1
|
Castro-Arnau J, Chauvigné F, González A, Finn RN, Carrascal M, Cerdà J. Post-testicular spermatozoa of a marine teleost can conduct de novo cytoplasmic and mitochondrial translation. iScience 2025; 28:111537. [PMID: 39801836 PMCID: PMC11719862 DOI: 10.1016/j.isci.2024.111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Translational silence of spermatozoa has long been considered the norm in animals. However, studies in mammals have shown that the mitochondrial ribosomal machinery is selectively activated during capacitation in the female reproductive tract, while cytosolic ribosomes remain inactive. Here, using quantitative proteomics in a piscine model species, we show that proteins involved in mRNA processing and cytoplasmic translation are predominantly accumulated in immature spermatozoa within the extratesticular excurrent ducts, while those related to flagellar motility are enriched in ejaculated (mature) sperm. Based upon in vitro incubation of isolated spermatozoa, motility assays and polysome profiling, we further show that 80S cytoplasmic and 55S mitochondrial ribosomes are actively involved in the translation of motility- and osmoadaptation-related proteins. These findings thus reveal that post-testicular piscine spermatozoa can maintain de novo protein synthesis through both mitochondrial and cytoplasmic ribosomal activity, which is necessary for the acquisition of full sperm function.
Collapse
Affiliation(s)
- Júlia Castro-Arnau
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Asier González
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Roderick Nigel Finn
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Montserrat Carrascal
- Biological and Environmental Proteomics Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC/IDIBAPS), 08036 Barcelona, Spain
| | - Joan Cerdà
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
2
|
Johnston W, Adil S, Cao C, Nipu N, Mennigen JA. Fish models to explore epigenetic determinants of hypoxia-tolerance. Comp Biochem Physiol A Mol Integr Physiol 2025; 302:111811. [PMID: 39778711 DOI: 10.1016/j.cbpa.2025.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The occurrence of environmental hypoxia in freshwater and marine aquatic systems has increased over the last century and is predicted to further increase with climate change. As members of the largest extant vertebrate group, freshwater fishes, and to a much lesser extent marine fishes, are vulnerable to increased occurrence of hypoxia. This is important as fishes render important ecosystem services and have important cultural and economic roles. Evolutionarily successful, fishes have adapted to diverse aquatic freshwater and marine habitats with different oxygen conditions. While some fishes exhibit genetic adaptions to tolerate hypoxia and even anoxia, others are limited to oxygen-rich habitats. Recent advances in molecular epigenetics have shown that some epigenetic machinery, especially histone- and DNA demethylases, is directly dependent on oxygen and modulates important transcription-regulating epigenetic marks in the process. At the post-transcriptional level, hypoxia has been shown to affect non-coding microRNA abundance. Together, this evidence adds a new molecular epigenetic basis to study hypoxia tolerance in fishes. Here, we review the documented and predicted changes in environmental hypoxia in aquatic systems and discuss the diversity and comparative physiology of hypoxia tolerance in fishes, including molecular and physiological adaptations. We then discuss how recent mechanistic advances in environmental epigenetics can inform future work probing the role of oxygen-dependent epigenetic marks in shaping organismal hypoxia-tolerance in fishes with a focus on within- and between-species variation, acclimation, inter- and multigenerational plasticity, and multiple climate-change stressors. We conclude by describing the translational potential of this approach for conservation physiology, ecotoxicology, and aquaculture.
Collapse
Affiliation(s)
- William Johnston
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Sally Adil
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Catherine Cao
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Niepukolie Nipu
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Kitaoka M, Yamashita YM. Running the gauntlet: challenges to genome integrity in spermiogenesis. Nucleus 2024; 15:2339220. [PMID: 38594652 PMCID: PMC11005813 DOI: 10.1080/19491034.2024.2339220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Species' continuity depends on gametogenesis to produce the only cell types that can transmit genetic information across generations. Spermiogenesis, which encompasses post-meiotic, haploid stages of male gametogenesis, is a process that leads to the formation of sperm cells well-known for their motility. Spermiogenesis faces three major challenges. First, after two rounds of meiotic divisions, the genome lacks repair templates (no sister chromatids, no homologous chromosomes), making it incredibly vulnerable to any genomic insults over an extended time (typically days-weeks). Second, the sperm genome becomes transcriptionally silent, making it difficult to respond to new perturbations as spermiogenesis progresses. Third, the histone-to-protamine transition, which is essential to package the sperm genome, counterintuitively involves DNA break formation. How spermiogenesis handles these challenges remains poorly understood. In this review, we discuss each challenge and their intersection with the biology of protamines. Finally, we discuss the implication of protamines in the process of evolution.
Collapse
Affiliation(s)
- Maiko Kitaoka
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Yukiko M. Yamashita
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Matlosz S, Franzdóttir SR, Pálsson A, Jónsson ZO. DNA methylation reprogramming in teleosts. Evol Dev 2024; 26:e12486. [PMID: 38783650 DOI: 10.1111/ede.12486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Early embryonic development is crucially important but also remarkably diverse among animal taxa. Axis formation and cell lineage specification occur due to both spatial and temporal control of gene expression. This complex system involves various signaling pathways and developmental genes such as transcription factors as well as other molecular interactants that maintain cellular states, including several types of epigenetic marks. 5mC DNA methylation, the chemical modification of cytosines in eukaryotes, represents one such mark. By influencing the compaction of chromatin (a high-order DNA structure), DNA methylation can either repress or induce transcriptional activity. Mammals exhibit a reprogramming of DNA methylation from the parental genomes in the zygote following fertilization, and later in primordial germ cells (PGCs). Whether these periods of methylation reprogramming are evolutionarily conserved, or an innovation in mammals, is an emerging question. Looking into these processes in other vertebrate lineages is thus important, and teleost fish, with their extensive species richness, phenotypic diversity, and multiple rounds of whole genome duplication, provide the perfect research playground for answering such a question. This review aims to present a concise state of the art of DNA methylation reprogramming in early development in fish by summarizing findings from different research groups investigating methylation reprogramming patterns in teleosts, while keeping in mind the ramifications of the methodology used, then comparing those patterns to reprogramming patterns in mammals.
Collapse
Affiliation(s)
- Sébastien Matlosz
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | | | - Arnar Pálsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Zophonías O Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
5
|
Rbbani G, Murshed R, Siriyappagouder P, Sharko F, Nedoluzhko A, Joshi R, Galindo-Villegas J, Raeymaekers JAM, Fernandes JMO. Embryonic temperature has long-term effects on muscle circRNA expression and somatic growth in Nile tilapia. Front Cell Dev Biol 2024; 12:1369758. [PMID: 39149515 PMCID: PMC11324953 DOI: 10.3389/fcell.2024.1369758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Embryonic temperature has a lasting impact on muscle phenotype in vertebrates, involving complex molecular mechanisms that encompass both protein-coding and non-coding genes. Circular RNAs (circRNAs) are a class of regulatory RNAs that play important roles in various biological processes, but the effect of variable thermal conditions on the circRNA transcriptome and its long-term impact on muscle growth plasticity remains largely unexplored. To fill this knowledge gap, we performed a transcriptomic analysis of circRNAs in fast muscle of Nile tilapia (Oreochromis niloticus) subjected to different embryonic temperatures (24°C, 28°C and 32°C) and then reared at a common temperature (28°C) for 4 months. Nile tilapia embryos exhibited faster development and subsequently higher long-term growth at 32°C compared to those reared at 28°C and 24°C. Next-generation sequencing data revealed a total of 5,141 unique circRNAs across all temperature groups, of which 1,604, 1,531, and 1,169 circRNAs were exclusively found in the 24°C, 28°C and 32°C groups, respectively. Among them, circNexn exhibited a 1.7-fold (log2) upregulation in the 24°C group and a 1.3-fold (log2) upregulation in the 32°C group when compared to the 28°C group. Conversely, circTTN and circTTN_b were downregulated in the 24°C groups compared to their 28°C and 32°C counterparts. Furthermore, these differentially expressed circRNAs were found to have multiple interactions with myomiRs, highlighting their potential as promising candidates for further investigation in the context of muscle growth plasticity. Taken together, our findings provide new insights into the molecular mechanisms that may underlie muscle growth plasticity in response to thermal variation in fish, with important implications in the context of climate change, fisheries and aquaculture.
Collapse
Affiliation(s)
- Golam Rbbani
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Riaz Murshed
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Fedor Sharko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
- Paleogenomics Laboratory, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
| | | | - Jorge Galindo-Villegas
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Jorge M. O. Fernandes
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Institute of Marine Sciences, Spanish National Research Council, Barcelona, Spain
| |
Collapse
|
6
|
Dubruille R, Herbette M, Revel M, Horard B, Chang CH, Loppin B. Histone removal in sperm protects paternal chromosomes from premature division at fertilization. Science 2023; 382:725-731. [PMID: 37943933 PMCID: PMC11180706 DOI: 10.1126/science.adh0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
The global replacement of histones with protamines in sperm chromatin is widespread in animals, including insects, but its actual function remains enigmatic. We show that in the Drosophila paternal effect mutant paternal loss (pal), sperm chromatin retains germline histones H3 and H4 genome wide without impairing sperm viability. However, after fertilization, pal sperm chromosomes are targeted by the egg chromosomal passenger complex and engage into a catastrophic premature division in synchrony with female meiosis II. We show that pal encodes a rapidly evolving transition protein specifically required for the eviction of (H3-H4)2 tetramers from spermatid DNA after the removal of H2A-H2B dimers. Our study thus reveals an unsuspected role of histone eviction from insect sperm chromatin: safeguarding the integrity of the male pronucleus during female meiosis.
Collapse
Affiliation(s)
- Raphaälle Dubruille
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Marion Herbette
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Maxime Revel
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Béatrice Horard
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
7
|
Ross SE, Vázquez-Marín J, Gert KRB, González-Rajal Á, Dinger ME, Pauli A, Martínez-Morales JR, Bogdanovic O. Evolutionary conservation of embryonic DNA methylome remodelling in distantly related teleost species. Nucleic Acids Res 2023; 51:9658-9671. [PMID: 37615576 PMCID: PMC10570028 DOI: 10.1093/nar/gkad695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Methylation of cytosines in the CG context (mCG) is the most abundant DNA modification in vertebrates that plays crucial roles in cellular differentiation and identity. After fertilization, DNA methylation patterns inherited from parental gametes are remodelled into a state compatible with embryogenesis. In mammals, this is achieved through the global erasure and re-establishment of DNA methylation patterns. However, in non-mammalian vertebrates like zebrafish, no global erasure has been observed. To investigate the evolutionary conservation and divergence of DNA methylation remodelling in teleosts, we generated base resolution DNA methylome datasets of developing medaka and medaka-zebrafish hybrid embryos. In contrast to previous reports, we show that medaka display comparable DNA methylome dynamics to zebrafish with high gametic mCG levels (sperm: ∼90%; egg: ∼75%), and adoption of a paternal-like methylome during early embryogenesis, with no signs of prior DNA methylation erasure. We also demonstrate that non-canonical DNA methylation (mCH) reprogramming at TGCT tandem repeats is a conserved feature of teleost embryogenesis. Lastly, we find remarkable evolutionary conservation of DNA methylation remodelling patterns in medaka-zebrafish hybrids, indicative of compatible DNA methylation maintenance machinery in far-related teleost species. Overall, these results suggest strong evolutionary conservation of DNA methylation remodelling pathways in teleosts, which is distinct from the global DNA methylome erasure and reestablishment observed in mammals.
Collapse
Affiliation(s)
- Samuel E Ross
- Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Javier Vázquez-Marín
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Krista R B Gert
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | - Álvaro González-Rajal
- Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Juan Ramon Martínez-Morales
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| |
Collapse
|
8
|
Islam KN, Ajao A, Venkataramani K, Rivera J, Pathania S, Henke K, Siegfried KR. The RNA-binding protein Adad1 is necessary for germ cell maintenance and meiosis in zebrafish. PLoS Genet 2023; 19:e1010589. [PMID: 37552671 PMCID: PMC10437952 DOI: 10.1371/journal.pgen.1010589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/18/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
The double stranded RNA binding protein Adad1 (adenosine deaminase domain containing 1) is a member of the adenosine deaminase acting on RNAs (Adar) protein family with germ cell-specific expression. In mice, Adad1 is necessary for sperm differentiation, however its function outside of mammals has not been investigated. Here, through an N-ethyl-N-nitrosourea (ENU) based forward genetic screen, we identified an adad1 mutant zebrafish line that develops as sterile males. Further histological examination revealed complete lack of germ cells in adult mutant fish, however germ cells populated the gonad, proliferated, and entered meiosis in larval and juvenile fish. Although meiosis was initiated in adad1 mutant testes, the spermatocytes failed to progress beyond the zygotene stage. Thus, Adad1 is essential for meiosis and germline maintenance in zebrafish. We tested if spermatogonial stem cells were affected using nanos2 RNA FISH and a label retaining cell (LRC) assay, and found that the mutant testes had fewer LRCs and nanos2-expressing cells compared to wild-type siblings, suggesting that failure to maintain the spermatogonial stem cells resulted in germ cell loss by adulthood. To identify potential molecular processes regulated by Adad1, we sequenced bulk mRNA from mutants and wild-type testes and found mis-regulation of genes involved in RNA stability and modification, pointing to a potential broader role in post-transcriptional regulation. Our findings suggest that the RNA regulatory protein Adad1 is required for fertility through regulation of spermatogonial stem cell maintenance in zebrafish.
Collapse
Affiliation(s)
- Kazi Nazrul Islam
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Anuoluwapo Ajao
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Kavita Venkataramani
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Joshua Rivera
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Shailja Pathania
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kellee Renee Siegfried
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
Carpenter BS, Scott A, Goldin R, Chavez SR, Rodriguez JD, Myrick DA, Curlee M, Schmeichel KL, Katz DJ. SPR-1/CoREST facilitates the maternal epigenetic reprogramming of the histone demethylase SPR-5/LSD1. Genetics 2023; 223:6992629. [PMID: 36655746 PMCID: PMC9991509 DOI: 10.1093/genetics/iyad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
Maternal reprogramming of histone methylation is critical for reestablishing totipotency in the zygote, but how histone-modifying enzymes are regulated during maternal reprogramming is not well characterized. To address this gap, we asked whether maternal reprogramming by the H3K4me1/2 demethylase SPR-5/LSD1/KDM1A, is regulated by the chromatin co-repressor protein, SPR-1/CoREST, in Caenorhabditis elegans and mice. In C. elegans, SPR-5 functions as part of a reprogramming switch together with the H3K9 methyltransferase MET-2. By examining germline development, fertility, and gene expression in double mutants between spr-1 and met-2, as well as fertility in double mutants between spr-1 and spr-5, we find that loss of SPR-1 results in a partial loss of SPR-5 maternal reprogramming function. In mice, we generated a separation of function Lsd1 M448V point mutation that compromises CoREST binding, but only slightly affects LSD1 demethylase activity. When maternal LSD1 in the oocyte is derived exclusively from this allele, the progeny phenocopy the increased perinatal lethality that we previously observed when LSD1 was reduced maternally. Together, these data are consistent with CoREST having a conserved function in facilitating maternal LSD1 epigenetic reprogramming.
Collapse
Affiliation(s)
- Brandon S Carpenter
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Alyssa Scott
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert Goldin
- Uniformed Services University School of Medicine, Bethesda, MD 20814, USA
| | - Sindy R Chavez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Juan D Rodriguez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dexter A Myrick
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marcus Curlee
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Karen L Schmeichel
- Natural Sciences Division, Oglethorpe University, Atlanta, GA 30319, USA
| | - David J Katz
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Hadzhiev Y, Wheatley L, Cooper L, Ansaloni F, Whalley C, Chen Z, Finaurini S, Gustincich S, Sanges R, Burgess S, Beggs A, Müller F. The miR-430 locus with extreme promoter density forms a transcription body during the minor wave of zygotic genome activation. Dev Cell 2023; 58:155-170.e8. [PMID: 36693321 PMCID: PMC9904021 DOI: 10.1016/j.devcel.2022.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/10/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023]
Abstract
In anamniote embryos, the major wave of zygotic genome activation starts during the mid-blastula transition. However, some genes escape global genome repression, are activated substantially earlier, and contribute to the minor wave of genome activation. The mechanisms underlying the minor wave of genome activation are little understood. We explored the genomic organization and cis-regulatory mechanisms of a transcription body, in which the minor wave of genome activation is first detected in zebrafish. We identified the miR-430 cluster as having excessive copy number and the highest density of Pol-II-transcribed promoters in the genome, and this is required for forming the transcription body. However, this transcription body is not essential for, nor does it encompasse, minor wave transcription globally. Instead, distinct minor-wave-specific promoter architecture suggests that promoter-autonomous mechanisms regulate the minor wave of genome activation. The minor-wave-specific features also suggest distinct transcription initiation mechanisms between the minor and major waves of genome activation.
Collapse
Affiliation(s)
- Yavor Hadzhiev
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Lucy Wheatley
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ledean Cooper
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Federico Ansaloni
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy; Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy
| | - Celina Whalley
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Zhelin Chen
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Sara Finaurini
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy
| | - Remo Sanges
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy; Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy
| | - Shawn Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Andrew Beggs
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ferenc Müller
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
11
|
A Tremendous Reorganization Journey for the 3D Chromatin Structure from Gametes to Embryos. Genes (Basel) 2022; 13:genes13101864. [PMID: 36292750 PMCID: PMC9602195 DOI: 10.3390/genes13101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022] Open
Abstract
The 3D chromatin structure within the nucleus is important for gene expression regulation and correct developmental programs. Recently, the rapid development of low-input chromatin conformation capture technologies has made it possible to study 3D chromatin structures in gametes, zygotes and early embryos in a variety of species, including flies, vertebrates and mammals. There are distinct 3D chromatin structures within the male and female gametes. Following the fertilization of male and female gametes, fertilized eggs undergo drastic epigenetic reprogramming at multi levels, including the 3D chromatin structure, to convert the terminally differentiated gamete state into the totipotent state, which can give rise to an individual. However, to what extent the 3D chromatin structure reorganization is evolutionarily conserved and what the underlying mechanisms are for the tremendous reorganization in early embryos remain elusive. Here, we review the latest findings on the 3D chromatin structure reorganization during embryogenesis, and discuss the convergent and divergent reprogramming patterns and key molecular mechanisms for the 3D chromatin structure reorganization from gametes to embryos in different species. These findings shed light on how the 3D chromatin structure reorganization contribute to embryo development in different species. The findings also indicate the role of the 3D chromatin structure on the acquisition of totipotent developmental potential.
Collapse
|
12
|
Sperm-inherited H3K27me3 epialleles are transmitted transgenerationally in cis. Proc Natl Acad Sci U S A 2022; 119:e2209471119. [PMID: 36161922 PMCID: PMC9546627 DOI: 10.1073/pnas.2209471119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmission of chromatin states from parent cells to daughter cells preserves cell-specific transcriptional states and thus cell identity through cell division. The mechanism that underpins this process is not fully understood. The role that chromatin states serve in transmitting gene expression information across generations via sperm and oocytes is even less understood. Here, we utilized a model in which Caenorhabditis elegans sperm and oocyte alleles were inherited in different states of the repressive mark H3K27me3. This resulted in the alleles achieving different transcriptional states within the nuclei of offspring. Using this model, we showed that sperm alleles inherited without H3K27me3 were sensitive to up-regulation in offspring somatic and germline tissues, and tissue context determined which genes were up-regulated. We found that the subset of sperm alleles that were up-regulated in offspring germlines retained the H3K27me3(-) state and were transmitted to grandoffspring as H3K27me3(-) and up-regulated epialleles, demonstrating that H3K27me3 can serve as a transgenerational epigenetic carrier in C. elegans.
Collapse
|
13
|
A pan-cancer bioinformatic analysis of the carcinogenic role of SMARCA1 in human carcinomas. PLoS One 2022; 17:e0274823. [PMID: 36126083 PMCID: PMC9488775 DOI: 10.1371/journal.pone.0274823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
SMARCA1is a mammalian imitation switch (ISWI) gene that encodes for SNF2L. SNF2L is involved in regulating cell transition from a committed progenitor state to a differentiated state. Although many papers have detailed the correlation between SMARCA1 and different cancers, no pan-cancer analysis has been conducted to date. We started by exploring the potential carcinogenic role of SMARCA1 across 33 carcinomas using the cancer genome atlas (TCGA) and the genotype-tissue expression (GTEx) databases. The expression of SMARCA1 was significantly elevated in some tumor types but not in others. There was a distinct relationship between SMARCA1 expression and patient prognosis. S116 phosphorylation levels were up-regulated in both lung adenocarcinoma and uterine corpus endometrial carcinoma. The expression level of SMARCA1 was positively correlated with cancer-associated fibroblasts infiltration in a number of tumors, such as colon adenocarcinoma, cervical squamous cell carcinoma and endocervical adenocarcinoma. It was also associated with CD8+ T-cell infiltration in head and neck squamous cell carcinoma and lung adenocarcinoma. Furthermore, SMARCA1 is involved in chromatin remodeling and protein processing-associated mechanisms. Our study presents an initial assessment and illustration of the carcinogenic role of SMARCA1 in different carcinomas.
Collapse
|
14
|
Cao Y, Sun Q, Chen Z, Lu J, Geng T, Ma L, Zhang Y. CDKN2AIP is critical for spermiogenesis and germ cell development. Cell Biosci 2022; 12:136. [PMID: 35989335 PMCID: PMC9394077 DOI: 10.1186/s13578-022-00861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background As a member of RNA-binding protein, CDKN2AIP has been shown to play a critical role in stem cell pluripotency and somatic differentiation. Recent studies indicate that Cdkn2aip is essential for spermatogonial self-renewal and proliferation through the activating Wnt-signaling pathway. However, the mechanisms of how Cdkn2aip regulate spermatogenesis is poorly characterized. Results We discovered that the CDKN2AIP was expressed in spermatocyte as well as spermatids and participated in spermiogenesis. Cdkn2aip−/− mice exhibited multiple sperm head defects accompanied by age dependent germ cell loss that might be result of protamine replacement failure and impaired SUN1 expression. Loss of Cdkn2aip expression in male mice resulted in synapsis failure in 19% of all spermatocytes and increased apoptosis due to damaged DNA double-strand break (DSB) repair and crossover formation. In vitro, knockdown of Cdkn2aip was associated with extended S phase, increased DNA damage and apoptosis. Conclusions Our findings not only identified the importance of CDKN2AIP in spermiogenesis and germ cell development, but also provided insight upon the driving mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00861-z.
Collapse
|
15
|
Castro-Arnau J, Chauvigné F, Gómez-Garrido J, Esteve-Codina A, Dabad M, Alioto T, Finn RN, Cerdà J. Developmental RNA-Seq transcriptomics of haploid germ cells and spermatozoa uncovers novel pathways associated with teleost spermiogenesis. Sci Rep 2022; 12:14162. [PMID: 35986060 PMCID: PMC9391476 DOI: 10.1038/s41598-022-18422-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractIn non-mammalian vertebrates, the molecular mechanisms involved in the transformation of haploid germ cells (HGCs) into spermatozoa (spermiogenesis) are largely unknown. Here, we investigated this process in the marine teleost gilthead seabream (Sparus aurata) through the examination of the changes in the transcriptome between cell-sorted HGCs and ejaculated sperm (SPZEJ). Samples were collected under strict quality controls employing immunofluorescence microscopy as well as by determining the sperm motion kinematic parameters by computer-assisted sperm analysis. Deep sequencing by RNA-seq identified a total of 7286 differentially expressed genes (DEGs) (p-value < 0.01) between both cell types, of which nearly half were upregulated in SPZEJ compared to HCGs. In addition, approximately 9000 long non-coding RNAs (lncRNAs) were found, of which 56% were accumulated or emerged de novo in SPZEJ. The upregulated transcripts are involved in transcriptional and translational regulation, chromatin and cytoskeleton organization, metabolic processes such as glycolysis and oxidative phosphorylation, and also include a number of ion and water channels, exchangers, transporters and receptors. Pathway analysis conducted on DEGs identified 37 different signaling pathways enriched in SPZEJ, including 13 receptor pathways, from which the most predominant correspond to the chemokine and cytokine, gonadotropin-releasing hormone receptor and platelet derived growth factor signaling pathways. Our data provide new insight into the mRNA and lncRNA cargos of teleost spermatozoa and uncover the possible involvement of novel endocrine mechanisms during the differentiation and maturation of spermatozoa.
Collapse
|
16
|
Morphological and ultrastructural alterations of zebrafish (Danio rerio) spermatozoa after motility activation. Theriogenology 2022; 188:108-115. [DOI: 10.1016/j.theriogenology.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/22/2022]
|
17
|
Haimbaugh A, Akemann C, Meyer D, Gurdziel K, Baker TR. Insight into 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced disruption of zebrafish spermatogenesis via single cell RNA-seq. PNAS NEXUS 2022; 1:pgac060. [PMID: 35799832 PMCID: PMC9252172 DOI: 10.1093/pnasnexus/pgac060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent and environmentally persistent endocrine disrupting chemical. Our previous work demonstrated the latent reproductive maladies of early-life TCDD exposure in zebrafish. Zebrafish acutely exposed to low, environmentally relevant levels of TCDD (50 pg/mL) during two windows of sexual differentiation in development (1 hour of exposure at 3 and 7 weeks postfertilization) were later infertile, showed a reduction in sperm, and exhibited gene expression consistent with an altered microenvironment, even months after exposure. Due to the highly heterogeneous cell- type and -stage landscape of the testes, we hypothesized various cell types contribute markedly different profiles toward the pathology of TCDD exposure. To investigate the contributions of the diverse cell types in the adult zebrafish testes to TCDD-induced pathology, we utilized single-cell RNA-seq and the 10x Genomics platform. The method successfully captured every stage of testicular germ cell development. Testes of adult fish exposed during sexual differentiation to TCDD contained sharply decreased populations of late spermatocytes, spermatids, and spermatozoa. Spermatogonia and early spermatocyte populations were, in contrast, enriched following exposure. Pathway analysis of differentially expressed genes supported previous findings that TCDD exposure resulted in male infertility, and suggested this outcome is due to apoptosis of spermatids and spermatozoa, even years after exposure cessation. Increased germ cell apoptosis was confirmed histologically. These results provide support for an environmental exposure explanation of idiopathic male infertility.
Collapse
Affiliation(s)
- Alex Haimbaugh
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | - Danielle Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | - Katherine Gurdziel
- Applied Genome Technology Center, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | | |
Collapse
|
18
|
Qu P, Zhao J, Hu H, Cao W, Zhang Y, Qi J, Meng B, Zhao J, Liu S, Ding C, Wu Y, Liu E. Loss of Renewal of Extracellular Vesicles: Harmful Effects on Embryo Development in vitro. Int J Nanomedicine 2022; 17:2301-2318. [PMID: 35615541 PMCID: PMC9126234 DOI: 10.2147/ijn.s354003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Pengxiang Qu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, People's Republic of China
| | - Jinpeng Zhao
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, People's Republic of China
| | - Huizhong Hu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, People's Republic of China
| | - Wenbin Cao
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, People's Republic of China
| | - Yanru Zhang
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, People's Republic of China
| | - Jia Qi
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, People's Republic of China
| | - Bin Meng
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, People’s Republic of China
- The Assisted Reproduction Center, Northwest Women’s and Children’s Hospital, Xi’an, People’s Republic of China
| | - Juan Zhao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, People's Republic of China
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shuangqing Liu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, People’s Republic of China
| | - Chong Ding
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, People's Republic of China
| | - Yuqi Wu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, People's Republic of China
| | - Enqi Liu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, People's Republic of China
- Correspondence: Enqi Liu, Email
| |
Collapse
|
19
|
Wenshen Shengjing Decoction Improves Early Embryo Development by Maintaining Low H3K27me3 Levels in Sperm and Pronuclear Embryos of Spermatogenesis Impaired Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8035997. [PMID: 34616480 PMCID: PMC8490026 DOI: 10.1155/2021/8035997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022]
Abstract
Many ingredients in Wenshen Shengjing Decoction (WSSJD) can cause epigenetic changes in the development of different types of cells. It is not yet known whether they can cause epigenetic changes in sperms or early embryos. Here, we investigated the role of WSSJD in epigenetic modifications of sperms or early embryos and early embryo development. A mouse model with spermatogenesis disorders was established with cyclophosphamide (CPA). WSSJD was administrated for 30 days. The male model mice after the treatment were mated with the female mice treated with superovulation. The embryo development rate of each stage was calculated. Immunofluorescence staining was used to detect the expression of H3K27me3 in sperm, pronuclear embryos, and 2-cell embryos. Western blotting was used to detect the expression of histone demethylase KDM6A and methyltransferase EZH2 in 2-cell embryos with developmental arrest. The expressions of zygotic genome activation genes (ZSCAN4, E1F1AX, HSPA1A, ERV4-2, and MYC) in 2-cell embryos with developmental arrest were analyzed with qRT-PCR. Comparing with the control group, CPA destroyed the development of seminiferous epithelium, significantly increased the expression level of H3K27me3 in sperm, reduced the expression ratio of H3K27me3 in female and male pronuclei, delayed the development of 2-cell embryos, and increased the developmental arrest rate and degeneration rate of 2-cell embryos. Moreover, the expressions of EZH2 and H3K27me3 were significantly increased in the 2-cell embryos with developmental arrest, and the expression of zygotic genome activation genes (ZSCAN4, E1F1AX, HSPA1A, ERV4-2, and MYC) was significantly decreased. Compared with the CPA group, WSSJD promoted the development of seminiferous epithelium, maintained a low level of H3K27me3 modification in sperm and male pronucleus, significantly increased the development rate of 2-cell embryos and 3-4 cell embryos, and reduced the developmental arrest rate and degeneration rate of 2-cell embryos. WSSJD may promote early embryonic development by maintaining a low level of H3K27me3 modification in sperm and male pronucleus and regulating the zygotic genome activation in mice with spermatogenesis disorders induced by CPA.
Collapse
|
20
|
Torres T, Ruivo R, Santos MM. Epigenetic biomarkers as tools for chemical hazard assessment: Gene expression profiling using the model Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:144830. [PMID: 33592472 DOI: 10.1016/j.scitotenv.2020.144830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/26/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Recent reports raise the concern that exposure to several environmental chemicals may induce persistent changes that go beyond the exposed organisms, being transferred to subsequent generations even in the absence of the original chemical insult. These changes in subsequent non-exposed generations have been related to epigenetic changes. Although highly relevant for hazard and risk assessment, biomarkers of epigenetic modifications that can be associated with adversity, are still not integrated into hazard assessment frameworks. Here, in order to validate new biomarkers of epigenetic modifications in a popular animal model, zebrafish embryos were exposed to different concentrations of Bisphenol A (0.01, 0.1, 1 and 10 mg/L) and Valproic Acid (0.8, 4, 20 and 100 mg/L), two chemicals reported to alter the modulation of the epigenome. Morphological abnormalities and epigenetic changes were assessed at 80 hours-post fertilization, including DNA global methylation and gene expression of both DNA and histone epigenetic modifications. Gene expression changes were detected at concentrations below those inducing morphological abnormalities. These results further support the importance of combining epigenetic biomarkers with apical endpoints to improve guidelines for chemical testing and hazard assessment, and favour the integration of new biomarkers of epigenetic modifications into the standardized OECD test guideline 236 with zebrafish embryos.
Collapse
Affiliation(s)
- Tiago Torres
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Miguel Machado Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
21
|
Wike CL, Guo Y, Tan M, Nakamura R, Shaw DK, Díaz N, Whittaker-Tademy AF, Durand NC, Aiden EL, Vaquerizas JM, Grunwald D, Takeda H, Cairns BR. Chromatin architecture transitions from zebrafish sperm through early embryogenesis. Genome Res 2021; 31:981-994. [PMID: 34006569 PMCID: PMC8168589 DOI: 10.1101/gr.269860.120] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/07/2021] [Indexed: 11/25/2022]
Abstract
Chromatin architecture mapping in 3D formats has increased our understanding of how regulatory sequences and gene expression are connected and regulated in a genome. The 3D chromatin genome shows extensive remodeling during embryonic development, and although the cleavage-stage embryos of most species lack structure before zygotic genome activation (pre-ZGA), zebrafish has been reported to have structure. Here, we aimed to determine the chromosomal architecture in paternal/sperm zebrafish gamete cells to discern whether it either resembles or informs early pre-ZGA zebrafish embryo chromatin architecture. First, we assessed the higher-order architecture through advanced low-cell in situ Hi-C. The structure of zebrafish sperm, packaged by histones, lacks topological associated domains and instead displays “hinge-like” domains of ∼150 kb that repeat every 1–2 Mbs, suggesting a condensed repeating structure resembling mitotic chromosomes. The pre-ZGA embryos lacked chromosomal structure, in contrast to prior work, and only developed structure post-ZGA. During post-ZGA, we find chromatin architecture beginning to form at small contact domains of a median length of ∼90 kb. These small contact domains are established at enhancers, including super-enhancers, and chemical inhibition of Ep300a (p300) and Crebbpa (CBP) activity, lowering histone H3K27ac, but not transcription inhibition, diminishes these contacts. Together, this study reveals hinge-like domains in histone-packaged zebrafish sperm chromatin and determines that the initial formation of high-order chromatin architecture in zebrafish embryos occurs after ZGA primarily at enhancers bearing high H3K27ac.
Collapse
Affiliation(s)
- Candice L Wike
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Yixuan Guo
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Mengyao Tan
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Dana Klatt Shaw
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Noelia Díaz
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
| | - Aneasha F Whittaker-Tademy
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Neva C Durand
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - David Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| |
Collapse
|
22
|
Connacher J, Josling GA, Orchard LM, Reader J, Llinás M, Birkholtz LM. H3K36 methylation reprograms gene expression to drive early gametocyte development in Plasmodium falciparum. Epigenetics Chromatin 2021; 14:19. [PMID: 33794978 PMCID: PMC8017609 DOI: 10.1186/s13072-021-00393-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background The Plasmodium sexual gametocyte stages are the only transmissible form of the malaria parasite and are thus responsible for the continued transmission of the disease. Gametocytes undergo extensive functional and morphological changes from commitment to maturity, directed by an equally extensive control program. However, the processes that drive the differentiation and development of the gametocyte post-commitment, remain largely unexplored. A previous study reported enrichment of H3K36 di- and tri-methylated (H3K36me2&3) histones in early-stage gametocytes. Using chromatin immunoprecipitation followed by high-throughput sequencing, we identify a stage-specific association between these repressive histone modifications and transcriptional reprogramming that define a stage II gametocyte transition point. Results Here, we show that H3K36me2 and H3K36me3 from stage II gametocytes are associated with repression of genes involved in asexual proliferation and sexual commitment, indicating that H3K36me2&3-mediated repression of such genes is essential to the transition from early gametocyte differentiation to intermediate development. Importantly, we show that the gene encoding the transcription factor AP2-G as commitment master regulator is enriched with H3K36me2&3 and actively repressed in stage II gametocytes, providing the first evidence of ap2-g gene repression in post-commitment gametocytes. Lastly, we associate the enhanced potency of the pan-selective Jumonji inhibitor JIB-04 in gametocytes with the inhibition of histone demethylation including H3K36me2&3 and a disruption of normal transcriptional programs. Conclusions Taken together, our results provide the first description of an association between global gene expression reprogramming and histone post-translational modifications during P. falciparum early sexual development. The stage II gametocyte-specific abundance of H3K36me2&3 manifests predominantly as an independent regulatory mechanism targeted towards genes that are repressed post-commitment. H3K36me2&3-associated repression of genes is therefore involved in key transcriptional shifts that accompany the transition from early gametocyte differentiation to intermediate development. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00393-9.
Collapse
Affiliation(s)
- Jessica Connacher
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Gabrielle A Josling
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lindsey M Orchard
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
23
|
Marchione AD, Thompson Z, Kathrein KL. DNA methylation and histone modifications are essential for regulation of stem cell formation and differentiation in zebrafish development. Brief Funct Genomics 2021:elab022. [PMID: 33782688 DOI: 10.1093/bfgp/elab022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/21/2023] Open
Abstract
The complex processes necessary for embryogenesis require a gene regulatory network that is complex and systematic. Gene expression regulates development and organogenesis, but this process is altered and fine-tuned by epigenetic regulators that facilitate changes in the chromatin landscape. Epigenetic regulation of embryogenesis adjusts the chromatin structure by modifying both DNA through methylation and nucleosomes through posttranslational modifications of histone tails. The zebrafish is a well-characterized model organism that is a quintessential tool for studying developmental biology. With external fertilization, low cost and high fecundity, the zebrafish are an efficient tool for studying early developmental stages. Genetic manipulation can be performed in vivo resulting in quick identification of gene function. Large-scale genome analyses including RNA sequencing, chromatin immunoprecipitation and chromatin structure all are feasible in the zebrafish. In this review, we highlight the key events in zebrafish development where epigenetic regulation plays a critical role from the early stem cell stages through differentiation and organogenesis.
Collapse
|
24
|
Lombó M, Herráez P. The effects of endocrine disruptors on the male germline: an intergenerational health risk. Biol Rev Camb Philos Soc 2021; 96:1243-1262. [PMID: 33660399 DOI: 10.1111/brv.12701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Environmental pollution is becoming one of the major concerns of society. Among the emerging contaminants, endocrine-disrupting chemicals (EDCs), a large group of toxicants, have been the subject of many scientific studies. Besides the capacity of these compounds to interfere with the endocrine system, they have also been reported to exert both genotoxic and epigenotoxic effects. Given that spermatogenesis is a coordinated process that requires the involvement of several steroid hormones and that entails deep changes in the chromatin, such as DNA compaction and epigenetic remodelling, it could be affected by male exposure to EDCs. A great deal of evidence highlights that these compounds have detrimental effects on male reproductive health, including alterations to sperm motility, sexual function, and gonad development. This review focuses on the consequences of paternal exposure to such chemicals for future generations, which still remain poorly known. Historically, spermatozoa have long been considered as mere vectors delivering the paternal haploid genome to the oocyte. Only recently have they been understood to harbour genetic and epigenetic information that plays a remarkable role during offspring early development and long-term health. This review examines the different modes of action by which the spermatozoa represent a key target for EDCs, and analyses the consequences of environmentally induced changes in sperm genetic and epigenetic information for subsequent generations.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Animal Reproduction, INIA, Puerta de Hierro 18, Madrid, 28040, Spain
| | - Paz Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| |
Collapse
|
25
|
Zhu L, He W, Zhang H, Sun Y, Li Q, Zhou L, Zhu S, Tao M, Zhou Y, Zhao R, Luo K, Tang C, Zhang C, Liu S. Unconventional meiotic process of spermatocytes in male Cyprinus carpio. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
26
|
Shim WJ, Sinniah E, Xu J, Vitrinel B, Alexanian M, Andreoletti G, Shen S, Sun Y, Balderson B, Boix C, Peng G, Jing N, Wang Y, Kellis M, Tam PPL, Smith A, Piper M, Christiaen L, Nguyen Q, Bodén M, Palpant NJ. Conserved Epigenetic Regulatory Logic Infers Genes Governing Cell Identity. Cell Syst 2020; 11:625-639.e13. [PMID: 33278344 PMCID: PMC7781436 DOI: 10.1016/j.cels.2020.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023]
Abstract
Determining genes that orchestrate cell differentiation in development and disease remains a fundamental goal of cell biology. This study establishes a genome-wide metric based on the gene-repressive trimethylation of histone H3 at lysine 27 (H3K27me3) across hundreds of diverse cell types to identify genetic regulators of cell differentiation. We introduce a computational method, TRIAGE, which uses discordance between gene-repressive tendency and expression to identify genetic drivers of cell identity. We apply TRIAGE to millions of genome-wide single-cell transcriptomes, diverse omics platforms, and eukaryotic cells and tissue types. Using a wide range of data, we validate the performance of TRIAGE in identifying cell-type-specific regulatory factors across diverse species including human, mouse, boar, bird, fish, and tunicate. Using CRISPR gene editing, we use TRIAGE to experimentally validate RNF220 as a regulator of Ciona cardiopharyngeal development and SIX3 as required for differentiation of endoderm in human pluripotent stem cells. A record of this paper’s transparent peer review process is included in the Supplemental Information. Perturbing genes controlling cell decisions have major implications in development or disease. However, identifying key regulatory genes from the thousands expressed in a cell is challenging. TRIAGE is a computational method that distills patterns of epigenetic repression across diverse cell types to infer regulatory genes using input gene expression data from any cell type. Demonstrating its utility, we combine single-cell RNA-seq and TRIAGE to identify and experimentally confirm novel regulators of heart development in evolutionarily distant species.
Collapse
Affiliation(s)
- Woo Jun Shim
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Enakshi Sinniah
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jun Xu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Burcu Vitrinel
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Michael Alexanian
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
| | - Gaia Andreoletti
- Institute for Computational Health Sciences, University of California, San Francisco, CA 94158, USA
| | - Sophie Shen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yuliangzi Sun
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Brad Balderson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Carles Boix
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guangdun Peng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences and Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Naihe Jing
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences and Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuliang Wang
- Paul G. Allen School of Computer Science and Engineering and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | - Patrick P L Tam
- The University of Sydney, Children's Medical Research Institute, and School of Medical Sciences, Faculty of Medicine and Health, Westmead, NSW 2145, Australia
| | - Aaron Smith
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
27
|
setd2 knockout zebrafish is viable and fertile: differential and developmental stress-related requirements for Setd2 and histone H3K36 trimethylation in different vertebrate animals. Cell Discov 2020; 6:72. [PMID: 33088589 PMCID: PMC7573620 DOI: 10.1038/s41421-020-00203-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/01/2020] [Indexed: 12/21/2022] Open
Abstract
Setd2 is the only enzyme that catalyzes histone H3 lysine 36 trimethylation (H3K36me3) on virtually all actively transcribed protein-coding genes, and this mechanism is evolutionarily conserved from yeast to human. Despite this widespread and conserved activity, Setd2 and H3K36me3 are dispensable for normal growth of yeast but are absolutely required for mammalian embryogenesis, such as oocyte maturation and embryonic vasculogenesis in mice, raising a question of how the functional requirements of Setd2 in specific developmental stages have emerged through evolution. Here, we explored this issue by studying the essentiality and function of Setd2 in zebrafish. Surprisingly, the setd2-null zebrafish are viable and fertile. They show Mendelian birth ratio and normal embryogenesis without vascular defect as seen in mice; however, they have a small body size phenotype attributed to insufficient energy metabolism and protein synthesis, which is reversable in a nutrition-dependent manner. Unlike the sterile Setd2-null mice, the setd2-null zebrafish can produce functional sperms and oocytes. Nonetheless, related to the requirement of maternal Setd2 for oocyte maturation in mice, the second generation of setd2-null zebrafish that carry no maternal setd2 show decreased survival rate and a developmental delay at maternal-to-zygotic transition. Taken together, these results indicate that, while the phenotypes of the setd2-null zebrafish and mice are apparently different, they are matched in parallel as the underlying mechanisms are evolutionarily conserved. Thus, the differential requirements of Setd2 may reflect distinct viability thresholds that associate with intrinsic and/or extrinsic stresses experienced by the organism through development, and these epigenetic regulatory mechanisms may serve as a reserved source supporting the evolution of life from simplicity to complexity.
Collapse
|
28
|
Riesco MF, Valcarce DG, Martínez-Vázquez JM, Martín I, Calderón-García AÁ, Gonzalez-Nunez V, Robles V. Male reproductive dysfunction in Solea senegalensis: new insights into an unsolved question. Reprod Fertil Dev 2020; 31:1104-1115. [PMID: 30944063 DOI: 10.1071/rd18453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Senegalese sole (Solea senegalensis) is a species with a high commercial value that exhibits a reproductive dysfunction in males born and raised in captivity (F1) that hinders their sustainable culture. The present study evaluates the sperm quality and dopaminergic pathway of males born in the wild environment and of F1 males. Traditional sperm analyses were performed, finding only significant differences in curvilinear velocity (VCL) and no significant differences in viability and total motility. No differences in global sperm methylation were observed either in spermatozoa or brain between the two groups (F1 and wild-born males). However, our results point to a different sperm molecular signature between wild fish and fish born in captivity, specifically the differential expression in miR-let7-d and miR-200a-5p between these two groups. miR-let7-d has been correlated with spermatogenesis and sex preferences, whereas the miR-200 family is implied in target innervation of dopaminergic neurons in zebrafish. When we analysed the dopaminergic pathway, no differences were found in terms of different mRNA expression of dopaminergic markers. However, some differences were detected in terms of tyrosine hydroxylase protein expression by western blot analysis, thus suggesting an altered post-transcriptional regulation in F1 males. The results of this study suggest that an altered sperm miRNA signature in F1 males could be one possible mode of transmission of reproductive dysfunction to the progeny.
Collapse
Affiliation(s)
- Marta F Riesco
- Spanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain
| | - David G Valcarce
- Spanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain
| | - Juan Manuel Martínez-Vázquez
- Spanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain
| | - Ignacio Martín
- Spanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain
| | - Andrés Ángel Calderón-García
- Instituto de Neurociencias de Castilla y León (INCyL), Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
| | - Verónica Gonzalez-Nunez
- Instituto de Neurociencias de Castilla y León (INCyL), Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
| | - Vanesa Robles
- Spanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain; and Corresponding author.
| |
Collapse
|
29
|
Schrott R, Rajavel M, Acharya K, Huang Z, Acharya C, Hawkey A, Pippen E, Lyerly HK, Levin ED, Murphy SK. Sperm DNA methylation altered by THC and nicotine: Vulnerability of neurodevelopmental genes with bivalent chromatin. Sci Rep 2020; 10:16022. [PMID: 32994467 PMCID: PMC7525661 DOI: 10.1038/s41598-020-72783-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/03/2020] [Indexed: 01/23/2023] Open
Abstract
Men consume the most nicotine and cannabis products but impacts on sperm epigenetics are poorly characterized. Evidence suggests that preconception exposure to these drugs alters offspring neurodevelopment. Epigenetics may in part facilitate heritability. We therefore compared effects of exposure to tetrahydrocannabinol (THC) and nicotine on DNA methylation in rat sperm at genes involved in neurodevelopment. Reduced representation bisulfite sequencing data from sperm of rats exposed to THC via oral gavage showed that seven neurodevelopmentally active genes were significantly differentially methylated versus controls. Pyrosequencing data revealed majority overlap in differential methylation in sperm from rats exposed to THC via injection as well as those exposed to nicotine. Neurodevelopmental genes including autism candidates are vulnerable to environmental exposures and common features may mediate this vulnerability. We discovered that autism candidate genes are significantly enriched for bivalent chromatin structure, suggesting this configuration may increase vulnerability of genes in sperm to disrupted methylation.
Collapse
Affiliation(s)
- Rose Schrott
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA.,Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Maya Rajavel
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA
| | - Kelly Acharya
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Zhiqing Huang
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA
| | - Chaitanya Acharya
- Division of Surgical Sciences, Department of Surgery, Center for Applied Therapeutics, Duke University Medical Center, Durham, NC, USA
| | - Andrew Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Erica Pippen
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - H Kim Lyerly
- Division of Surgical Sciences, Department of Surgery, Center for Applied Therapeutics, Duke University Medical Center, Durham, NC, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Susan K Murphy
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Chesterfield Building, 701 W. Main Street, Suite 510, Durham, NC, 27701, USA. .,Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA. .,Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
30
|
Crespo M, Luense LJ, Arlotto M, Hu J, Dorsey J, García-Oliver E, Shah PP, Pflieger D, Berger SL, Govin J. Systematic genetic and proteomic screens during gametogenesis identify H2BK34 methylation as an evolutionary conserved meiotic mark. Epigenetics Chromatin 2020; 13:35. [PMID: 32933557 PMCID: PMC7493871 DOI: 10.1186/s13072-020-00349-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Gametes are highly differentiated cells specialized to carry and protect the parental genetic information. During male germ cell maturation, histone proteins undergo distinct changes that result in a highly compacted chromatin organization. Technical difficulties exclude comprehensive analysis of precise histone mutations during mammalian spermatogenesis. The model organism Saccharomyces cerevisiae possesses a differentiation pathway termed sporulation which exhibits striking similarities to mammalian spermatogenesis. This study took advantage of this yeast pathway to first perform systematic mutational and proteomics screens on histones, revealing amino acid residues which are essential for the formation of spores. METHODS A systematic mutational screen has been performed on the histones H2A and H2B, generating ~ 250 mutants using two genetic backgrounds and assessing their ability to form spores. In addition, histones were purified at key stages of sporulation and post-translational modifications analyzed by mass spectrometry. RESULTS The mutation of 75 H2A H2B residues affected sporulation, many of which were localized to the nucleosome lateral surface. The use of different genetic backgrounds confirmed the importance of many of the residues, as 48% of yeast histone mutants exhibited impaired formation of spores in both genetic backgrounds. Extensive proteomic analysis identified 67 unique post-translational modifications during sporulation, 27 of which were previously unreported in yeast. Furthermore, 33 modifications are located on residues that were found to be essential for efficient sporulation in our genetic mutation screens. The quantitative analysis of these modifications revealed a massive deacetylation of all core histones during the pre-meiotic phase and a close interplay between H4 acetylation and methylation during yeast sporulation. Methylation of H2BK37 was also identified as a new histone marker of meiosis and the mouse paralog, H2BK34, was also enriched for methylation during meiosis in the testes, establishing conservation during mammalian spermatogenesis. CONCLUSION Our results demonstrate that a combination of genetic and proteomic approaches applied to yeast sporulation can reveal new aspects of chromatin signaling pathways during mammalian spermatogenesis.
Collapse
Affiliation(s)
- Marion Crespo
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000, Grenoble, France
- CNRS, IRIG-BGE, 38000, Grenoble, France
| | - Lacey J Luense
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marie Arlotto
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000, Grenoble, France
- CNRS, IRIG-BGE, 38000, Grenoble, France
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Jialei Hu
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean Dorsey
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Encar García-Oliver
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000, Grenoble, France
- Institut de Génétique Moléculaire de Montpellier, 3400, Montpellier, France
| | - Parisha P Shah
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Delphine Pflieger
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000, Grenoble, France
- CNRS, IRIG-BGE, 38000, Grenoble, France
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jérôme Govin
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000, Grenoble, France.
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France.
| |
Collapse
|
31
|
Zhu L, Yuan C, Wang M, Liu Y, Wang Z, Seif MM. Bisphenol A-associated alterations in DNA and histone methylation affects semen quality in rare minnow Gobiocypris rarus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105580. [PMID: 32712368 DOI: 10.1016/j.aquatox.2020.105580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA), a well-known estrogenic endocrine disruptor, is ubiquitously present in the environment, possessing the potential to interfere with the reproductive endocrine system in male mammals. However, there are limited studies on the reproductive toxicity in male aquatic animals associated with epigenetic modifications. In order to evaluate the potential effects of BPA on reproduction and better understand the underlying mechanism, adult male rare minnow (Gobiocypris rarus) were exposed to 15 μg L-1 BPA over a period of 63 d. Results showed that BPA induced congestion of blood vessels and infiltration of inflammatory cells after 21 d exposure, and decreased sperm fertilization after 63 d exposure. The genome DNA methylation levels were significantly increased throughout the treatment, and a strong positive stain were found in the spermatocyte, spermatid and sperm. The H3K4me3 level in all types of germ cell were increased by 21 d exposure while decreased following 63 d exposure. The positive stain of H3K9me3 was decreased in sperms while increased in spermatids by 21 d exposure. In addition, the H3K9me3 level was significantly increased after 63 d exposure, and a strong positive stain were found in spermatocytes, spermatids, and sperms. Our result also revealed that the transcripts of DNA methyltransferase genes (dnmt1 and dnmt3-8) and histone methyltransferase genes (mll2-5, setdb1-2 and ezh2) were also markedly changed under BPA exposure for 21-63 d. These findings indicated that BPA had toxicity in male reproductive, and DNA/histone methylation might play a vital role in the regulation of BPA-triggered the decreased of sperm quality.
Collapse
Affiliation(s)
- Long Zhu
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingrong Wang
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China
| | - Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China.
| | - Mohamed M Seif
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China; Toxicology and Food Contaminants Department, National Research Centre, Cairo 11435, Egypt
| |
Collapse
|
32
|
Abstract
Nucleosome dynamics and properties are central to all forms of genomic activities. Among the core histones, H3 variants play a pivotal role in modulating nucleosome structure and function. Here, we focus on the impact of H3 variants on various facets of development. The deposition of the replicative H3 variant following DNA replication is essential for the transmission of the epigenomic information encoded in posttranscriptional modifications. Through this process, replicative H3 maintains cell fate while, in contrast, the replacement H3.3 variant opposes cell differentiation during early embryogenesis. In later steps of development, H3.3 and specialized H3 variants are emerging as new, important regulators of terminal cell differentiation, including neurons and gametes. The specific pathways that regulate the dynamics of the deposition of H3.3 are paramount during reprogramming events that drive zygotic activation and the initiation of a new cycle of development.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biologie et de Modélisation de la Cellule, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, University of Lyon, F-69007 Lyon, France;
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
33
|
Chen T, Mu S, Sun Z, Zhang H, Li C, Guo M, Li Y, Kang X, Wang Z. Spermiogenic histone transitions and chromatin decondensation in Decapoda. Theriogenology 2020; 156:242-252. [PMID: 32777658 DOI: 10.1016/j.theriogenology.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 01/12/2023]
Abstract
Decapoda are among of the most diverse groups of Crustacea with an important economic value, and have thus been the focus of various reproductive biology studies. Although spermatozoa are morphologically diverse, decapod spermatozoa possess common features, such as being non-motile and having uncondensed nuclear chromatin. Many scholars have studied uncondensed chromatin in decapod spermatozoa; however, the role of biologically regulated decondensation in spermatozoa remains unclear. In this study, histone changes in the spermatozoa of five commercially relevant aquatic crustacean species (Eriocheir sinensis, Scylla paramamosain, Procambarus clarkii, Fenneropenaeus chinensis, and Macrobrachium nipponense) were studied via liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunofluorescence. The LC-MS/MS results confirmed that all four core histones were present in the sperm nuclei of the five Decapoda species. Positive fluorescent signals from histones H2A, H2B, H3, and H4 were detected in the spermatozoa nuclei of E. sinensis, S. paramamosain and M. nipponense via immunofluorescence. Histone H2A was first identified in the membrane sheets or cytoplasm of mature sperm in P. clarkii and F. chinensis, whereas H3 and H4 were generally distributed in the nucleus of the spermatozoa. Histone H2B gradually disappeared during spermiogenesis and was not found in the sperm of P. clarkii and F. chinensis eventually. Our data suggest that core histones are instructive and necessary for chromatin decondensation in decapods spermatozoa. Thus, our results may help resolve the complex sperm histone code and provide a reference for the study of spermatozoa evolution in Decapoda.
Collapse
Affiliation(s)
- Tingrong Chen
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Zhe Sun
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Han Zhang
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Chao Li
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Mingsheng Guo
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yanqin Li
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, 071002, China.
| | - Zhenshan Wang
- College of Life Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
34
|
Oikawa M, Simeone A, Hormanseder E, Teperek M, Gaggioli V, O'Doherty A, Falk E, Sporniak M, D'Santos C, Franklin VNR, Kishore K, Bradshaw CR, Keane D, Freour T, David L, Grzybowski AT, Ruthenburg AJ, Gurdon J, Jullien J. Epigenetic homogeneity in histone methylation underlies sperm programming for embryonic transcription. Nat Commun 2020; 11:3491. [PMID: 32661239 PMCID: PMC7359334 DOI: 10.1038/s41467-020-17238-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Sperm contributes genetic and epigenetic information to the embryo to efficiently support development. However, the mechanism underlying such developmental competence remains elusive. Here, we investigated whether all sperm cells have a common epigenetic configuration that primes transcriptional program for embryonic development. Using calibrated ChIP-seq, we show that remodelling of histones during spermiogenesis results in the retention of methylated histone H3 at the same genomic location in most sperm cell. This homogeneously methylated fraction of histone H3 in the sperm genome is maintained during early embryonic replication. Such methylated histone fraction resisting post-fertilisation reprogramming marks developmental genes whose expression is perturbed upon experimental reduction of histone methylation. A similar homogeneously methylated histone H3 fraction is detected in human sperm. Altogether, we uncover a conserved mechanism of paternal epigenetic information transmission to the embryo through the homogeneous retention of methylated histone in a sperm cells population.
Collapse
Affiliation(s)
- Mami Oikawa
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Angela Simeone
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Eva Hormanseder
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Marta Teperek
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Vincent Gaggioli
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Alan O'Doherty
- UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, D04 V1W8, Ireland
| | - Emma Falk
- CRTI, INSERM, UNIV Nantes, Nantes, France
| | | | - Clive D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Charles R Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Declan Keane
- ReproMed Ireland, Rockfield Medical Campus, Northblock, Dundrum, Dublin 16, D16 W7W3, Ireland
| | - Thomas Freour
- Service de Biologie de la Reproduction, CHU Nantes, Nantes, France
| | | | - Adrian T Grzybowski
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60637, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60637, USA
| | - John Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
- CRTI, INSERM, UNIV Nantes, Nantes, France.
| |
Collapse
|
35
|
Abstract
Predicting regulatory potential from primary DNA sequences or transcription factor binding patterns is not possible. However, the annotation of the genome by chromatin proteins, histone modifications, and differential compaction is largely sufficient to reveal the locations of genes and their differential activity states. The Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are the central players in this cell type-specific chromatin organization. PcG function was originally viewed as being solely repressive and irreversible, as observed at the homeotic loci in flies and mammals. However, it is now clear that modular and reversible PcG function is essential at most developmental genes. Focusing mainly on recent advances, we review evidence for how PcG and TrxG patterns change dynamically during cell type transitions. The ability to implement cell type-specific transcriptional programming with exquisite fidelity is essential for normal development.
Collapse
Affiliation(s)
- Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Hyuckjoon Kang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Sandip De
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
36
|
Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D, Axelsson E, Kawashima T, Voigt P, Boavida L, Becker J, Higashiyama T, Martienssen R, Berger F. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat Cell Biol 2020; 22:621-629. [PMID: 32393884 PMCID: PMC7116658 DOI: 10.1038/s41556-020-0515-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Epigenetic marks are reprogrammed in the gametes to reset genomic potential in the next generation. In mammals, paternal chromatin is extensively reprogrammed through the global erasure of DNA methylation and the exchange of histones with protamines1,2. Precisely how the paternal epigenome is reprogrammed in flowering plants has remained unclear since DNA is not demethylated and histones are retained in sperm3,4. Here, we describe a multi-layered mechanism by which H3K27me3 is globally lost from histone-based sperm chromatin in Arabidopsis. This mechanism involves the silencing of H3K27me3 writers, activity of H3K27me3 erasers and deposition of a sperm-specific histone, H3.10 (ref. 5), which we show is immune to lysine 27 methylation. The loss of H3K27me3 facilitates the transcription of genes essential for spermatogenesis and pre-configures sperm with a chromatin state that forecasts gene expression in the next generation. Thus, plants have evolved a specific mechanism to simultaneously differentiate male gametes and reprogram the paternal epigenome.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Yannick Jacob
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Daichi Susaki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Chantal LeBlanc
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Daniel Buendía
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Elin Axelsson
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Tomokazu Kawashima
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Philipp Voigt
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - Leonor Boavida
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Jörg Becker
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Robert Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
37
|
Tang SB, Yang LL, Zhang TT, Wang Q, Yin S, Luo SM, Shen W, Ge ZJ, Sun QY. Multiple superovulations alter histone modifications in mouse early embryos. Reproduction 2020; 157:511-523. [PMID: 30884466 PMCID: PMC6454231 DOI: 10.1530/rep-18-0495] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022]
Abstract
It is demonstrated that repeated superovulation has deleterious effects on mouse ovaries and cumulus cells. However, little is known about the effects of repeated superovulation on early embryos. Epigenetic reprogramming is an important event in early embryonic development and could be easily disrupted by the environment. Thus, we speculated that multiple superovulations may have adverse effects on histone modifications in the early embryos. Female CD1 mice were randomly divided into four groups: (a) spontaneous estrus cycle (R0); (b) with once superovulation (R1); (c) with three times superovulation at a 7-day interval (R3) and (d) with five times superovulation at a 7-day interval (R5). We found that repeated superovulation remarkably decreased the fertilization rate. With the increase of superovulation times, the rate of early embryo development was decreased. The expression of Oct4, Sox2 and Nanog was also affected by superovulation in blastocysts. The immunofluorescence results showed that the acetylation level of histone 4 at lysine 12 (H4K12ac) was significantly reduced by repeated superovulation in mouse early embryos (P < 0.01). Acetylation level of histone 4 at lysine 16 (H4K16ac) was also significantly reduced in pronuclei and blastocyst along with the increase of superovulation times (P < 0.01). H3K9me2 and H3K27me3 were significantly increased in four-cell embryos and blastocysts. We further found that repeated superovulation treatment increased the mRNA level of histone deacetylases Hdac1, Hdac2 and histone methyltransferase G9a, but decreased the expression level of histone demethylase-encoding genes Kdm6a and Kdm6b in early embryos. In a word, multiple superovulations alter histone modifications in early embryos.
Collapse
Affiliation(s)
- Shou-Bin Tang
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Lei-Lei Yang
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Ting-Ting Zhang
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Qian Wang
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Shi-Ming Luo
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Qing-Yuan Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
38
|
Akdogan-Ozdilek B, Duval KL, Goll MG. Chromatin dynamics at the maternal to zygotic transition: recent advances from the zebrafish model. F1000Res 2020; 9. [PMID: 32528656 PMCID: PMC7262572 DOI: 10.12688/f1000research.21809.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Early animal development is characterized by intense reorganization of the embryonic genome, including large-scale changes in chromatin structure and in the DNA and histone modifications that help shape this structure. Particularly profound shifts in the chromatin landscape are associated with the maternal-to-zygotic transition, when the zygotic genome is first transcribed and maternally loaded transcripts are degraded. The accessibility of the early zebrafish embryo facilitates the interrogation of chromatin during this critical window of development, making it an important model for early chromatin regulation. Here, we review our current understanding of chromatin dynamics during early zebrafish development, highlighting new advances as well as similarities and differences between early chromatin regulation in zebrafish and other species.
Collapse
Affiliation(s)
| | | | - Mary G Goll
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
39
|
Pre-Exposure to Nicotine with Nocturnal Abstinence Induces Epigenetic Changes that Potentiate Nicotine Preference. Mol Neurobiol 2019; 57:1828-1846. [DOI: 10.1007/s12035-019-01843-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022]
|
40
|
Wu D, Huang CJ, Jiao XF, Ding ZM, Zhang SX, Miao YL, Huo LJ. Bisphenol AF compromises blood-testis barrier integrity and sperm quality in mice. CHEMOSPHERE 2019; 237:124410. [PMID: 31362132 DOI: 10.1016/j.chemosphere.2019.124410] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/04/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The profound influence of environmental chemicals on human health including inducing life-threatening gene mutation has been publicly recognized. Being a substitute for the extensively used endocrine-disrupting chemical BPA, Bisphenol AF (BPAF) has been known as teratogen with developmental toxicities and therefore potentially putting human into the risk of biological hazards. Herein, we deciphered the detrimental effects of BPAF on spermatogenesis and spermiotiliosis in sexual maturity of mice exposing to BPAF (5, 20, 50 mg/kg/d) for consecutive 28 days. BPAF exposure significantly compromises blood-testis barrier integrity and sperm quantity and quality in a dose-dependent manner. Sperms from BPAF exposure mice are featured by severe DNA damage, altered SUMOylation and ubiquitination dynamics and interfered epigenetic inheritance with hypermethylation of H3K27me3 presumably due to the aggregation of cellular reactive oxygen species (ROS). Furthermore, BPAF treatment (50 μM for 24 h) compromises cytoskeleton architecture and tight junction permeability in primary cultured Sertoli cells evidenced by dysfunction of actin regulatory proteins (e.g. Arp3 and Palladin) via activation of ERK signaling, thereby perturbing the privilege microenvironment created by Sertoli cells for spermatogenesis. Overall, our study determines BPAF is deleterious for male fertility, leading to a better appreciation of its toxicological features in our life.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chun-Jie Huang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, 64110, USA
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
41
|
Li H, Wang X, Zhao H, Wang F, Bao Y, Guo J, Chang S, Wu L, Cheng H, Chen S, Zou J, Cui X, Niswander L, Finnell RH, Wang H, Zhang T. Low folate concentration impacts mismatch repair deficiency in neural tube defects. Epigenomics 2019; 12:5-18. [PMID: 31769301 DOI: 10.2217/epi-2019-0279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: To know the cause of sequence variants in neural tube defect (NTD). Materials & methods: We sequenced genes implicated in neural tube closure (NTC) in a Chinese cohort and elucidated the molecular mechanism-driving mutations. Results: In NTD cases, an increase in specific variants was identified, potentially deleterious rare variants harbored in H3K36me3 occupancy regions that recruits mismatch repair (MMR) machinery. Lower folate concentrations in local brain tissues were also observed. In neuroectoderm cells, folic acid insufficiency attenuated association of Msh6 to H3K36me3, and reduced bindings to NTC genes. Rare variants in human NTDs were featured by MMR deficiency and more severe microsatellite instability. Conclusion: Our work suggests a mechanistic link between folate insufficiency and MMR deficiency that correlates with an increase of rare variants in NTC genes.
Collapse
Affiliation(s)
- Huili Li
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.,Department of Molecular, Cellular & Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Xiaolei Wang
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Huizhi Zhao
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yihua Bao
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lihua Wu
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Haiqin Cheng
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shuyuan Chen
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jizhen Zou
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaodai Cui
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lee Niswander
- Department of Molecular, Cellular & Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Richard H Finnell
- Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction & Development, Fudan University, Shanghai 200011, China.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongyan Wang
- Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction & Development, Fudan University, Shanghai 200011, China.,Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics & Development, Fudan University, Shanghai 200032, China.,Children's Hospital, Fudan University, Shanghai 201102, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
42
|
Depincé A, Gabory A, Dziewulska K, Le Bail PY, Jammes H, Labbé C. DNA methylation stability in fish spermatozoa upon external constraint: Impact of fish hormonal stimulation and sperm cryopreservation. Mol Reprod Dev 2019; 87:124-134. [PMID: 31746511 DOI: 10.1002/mrd.23297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/03/2019] [Indexed: 01/31/2023]
Abstract
Highly differentiated mature spermatozoa carry not only genetic but also epigenetic information that is to be transmitted to the embryo. DNA methylation is one epigenetic actor associated with sperm nucleus compaction, gene silencing, and prepatterning of embryonic gene expression. Therefore, the stability of this mark toward reproductive biotechnologies is a major issue in animal production. The present work explored the impact of hormonal induction of spermiation and sperm cryopreservation in two cyprinids, the goldfish (Carassius auratus) and the zebrafish (Danio rerio), using LUminometric Methylation Assay (LUMA). We showed that while goldfish hormonal treatment did increase sperm production, it did not alter global DNA methylation of spermatozoa. Different sperm samples repeatedly collected from the same males for 2 months also showed the same global DNA methylation level. Similarly, global DNA methylation was not affected after cryopreservation of goldfish spermatozoa with methanol, whereas less efficient cryoprotectants (dimethylsulfoxide and 1,2-propanediol) decreased DNA methylation. In contrast, cryopreservation of zebrafish spermatozoa with methanol induced a slight, but significant, increase in global DNA methylation. In the less compact nuclei, that is, goldfish fin somatic cells, cryopreservation did not change global DNA methylation regardless of the choice of cryoprotectant. To conclude, global DNA methylation is a robust parameter with respect to biotechnologies such as hormonal induction of spermiation and sperm cryopreservation, but it can be altered when the best sperm manipulation conditions are not met.
Collapse
Affiliation(s)
| | - Anne Gabory
- INRA, Biology of Development and Reproduction UMR 1198, Jouy en Josas, France
| | - Katarzyna Dziewulska
- Department of Hydrobiology and General Zoology, University of Szczecin, Szczecin, Poland
| | | | - Hélène Jammes
- INRA, Biology of Development and Reproduction UMR 1198, Jouy en Josas, France
| | | |
Collapse
|
43
|
de Mendoza A, Lister R, Bogdanovic O. Evolution of DNA Methylome Diversity in Eukaryotes. J Mol Biol 2019:S0022-2836(19)30659-X. [PMID: 31726061 DOI: 10.1016/j.jmb.2019.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
Cytosine DNA methylation (5mC) is a widespread base modification in eukaryotic genomes with critical roles in transcriptional regulation. In recent years, our understanding of 5mC has changed because of advances in 5mC detection techniques that allow mapping of this mark on the whole genome scale. Profiling DNA methylomes from organisms across the eukaryotic tree of life has reshaped our views on the evolution of 5mC. In this review, we explore the macroevolution of 5mC in major eukaryotic groups, and then focus on recent advances made in animals. Genomic 5mC patterns as well as the mechanisms of 5mC deposition tend to be evolutionary labile across large phylogenetic distances; however, some common patterns are starting to emerge. Within the animal kingdom, 5mC diversity has proven to be much greater than anticipated. For example, a previously held common view that genome hypermethylation is a trait exclusive to vertebrates has recently been challenged. Also, data from genome-wide studies are starting to yield insights into the potential roles of 5mC in invertebrate cis regulation. Here we provide an evolutionary perspective of both the well-known and enigmatic roles of 5mC across the eukaryotic tree of life.
Collapse
Affiliation(s)
- Alex de Mendoza
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia.
| | - Ryan Lister
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
44
|
Balasubramanian S, Raghunath A, Perumal E. Role of epigenetics in zebrafish development. Gene 2019; 718:144049. [DOI: 10.1016/j.gene.2019.144049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
45
|
Liberman N, Wang SY, Greer EL. Transgenerational epigenetic inheritance: from phenomena to molecular mechanisms. Curr Opin Neurobiol 2019; 59:189-206. [PMID: 31634674 DOI: 10.1016/j.conb.2019.09.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Inherited information not encoded in the DNA sequence can regulate a variety of complex phenotypes. However, how this epigenetic information escapes the typical epigenetic erasure that occurs upon fertilization and how it regulates behavior is still unclear. Here we review recent examples of brain related transgenerational epigenetic inheritance and delineate potential molecular mechanisms that could regulate how non-genetic information could be transmitted.
Collapse
Affiliation(s)
- Noa Liberman
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA
| | - Simon Yuan Wang
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA.
| |
Collapse
|
46
|
Cryoprotectants synergy improve zebrafish sperm cryopreservation and offspring skeletogenesis. Cryobiology 2019; 91:115-127. [PMID: 31605703 DOI: 10.1016/j.cryobiol.2019.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/06/2019] [Accepted: 10/03/2019] [Indexed: 01/17/2023]
Abstract
The synergy obtained by the combination of cryoprotectants is a successful strategy that can be beneficial on the optimization of zebrafish sperm cryopreservation. Recently, a protocol was established for this species using an electric ultrafreezer (-150 °C) performing cooling rate (-66 °C/min) and storage within one step. The ultimate objective of sperm cryopreservation is to generate healthy offspring. Therefore, the objective of this study was to select the most adequate cryoprotectant combination, for the previously established protocol, that generate high quality offspring with normal skeletogenesis. Among the permeating cryoprotectant concentrations studied 12.5% and 15% of N,N-dimethylformamide (DMF) yielded high post-thaw sperm quality and hatching rates. For these two concentrations, the presence of bovine serum albumin (10 mg/mL), egg yolk (10%), glycine (30 mM) and bicine (50 mM) was evaluated for post-thaw sperm motility, viability, in vitro fertilization success and offspring skeletal development (30 days post fertilization). Higher concentration of permeating cryoprotectant (15%) decreased the incidence of deformed arches and severe skeletal malformations, which suggests higher capacity to protect the cell against cold stress and DNA damage. Extender containing 15% DMF with Ctrl, Bicine and egg yolk were the non-permeating cryoprotectants with higher post-thaw quality. The use of these compounds results in a reduction in vertebral fusions, compressions and severity of skeletal malformations in the offspring. Therefore, these extender compositions are beneficial for the quality of zebrafish offspring sired by cryopreserved sperm with -66 °C/min freezing rate. To the best of our knowledge, this is the first report on skeletal development of the offspring sired by cryopreserved sperm performed with different freezing media compositions in zebrafish.
Collapse
|
47
|
D'Ippolito RA, Minamino N, Rivera-Casas C, Cheema MS, Bai DL, Kasinsky HE, Shabanowitz J, Eirin-Lopez JM, Ueda T, Hunt DF, Ausió J. Protamines from liverwort are produced by post-translational cleavage and C-terminal di-aminopropanelation of several male germ-specific H1 histones. J Biol Chem 2019; 294:16364-16373. [PMID: 31527083 DOI: 10.1074/jbc.ra119.010316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/26/2019] [Indexed: 11/06/2022] Open
Abstract
Protamines are small, highly-specialized, arginine-rich, and intrinsically-disordered chromosomal proteins that replace histones during spermiogenesis in many organisms. Previous evidence supports the notion that, in the animal kingdom, these proteins have evolved from a primitive replication-independent histone H1 involved in terminal cell differentiation. Nevertheless, a direct connection between the two families of chromatin proteins is missing. Here, we primarily used electron transfer dissociation MS-based analyses, revealing that the protamines in the sperm of the liverwort Marchantia polymorpha result from post-translational cleavage of three precursor H1 histones. Moreover, we show that the mature protamines are further post-translationally modified by di-aminopropanelation, and previous studies have reported that they condense spermatid chromatin through a process consisting of liquid-phase assembly likely involving spinodal decomposition. Taken together, our results reveal that the interesting evolutionary ancestry of protamines begins with histone H1 in both the animal and plant kingdoms.
Collapse
Affiliation(s)
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Ciro Rivera-Casas
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, Florida 33181
| | - Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Harold E Kasinsky
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, Florida 33181
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan.,Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904.,Department of Pathology, University of Virginia, Charlottesville, Virginia 22903
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| |
Collapse
|
48
|
Abstract
The idea that epigenetic determinants such as DNA methylation, histone modifications or RNA can be passed to the next generation through meiotic products (gametes) is long standing. Such meiotic epigenetic inheritance (MEI) is fairly common in yeast, plants and nematodes, but its extent in mammals has been much debated. Advances in genomics techniques are now driving the profiling of germline and zygotic epigenomes, thereby improving our understanding of MEI in diverse species. Whereas the role of DNA methylation in MEI remains unclear, insights from genome-wide studies suggest that a previously underappreciated fraction of mammalian genomes bypass epigenetic reprogramming during development. Notably, intergenerational inheritance of histone modifications, tRNA fragments and microRNAs can affect gene regulation in the offspring. It is important to note that MEI in mammals rarely constitutes transgenerational epigenetic inheritance (TEI), which spans multiple generations. In this Review, we discuss the examples of MEI in mammals, including mammalian epigenome reprogramming, and the molecular mechanisms of MEI in vertebrates in general. We also discuss the implications of the inheritance of histone modifications and small RNA for embryogenesis in metazoans, with a particular focus on insights gained from genome-wide studies.
Collapse
|
49
|
Riesco MF, Valcarce DG, Martínez-Vázquez JM, Robles V. Effect of low sperm quality on progeny: a study on zebrafish as model species. Sci Rep 2019; 9:11192. [PMID: 31371755 PMCID: PMC6671952 DOI: 10.1038/s41598-019-47702-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/22/2019] [Indexed: 12/23/2022] Open
Abstract
Nowadays a decrease tendency in human sperm quality has been reported mainly in developed countries. Reproductive technologies have been very valuable in achieving successful pregnancies with low quality sperm samples. However, considering that spermatozoa molecular contribution is increasingly important in recent studies, it is crucial to study whether fertilization with low sperm quality could leave a molecular mark on progeny. This study explores the consequences that fertilization with low sperm quality may have on progeny, using zebrafish as a model. Good and bad breeders were established attending to sperm quality analyses and were individually tracked. Significant differences in fertilization and malformation rates were obtained in progenies between high and low quality sperm samples. Moreover an altered miR profile was found in the progenies of bad zebrafish breeders (upregulation of miR-141 and miR -122 in 24 hpf embryos) and as a consequence, some of their targets involved in male sex development such as dmrt1, suffered downregulation. Our results indicate that fertilizing with high sperm quality samples becomes relevant from a new perspective: to avoid molecular alterations in the progeny that could remain masked and therefore produce unexpected consequences in it.
Collapse
Affiliation(s)
- Marta F Riesco
- IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Santander, 39012, Spain
| | - David G Valcarce
- IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Santander, 39012, Spain
| | | | - Vanesa Robles
- IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Santander, 39012, Spain.
- MODCELL GROUP, Department of Molecular Biology, Universidad de León, 24071, León, Spain.
| |
Collapse
|
50
|
González-Rojo S, Fernández-Díez C, Lombó M, Herráez MP. Distribution of DNA damage in the human sperm nucleus: implications of the architecture of the sperm head. Asian J Androl 2019; 22:401-408. [PMID: 31210149 PMCID: PMC7406100 DOI: 10.4103/aja.aja_26_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The sperm nucleus is prone to sustain DNA damage before and after ejaculation. Distribution of the damage is not homogeneous, and the factors determining differential sensitivity among nuclear regions have not yet been characterized. Human sperm chromatin contains three structural domains, two of which are considered the most susceptible to DNA damage: the histone bound domain, harboring developmental related genes, and the domain associated with nuclear matrix proteins. Using a quantitative polymerase chain reaction (qPCR) approach, we analyzed the number of lesions in genes homeobox A3 (HOXA3), homeobox B5 (HOXB5), sex-determining region Y (SRY)-box 2 (SOX2), β-GLOBIN, rDNA 18S, and rDNA 28S in human sperm after ultraviolet irradiation (400 μW cm−2, 10 min), H2O2 treatment (250 mmol l−1, 20 min), and cryopreservation, which showed differential susceptibility to genetic damage. Differential vulnerability is dependent on the genotoxic agent and independent of the sperm nuclear proteins to which the chromatin is bound and of accessibility to the transcription machinery. Immunodetection of 8-hydroxy-2'-deoxyguanosine (8-OHdG) showed that the highest level of oxidation was observed after H2O2 treatment. The distribution of oxidative lesions also differed depending on the genotoxic agent. 8-OHdG did not colocalize either with histone 3 (H3) or with type IIα + β topoisomerase (TOPO IIα + β) after H2O2 treatment but matched perfectly with peroxiredoxin 6 (PRDX6), which is involved in H2O2 metabolism. Our study reveals that the characteristics of the sperm head domains are responsible for access of the genotoxicants and cause differential degree of damage to nuclear areas, whereas chromatin packaging has a very limited relevance. The histone-enriched genes analyzed cannot be used as biomarkers of oxidative DNA damage.
Collapse
Affiliation(s)
- Silvia González-Rojo
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n León, León 24071, Spain
| | - Cristina Fernández-Díez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n León, León 24071, Spain
| | - Marta Lombó
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n León, León 24071, Spain
| | - María Paz Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n León, León 24071, Spain
| |
Collapse
|