44' which has a dark green peel colour in the mature fruit stage, were used as plant materials. At 5-40 days after pollination (DAP), the contents of chlorophyll a, chlorophyll b, total chlorophyll and carotenoids in the 'U3-3-44' peels were significantly greater than those in the '9-6' peels. In the epicarp of the '9-6' mature fruit, the presence of nonpigmented cell layers and few chloroplasts in each cell in the pigmented layers were observed. Six generations derived by crossing '9-6' and 'U3-3-44' were constructed, and the dark green peel was found to be controlled by a single dominant locus, which was named CmaMg (mature green peel). Through bulked-segregant analysis sequencing (BSA-seq) and insertion-deletion (InDel) markers, CmaMg was mapped to a region of approximately 449.51 kb on chromosome 11 using 177 F2 individuals. Additionally, 1703 F2 plants were used for fine mapping to compress the candidate interval to a region of 32.34 kb. Five coding genes were in this region, and CmaCh11G000900 was identified as a promising candidate gene according to the reported function, sequence alignment, and expression analyses. CmaCh11G000900 (CmaKNAT6) encodes the homeobox protein knotted-1-like 6 and contains 4 conserved domains. CmaKNAT6 of '9-6' had a 580 bp deletion, leading to premature transcriptional termination. The expression of CmaKNAT6 tended to increase sharply during the early fruit development stage but decrease gradually during the late period of fruit development. Allelic diversity analysis of pumpkin germplasm resources indicated that the 580 bp deletion in the of CmaKNAT6 coding region was associated with peel colour. Subcellular localization analysis indicated that CmaKNAT6 is a nuclear protein. Transcriptomic analysis of the inbred lines '9-6' and 'U3-3-44' indicated that genes involved in chlorophyll biosynthesis were more enriched in 'U3-3-44' than in '9-6'. Additionally, the expression of transcription factor genes that positively regulate chlorophyll synthesis and light signal transduction pathways was upregulated in 'U3-3-44'. These results lay a foundation for further studies on the genetic mechanism underlying peel colour and for optimizing peel colour-based breeding strategies for C. maxima.
Collapse
Affiliation(s)
- ChaoJie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenqi Ding
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Fangyuan Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Ke Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yuetong Hou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Guichao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
8
|
Hirst SR, Rautsaw RM, VanHorn CM, Beer MA, McDonald PJ, Rosales García RA, Rodriguez Lopez B, Rubio Rincón A, Franz Chávez H, Vásquez-Cruz V, Kelly Hernández A, Storfer A, Borja M, Castañeda-Gaytán G, Frandsen PB, Parkinson CL, Strickland JL, Margres MJ. Where the "ruber" Meets the Road: Using the Genome of the Red Diamond Rattlesnake to Unravel the Evolutionary Processes Driving Venom Evolution. Genome Biol Evol 2024; 16:evae198. [PMID: 39255072 PMCID: PMC11440179 DOI: 10.1093/gbe/evae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Understanding the proximate and ultimate causes of phenotypic variation is fundamental in evolutionary research, as such variation provides the substrate for selection to act upon. Although trait variation can arise due to selection, the importance of neutral processes is sometimes understudied. We presented the first reference-quality genome of the Red Diamond Rattlesnake (Crotalus ruber) and used range-wide 'omic data to estimate the degree to which neutral and adaptive evolutionary processes shaped venom evolution. We characterized population structure and found substantial genetic differentiation across two populations, each with distinct demographic histories. We identified significant differentiation in venom expression across age classes with substantially reduced but discernible differentiation across populations. We then used conditional redundancy analysis to test whether venom expression variation was best predicted by neutral divergence patterns or geographically variable (a)biotic factors. Snake size was the most significant predictor of venom variation, with environment, prey availability, and neutral sequence variation also identified as significant factors, though to a lesser degree. By directly including neutrality in the model, our results confidently highlight the predominant, yet not singular, role of life history in shaping venom evolution.
Collapse
Affiliation(s)
- Samuel R Hirst
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Rhett M Rautsaw
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Cameron M VanHorn
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Preston J McDonald
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | | | - Bruno Rodriguez Lopez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Alexandra Rubio Rincón
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Víctor Vásquez-Cruz
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Veracruz, Mexico
- PIMVS Herpetario Palancoatl, Veracruz, Mexico
| | | | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | | | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
9
|
Gilding EK, Jackson MA, Nguyen LTT, Hamilton BR, Farquharson KA, Ho WL, Yap K, Hogg CJ, Belov K, Craik DJ. Hijacking of N-fixing legume albumin-1 genes enables the cyclization and stabilization of defense peptides. Nat Commun 2024; 15:6565. [PMID: 39095373 PMCID: PMC11297342 DOI: 10.1038/s41467-024-50742-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
The legume albumin-1 gene family, arising after nodulation, encodes linear a- and b-chain peptides for nutrient storage and defense. Intriguingly, in one prominent legume, Clitoria ternatea, the b-chains are replaced by domains producing ultra-stable cyclic peptides called cyclotides. The mechanism of this gene hijacking is until now unknown. Cyclotides require recruitment of ligase-type asparaginyl endopeptidases (AEPs) for maturation (cyclization), necessitating co-evolution of two gene families. Here we compare a chromosome-level C. ternatea genome with grain legumes to reveal an 8 to 40-fold expansion of the albumin-1 gene family, enabling the additional loci to undergo diversification. Iterative rounds of albumin-1 duplication and diversification create four albumin-1 enriched genomic islands encoding cyclotides, where they are physically grouped by similar pI and net charge values. We identify an ancestral hydrolytic AEP that exhibits neofunctionalization and multiple duplication events to yield two ligase-type AEPs. We propose cyclotides arise by convergence in C. ternatea where their presence enhances defense from biotic attack, thus increasing fitness compared to lineages with linear b-chains and ultimately driving the replacement of b-chains with cyclotides.
Collapse
Affiliation(s)
- Edward K Gilding
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark A Jackson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Linh T T Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brett R Hamilton
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Katherine A Farquharson
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wing L Ho
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Carolyn J Hogg
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katherine Belov
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
10
|
Ding W, Luo Y, Li W, Chen F, Wang C, Xu W, Wang Y, Qu S. Fine mapping and transcriptome profiling reveal CpAPRR2 to modulate immature fruit rind color formation in zucchini (Cucurbita pepo). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:167. [PMID: 38909110 DOI: 10.1007/s00122-024-04676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
KEY MESSAGE A large fragment deletion of CpAPRR2, encoding a two-component response regulator-like protein, which influences immature white rind color formation in zucchini (Cucurbita pepo). Fruit rind color is an important agronomic trait that affects commodity quality and consumer choice in zucchini (Cucurbita pepo). However, the molecular mechanism controlling rind color is unclear. We characterized two zucchini inbred lines: '19' (dark green rind) and '113' (white rind). Genetic analysis revealed white immature fruit rind color to be controlled by a dominant locus (CpW). Combining bulked segregant analysis sequencing (BSA-seq) and Kompetitive Allele-Specific PCR (KASP) markers, we mapped the CpW locus to a 100.4 kb region on chromosome 5 and then narrow down the candidate region to 37.5 kb using linkage analysis of 532 BC1 and 1613 F2 individuals, including 6 coding genes. Among them, Cp4.1LG05g02070 (CpAPRR2), encoding a two-component response regulator-like protein, was regarded to be a promising candidate gene. The expression level of CpAPRR2 in dark green rind was significantly higher than that in white rind and was induced by light. A deletion of 2227 bp at the 5' end of CpAPRR2 in '113' might explain the white phenotype. Further analysis of allelic diversity in zucchini germplasm resources revealed rind color to be associated with the deletion of CpAPRR2. Subcellular localization analysis indicated that CpAPRR2 was a nuclear protein. Transcriptome analysis using near-isogenic lines with dark green (DG) and white (W) rind indicated that genes involved in photosynthesis and porphyrin metabolism pathways were enriched in DG compared with W. Additionally, chlorophyll synthesis-related genes were upregulated in DG. These results identify mechanisms of zucchini rind color and provide genetic resources for breeding.
Collapse
Affiliation(s)
- Wenqi Ding
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yusong Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenling Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Fangyuan Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Chaojie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Ewart KM, Ho SYW, Chowdhury AA, Jaya FR, Kinjo Y, Bennett J, Bourguignon T, Rose HA, Lo N. Pervasive relaxed selection in termite genomes. Proc Biol Sci 2024; 291:20232439. [PMID: 38772424 DOI: 10.1098/rspb.2023.2439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Genetic changes that enabled the evolution of eusociality have long captivated biologists. More recently, attention has focussed on the consequences of eusociality on genome evolution. Studies have reported higher molecular evolutionary rates in eusocial hymenopteran insects compared with their solitary relatives. To investigate the genomic consequences of eusociality in termites, we analysed nine genomes, including newly sequenced genomes from three non-eusocial cockroaches. Using a phylogenomic approach, we found that termite genomes have experienced lower rates of synonymous substitutions than those of cockroaches, possibly as a result of longer generation times. We identified higher rates of non-synonymous substitutions in termite genomes than in cockroach genomes, and identified pervasive relaxed selection in the former (24-31% of the genes analysed) compared with the latter (2-4%). We infer that this is due to reductions in effective population size, rather than gene-specific effects (e.g. indirect selection of caste-biased genes). We found no obvious signature of increased genetic load in termites, and postulate efficient purging of deleterious alleles at the colony level. Additionally, we identified genomic adaptations that may underpin caste differentiation, such as genes involved in post-translational modifications. Our results provide insights into the evolution of termites and the genomic consequences of eusociality more broadly.
Collapse
Affiliation(s)
- Kyle M Ewart
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Al-Aabid Chowdhury
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Frederick R Jaya
- Ecology & Evolution, Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia
| | - Yukihiro Kinjo
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Okinawa International University, Okinawa, Japan
| | - Juno Bennett
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Bourguignon
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Harley A Rose
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Deng WJ, Li QQ, Shuai HN, Wu RX, Niu SF, Wang QH, Miao BB. Whole-Genome Sequencing Analyses Reveal the Evolution Mechanisms of Typical Biological Features of Decapterus maruadsi. Animals (Basel) 2024; 14:1202. [PMID: 38672351 PMCID: PMC11047736 DOI: 10.3390/ani14081202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Decapterus maruadsi is a typical representative of small pelagic fish characterized by fast growth rate, small body size, and high fecundity. It is a high-quality marine commercial fish with high nutritional value. However, the underlying genetics and genomics research focused on D. maruadsi is not comprehensive. Herein, a high-quality chromosome-level genome of a male D. maruadsi was assembled. The assembled genome length was 716.13 Mb with contig N50 of 19.70 Mb. Notably, we successfully anchored 95.73% contig sequences into 23 chromosomes with a total length of 685.54 Mb and a scaffold N50 of 30.77 Mb. A total of 22,716 protein-coding genes, 274.90 Mb repeat sequences, and 10,060 ncRNAs were predicted, among which 22,037 (97%) genes were successfully functionally annotated. The comparative genome analysis identified 459 unique, 73 expanded, and 52 contracted gene families. Moreover, 2804 genes were identified as candidates for positive selection, of which some that were related to the growth and development of bone, muscle, cardioid, and ovaries, such as some members of the TGF-β superfamily, were likely involved in the evolution of typical biological features in D. maruadsi. The study provides an accurate and complete chromosome-level reference genome for further genetic conservation, genomic-assisted breeding, and adaptive evolution research for D. maruadsi.
Collapse
Affiliation(s)
| | | | | | | | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.-J.D.); (Q.-Q.L.); (H.-N.S.); (R.-X.W.); (Q.-H.W.); (B.-B.M.)
| | | | | |
Collapse
|
13
|
Healey AL, Garsmeur O, Lovell JT, Shengquiang S, Sreedasyam A, Jenkins J, Plott CB, Piperidis N, Pompidor N, Llaca V, Metcalfe CJ, Doležel J, Cápal P, Carlson JW, Hoarau JY, Hervouet C, Zini C, Dievart A, Lipzen A, Williams M, Boston LB, Webber J, Keymanesh K, Tejomurthula S, Rajasekar S, Suchecki R, Furtado A, May G, Parakkal P, Simmons BA, Barry K, Henry RJ, Grimwood J, Aitken KS, Schmutz J, D'Hont A. The complex polyploid genome architecture of sugarcane. Nature 2024; 628:804-810. [PMID: 38538783 PMCID: PMC11041754 DOI: 10.1038/s41586-024-07231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Sugarcane, the world's most harvested crop by tonnage, has shaped global history, trade and geopolitics, and is currently responsible for 80% of sugar production worldwide1. While traditional sugarcane breeding methods have effectively generated cultivars adapted to new environments and pathogens, sugar yield improvements have recently plateaued2. The cessation of yield gains may be due to limited genetic diversity within breeding populations, long breeding cycles and the complexity of its genome, the latter preventing breeders from taking advantage of the recent explosion of whole-genome sequencing that has benefited many other crops. Thus, modern sugarcane hybrids are the last remaining major crop without a reference-quality genome. Here we take a major step towards advancing sugarcane biotechnology by generating a polyploid reference genome for R570, a typical modern cultivar derived from interspecific hybridization between the domesticated species (Saccharum officinarum) and the wild species (Saccharum spontaneum). In contrast to the existing single haplotype ('monoploid') representation of R570, our 8.7 billion base assembly contains a complete representation of unique DNA sequences across the approximately 12 chromosome copies in this polyploid genome. Using this highly contiguous genome assembly, we filled a previously unsized gap within an R570 physical genetic map to describe the likely causal genes underlying the single-copy Bru1 brown rust resistance locus. This polyploid genome assembly with fine-grain descriptions of genome architecture and molecular targets for biotechnology will help accelerate molecular and transgenic breeding and adaptation of sugarcane to future environmental conditions.
Collapse
Affiliation(s)
- A L Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| | - O Garsmeur
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - J T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - S Shengquiang
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - A Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - J Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - C B Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - N Piperidis
- Sugar Research Australia, Te Kowai, Queensland, Australia
| | - N Pompidor
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - V Llaca
- Corteva Agriscience, Johnston, IA, USA
| | - C J Metcalfe
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Queensland, Australia
| | - J Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - P Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - J W Carlson
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - J Y Hoarau
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- ERCANE, Sainte-Clotilde, La Réunion, France
| | - C Hervouet
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - C Zini
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - A Dievart
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - A Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - M Williams
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - L B Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - J Webber
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - K Keymanesh
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - S Tejomurthula
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - S Rajasekar
- Arizona Genomics Institute, University of Arizona, Tucson, AZ, USA
| | - R Suchecki
- CSIRO Agriculture and Food, Urrbrae, South Australia, Australia
| | - A Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| | - G May
- Corteva Agriscience, Johnston, IA, USA
| | | | - B A Simmons
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - K Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - R J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, Queensland, Australia
| | - J Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - K S Aitken
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Queensland, Australia
| | - J Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - A D'Hont
- CIRAD, UMR AGAP Institut, Montpellier, France.
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
14
|
Jung H, Zarlenga D, Martin JC, Geldhof P, Hallsworth-Pepin K, Mitreva M. The identification of small molecule inhibitors with anthelmintic activities that target conserved proteins among ruminant gastrointestinal nematodes. mBio 2024; 15:e0009524. [PMID: 38358246 PMCID: PMC10936192 DOI: 10.1128/mbio.00095-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Gastrointestinal nematode (GIN) infections are a major concern for the ruminant industry worldwide and result in significant production losses. Naturally occurring polyparasitism and increasing drug resistance that potentiate disease outcomes are observed among the most prevalent GINs of veterinary importance. Within the five major taxonomic clades, clade Va represents a group of GINs that predominantly affect the abomasum or small intestine of ruminants. However, the development of effective broad-spectrum anthelmintics against ruminant clade Va GINs has been challenged by a lack of comprehensive druggable genome resources. Here, we first assembled draft genomes for three clade Va species (Cooperia oncophora, Trichostrongylus colubriformis, and Ostertagia ostertagi) and compared them with closely related ruminant GINs. Genome-wide phylogenetic reconstruction showed a relationship among ruminant GINs structured by taxonomic classification. Orthogroup (OG) inference and functional enrichment analyses identified 220 clade Va-specific and Va-conserved OGs, enriched for functions related to cell cycle and cellular senescence. Further transcriptomic analysis identified 61 taxonomically and functionally conserved clade Va OGs that may function as drug targets for new broad-spectrum anthelmintics. Chemogenomic screening identified 11 compounds targeting homologs of these OGs, thus having potential anthelmintic activity. In in vitro phenotypic assays, three kinase inhibitors (digitoxigenin, K-252a, and staurosporine) exhibited broad-spectrum anthelmintic activities against clade Va GINs by obstructing the motility of exsheathed L3 (xL3) or molting of xL3 to L4. These results demonstrate valuable applications of the new ruminant GIN genomes in gaining better insights into their life cycles and offer a contemporary approach to discovering the next generation of anthelmintics.IMPORTANCEGastrointestinal nematode (GIN) infections in ruminants are caused by parasites that inhibit normal function in the digestive tract of cattle, sheep, and goats, thereby causing morbidity and mortality. Coinfection and increasing drug resistance to current therapeutic agents will continue to worsen disease outcomes and impose significant production losses on domestic livestock producers worldwide. In combination with ongoing therapeutic efforts, advancing the discovery of new drugs with novel modes of action is critical for better controlling GIN infections. The significance of this study is in assembling and characterizing new GIN genomes of Cooperia oncophora, Ostertagia ostertagi, and Trichostrongylus colubriformis for facilitating a multi-omics approach to identify novel, biologically conserved drug targets for five major GINs of veterinary importance. With this information, we were then able to demonstrate the potential of commercially available compounds as new anthelmintics.
Collapse
Affiliation(s)
- Hyeim Jung
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dante Zarlenga
- Animal Parasitic Diseases Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, USA
| | - John C. Martin
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Peter Geldhof
- Laboratory of Parasitology, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | | | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Ludwig E, Sumner J, Berry J, Polydore S, Ficor T, Agnew E, Haines K, Greenham K, Fahlgren N, Mockler TC, Gehan MA. Natural variation in Brachypodium distachyon responses to combined abiotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1676-1701. [PMID: 37483133 DOI: 10.1111/tpj.16387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
The demand for agricultural production is becoming more challenging as climate change increases global temperature and the frequency of extreme weather events. This study examines the phenotypic variation of 149 accessions of Brachypodium distachyon under drought, heat, and the combination of stresses. Heat alone causes the largest amounts of tissue damage while the combination of stresses causes the largest decrease in biomass compared to other treatments. Notably, Bd21-0, the reference line for B. distachyon, did not have robust growth under stress conditions, especially the heat and combined drought and heat treatments. The climate of origin was significantly associated with B. distachyon responses to the assessed stress conditions. Additionally, a GWAS found loci associated with changes in plant height and the amount of damaged tissue under stress. Some of these SNPs were closely located to genes known to be involved in responses to abiotic stresses and point to potential causative loci in plant stress response. However, SNPs found to be significantly associated with a response to heat or drought individually are not also significantly associated with the combination of stresses. This, with the phenotypic data, suggests that the effects of these abiotic stresses are not simply additive, and the responses to the combined stresses differ from drought and heat alone.
Collapse
Affiliation(s)
- Ella Ludwig
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Joshua Sumner
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Jeffrey Berry
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
- Bayer Crop Sciences, St. Louis, Missouri, 63017, USA
| | - Seth Polydore
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Tracy Ficor
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Erica Agnew
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Kristina Haines
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Kathleen Greenham
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
- University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Noah Fahlgren
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Malia A Gehan
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| |
Collapse
|
16
|
Liang Q, Muñoz-Amatriaín M, Shu S, Lo S, Wu X, Carlson JW, Davidson P, Goodstein DM, Phillips J, Janis NM, Lee EJ, Liang C, Morrell PL, Farmer AD, Xu P, Close TJ, Lonardi S. A view of the pan-genome of domesticated Cowpea (Vigna unguiculata [L.] Walp.). THE PLANT GENOME 2024; 17:e20319. [PMID: 36946261 DOI: 10.1002/tpg2.20319] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Cowpea, Vigna unguiculata L. Walp., is a diploid warm-season legume of critical importance as both food and fodder in sub-Saharan Africa. This species is also grown in Northern Africa, Europe, Latin America, North America, and East to Southeast Asia. To capture the genomic diversity of domesticates of this important legume, de novo genome assemblies were produced for representatives of six subpopulations of cultivated cowpea identified previously from genotyping of several hundred diverse accessions. In the most complete assembly (IT97K-499-35), 26,026 core and 4963 noncore genes were identified, with 35,436 pan genes when considering all seven accessions. GO terms associated with response to stress and defense response were highly enriched among the noncore genes, while core genes were enriched in terms related to transcription factor activity, and transport and metabolic processes. Over 5 million single nucleotide polymorphisms (SNPs) relative to each assembly and over 40 structural variants >1 Mb in size were identified by comparing genomes. Vu10 was the chromosome with the highest frequency of SNPs, and Vu04 had the most structural variants. Noncore genes harbor a larger proportion of potentially disruptive variants than core genes, including missense, stop gain, and frameshift mutations; this suggests that noncore genes substantially contribute to diversity within domesticated cowpea.
Collapse
Affiliation(s)
- Qihua Liang
- Department of Computer Science and Engineering, University of California Riverside, Riverside, CA, USA
| | - María Muñoz-Amatriaín
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA
- Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Shengqiang Shu
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sassoum Lo
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Xinyi Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Joseph W Carlson
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Patrick Davidson
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David M Goodstein
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy Phillips
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nadia M Janis
- Department of Agronomy and Plant Genetics, University of Minnesota Twin Cities, Saint Paul, MN, USA
| | - Elaine J Lee
- Department of Agronomy and Plant Genetics, University of Minnesota Twin Cities, Saint Paul, MN, USA
| | - Chenxi Liang
- Department of Agronomy and Plant Genetics, University of Minnesota Twin Cities, Saint Paul, MN, USA
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota Twin Cities, Saint Paul, MN, USA
| | | | - Pei Xu
- Key Lab of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
| | - Timothy J Close
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
17
|
Schuster M, Schweizer G, Reißmann S, Happel P, Aßmann D, Rössel N, Güldener U, Mannhaupt G, Ludwig N, Winterberg S, Pellegrin C, Tanaka S, Vincon V, Presti LL, Wang L, Bender L, Gonzalez C, Vranes M, Kämper J, Seong K, Krasileva K, Kahmann R. Novel Secreted Effectors Conserved Among Smut Fungi Contribute to the Virulence of Ustilago maydis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:250-263. [PMID: 38416124 DOI: 10.1094/mpmi-09-23-0139-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Fungal pathogens deploy a set of molecules (proteins, specialized metabolites, and sRNAs), so-called effectors, to aid the infection process. In comparison to other plant pathogens, smut fungi have small genomes and secretomes of 20 Mb and around 500 proteins, respectively. Previous comparative genomic studies have shown that many secreted effector proteins without known domains, i.e., novel, are conserved only in the Ustilaginaceae family. By analyzing the secretomes of 11 species within Ustilaginaceae, we identified 53 core homologous groups commonly present in this lineage. By collecting existing mutants and generating additional ones, we gathered 44 Ustilago maydis strains lacking single core effectors as well as 9 strains containing multiple deletions of core effector gene families. Pathogenicity assays revealed that 20 of these 53 mutant strains were affected in virulence. Among the 33 mutants that had no obvious phenotypic changes, 13 carried additional, sequence-divergent, structurally similar paralogs. We report a virulence contribution of seven previously uncharacterized single core effectors and of one effector family. Our results help to prioritize effectors for understanding U. maydis virulence and provide genetic resources for further characterization. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mariana Schuster
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Gabriel Schweizer
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Independent Data Lab UG, 80937 Munich, Germany
| | - Stefanie Reißmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Petra Happel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Daniela Aßmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Nicole Rössel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Ulrich Güldener
- Deutsches Herzzentrum München, Technische Universität München, 80636 München, Germany
| | - Gertrud Mannhaupt
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Nicole Ludwig
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Research & Development, Weed Control Bayer AG, Crop Science Division, 65926 Frankfurt am Main, Germany
| | - Sarah Winterberg
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Clément Pellegrin
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Shigeyuki Tanaka
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Volker Vincon
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Libera Lo Presti
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lei Wang
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lena Bender
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Pharmaceutics and Biopharmaceutics, Phillips-University Marburg, 35037 Marburg, Germany
| | - Carla Gonzalez
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Miroslav Vranes
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, 76131 Karlsruhe, Germany
| | - Jörg Kämper
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, 76131 Karlsruhe, Germany
| | - Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Ksenia Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
18
|
Brainard SH, Sanders DM, Bruna T, Shu S, Dawson JC. The first two chromosome-scale genome assemblies of American hazelnut enable comparative genomic analysis of the genus Corylus. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:472-483. [PMID: 37870930 PMCID: PMC10826982 DOI: 10.1111/pbi.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
The native, perennial shrub American hazelnut (Corylus americana) is cultivated in the Midwestern United States for its significant ecological benefits, as well as its high-value nut crop. Implementation of modern breeding methods and quantitative genetic analyses of C. americana requires high-quality reference genomes, a resource that is currently lacking. We therefore developed the first chromosome-scale assemblies for this species using the accessions 'Rush' and 'Winkler'. Genomes were assembled using HiFi PacBio reads and Arima Hi-C data, and Oxford Nanopore reads and a high-density genetic map were used to perform error correction. N50 scores are 31.9 Mb and 35.3 Mb, with 90.2% and 97.1% of the total genome assembled into the 11 pseudomolecules, for 'Rush' and 'Winkler', respectively. Gene prediction was performed using custom RNAseq libraries and protein homology data. 'Rush' has a BUSCO score of 99.0 for its assembly and 99.0 for its annotation, while 'Winkler' had corresponding scores of 96.9 and 96.5, indicating high-quality assemblies. These two independent assemblies enable unbiased assessment of structural variation within C. americana, as well as patterns of syntenic relationships across the Corylus genus. Furthermore, we identified high-density SNP marker sets from genotyping-by-sequencing data using 1343 C. americana, C. avellana and C. americana × C. avellana hybrids, in order to assess population structure in natural and breeding populations. Finally, the transcriptomes of these assemblies, as well as several other recently published Corylus genomes, were utilized to perform phylogenetic analysis of sporophytic self-incompatibility (SSI) in hazelnut, providing evidence of unique molecular pathways governing self-incompatibility in Corylus.
Collapse
Affiliation(s)
- Scott H. Brainard
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Dean M. Sanders
- University of Wisconsin Biotechnology CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Tomas Bruna
- U.S. Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Shengqiang Shu
- U.S. Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Julie C. Dawson
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
19
|
Huang Y, Guo L, Xie L, Shang N, Wu D, Ye C, Rudell EC, Okada K, Zhu QH, Song BK, Cai D, Junior AM, Bai L, Fan L. A reference genome of Commelinales provides insights into the commelinids evolution and global spread of water hyacinth (Pontederia crassipes). Gigascience 2024; 13:giae006. [PMID: 38486346 PMCID: PMC10938897 DOI: 10.1093/gigascience/giae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024] Open
Abstract
Commelinales belongs to the commelinids clade, which also comprises Poales that includes the most important monocot species, such as rice, wheat, and maize. No reference genome of Commelinales is currently available. Water hyacinth (Pontederia crassipes or Eichhornia crassipes), a member of Commelinales, is one of the devastating aquatic weeds, although it is also grown as an ornamental and medical plant. Here, we present a chromosome-scale reference genome of the tetraploid water hyacinth with a total length of 1.22 Gb (over 95% of the estimated size) across 8 pseudochromosome pairs. With the representative genomes, we reconstructed a phylogeny of the commelinids, which supported Zingiberales and Commelinales being sister lineages of Arecales and shed lights on the controversial relationship of the orders. We also reconstructed ancestral karyotypes of the commelinids clade and confirmed the ancient commelinids genome having 8 chromosomes but not 5 as previously reported. Gene family analysis revealed contraction of disease-resistance genes during polyploidization of water hyacinth, likely a result of fitness requirement for its role as a weed. Genetic diversity analysis using 9 water hyacinth lines from 3 continents (South America, Asia, and Europe) revealed very closely related nuclear genomes and almost identical chloroplast genomes of the materials, as well as provided clues about the global dispersal of water hyacinth. The genomic resources of P. crassipes reported here contribute a crucial missing link of the commelinids species and offer novel insights into their phylogeny.
Collapse
Affiliation(s)
- Yujie Huang
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute of Zhejiang University, Zhengzhou 450000, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lingjuan Xie
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Nianmin Shang
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dongya Wu
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chuyu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Eduardo Carlos Rudell
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre, RS 68011, Brazil
| | - Kazunori Okada
- Agro-Biotechnology Research Center (AgTECH), University of Tokyo, Tokyo 113-8657, Japan
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Beng-Kah Song
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Daguang Cai
- Department of Molecular Phytopathology and Biotechnology, Christian Albrechts University of Kiel, Kiel D-24118, Germany
| | - Aldo Merotto Junior
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre, RS 68011, Brazil
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Science, Changsha 410125, China
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute of Zhejiang University, Zhengzhou 450000, China
| |
Collapse
|
20
|
Lei L, Gordon SP, Liu L, Sade N, Lovell JT, Rubio Wilhelmi MDM, Singan V, Sreedasyam A, Hestrin R, Phillips J, Hernandez BT, Barry K, Shu S, Jenkins J, Schmutz J, Goodstein DM, Thilmony R, Blumwald E, Vogel JP. The reference genome and abiotic stress responses of the model perennial grass Brachypodium sylvaticum. G3 (BETHESDA, MD.) 2023; 14:jkad245. [PMID: 37883711 PMCID: PMC10755203 DOI: 10.1093/g3journal/jkad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Perennial grasses are important forage crops and emerging biomass crops and have the potential to be more sustainable grain crops. However, most perennial grass crops are difficult experimental subjects due to their large size, difficult genetics, and/or their recalcitrance to transformation. Thus, a tractable model perennial grass could be used to rapidly make discoveries that can be translated to perennial grass crops. Brachypodium sylvaticum has the potential to serve as such a model because of its small size, rapid generation time, simple genetics, and transformability. Here, we provide a high-quality genome assembly and annotation for B. sylvaticum, an essential resource for a modern model system. In addition, we conducted transcriptomic studies under 4 abiotic stresses (water, heat, salt, and freezing). Our results indicate that crowns are more responsive to freezing than leaves which may help them overwinter. We observed extensive transcriptional responses with varying temporal dynamics to all abiotic stresses, including classic heat-responsive genes. These results can be used to form testable hypotheses about how perennial grasses respond to these stresses. Taken together, these results will allow B. sylvaticum to serve as a truly tractable perennial model system.
Collapse
Affiliation(s)
- Li Lei
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sean P Gordon
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lifeng Liu
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nir Sade
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - John T Lovell
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Vasanth Singan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Rachel Hestrin
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jeremy Phillips
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bryan T Hernandez
- Crop Improvement and Genetics Research Unit, USDA-ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Shengqiang Shu
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - David M Goodstein
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Roger Thilmony
- Crop Improvement and Genetics Research Unit, USDA-ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - John P Vogel
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
21
|
Jagtap SS, Liu JJ, Walukiewicz HE, Riley R, Ahrendt S, Koriabine M, Cobaugh K, Salamov A, Yoshinaga Y, Ng V, Daum C, Grigoriev IV, Slininger PJ, Dien BS, Jin YS, Rao CV. Draft genome sequence of Yarrowia lipolytica NRRL Y-64008, an oleaginous yeast capable of growing on lignocellulosic hydrolysates. Microbiol Resour Announc 2023; 12:e0043523. [PMID: 37982613 PMCID: PMC10720525 DOI: 10.1128/mra.00435-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
Yarrowia lipolytica is an oleaginous yeast that produces high titers of fatty acid-derived biofuels and biochemicals. It can grow on hydrophobic carbon sources and lignocellulosic hydrolysates. The genome sequence of Y. lipolytica NRRL Y-64008 is reported to aid in its development as a biotechnological chassis for producing biofuels and bioproducts.
Collapse
Affiliation(s)
- Sujit Sadashiv Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana–Champaign, Urbana, Illinois, USA
| | - Jing-Jing Liu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana–Champaign, Urbana, Illinois, USA
| | - Hanna E. Walukiewicz
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana–Champaign, Urbana, Illinois, USA
| | - Robert Riley
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Steven Ahrendt
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Maxim Koriabine
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Kelly Cobaugh
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Asaf Salamov
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Yuko Yoshinaga
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Vivian Ng
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Chris Daum
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Igor V. Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Patricia J. Slininger
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Bruce S. Dien
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Yong-Su Jin
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana–Champaign, Urbana, Illinois, USA
- Department of Food Science and Nutrition, University of Illinois at Urbana–Champaign, Urbana, Illinois, USA
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana–Champaign, Urbana, Illinois, USA
| |
Collapse
|
22
|
Nestor BJ, Bayer PE, Fernandez CGT, Edwards D, Finnegan PM. Approaches to increase the validity of gene family identification using manual homology search tools. Genetica 2023; 151:325-338. [PMID: 37817002 PMCID: PMC10692271 DOI: 10.1007/s10709-023-00196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023]
Abstract
Identifying homologs is an important process in the analysis of genetic patterns underlying traits and evolutionary relationships among species. Analysis of gene families is often used to form and support hypotheses on genetic patterns such as gene presence, absence, or functional divergence which underlie traits examined in functional studies. These analyses often require precise identification of all members in a targeted gene family. Manual pipelines where homology search and orthology assignment tools are used separately are the most common approach for identifying small gene families where accurate identification of all members is important. The ability to curate sequences between steps in manual pipelines allows for simple and precise identification of all possible gene family members. However, the validity of such manual pipeline analyses is often decreased by inappropriate approaches to homology searches including too relaxed or stringent statistical thresholds, inappropriate query sequences, homology classification based on sequence similarity alone, and low-quality proteome or genome sequences. In this article, we propose several approaches to mitigate these issues and allow for precise identification of gene family members and support for hypotheses linking genetic patterns to functional traits.
Collapse
Affiliation(s)
- Benjamin J Nestor
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia.
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, 6009, Australia.
| | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, 6009, Australia
| | - Cassandria G Tay Fernandez
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, 6009, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
23
|
Wang N, Li Y, Meng Q, Chen M, Wu M, Zhang R, Xu Z, Sun J, Zhang X, Nie X, Yuan D, Lin Z. Genome and haplotype provide insights into the population differentiation and breeding improvement of Gossypium barbadense. J Adv Res 2023; 54:15-27. [PMID: 36775017 DOI: 10.1016/j.jare.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Sea-island cotton (Gossypium barbadense, Gb) is one of the major sources of high-grade natural fiber. Besides the common annual Gb cotton, perennial Gb cotton is also cultivated, but studies on perennial Gb cotton are rare. OBJECTIVES We aimed to make a systematic analysis of perennial sea-island cotton and lay a foundation for its utilization in breeding, and try to identify the representative structural variations (SVs) in sea-island cotton, and to reveal the population differentiation and adaptive improvement of sea-island cotton. METHODS Through genome assembly of one perennial Gb cotton accession (named Gb_M210936) and comparative genome analysis, variations during Gb cotton domestication were identified by comparing Gb_M210936 with annual Gb accession 3-79 and with wild allotetraploid cotton G. darwinii. Six perennial Gb accessions combining with the resequenced 1,129 cotton accessions were used to conduct population and genetic analysis. Large haplotype blocks (haploblocks), generated from interspecific introgressions and intraspecific inversions, were identified and were used to analyze their effects on population differentiation and agronomic traits of sea-island cotton. RESULTS One reference genome of perennial sea-island cotton was assembled. Representative SVs in sea-island cotton were identified, and 31 SVs were found to be associated with agronomic traits. Perennial Gb cotton had a closer kinship with the wild-to-landrace continuum Gb cotton from south America where Gb cotton is originally domesticated. Haploblocks were associated with agronomic traits improvement of sea-island cotton, promoted sea-island cotton differentiation into three subgroups, were suffered from breeding selection, and may drive Gb cotton to be adapted to central Asian. CONCLUSION Our study made up the lack of perennial Gb cotton genome, and clarified that exotic introgressions improved the traits of sea-island cotton, promoted the population differentiation, and drove sea-island cotton adaptive to central Asia, which will provide new insights for the genetic breeding improvement of sea-island cottons.
Collapse
Affiliation(s)
- Nian Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yuanxue Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Qingying Meng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Meilin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Mi Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Ruiting Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zhiyong Xu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Jie Sun
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
24
|
Arshed S, Cox MP, Beever RE, Parkes SL, Pearson MN, Bowen JK, Templeton MD. The Bcvic1 and Bcvic2 vegetative incompatibility genes in Botrytis cinerea encode proteins with domain architectures involved in allorecognition in other filamentous fungi. Fungal Genet Biol 2023; 169:103827. [PMID: 37640199 DOI: 10.1016/j.fgb.2023.103827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/19/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Vegetative incompatibility is a fungal allorecognition system characterised by the inability of genetically distinct conspecific fungal strains to form a viable heterokaryon and is controlled by multiple polymorphic loci termed vic (vegetative incompatibility) or het (heterokaryon incompatibility). We have genetically identified and characterised the first vic locus in the economically important, plant-pathogenic, necrotrophic fungus Botrytis cinerea. A bulked segregant approach coupled with whole genome Illumina sequencing of near-isogenic lines of B. cinerea was used to map a vic locus to a 60-kb region of the genome. Within that locus, we identified two adjacent, highly polymorphic open reading frames, Bcvic1 and Bcvic2, which encode predicted proteins that contain domain architectures implicated in vegetative incompatibility in other filamentous fungi. Bcvic1 encodes a predicted protein containing a putative serine esterase domain, a NACHT family of NTPases domain, and several Ankyrin repeats. Bcvic2 encodes a putative syntaxin protein containing a SNARE domain; such proteins typically function in vesicular transport. Deletion of Bcvic1 and Bcvic2 individually had no effect on vegetative incompatibility. However, deletion of the region containing both Bcvic1 and Bcvic2 resulted in mutant lines that were severely restricted in growth and showed loss of vegetative incompatibility. Complementation of these mutants by ectopic expression restored the growth and vegetative incompatibility phenotype, indicating that Bcvic1 and Bcvic2 are controlling vegetative incompatibility at this vic locus.
Collapse
Affiliation(s)
- Saadiah Arshed
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand; Bioprotection Aotearoa Centre of Research Excellence, New Zealand
| | - Murray P Cox
- Bioprotection Aotearoa Centre of Research Excellence, New Zealand; School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Ross E Beever
- Manaaki Whenua Landcare Research, Auckland, New Zealand
| | | | - Michael N Pearson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna K Bowen
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand.
| | - Matthew D Templeton
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand; Bioprotection Aotearoa Centre of Research Excellence, New Zealand.
| |
Collapse
|
25
|
Wu Q, Xing L, Du M, Huang C, Liu B, Zhou H, Liu W, Wan F, Qian W. A Genome-Wide Analysis of Serine Protease Inhibitors in Cydia pomonella Provides Insights into Their Evolution and Expression Pattern. Int J Mol Sci 2023; 24:16349. [PMID: 38003538 PMCID: PMC10671500 DOI: 10.3390/ijms242216349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Serine protease inhibitors (serpins) appear to be ubiquitous in almost all living organisms, with a conserved structure and varying functions. Serpins can modulate immune responses by negatively regulating serine protease activities strictly and precisely. The codling moth, Cydia pomonella (L.), a major invasive pest in China, can cause serious economic losses. However, knowledge of serpin genes in this insect remain largely unknown. In this study, we performed a systematic analysis of the serpin genes in C. pomonella, obtaining 26 serpins from the C. pomonella genome. Subsequently, their sequence features, evolutionary relationship, and expression pattern were characterized. Comparative analysis revealed the evolution of a number of serpin genes in Lepidoptera. Importantly, the evolutionary relationship and putative roles of serpin genes in C. pomonella were revealed. Additionally, selective pressure analysis found amino acid sites with strong evidence of positive selection. Interestingly, the serpin1 gene possessed at least six splicing isoforms with distinct reactive-center loops, and these isoforms were experimentally validated. Furthermore, we observed a subclade expansion of serpins, and these genes showed high expression in multiple tissues, suggesting their important roles in C. pomonella. Overall, this study will enrich our knowledge of the immunity of C. pomonella and help to elucidate the role of serpins in the immune response.
Collapse
Affiliation(s)
- Qiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Longsheng Xing
- College of Life Sciences, Hebei Basic Science Center for Biotic Interactions, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Min Du
- Shandong Province Key Laboratory for Integrated Control of Plant Diseases and Insect Pests, Sino-Australian Joint Research Institute of Agriculture and Environmental Health, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Cong Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongxu Zhou
- Shandong Province Key Laboratory for Integrated Control of Plant Diseases and Insect Pests, Sino-Australian Joint Research Institute of Agriculture and Environmental Health, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
26
|
Marcoli R, Symonds JE, Walker SP, Battershill CN, Bird S. Characterising the Physiological Responses of Chinook Salmon ( Oncorhynchus tshawytscha) Subjected to Heat and Oxygen Stress. BIOLOGY 2023; 12:1342. [PMID: 37887052 PMCID: PMC10604766 DOI: 10.3390/biology12101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
In New Zealand, during the hottest periods of the year, some salmon farms in the Marlborough Sounds reach water temperatures above the optimal range for Chinook salmon. High levels of mortality are recorded during these periods, emphasising the importance of understanding thermal stress in this species. In this study, the responses of Chinook salmon (Oncorhynchus tshawytscha) to chronic, long-term changes in temperature and dissolved oxygen were investigated. This is a unique investigation due to the duration of the stress events the fish were exposed to. Health and haematological parameters were analysed alongside gene expression results to determine the effects of thermal stress on Chinook salmon. Six copies of heat shock protein 90 (HSP90) were discovered and characterised: HSP90AA1.1a, HSP90AA1.2a, HSP90AA1.1b, HSP90AA1.2b, HSP90AB1a and HSP90AB1b, as well as two copies of SOD1, named SOD1a and SOD1b. The amino acid sequences contained features similar to those found in other vertebrate HSP90 and SOD1 sequences, and the phylogenetic tree and synteny analysis provided conclusive evidence of their relationship to other vertebrate HSP90 and SOD1 genes. Primers were designed for qPCR to enable the expression of all copies of HSP90 and SOD1 to be analysed. The expression studies showed that HSP90 and SOD1 were downregulated in the liver and spleen in response to longer term exposure to high temperatures and lower dissolved oxygen. HSP90 was also downregulated in the gill; however, the results for SOD1 expression in the gill were not conclusive. This study provides important insights into the physiological and genetic responses of Chinook salmon to temperature and oxygen stress, which are critical for developing sustainable fish aquaculture in an era of changing global climates.
Collapse
Affiliation(s)
- Roberta Marcoli
- Centre for Sustainable Tropical Fisheries, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, QLD 4811, Australia
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| | - Jane E. Symonds
- Cawthron Institute, Nelson 7010, New Zealand; (J.E.S.); (S.P.W.)
| | - Seumas P. Walker
- Cawthron Institute, Nelson 7010, New Zealand; (J.E.S.); (S.P.W.)
| | | | - Steve Bird
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| |
Collapse
|
27
|
Gramzow L, Sharma R, Theißen G. Evolutionary Dynamics of FLC-like MADS-Box Genes in Brassicaceae. PLANTS (BASEL, SWITZERLAND) 2023; 12:3281. [PMID: 37765445 PMCID: PMC10536770 DOI: 10.3390/plants12183281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
MADS-box genes encode transcription factors that play important roles in the development and evolution of plants. There are more than a dozen clades of MADS-box genes in angiosperms, of which those with functions in the specification of floral organ identity are especially well-known. From what has been elucidated in the model plant Arabidopsis thaliana, the clade of FLC-like MADS-box genes, comprising FLC-like genes sensu strictu and MAF-like genes, are somewhat special among the MADS-box genes of plants since FLC-like genes, especially MAF-like genes, show unusual evolutionary dynamics, in that they generate clusters of tandemly duplicated genes. Here, we make use of the latest genomic data of Brassicaceae to study this remarkable feature of the FLC-like genes in a phylogenetic context. We have identified all FLC-like genes in the genomes of 29 species of Brassicaceae and reconstructed the phylogeny of these genes employing a Maximum Likelihood method. In addition, we conducted selection analyses using PAML. Our results reveal that there are three major clades of FLC-like genes in Brassicaceae that all evolve under purifying selection but with remarkably different strengths. We confirm that the tandem arrangement of MAF-like genes in the genomes of Brassicaceae resulted in a high rate of duplications and losses. Interestingly, MAF-like genes also seem to be prone to transposition. Considering the role of FLC-like genes sensu lato (s.l.) in the timing of floral transition, we hypothesize that this rapid evolution of the MAF-like genes was a main contributor to the successful adaptation of Brassicaceae to different environments.
Collapse
Affiliation(s)
- Lydia Gramzow
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
28
|
Diesel J, Molano G, Montecinos GJ, DeWeese K, Calhoun S, Kuo A, Lipzen A, Salamov A, Grigoriev IV, Reed DC, Miller RJ, Nuzhdin SV, Alberto F. A scaffolded and annotated reference genome of giant kelp (Macrocystis pyrifera). BMC Genomics 2023; 24:543. [PMID: 37704968 PMCID: PMC10498591 DOI: 10.1186/s12864-023-09658-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Macrocystis pyrifera (giant kelp), is a brown macroalga of great ecological importance as a primary producer and structure-forming foundational species that provides habitat for hundreds of species. It has many commercial uses (e.g. source of alginate, fertilizer, cosmetics, feedstock). One of the limitations to exploiting giant kelp's economic potential and assisting in giant kelp conservation efforts is a lack of genomic tools like a high quality, contiguous reference genome with accurate gene annotations. Reference genomes attempt to capture the complete genomic sequence of an individual or species, and importantly provide a universal structure for comparison across a multitude of genetic experiments, both within and between species. We assembled the giant kelp genome of a haploid female gametophyte de novo using PacBio reads, then ordered contigs into chromosome level scaffolds using Hi-C. We found the giant kelp genome to be 537 MB, with a total of 35 scaffolds and 188 contigs. The assembly N50 is 13,669,674 with GC content of 50.37%. We assessed the genome completeness using BUSCO, and found giant kelp contained 94% of the BUSCO genes from the stramenopile clade. Annotation of the giant kelp genome revealed 25,919 genes. Additionally, we present genetic variation data based on 48 diploid giant kelp sporophytes from three different Southern California populations that confirms the population structure found in other studies of these populations. This work resulted in a high-quality giant kelp genome that greatly increases the genetic knowledge of this ecologically and economically vital species.
Collapse
Affiliation(s)
- Jose Diesel
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Gary Molano
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Gabriel J Montecinos
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kelly DeWeese
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sara Calhoun
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Asaf Salamov
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Daniel C Reed
- Marine Science Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Robert J Miller
- Marine Science Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sergey V Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Filipe Alberto
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
29
|
Ramu P, Srivastava RK, Sanyal A, Fengler K, Cao J, Zhang Y, Nimkar M, Gerke J, Shreedharan S, Llaca V, May G, Peterson-Burch B, Lin H, King M, Das S, Bhupesh V, Mandaokar A, Maruthachalam K, Krishnamurthy P, Gandhi H, Rathore A, Gupta R, Chitikineni A, Bajaj P, Gupta SK, Satyavathi CT, Pandravada A, Varshney RK, Babu R. Improved pearl millet genomes representing the global heterotic pool offer a framework for molecular breeding applications. Commun Biol 2023; 6:902. [PMID: 37667032 PMCID: PMC10477261 DOI: 10.1038/s42003-023-05258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
High-quality reference genome assemblies, representative of global heterotic patterns, offer an ideal platform to accurately characterize and utilize genetic variation in the primary gene pool of hybrid crops. Here we report three platinum grade de-novo, near gap-free, chromosome-level reference genome assemblies from the active breeding germplasm in pearl millet with a high degree of contiguity, completeness, and accuracy. An improved Tift genome (Tift23D2B1-P1-P5) assembly has a contig N50 ~ 7,000-fold (126 Mb) compared to the previous version and better alignment in centromeric regions. Comparative genome analyses of these three lines clearly demonstrate a high level of collinearity and multiple structural variations, including inversions greater than 1 Mb. Differential genes in improved Tift genome are enriched for serine O-acetyltransferase and glycerol-3-phosphate metabolic process which play an important role in improving the nutritional quality of seed protein and disease resistance in plants, respectively. Multiple marker-trait associations are identified for a range of agronomic traits, including grain yield through genome-wide association study. Improved genome assemblies and marker resources developed in this study provide a comprehensive framework/platform for future applications such as marker-assisted selection of mono/oligogenic traits as well as whole-genome prediction and haplotype-based breeding of complex traits.
Collapse
Affiliation(s)
- Punna Ramu
- Corteva Agriscience, Hyderabad, Telangana, India
| | - Rakesh K Srivastava
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India.
| | | | | | - Jun Cao
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Yun Zhang
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | | | | | | | - Gregory May
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | - Haining Lin
- Corteva Agriscience, Johnston, IA, 50131, USA
- Moderna, 200 Technology Square, Cambridge, MA, 02139, USA
| | - Matthew King
- Corteva Agriscience, Johnston, IA, 50131, USA
- Natera Inc, San Carlos, CA, 94070, USA
| | - Sayan Das
- Corteva Agriscience, Hyderabad, Telangana, India
| | - Vaid Bhupesh
- Corteva Agriscience, Hyderabad, Telangana, India
| | | | | | | | - Harish Gandhi
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad, India
| | - Rajeev Gupta
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Annapurna Chitikineni
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Prasad Bajaj
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| | - S K Gupta
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| | - C Tara Satyavathi
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | | | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India.
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Raman Babu
- Corteva Agriscience, Hyderabad, Telangana, India.
| |
Collapse
|
30
|
Carr EC, Barton Q, Grambo S, Sullivan M, Renfro CM, Kuo A, Pangilinan J, Lipzen A, Keymanesh K, Savage E, Barry K, Grigoriev IV, Riekhof WR, Harris SD. Characterization of a novel polyextremotolerant fungus, Exophiala viscosa, with insights into its melanin regulation and ecological niche. G3 (BETHESDA, MD.) 2023; 13:jkad110. [PMID: 37221014 PMCID: PMC10411609 DOI: 10.1093/g3journal/jkad110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/25/2023]
Abstract
Black yeasts are polyextremotolerant fungi that contain high amounts of melanin in their cell wall and maintain a primar yeast form. These fungi grow in xeric, nutrient depletes environments which implies that they require highly flexible metabolisms and have been suggested to contain the ability to form lichen-like mutualisms with nearby algae and bacteria. However, the exact ecological niche and interactions between these fungi and their surrounding community are not well understood. We have isolated 2 novel black yeasts from the genus Exophiala that were recovered from dryland biological soil crusts. Despite notable differences in colony and cellular morphology, both fungi appear to be members of the same species, which has been named Exophiala viscosa (i.e. E. viscosa JF 03-3 Goopy and E. viscosa JF 03-4F Slimy). A combination of whole genome sequencing, phenotypic experiments, and melanin regulation experiments have been performed on these isolates to fully characterize these fungi and help decipher their fundamental niche within the biological soil crust consortium. Our results reveal that E. viscosa is capable of utilizing a wide variety of carbon and nitrogen sources potentially derived from symbiotic microbes, can withstand many forms of abiotic stresses, and excretes melanin which can potentially provide ultraviolet resistance to the biological soil crust community. Besides the identification of a novel species within the genus Exophiala, our study also provides new insight into the regulation of melanin production in polyextremotolerant fungi.
Collapse
Affiliation(s)
- Erin C Carr
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Quin Barton
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Sarah Grambo
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Mitchell Sullivan
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Cecile M Renfro
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Keykhosrow Keymanesh
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emily Savage
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Wayne R Riekhof
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Steven D Harris
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
31
|
Wu D, Xie L, Sun Y, Huang Y, Jia L, Dong C, Shen E, Ye CY, Qian Q, Fan L. A syntelog-based pan-genome provides insights into rice domestication and de-domestication. Genome Biol 2023; 24:179. [PMID: 37537691 PMCID: PMC10401782 DOI: 10.1186/s13059-023-03017-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Asian rice is one of the world's most widely cultivated crops. Large-scale resequencing analyses have been undertaken to explore the domestication and de-domestication genomic history of Asian rice, but the evolution of rice is still under debate. RESULTS Here, we construct a syntelog-based rice pan-genome by integrating and merging 74 high-accuracy genomes based on long-read sequencing, encompassing all ecotypes and taxa of Oryza sativa and Oryza rufipogon. Analyses of syntelog groups illustrate subspecies divergence in gene presence-and-absence and haplotype composition and identify massive genomic regions putatively introgressed from ancient Geng/japonica to ancient Xian/indica or its wild ancestor, including almost all well-known domestication genes and a 4.5-Mbp centromere-spanning block, supporting a single domestication event in main rice subspecies. Genomic comparisons between weedy and cultivated rice highlight the contribution from wild introgression to the emergence of de-domestication syndromes in weedy rice. CONCLUSIONS This work highlights the significance of inter-taxa introgression in shaping diversification and divergence in rice evolution and provides an exploratory attempt by utilizing the advantages of pan-genomes in evolutionary studies.
Collapse
Affiliation(s)
- Dongya Wu
- Hainan Institute of Zhejiang University, Sanya, 572025, China
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
- Center for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, 310058, China
| | - Lingjuan Xie
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Yanqing Sun
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Yujie Huang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lei Jia
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Chenfeng Dong
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Enhui Shen
- Hainan Institute of Zhejiang University, Sanya, 572025, China
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Chu-Yu Ye
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Longjiang Fan
- Hainan Institute of Zhejiang University, Sanya, 572025, China.
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Dash PK, Gupta P, Sreevathsa R, Pradhan SK, Sanjay TD, Mohanty MR, Roul PK, Singh NK, Rai R. Phylogenomic Analysis of micro-RNA Involved in Juvenile to Flowering-Stage Transition in Photophilic Rice and Its Sister Species. Cells 2023; 12:1370. [PMID: 37408207 DOI: 10.3390/cells12101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 07/07/2023] Open
Abstract
Vegetative to reproductive phase transition in phototropic plants is an important developmental process and is sequentially mediated by the expression of micro-RNA MIR172. To obtain insight into the evolution, adaptation, and function of MIR172 in photophilic rice and its wild relatives, we analyzed the genescape of a 100 kb segment harboring MIR172 homologs from 11 genomes. The expression analysis of MIR172 revealed its incremental accumulation from the 2-leaf to 10-leaf stage, with maximum expression coinciding with the flag-leaf stage in rice. Nonetheless, the microsynteny analysis of MIR172s revealed collinearity within the genus Oryza, but a loss of synteny was observed in (i) MIR172A in O. barthii (AA) and O. glaberima (AA); (ii) MIR172B in O. brachyantha (FF); and (iii) MIR172C in O. punctata (BB). Phylogenetic analysis of precursor sequences/region of MIR172 revealed a distinct tri-modal clade of evolution. The genomic information generated in this investigation through comparative analysis of MIRNA, suggests mature MIR172s to have evolved in a disruptive and conservative mode amongst all Oryza species with a common origin of descent. Further, the phylogenomic delineation provided an insight into the adaptation and molecular evolution of MIR172 to changing environmental conditions (biotic and abiotic) of phototropic rice through natural selection and the opportunity to harness untapped genomic regions from rice wild relatives (RWR).
Collapse
Affiliation(s)
- Prasanta K Dash
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Payal Gupta
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | | | | | - Mihir Ranjan Mohanty
- Department of Genetics & Plant Breeding (RRTTS, Jeypore), Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Pravat K Roul
- Department of Genetics & Plant Breeding (RRTTS, Jeypore), Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Nagendra K Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Rhitu Rai
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
33
|
Gidhi A, Mohapatra A, Fatima M, Jha SK, Kumar M, Mukhopadhyay K. Insights of auxin signaling F-box genes in wheat (Triticum aestivum L.) and their dynamic expression during the leaf rust infection. PROTOPLASMA 2023; 260:723-739. [PMID: 36100728 DOI: 10.1007/s00709-022-01808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB) protein serves as auxin receptor and links with Aux/IAA repressor protein leading to its degradation via SKP-Cullin-F box (SCFTIR1/AFB) complex in the auxin signaling pathway. Present study revealed 11 TIR1/AFB genes in wheat by genome-wide search using AFB HMM profile. Phylogenetic analysis clustered these genes in two classes. Several phytohormone, abiotic, and biotic stress responsive cis-elements were detected in promoter regions of TIR1/AFB genes. These genes were localized on homoeologous chromosome groups 2, 3, and 5 showing orthologous relation with other monocot plants. Most genes were interrupted by introns and the gene products were localized in cytoplasm, nucleus, and cell organelles. TaAFB3, TaAFB5, and TaAFB8 had nuclear localization signals. The evolutionary constraint suggested paralogous sister pairs and orthologous genes went through strong purifying selection process and are slowly evolving at protein level. Functional annotation revealed all TaAFB genes participated in auxin activated signaling pathway and SCF-mediated ubiquitination process. Furthermore, in silico expression study revealed their diverse expression profiles during various developmental stages in different tissues and organs as well as during biotic and abiotic stress. QRT-PCR based studies suggested distinct expression pattern of TIR1-1, TIR1-3, TaAFB1, TaAFB2, TaAFB3, TaAFB4, TaAFB5, TaAFB7, and TaAFB8 displaying maximum expression at 24 and 48 h post inoculation in both susceptible and resistant near isogenic wheat lines infected with leaf rust pathogen. Importantly, this also reflects coordinated responses in expression patterns of wheat TIR1/AFB genes during progression stages of leaf rust infection.
Collapse
Affiliation(s)
- Anupama Gidhi
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Archit Mohapatra
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Mehar Fatima
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
34
|
Mao Y, Peng T, Shao F, Zhao Q, Peng Z. Molecular evolution of the hemoglobin gene family across vertebrates. Genetica 2023:10.1007/s10709-023-00187-9. [PMID: 37069365 DOI: 10.1007/s10709-023-00187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Adaptation to various altitudes and oxygen levels is a major aspect of vertebrate evolution. Hemoglobin is an erythrocyte protein belonging to the globin superfamily, and the α-, β-globin genes of jawed vertebrates encode tetrameric ((α2β2) hemoglobin, which contributes to aerobic metabolism by delivering oxygen from the respiratory exchange surfaces into cells. However, there are various gaps in knowledge regarding hemoglobin gene evolution, including patterns in cartilaginous fish and the roles of gene conversion in various taxa. Hence, we evaluated the evolutionary history of the vertebrate hemoglobin gene family by analyses of 97 species representing all classes of vertebrates. By genome-wide analyses, we extracted 879 hemoglobin sequences. Members of the hemoglobin gene family were conserved in birds and reptiles but variable in mammals, amphibians, and teleosts. Gene motifs, structures, and synteny were relatively well-conserved among vertebrates. Our results revealed that purifying selection contributed substantially to the evolution of all vertebrate hemoglobin genes, with mean dN/dS (ω) values ranging from 0.057 in teleosts to 0.359 in reptiles. In general, after the fish-specific genome duplication, the teleost hemoglobin genes showed variation in rates of evolution, and the β-globin genes showed relatively high ω values after a gene transposition event in amniotes. We also observed that the frequency of gene conversion was high in amniotes, with fewer hemoglobin genes and higher rates of evolution. Collectively, our findings provide detail insight into complex evolutionary processes shaping the vertebrate hemoglobin gene family, involving gene duplication, gene loss, purifying selection, and gene conversion.
Collapse
Affiliation(s)
- Yang Mao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
- Clinical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Taotao Peng
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Qingyuan Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China.
| |
Collapse
|
35
|
Xie QP, Zhan W, Shi JZ, Liu F, Niu BL, He X, Liu M, Wang J, Liang QQ, Xie Y, Xu P, Wang X, Lou B. Whole-genome assembly and annotation for the little yellow croaker (Larimichthys polyactis) provide insights into the evolution of hermaphroditism and gonochorism. Mol Ecol Resour 2023; 23:632-658. [PMID: 36330680 DOI: 10.1111/1755-0998.13731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The evolutionary direction of gonochorism and hermaphroditism is an intriguing mystery to be solved. The special transient hermaphroditic stage makes the little yellow croaker (Larimichthys polyactis) an appealing model for studying hermaphrodite formation. However, the origin and evolutionary relationship between of L. polyactis and Larimichthys crocea, the most famous commercial fish species in East Asia, remain unclear. Here, we report the sequence of the L. polyactis genome, which we found is ~706 Mb long (contig N50 = 1.21 Mb and scaffold N50 = 4.52 Mb) and contains 25,233 protein-coding genes. Phylogenomic analysis suggested that L. polyactis diverged from the common ancestor, L. crocea, approximately 25.4 million years ago. Our high-quality genome assembly enabled comparative genomic analysis, which revealed several within-chromosome rearrangements and translocations, without major chromosome fission or fusion events between the two species. The dmrt1 gene was identified as the male-specific gene in L. polyactis. Transcriptome analysis showed that the expression of dmrt1 and its upstream regulatory gene (rnf183) were both sexually dimorphic. Rnf183, unlike its two paralogues rnf223 and rnf225, is only present in Larimichthys and Lates but not in other teleost species, suggesting that it originated from lineage-specific duplication or was lost in other teleosts. Phylogenetic analysis shows that the hermaphrodite stage in male L. polyactis may be explained by the sequence evolution of dmrt1. Decoding the L. polyactis genome not only provides insight into the genetic underpinnings of hermaphrodite evolution, but also provides valuable information for enhancing fish aquaculture.
Collapse
Affiliation(s)
- Qing-Ping Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Zhi Shi
- Novogene Bioinformatics Institute, Beijing, China
| | - Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Bao-Long Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xue He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meng Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Jing Wang
- Novogene Bioinformatics Institute, Beijing, China
| | - Qi-Qi Liang
- Novogene Bioinformatics Institute, Beijing, China
| | - Yue Xie
- Novogene Bioinformatics Institute, Beijing, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.,Alabama Agricultural Experiment Station, Auburn, Alabama, USA.,The HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
36
|
Zhou Y, Yu Z, Chebotarov D, Chougule K, Lu Z, Rivera LF, Kathiresan N, Al-Bader N, Mohammed N, Alsantely A, Mussurova S, Santos J, Thimma M, Troukhan M, Fornasiero A, Green CD, Copetti D, Kudrna D, Llaca V, Lorieux M, Zuccolo A, Ware D, McNally K, Zhang J, Wing RA. Pan-genome inversion index reveals evolutionary insights into the subpopulation structure of Asian rice. Nat Commun 2023; 14:1567. [PMID: 36944612 PMCID: PMC10030860 DOI: 10.1038/s41467-023-37004-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
Understanding and exploiting genetic diversity is a key factor for the productive and stable production of rice. Here, we utilize 73 high-quality genomes that encompass the subpopulation structure of Asian rice (Oryza sativa), plus the genomes of two wild relatives (O. rufipogon and O. punctata), to build a pan-genome inversion index of 1769 non-redundant inversions that span an average of ~29% of the O. sativa cv. Nipponbare reference genome sequence. Using this index, we estimate an inversion rate of ~700 inversions per million years in Asian rice, which is 16 to 50 times higher than previously estimated for plants. Detailed analyses of these inversions show evidence of their effects on gene expression, recombination rate, and linkage disequilibrium. Our study uncovers the prevalence and scale of large inversions (≥100 bp) across the pan-genome of Asian rice and hints at their largely unexplored role in functional biology and crop performance.
Collapse
Affiliation(s)
- Yong Zhou
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Arizona Genomics Institute (AGI), School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Zhichao Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dmytro Chebotarov
- International Rice Research Institute (IRRI), Los Baños, 4031, Laguna, Philippines
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Luis F Rivera
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Nagarajan Kathiresan
- Supercomputing Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Noor Al-Bader
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Nahed Mohammed
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aseel Alsantely
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Saule Mussurova
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - João Santos
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Manjula Thimma
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Alice Fornasiero
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Carl D Green
- Information Technology Department, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dario Copetti
- Arizona Genomics Institute (AGI), School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - David Kudrna
- Arizona Genomics Institute (AGI), School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Victor Llaca
- Research and Development, Corteva Agriscience, Johnston, IA, 50131, USA
| | - Mathias Lorieux
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Andrea Zuccolo
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, Pisa, 56127, Italy.
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- USDA ARS NEA Plant, Soil & Nutrition Laboratory Research Unit, Ithaca, NY, 14853, USA.
| | - Kenneth McNally
- International Rice Research Institute (IRRI), Los Baños, 4031, Laguna, Philippines.
| | - Jianwei Zhang
- Arizona Genomics Institute (AGI), School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Rod A Wing
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Arizona Genomics Institute (AGI), School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
- International Rice Research Institute (IRRI), Los Baños, 4031, Laguna, Philippines.
| |
Collapse
|
37
|
Sharma D, Sharma K, Mishra A, Siwach P, Mittal A, Jayaram B. Molecular dynamics simulation-based trinucleotide and tetranucleotide level structural and energy characterization of the functional units of genomic DNA. Phys Chem Chem Phys 2023; 25:7323-7337. [PMID: 36825435 DOI: 10.1039/d2cp04820e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Genomes of most organisms on earth are written in a universal language of life, made up of four units - adenine (A), thymine (T), guanine (G), and cytosine (C), and understanding the way they are put together has been a great challenge to date. Multiple efforts have been made to annotate this wonderfully engineered string of DNA using different methods but they lack a universal character. In this article, we have investigated the structural and energetic profiles of both prokaryotes and eukaryotes by considering two essential genomic sites, viz., the transcription start sites (TSS) and exon-intron boundaries. We have characterized these sites by mapping the structural and energy features of DNA obtained from molecular dynamics simulations, which considers all possible trinucleotide and tetranucleotide steps. For DNA, these physicochemical properties show distinct signatures at the TSS and intron-exon boundaries. Our results firmly convey the idea that DNA uses the same dialect for prokaryotes and eukaryotes and that it is worth going beyond sequence-level analyses to physicochemical space to determine the functional destiny of DNA sequences.
Collapse
Affiliation(s)
- Dinesh Sharma
- Supercomputing Facility for Bioinformatics & Computational Biology, Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Kopal Sharma
- Supercomputing Facility for Bioinformatics & Computational Biology, Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Akhilesh Mishra
- Supercomputing Facility for Bioinformatics & Computational Biology, Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Priyanka Siwach
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, India
| | - Aditya Mittal
- Supercomputing Facility for Bioinformatics & Computational Biology, Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - B Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology, Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India.,Department of Chemistry, Indian Institute of Technology, Delhi, India.
| |
Collapse
|
38
|
Healey AL, Piatkowski B, Lovell JT, Sreedasyam A, Carey SB, Mamidi S, Shu S, Plott C, Jenkins J, Lawrence T, Aguero B, Carrell AA, Nieto-Lugilde M, Talag J, Duffy A, Jawdy S, Carter KR, Boston LB, Jones T, Jaramillo-Chico J, Harkess A, Barry K, Keymanesh K, Bauer D, Grimwood J, Gunter L, Schmutz J, Weston DJ, Shaw AJ. Newly identified sex chromosomes in the Sphagnum (peat moss) genome alter carbon sequestration and ecosystem dynamics. NATURE PLANTS 2023; 9:238-254. [PMID: 36747050 PMCID: PMC9946827 DOI: 10.1038/s41477-022-01333-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Peatlands are crucial sinks for atmospheric carbon but are critically threatened due to warming climates. Sphagnum (peat moss) species are keystone members of peatland communities where they actively engineer hyperacidic conditions, which improves their competitive advantage and accelerates ecosystem-level carbon sequestration. To dissect the molecular and physiological sources of this unique biology, we generated chromosome-scale genomes of two Sphagnum species: S. divinum and S. angustifolium. Sphagnum genomes show no gene colinearity with any other reference genome to date, demonstrating that Sphagnum represents an unsampled lineage of land plant evolution. The genomes also revealed an average recombination rate an order of magnitude higher than vascular land plants and short putative U/V sex chromosomes. These newly described sex chromosomes interact with autosomal loci that significantly impact growth across diverse pH conditions. This discovery demonstrates that the ability of Sphagnum to sequester carbon in acidic peat bogs is mediated by interactions between sex, autosomes and environment.
Collapse
Affiliation(s)
- Adam L Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| | - Bryan Piatkowski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sarah B Carey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Sujan Mamidi
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Travis Lawrence
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Blanka Aguero
- Department of Biology, Duke University, Durham, NC, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Jayson Talag
- Arizona Genomics Institute, University of Arizona, Tucson, AZ, USA
| | - Aaron Duffy
- Department of Biology, Duke University, Durham, NC, USA
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kelsey R Carter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Lori-Beth Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Teresa Jones
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Alex Harkess
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Keykhosrow Keymanesh
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Diane Bauer
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Lee Gunter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | | |
Collapse
|
39
|
Sun M, Zhang Y, Bai H, Sun G, Zhang J, Shi L. Population diversity analyses provide insights into key horticultural traits of Chinese native thymes. HORTICULTURE RESEARCH 2023; 10:uhac262. [PMID: 36778183 PMCID: PMC9907056 DOI: 10.1093/hr/uhac262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 12/02/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Chinese native thymes (CNTs) in the genus Thymus (family Lamiaceae) are rich in bioactive terpenes, which exert antiviral, anti-inflammatory, antioxidation, immunological, and antimicrobial effects. Plants exhibit morphological variation, including erect-type and creeping-type growth forms; however, the molecular mechanisms underlying important horticultural traits have not been determined. Here, we collected 39 CNTs providing strategic plant resources for studies of lignin, terpenoids, and glandular trichomes of thymes. Using resequencing data as well as phenotypic, metabonomic, phylogenetic, population genetic, and transcriptomic analyses, we identified and characterized key genes involved in lignin biosynthesis, terpenoid biosynthesis, and glandular trichome formation. We found many regulatory genes or transcription factors related to these three important horticultural traits, including genes encoding caffeic acid O-methyltransferase (COMT), terpene synthase (TPS), v-myb avian myeloblastosis viral oncogene homolog (MYB), and homeodomain-leucine zipper (HD-ZIP). Population diversity analyses provided insights into growth form, terpenoid, and glandular trichome evolution in CNTs. Furthermore, our results revealed that T. mongolicus accessions might be wild ancestors, and T. quinquecostatus, T. quinquecostatus var. asiaticus, and T. quinquecostatus var. przewalskii might be transitional accessions that derived from T. mongolicus accessions. Finally, T. nervulosus, T. inaequalis, T. mandschuricus, T. curtus, T. amurensis, T. proximus, T. altaicus, T. roseus, and T. marschallianus showed high divergence. We found evidence for introgression between erect-type European cultivated thymes and CNTs. These findings improve our understanding of the determinants of variation in horticultural traits and provide candidate loci for research and breeding.
Collapse
Affiliation(s)
| | | | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Guofeng Sun
- China National Botanical Garden, Beijing 100093, China
| | | | - Lei Shi
- Corresponding author. E-mail: ,
| |
Collapse
|
40
|
Sheng K, Sun Y, Liu M, Cao Y, Han Y, Li C, Muhammad U, Daud MK, Wang W, Li H, Samrana S, Hui Y, Zhu S, Chen J, Zhao T. A reference-grade genome assembly for Gossypium bickii and insights into its genome evolution and formation of pigment glands and gossypol. PLANT COMMUNICATIONS 2023; 4:100421. [PMID: 35949167 PMCID: PMC9860168 DOI: 10.1016/j.xplc.2022.100421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 05/31/2023]
|
41
|
Moreyra NN, Almeida FC, Allan C, Frankel N, Matzkin LM, Hasson E. Phylogenomics provides insights into the evolution of cactophily and host plant shifts in Drosophila. Mol Phylogenet Evol 2023; 178:107653. [PMID: 36404461 DOI: 10.1016/j.ympev.2022.107653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Cactophilic species of the Drosophila buzzatii cluster (repleta group) comprise an excellent model group to investigate genomic changes underlying adaptation to extreme climate conditions and host plants. In particular, these species form a tractable system to study the transition from chemically simpler breeding sites (like prickly pears of the genus Opuntia) to chemically more complex hosts (columnar cacti). Here, we report four highly contiguous genome assemblies of three species of the buzzatii cluster. Based on this genomic data and inferred phylogenetic relationships, we identified candidate taxonomically restricted genes (TRGs) likely involved in the evolution of cactophily and cactus host specialization. Functional enrichment analyses of TRGs within the buzzatii cluster identified genes involved in detoxification, water preservation, immune system response, anatomical structure development, and morphogenesis. In contrast, processes that regulate responses to stress, as well as the metabolism of nitrogen compounds, transport, and secretion were found in the set of species that are columnar cacti dwellers. These findings are in line with the hypothesis that those genomic changes brought about key mechanisms underlying the adaptation of the buzzatii cluster species to arid regions in South America.
Collapse
Affiliation(s)
- Nicolás Nahuel Moreyra
- Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina.
| | - Francisca Cunha Almeida
- Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina.
| | - Carson Allan
- Department of Entomology, University of Arizona, Tucson, AZ 85719, USA.
| | - Nicolás Frankel
- Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina.
| | | | - Esteban Hasson
- Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
42
|
Sun G, Wase N, Shu S, Jenkins J, Zhou B, Torres-Rodríguez JV, Chen C, Sandor L, Plott C, Yoshinga Y, Daum C, Qi P, Barry K, Lipzen A, Berry L, Pedersen C, Gottilla T, Foltz A, Yu H, O'Malley R, Zhang C, Devos KM, Sigmon B, Yu B, Obata T, Schmutz J, Schnable JC. Genome of Paspalum vaginatum and the role of trehalose mediated autophagy in increasing maize biomass. Nat Commun 2022; 13:7731. [PMID: 36513676 PMCID: PMC9747981 DOI: 10.1038/s41467-022-35507-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
A number of crop wild relatives can tolerate extreme stress to a degree outside the range observed in their domesticated relatives. However, it is unclear whether or how the molecular mechanisms employed by these species can be translated to domesticated crops. Paspalum (Paspalum vaginatum) is a self-incompatible and multiply stress-tolerant wild relative of maize and sorghum. Here, we describe the sequencing and pseudomolecule level assembly of a vegetatively propagated accession of P. vaginatum. Phylogenetic analysis based on 6,151 single-copy syntenic orthologues conserved in 6 related grass species places paspalum as an outgroup of the maize-sorghum clade. In parallel metabolic experiments, paspalum, but neither maize nor sorghum, exhibits a significant increase in trehalose when grown under nutrient-deficit conditions. Inducing trehalose accumulation in maize, imitating the metabolic phenotype of paspalum, results in autophagy dependent increases in biomass accumulation.
Collapse
Affiliation(s)
- Guangchao Sun
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Nishikant Wase
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Biomolecular Analysis Facility. School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Bangjun Zhou
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - J Vladimir Torres-Rodríguez
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Cindy Chen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Laura Sandor
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Chris Plott
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Yuko Yoshinga
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Peng Qi
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Luke Berry
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Connor Pedersen
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Thomas Gottilla
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Ashley Foltz
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Huihui Yu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ronan O'Malley
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Brandi Sigmon
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Bin Yu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Toshihiro Obata
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA.
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA.
| | - James C Schnable
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
43
|
Wu Q, Cui Y, Jin X, Wang G, Yan L, Zhong C, Yu M, Li W, Wang Y, Wang L, Wang H, Dang C, Zhang X, Chen Y, Zhang P, Zhao X, Wu J, Fu D, Xia L, Nevo E, Vogel J, Huo N, Li D, Gu YQ, Jackson AO, Zhang Y, Liu Z. The CC-NB-LRR protein BSR1 from Brachypodium confers resistance to Barley stripe mosaic virus in gramineous plants by recognising TGB1 movement protein. THE NEW PHYTOLOGIST 2022; 236:2233-2248. [PMID: 36059081 DOI: 10.1111/nph.18457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Although some nucleotide binding, leucine-rich repeat immune receptor (NLR) proteins conferring resistance to specific viruses have been identified in dicot plants, NLR proteins involved in viral resistance have not been described in monocots. We have used map-based cloning to isolate the CC-NB-LRR (CNL) Barley stripe mosaic virus (BSMV) resistance gene barley stripe resistance 1 (BSR1) from Brachypodium distachyon Bd3-1 inbred line. Stable BSR1 transgenic Brachypodium line Bd21-3, barley (Golden Promise) and wheat (Kenong 199) plants developed resistance against BSMV ND18 strain. Allelic variation analyses indicated that BSR1 is present in several Brachypodium accessions collected from countries in the Middle East. Protein domain swaps revealed that the intact LRR domain and the C-terminus of BSR1 are required for resistance. BSR1 interacts with the BSMV ND18 TGB1 protein in planta and shows temperature-sensitive antiviral resistance. The R390 and T392 residues of TGB1ND (ND18 strain) and the G196 and K197 residues within the BSR1 P-loop motif are key amino acids required for immune activation. BSR1 is the first cloned virus resistance gene encoding a typical CNL protein in monocots, highlighting the utility of the Brachypodium model for isolation and analysis of agronomically important genes for crop improvement.
Collapse
Affiliation(s)
- Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Guoxin Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lijie Yan
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Meihua Yu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wenli Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hao Wang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chen Dang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Panpan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Zhao
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiajie Wu
- College of Agronomy, Shandong Agriculture University, Taian, 271018, China
| | - Daolin Fu
- College of Agronomy, Shandong Agriculture University, Taian, 271018, China
| | - Lanqin Xia
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Eviatar Nevo
- Institute of Evolution, Haifa University, Haifa, 31905, Israel
| | - John Vogel
- Joint Genome Institute, DOE, Walnut Creek, CA, 94598, USA
| | - Naxin Huo
- USDA-ARS Western Regional Research Center, Albany, CA, 94710, USA
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong Q Gu
- USDA-ARS Western Regional Research Center, Albany, CA, 94710, USA
| | - Andrew O Jackson
- Department of Plant and Microbiology, University of California, Berkeley, CA, 94720, USA
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
44
|
Sun M, Zhang Y, Zhu L, Liu N, Bai H, Sun G, Zhang J, Shi L. Chromosome-level assembly and analysis of the Thymus genome provide insights into glandular secretory trichome formation and monoterpenoid biosynthesis in thyme. PLANT COMMUNICATIONS 2022; 3:100413. [PMID: 35841150 PMCID: PMC9700128 DOI: 10.1016/j.xplc.2022.100413] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 06/01/2023]
Abstract
Thyme has medicinal and aromatic value because of its potent antimicrobial and antioxidant properties. However, the absence of a fully sequenced thyme genome limits functional genomic studies of Chinese native thymes. Thymus quinquecostatus Čelak., which contains large amounts of bioactive monoterpenes such as thymol and carvacrol, is an important wild medicinal and aromatic plant in China. Monoterpenoids are abundant in glandular secretory trichomes. Here, high-fidelity and chromatin conformation capture technologies were used to assemble and annotate the T. quinquecostatus genome at the chromosome level. The 13 chromosomes of T. quinquecostatus had a total length of 528.66 Mb, a contig N50 of 8.06 Mb, and a BUSCO score of 97.34%. We found that T. quinquecostatus had experienced two whole-genome duplications, with the most recent event occurring ∼4.34 million years ago. Deep analyses of the genome, in conjunction with comparative genomic, phylogenetic, transcriptomic, and metabonomic studies, uncovered many regulatory factors and genes related to monoterpenoids and glandular secretory trichome development. Genes encoding terpene synthase (TPS), cytochrome P450 monooxygenases (CYPs), short-chain dehydrogenase/reductase (SDR), R2R3-MYB, and homeodomain-leucine zipper (HD-ZIP) IV were among those present in the T. quinquecostatus genome. Notably, Tq02G002290.1 (TqTPS1) was shown to encode the terpene synthase responsible for catalyzing production of the main monoterpene product γ-terpinene from geranyl diphosphate (GPP). Our study provides significant insight into the mechanisms of glandular secretory trichome formation and monoterpenoid biosynthesis in thyme. This work will facilitate the development of molecular breeding tools to enhance the production of bioactive secondary metabolites in Lamiaceae.
Collapse
Affiliation(s)
- Meiyu Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanan Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningning Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guofeng Sun
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinzheng Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
45
|
Yim WC, Swain ML, Ma D, An H, Bird KA, Curdie DD, Wang S, Ham HD, Luzuriaga-Neira A, Kirkwood JS, Hur M, Solomon JKQ, Harper JF, Kosma DK, Alvarez-Ponce D, Cushman JC, Edger PP, Mason AS, Pires JC, Tang H, Zhang X. The final piece of the Triangle of U: Evolution of the tetraploid Brassica carinata genome. THE PLANT CELL 2022; 34:4143-4172. [PMID: 35961044 PMCID: PMC9614464 DOI: 10.1093/plcell/koac249] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/24/2022] [Indexed: 05/05/2023]
Abstract
Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.
Collapse
Affiliation(s)
| | | | - Dongna Ma
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201, USA
| | - Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - David D Curdie
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Samuel Wang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Hyun Don Ham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Juan K Q Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - Annaliese S Mason
- Plant Breeding Department, INRES, The University of Bonn, Bonn 53115, Germany
| | - J Chris Pires
- Division of Biological Sciences, Bond Life Sciences Center, , University of Missouri, Columbia, Missouri 65211, USA
| | - Haibao Tang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
46
|
Scarlett VT, Lovell JT, Shao M, Phillips J, Shu S, Lusinska J, Goodstein DM, Jenkins J, Grimwood J, Barry K, Chalhoub B, Schmutz J, Hasterok R, Catalán P, Vogel JP. Multiple origins, one evolutionary trajectory: gradual evolution characterizes distinct lineages of allotetraploid Brachypodium. Genetics 2022; 223:6758249. [PMID: 36218464 PMCID: PMC9910409 DOI: 10.1093/genetics/iyac146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The "genomic shock" hypothesis posits that unusual challenges to genome integrity such as whole genome duplication may induce chaotic genome restructuring. Decades of research on polyploid genomes have revealed that this is often, but not always the case. While some polyploids show major chromosomal rearrangements and derepression of transposable elements in the immediate aftermath of whole genome duplication, others do not. Nonetheless, all polyploids show gradual diploidization over evolutionary time. To evaluate these hypotheses, we produced a chromosome-scale reference genome for the natural allotetraploid grass Brachypodium hybridum, accession "Bhyb26." We compared 2 independently derived accessions of B. hybridum and their deeply diverged diploid progenitor species Brachypodium stacei and Brachypodium distachyon. The 2 B. hybridum lineages provide a natural timecourse in genome evolution because one formed 1.4 million years ago, and the other formed 140 thousand years ago. The genome of the older lineage reveals signs of gradual post-whole genome duplication genome evolution including minor gene loss and genome rearrangement that are missing from the younger lineage. In neither B. hybridum lineage do we find signs of homeologous recombination or pronounced transposable element activation, though we find evidence supporting steady post-whole genome duplication transposable element activity in the older lineage. Gene loss in the older lineage was slightly biased toward 1 subgenome, but genome dominance was not observed at the transcriptomic level. We propose that relaxed selection, rather than an abrupt genomic shock, drives evolutionary novelty in B. hybridum, and that the progenitor species' similarity in transposable element load may account for the subtlety of the observed genome dominance.
Collapse
Affiliation(s)
- Virginia T Scarlett
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Mingqin Shao
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Jeremy Phillips
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Shengqiang Shu
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - David M Goodstein
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Kerrie Barry
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - Jeremy Schmutz
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA,Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | | | - John P Vogel
- Corresponding author: U.S. Dept. of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
47
|
Han L, Li J, Wang W, Luo K, Chai M, Xiang C, Luo Z, Ren L, Gu Q, Tao M, Zhang C, Wang J, Liu S. Immunoglobulin heavy-chain loci in ancient allotetraploid goldfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104476. [PMID: 35718131 DOI: 10.1016/j.dci.2022.104476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
As an ancient allotetraploid species, goldfish (Carassius auratus) have two sets of subgenomes. In this study, immunoglobulin heavy-chain (IGH) genes were cloned from the red crucian carp (Carassius auratus red var.), and the corresponding loci were identified in the gynogenetic diploid red crucian carp (GRCC) genome as well as the genomes of three other goldfish strains (Wakin, G-12, and CaTCV-1). Examination showed that each goldfish strain possessed two sets of parallel IGH loci: a complete IGHA locus and a degenerated IGHB locus that was nearly 40 × smaller. In the IGHA locus, multiple τ chain loci were arranged in tandem between the μ&δ chain locus and the variable genes, but no τ-like genes were found in the IGHB locus.
Collapse
Affiliation(s)
- Linmei Han
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jihong Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Wen Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Mingli Chai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Caixia Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Ziye Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Qianhong Gu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
48
|
Zhang W, Wang H, Brandt DYC, Hu B, Sheng J, Wang M, Luo H, Li Y, Guo S, Sheng B, Zeng Q, Peng K, Zhao D, Jian S, Wu D, Wang J, Zhao G, Ren J, Shi W, van Esch JHM, Klingunga S, Nielsen R, Hong Y. The genetic architecture of phenotypic diversity in the Betta fish ( Betta splendens). SCIENCE ADVANCES 2022; 8:eabm4955. [PMID: 36129976 PMCID: PMC9491723 DOI: 10.1126/sciadv.abm4955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 08/03/2022] [Indexed: 05/28/2023]
Abstract
The Betta fish displays a remarkable variety of phenotypes selected during domestication. However, the genetic basis underlying these traits remains largely unexplored. Here, we report a high-quality genome assembly and resequencing of 727 individuals representing diverse morphotypes of the Betta fish. We show that current breeds have a complex domestication history with extensive introgression with wild species. Using a genome-wide association study, we identify the genetic basis of multiple traits, including coloration patterns, the "Dumbo" phenotype with pectoral fin outgrowth, extraordinary enlargement of body size that we map to a major locus on chromosome 8, the sex determination locus that we map to dmrt1, and the long-fin phenotype that maps to the locus containing kcnj15. We also identify a polygenic signal related to aggression, involving multiple neural system-related genes such as esyt2, apbb2, and pank2. Our study provides a resource for developing the Betta fish as a genetic model for morphological and behavioral research in vertebrates.
Collapse
Affiliation(s)
- Wanchang Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Hongru Wang
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Débora Y. C. Brandt
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Beijuan Hu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Junqing Sheng
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Mengnan Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Haijiang Luo
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Yahui Li
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Shujie Guo
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Bin Sheng
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Qi Zeng
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Kou Peng
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Daxian Zhao
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Shaoqing Jian
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Di Wu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Junhua Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Guang Zhao
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Jun Ren
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wentian Shi
- Faculty of Philosophy, University of Tübingen, Tübingen 72074, Germany
| | - Joep H. M. van Esch
- Biology and Medical Laboratory Research, Rotterdam University of Applied Sciences, Rotterdam 3015, Netherlands
| | - Sirawut Klingunga
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Globe Institute, University of Copenhagen, Copenhagen DK-1165, Denmark
| | - Yijiang Hong
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- Key Laboratory of Aquatic Resources and Utilization, Nanchang University, Nanchang 330031, China
| |
Collapse
|
49
|
Marchant DB, Chen G, Cai S, Chen F, Schafran P, Jenkins J, Shu S, Plott C, Webber J, Lovell JT, He G, Sandor L, Williams M, Rajasekar S, Healey A, Barry K, Zhang Y, Sessa E, Dhakal RR, Wolf PG, Harkess A, Li FW, Rössner C, Becker A, Gramzow L, Xue D, Wu Y, Tong T, Wang Y, Dai F, Hua S, Wang H, Xu S, Xu F, Duan H, Theißen G, McKain MR, Li Z, McKibben MTW, Barker MS, Schmitz RJ, Stevenson DW, Zumajo-Cardona C, Ambrose BA, Leebens-Mack JH, Grimwood J, Schmutz J, Soltis PS, Soltis DE, Chen ZH. Dynamic genome evolution in a model fern. NATURE PLANTS 2022; 8:1038-1051. [PMID: 36050461 PMCID: PMC9477723 DOI: 10.1038/s41477-022-01226-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/15/2022] [Indexed: 05/31/2023]
Abstract
The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii. The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology.
Collapse
Affiliation(s)
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Shengguan Cai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | | | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jenell Webber
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Guifen He
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Laura Sandor
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Melissa Williams
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Adam Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yinwen Zhang
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Emily Sessa
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Rijan R Dhakal
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Paul G Wolf
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Alex Harkess
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Clemens Rössner
- Justus-Liebig-University, Department of Biology and Chemistry, Institute of Botany, Gießen, Germany
| | - Annette Becker
- Justus-Liebig-University, Department of Biology and Chemistry, Institute of Botany, Gießen, Germany
| | - Lydia Gramzow
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yuhuan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Tao Tong
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Dai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuijin Hua
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shengchun Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fei Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
| | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Michael R McKain
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Zheng Li
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, USA.
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, New South Wales, Australia.
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
| |
Collapse
|
50
|
Plewiński P, Rychel-Bielska S, Kozak B, Maureira-Butler IJ, Iqbal MM, Nelson MN, Książkiewicz M. FLOWERING LOCUS T indel variants confer vernalization-independent and photoperiod-insensitive flowering of yellow lupin ( Lupinus luteus L.). HORTICULTURE RESEARCH 2022; 9:uhac180. [PMID: 36338848 PMCID: PMC9627521 DOI: 10.1093/hr/uhac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
Ongoing climate change has considerably reduced the seasonal window for crop vernalization, concurrently expanding cultivation area into northern latitudes with long-day photoperiod. To address these changes, cool season legume breeders need to understand molecular control of vernalization and photoperiod. A key floral transition gene integrating signals from these pathways is the Flowering locus T (FT). Here, a recently domesticated grain legume, yellow lupin (Lupinus luteus L.), was explored for potential involvement of FT homologues in abolition of vernalization and photoperiod requirements. Two FTa (LlutFTa1a and LlutFTa1b) and FTc (LlutFTc1 and LlutFTc2) homologues were identified and sequenced for two contrasting parents of a reference recombinant inbred line (RIL) population, an early-flowering cultivar Wodjil and a late-flowering wild-type P28213. Large deletions were detected in the 5' promoter regions of three FT homologues. Quantitative trait loci were identified for flowering time and vernalization response in the RIL population and in a diverse panel of wild and domesticated accessions. A 2227 bp deletion found in the LlutFTc1 promoter was linked with early phenology and vernalization independence, whereas LlutFTa1a and LlutFTc2 indels with photoperiod responsiveness. Comparative mapping highlighted convergence of FTc1 indel evolution in two Old World lupin species, addressing both artificial selection during domestication and natural adaptation to short season environmental conditions. We concluded that rapid flowering in yellow lupin is associated with the de-repression of the LlutFTc1 homologue from the juvenile phase, putatively due to the elimination of all binding sites in the promoter region for the AGAMOUS-like 15 transcription factor.
Collapse
Affiliation(s)
- Piotr Plewiński
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Iván J Maureira-Butler
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia, Chile
| | - Muhammad Munir Iqbal
- Centre for Plant Genetics and Breeding, The University of Western Australia, Perth, 6009, WA, Australia
- Genomics WA, Joint initiative of Telethon Kids Institute, Harry Perkins Institute of Medical Research and The University of Western Australia, QEII campus, Nedlands, 6009, Western Australia, Australia
| | - Matthew N Nelson
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| | | |
Collapse
|