1
|
Murata MM, Igari F, Urbanowicz R, Mouakkad L, Kim S, Chen Z, DiVizio D, Posadas EM, Giuliano AE, Tanaka H. A Practical Approach for Targeting Structural Variants Genome-wide in Plasma Cell-free DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.25.564058. [PMID: 37961589 PMCID: PMC10634834 DOI: 10.1101/2023.10.25.564058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Plasma cell-free DNA (cfDNA) is a promising source of gene mutations for cancer detection by liquid biopsy. However, no current tests interrogate chromosomal structural variants (SVs) genome-wide. Here, we report a simple molecular and sequencing workflow called Genome-wide Analysis of Palindrome Formation (GAPF-seq) to probe DNA palindromes, a type of SV that often demarcates gene amplification. With low-throughput next-generation sequencing and automated machine learning, tumor DNA showed skewed chromosomal distributions of high-coverage 1-kb bins (HCBs), which differentiated 39 breast tumors from matched normal DNA with an average Area Under the Curve (AUC) of 0.9819. A proof-of-concept liquid biopsy study using cfDNA from prostate cancer patients and healthy individuals yielded an average AUC of 0.965. HCBs on the X chromosome emerged as a determinant feature and were associated with androgen receptor gene amplification. As a novel agnostic liquid biopsy approach, GAPF-seq could fill the technological gap offering unique cancer-specific SV profiles.
Collapse
|
2
|
Tanaka H, Murata M, Igari F, Urbanowicz R, Mouakkad L, Kim S, Chen Z, Di Vizio D, Posadas E, Giuliano A. A Practical Approach for Targeting Structural Variants Genome-wide in Plasma Cell-free DNA. RESEARCH SQUARE 2024:rs.3.rs-3492157. [PMID: 38260372 PMCID: PMC10802711 DOI: 10.21203/rs.3.rs-3492157/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Interrogating plasma cell-free DNA (cfDNA) to detect cancer offers promise; however, no current tests scan structural variants (SVs) throughout the genome. Here, we report a simple molecular workflow to enrich a tumorigenic SV (DNA palindromes/fold-back inversions) that often demarcates genomic amplification and its feasibility for cancer detection by combining low-throughput next-generation sequencing with automated machine learning (Genome-wide Analysis of Palindrome Formation, GAPF-seq). Tumor DNA signal manifested as skewed chromosomal distributions of high-coverage 1-kb bins (HCBs), differentiating 39 matched breast tumor DNA from normal DNA with an average AUC of 0.9819. In a proof-of-concept liquid biopsy study, cfDNA from 0.5 mL plasma from prostate cancer patients was sufficient for binary classification against matched buffy coat DNA with an average AUC of 0.965. HCBs on the X chromosome emerged as a determinant feature and were associated with AR amplification. GAPF-seq could generate unique cancer-specific SV profiles in an agnostic liquid biopsy setting.
Collapse
|
3
|
Brewer BJ, Dunham MJ, Raghuraman MK. A unifying model that explains the origins of human inverted copy number variants. PLoS Genet 2024; 20:e1011091. [PMID: 38175827 PMCID: PMC10766186 DOI: 10.1371/journal.pgen.1011091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
With the release of the telomere-to-telomere human genome sequence and the availability of both long-read sequencing and optical genome mapping techniques, the identification of copy number variants (CNVs) and other structural variants is providing new insights into human genetic disease. Different mechanisms have been proposed to account for the novel junctions in these complex architectures, including aberrant forms of DNA replication, non-allelic homologous recombination, and various pathways that repair DNA breaks. Here, we have focused on a set of structural variants that include an inverted segment and propose that they share a common initiating event: an inverted triplication with long, unstable palindromic junctions. The secondary rearrangement of these palindromes gives rise to the various forms of inverted structural variants. We postulate that this same mechanism (ODIRA: origin-dependent inverted-repeat amplification) that creates the inverted CNVs in inherited syndromes also generates the palindromes found in cancers.
Collapse
Affiliation(s)
- Bonita J. Brewer
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - M. K. Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Ait Saada A, Guo W, Costa AB, Yang J, Wang J, Lobachev K. Widely spaced and divergent inverted repeats become a potent source of chromosomal rearrangements in long single-stranded DNA regions. Nucleic Acids Res 2023; 51:3722-3734. [PMID: 36919609 PMCID: PMC10164571 DOI: 10.1093/nar/gkad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
DNA inverted repeats (IRs) are widespread across many eukaryotic genomes. Their ability to form stable hairpin/cruciform secondary structures is causative in triggering chromosome instability leading to several human diseases. Distance and sequence divergence between IRs are inversely correlated with their ability to induce gross chromosomal rearrangements (GCRs) because of a lesser probability of secondary structure formation and chromosomal breakage. In this study, we demonstrate that structural parameters that normally constrain the instability of IRs are overcome when the repeats interact in single-stranded DNA (ssDNA). We established a system in budding yeast whereby >73 kb of ssDNA can be formed in cdc13-707fs mutants. We found that in ssDNA, 12 bp or 30 kb spaced Alu-IRs show similarly high levels of GCRs, while heterology only beyond 25% suppresses IR-induced instability. Mechanistically, rearrangements arise after cis-interaction of IRs leading to a DNA fold-back and the formation of a dicentric chromosome, which requires Rad52/Rad59 for IR annealing as well as Rad1-Rad10, Slx4, Msh2/Msh3 and Saw1 proteins for nonhomologous tail removal. Importantly, using structural characteristics rendering IRs permissive to DNA fold-back in yeast, we found that ssDNA regions mapped in cancer genomes contain a substantial number of potentially interacting and unstable IRs.
Collapse
Affiliation(s)
- Anissia Ait Saada
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Wenying Guo
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alex B Costa
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jiaxin Yang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Kirill S Lobachev
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Murata MM, Giuliano AE, Tanaka H. Genome-Wide Analysis of Palindrome Formation with Next-Generation Sequencing (GAPF-Seq) and a Bioinformatics Pipeline for Assessing De Novo Palindromes in Cancer Genomes. Methods Mol Biol 2023; 2660:13-22. [PMID: 37191787 DOI: 10.1007/978-1-0716-3163-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA palindromes are a type of chromosomal aberration that appears frequently during tumorigenesis. They are characterized by sequences of nucleotides that are identical to their reverse complements and often arise due to illegitimate repair of DNA double-strand breaks, fusion of telomeres, or stalled replication forks, all of which are common adverse early events in cancer. Here, we describe the protocol for enriching palindromes from genomic DNA sources with low-input DNA amounts and detail a bioinformatics tool for assessing the enrichment and location of de novo palindrome formation from low-coverage whole-genome sequencing data.
Collapse
Affiliation(s)
- Michael M Murata
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA.
| | - Armando E Giuliano
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA.
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, West Hollywood, CA, USA.
- Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, West Hollywood, CA, USA.
| |
Collapse
|
6
|
Tibatan MA, Sarısaman M. Unitary structure of palindromes in DNA. Biosystems 2021; 211:104565. [PMID: 34740704 DOI: 10.1016/j.biosystems.2021.104565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022]
Abstract
We investigate the quantum behavior encountered in palindromes within DNA structure. In particular, we reveal the unitary structure of usual palindromic sequences found in genomic DNAs of all living organisms, using the Schwinger's approach. We clearly demonstrate the role played by palindromic configurations with special emphasis on physical symmetries, in particular subsymmetries of unitary structure. We unveil the prominence of unitary structure in palindromic sequences in the sense that vitally significant information endowed within DNA could be transformed unchangeably in the process of transcription. We introduce a new symmetry relation, namely purine-purine or pyrimidine-pyrimidine symmetries (p-symmetry) in addition to the already known symmetry relation of purine-pyrimidine symmetries (pp-symmetry) given by Chargaff's rule. Therefore, important vital functions of a living organisms are protected by means of these symmetric features. It is understood that higher order palindromic sequences could be generated in terms of the basis of the highest prime numbers that make up the palindrome sequence number. We propose that violation of this unitary structure of palindromic sequences by means of our proposed symmetries leads to a mutation in DNA, which could offer a new perspective in the scientific studies on the origin and cause of mutation.
Collapse
Affiliation(s)
- Mehmet Ali Tibatan
- Department of Biotechnology, Istanbul University, 34134, Vezneciler, Istanbul, Turkey.
| | - Mustafa Sarısaman
- Department of Physics, Istanbul University, 34134, Vezneciler, Istanbul, Turkey.
| |
Collapse
|
7
|
Ait Saada A, Costa AB, Sheng Z, Guo W, Haber JE, Lobachev K. Structural parameters of palindromic repeats determine the specificity of nuclease attack of secondary structures. Nucleic Acids Res 2021; 49:3932-3947. [PMID: 33772579 PMCID: PMC8053094 DOI: 10.1093/nar/gkab168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
Palindromic sequences are a potent source of chromosomal instability in many organisms and are implicated in the pathogenesis of human diseases. In this study, we investigate which nucleases are responsible for cleavage of the hairpin and cruciform structures and generation of double-strand breaks at inverted repeats in Saccharomyces cerevisiae. We demonstrate that the involvement of structure-specific nucleases in palindrome fragility depends on the distance between inverted repeats and their transcriptional status. The attack by the Mre11 complex is constrained to hairpins with loops <9 nucleotides. This restriction is alleviated upon RPA depletion, indicating that RPA controls the stability and/or formation of secondary structures otherwise responsible for replication fork stalling and DSB formation. Mus81-Mms4 cleavage of cruciforms occurs at divergently but not convergently transcribed or nontranscribed repeats. Our study also reveals the third pathway for fragility at perfect and quasi-palindromes, which involves cruciform resolution during the G2 phase of the cell cycle.
Collapse
Affiliation(s)
- Anissia Ait Saada
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GE 30332, USA
| | - Alex B Costa
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GE 30332, USA
| | - Ziwei Sheng
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GE 30332, USA
| | - Wenying Guo
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GE 30332, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Waltham, MA 02454-9110, USA
| | - Kirill S Lobachev
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GE 30332, USA
| |
Collapse
|
8
|
Svetec Miklenić M, Svetec IK. Palindromes in DNA-A Risk for Genome Stability and Implications in Cancer. Int J Mol Sci 2021; 22:2840. [PMID: 33799581 PMCID: PMC7999016 DOI: 10.3390/ijms22062840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
A palindrome in DNA consists of two closely spaced or adjacent inverted repeats. Certain palindromes have important biological functions as parts of various cis-acting elements and protein binding sites. However, many palindromes are known as fragile sites in the genome, sites prone to chromosome breakage which can lead to various genetic rearrangements or even cell death. The ability of certain palindromes to initiate genetic recombination lies in their ability to form secondary structures in DNA which can cause replication stalling and double-strand breaks. Given their recombinogenic nature, it is not surprising that palindromes in the human genome are involved in genetic rearrangements in cancer cells as well as other known recurrent translocations and deletions associated with certain syndromes in humans. Here, we bring an overview of current understanding and knowledge on molecular mechanisms of palindrome recombinogenicity and discuss possible implications of DNA palindromes in carcinogenesis. Furthermore, we overview the data on known palindromic sequences in the human genome and efforts to estimate their number and distribution, as well as underlying mechanisms of genetic rearrangements specific palindromic sequences cause.
Collapse
Affiliation(s)
| | - Ivan Krešimir Svetec
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| |
Collapse
|
9
|
Li Z, Li Y, Wang X, Yang Q. PPP2R2B downregulation is associated with immune evasion and predicts poor clinical outcomes in triple-negative breast cancer. Cancer Cell Int 2021; 21:13. [PMID: 33407498 PMCID: PMC7788839 DOI: 10.1186/s12935-020-01707-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background Although immune checkpoint blockade has emerged as a novel promising strategy for triple-negative breast cancer (TNBC), many patients fail response or acquire resistance to current agents. Consequently, our focus need to shift toward alternative inhibitory targets, predictor for responsiveness, and immune suppressive mechanisms. Methods In this study, we performed systematic bioinformatics analyses to identify PPP2R2B as a robust tumor suppressor in TNBC. Meanwhile, breast cancer progression cell line model was applied in our research. Quantitative real-time PCR assay (Q-PCR) was carried out to assess the role of PPP2R2B in the onset and progression of breast cancer. Furthermore, we validated the effect of PPP2R2B on immune activity via in vitro experiments based on macrophages. To further decipher the roles of PPP2R2B in TNBC, we investigated the transcriptome level, genomic profiles, and its clinical prognostic value. Results In TNBC tissues, PPP2R2B expression was significantly downregulated compared to normal breast tissues. Kaplan‐Meier survival analysis revealed that patients with low PPP2R2B expression had shorter survival time than those with high PPP2R2B expression. Q-PCR analysis suggested that PPP2R2B downregulation could play a key role in breast-cancer initiation and progression. Additionally, our findings showed that PPP2R2B was positively related with CD8 T cells, CD4 Th1 helper cells, and M1 macrophages, but negatively related with M2 macrophages. Subsequent results identified that PPP2R2B was strongly related with immune inhibitor genes (GZMA, PRF1, and IFNG), which could improve T lymphocytes antitumor function and restrict immune evasion. Meanwhile, T cell receptor signaling pathway and antigen processing and presentation signaling pathway were significantly suppressed in low PPP2R2B expression group. Afterwards, distinct subgroups based on PPP2R2B expression exhibited several unique features in somatic mutations, copy numbers alterations, extent of copy number burden, and promoter methylation level. Conclusion Our results indicated that PPP2R2B could serve as a promising biomarker for TNBC, and help predict immunotherapeutic response and guide personalized strategies in TNBC treatment.
Collapse
Affiliation(s)
- Zheng Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China. .,Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China. .,Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
10
|
A reference catalog of DNA palindromes in the human genome and their variations in 1000 Genomes. Hum Genome Var 2020; 7:40. [PMID: 33298903 PMCID: PMC7680136 DOI: 10.1038/s41439-020-00127-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/24/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
A palindrome in DNA is like a palindrome in language, but when read backwards, it is a complement of the forward sequence; effectively, the two halves of a sequence complement each other from its midpoint like in a double strand of DNA. Palindromes are distributed throughout the human genome and play significant roles in gene expression and regulation. Palindromic mutations are linked to many human diseases, such as neuronal disorders, mental retardation, and various cancers. In this work, we computed and analyzed the palindromic sequences in the human genome and studied their conservation in personal genomes using 1000 Genomes data. We found that ~30% of the palindromes exhibit variation, some of which are caused by rare variants. The analysis of disease/trait-associated single-nucleotide polymorphisms in palindromic regions showed that disease-associated risk variants are 14 times more likely to be present in palindromic regions than in other regions. The catalog of palindromes in the reference genome and 1000 Genomes is being made available here with details on their variations in each individual genome to serve as a resource for future and retrospective whole-genome studies identifying statistically significant palindrome variations associated with diseases or traits and their roles in disease mechanisms.
Collapse
|
11
|
Li BZ, Putnam CD, Kolodner RD. Mechanisms underlying genome instability mediated by formation of foldback inversions in Saccharomyces cerevisiae. eLife 2020; 9:58223. [PMID: 32762846 PMCID: PMC7467729 DOI: 10.7554/elife.58223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/04/2020] [Indexed: 01/09/2023] Open
Abstract
Foldback inversions, also called inverted duplications, have been observed in human genetic diseases and cancers. Here, we used a Saccharomyces cerevisiae genetic system that generates gross chromosomal rearrangements (GCRs) mediated by foldback inversions combined with whole-genome sequencing to study their formation. Foldback inversions were mediated by formation of single-stranded DNA hairpins. Two types of hairpins were identified: small-loop hairpins that were suppressed by MRE11, SAE2, SLX1, and YKU80 and large-loop hairpins that were suppressed by YEN1, TEL1, SWR1, and MRC1. Analysis of CRISPR/Cas9-induced double strand breaks (DSBs) revealed that long-stem hairpin-forming sequences could form foldback inversions when proximal or distal to the DSB, whereas short-stem hairpin-forming sequences formed foldback inversions when proximal to the DSB. Finally, we found that foldback inversion GCRs were stabilized by secondary rearrangements, mostly mediated by different homologous recombination mechanisms including single-strand annealing; however, POL32-dependent break-induced replication did not appear to be involved forming secondary rearrangements.
Collapse
Affiliation(s)
- Bin-Zhong Li
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, San Diego, United States
| | - Christopher D Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, San Diego, United States.,Departments of Medicine, University of California School of Medicine, San Diego, San Diego, United States
| | - Richard David Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, San Diego, United States.,Cellular and Molecular Medicine, University of California School of Medicine, San Diego, San Diego, United States.,Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, San Diego, United States.,Institute of Genomic Medicine, University of California School of Medicine, San Diego, San Diego, United States
| |
Collapse
|
12
|
Grossmann P, Cristea S, Beerenwinkel N. Clonal evolution driven by superdriver mutations. BMC Evol Biol 2020; 20:89. [PMID: 32689942 PMCID: PMC7370525 DOI: 10.1186/s12862-020-01647-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 06/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Tumors are widely recognized to progress through clonal evolution by sequentially acquiring selectively advantageous genetic alterations that significantly contribute to tumorigenesis and thus are termned drivers. Some cancer drivers, such as TP53 point mutation or EGFR copy number gain, provide exceptional fitness gains, which, in time, can be sufficient to trigger the onset of cancer with little or no contribution from additional genetic alterations. These key alterations are called superdrivers. Results In this study, we employ a Wright-Fisher model to study the interplay between drivers and superdrivers in tumor progression. We demonstrate that the resulting evolutionary dynamics follow global clonal expansions of superdrivers with periodic clonal expansions of drivers. We find that the waiting time to the accumulation of a set of superdrivers and drivers in the tumor cell population can be approximated by the sum of the individual waiting times. Conclusions Our results suggest that superdriver dynamics dominate over driver dynamics in tumorigenesis. Furthermore, our model allows studying the interplay between superdriver and driver mutations both empirically and theoretically.
Collapse
Affiliation(s)
- Patrick Grossmann
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Simona Cristea
- Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Harvard Department of Stem Cell and Regenerative Biology, Cambridge, MA, USA
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland. .,SIB Swiss Institute of Bioinformatics, 4058, Basel, Switzerland.
| |
Collapse
|
13
|
Jing A, Vizeacoumar FS, Parameswaran S, Haave B, Cunningham CE, Wu Y, Arnold R, Bonham K, Freywald A, Han J, Vizeacoumar FJ. Expression-based analyses indicate a central role for hypoxia in driving tumor plasticity through microenvironment remodeling and chromosomal instability. NPJ Syst Biol Appl 2018; 4:38. [PMID: 30374409 PMCID: PMC6200725 DOI: 10.1038/s41540-018-0074-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
Can transcriptomic alterations drive the evolution of tumors? We asked if changes in gene expression found in all patients arise earlier in tumor development and can be relevant to tumor progression. Our analyses of non-mutated genes from the non-amplified regions of the genome of 158 triple-negative breast cancer (TNBC) cases identified 219 exclusively expression-altered (EEA) genes that may play important role in TNBC. Phylogenetic analyses of these genes predict a "punctuated burst" of multiple gene upregulation events occurring at early stages of tumor development, followed by minimal subsequent changes later in tumor progression. Remarkably, this punctuated burst of expressional changes is instigated by hypoxia-related molecular events, predominantly in two groups of genes that control chromosomal instability (CIN) and those that remodel tumor microenvironment (TME). We conclude that alterations in the transcriptome are not stochastic and that early-stage hypoxia induces CIN and TME remodeling to permit further tumor evolution.
Collapse
Affiliation(s)
- Anqi Jing
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G2R3 Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
| | - Sreejit Parameswaran
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
| | - Bjorn Haave
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
| | - Chelsea E. Cunningham
- Department of Biochemistry, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
| | - Yuliang Wu
- Department of Biochemistry, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
| | - Roland Arnold
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Keith Bonham
- Department of Biochemistry, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5 Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
- Department of Biochemistry, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
| | - Jie Han
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G2R3 Canada
| | - Franco J. Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
- Department of Biochemistry, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5 Canada
| |
Collapse
|
14
|
Whole Genome Sequence Analysis of Mutations Accumulated in rad27Δ Yeast Strains with Defects in the Processing of Okazaki Fragments Indicates Template-Switching Events. G3-GENES GENOMES GENETICS 2017; 7:3775-3787. [PMID: 28974572 PMCID: PMC5677150 DOI: 10.1534/g3.117.300262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Okazaki fragments that are formed during lagging strand DNA synthesis include an initiating primer consisting of both RNA and DNA. The RNA fragment must be removed before the fragments are joined. In Saccharomyces cerevisiae, a key player in this process is the structure-specific flap endonuclease, Rad27p (human homolog FEN1). To obtain a genomic view of the mutational consequence of loss of RAD27, a S. cerevisiae rad27Δ strain was subcultured for 25 generations and sequenced using Illumina paired-end sequencing. Out of the 455 changes observed in 10 colonies isolated the two most common types of events were insertions or deletions (INDELs) in simple sequence repeats (SSRs) and INDELs mediated by short direct repeats. Surprisingly, we also detected a previously neglected class of 21 template-switching events. These events were presumably generated by quasi-palindrome to palindrome correction, as well as palindrome elongation. The formation of these events is best explained by folding back of the stalled nascent strand and resumption of DNA synthesis using the same nascent strand as a template. Evidence of quasi-palindrome to palindrome correction that could be generated by template switching appears also in yeast genome evolution. Out of the 455 events, 55 events appeared in multiple isolates; further analysis indicates that these loci are mutational hotspots. Since Rad27 acts on the lagging strand when the leading strand should not contain any gaps, we propose a mechanism favoring intramolecular strand switching over an intermolecular mechanism. We note that our results open new ways of understanding template switching that occurs during genome instability and evolution.
Collapse
|
15
|
Marotta M, Onodera T, Johnson J, Budd GT, Watanabe T, Cui X, Giuliano AE, Niida A, Tanaka H. Palindromic amplification of the ERBB2 oncogene in primary HER2-positive breast tumors. Sci Rep 2017; 7:41921. [PMID: 28211519 PMCID: PMC5314454 DOI: 10.1038/srep41921] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022] Open
Abstract
Oncogene amplification confers a growth advantage to tumor cells for clonal expansion. There are several, recurrently amplified oncogenes throughout the human genome. However, it remains unclear whether this recurrent amplification is solely a manifestation of increased fitness resulting from random amplification mechanisms, or if a genomic locus-specific amplification mechanism plays a role. Here we show that the ERBB2 oncogene at 17q12 is susceptible to palindromic gene amplification, a mechanism characterized by the inverted (palindromic) duplication of genomic segments, in HER2-positive breast tumors. We applied two genomic approaches to investigate amplification mechanisms: sequencing of DNA libraries enriched with tumor-derived palindromic DNA (Genome-wide Analysis of Palindrome Formation) and whole genome sequencing (WGS). We observed significant enrichment of palindromic DNA within amplified ERBB2 genomic segments. Palindromic DNA was particularly enriched at amplification peaks and at boundaries between amplified and normal copy-number regions. Thus, palindromic gene amplification shaped the amplified ERBB2 locus. The enrichment of palindromic DNA throughout the amplified segments leads us to propose that the ERBB2 locus is amplified through the mechanism that repeatedly generates palindromic DNA, such as Breakage-Fusion-Bridge cycles. The genomic architecture surrounding ERBB2 in the normal genome, such as segmental duplications, could promote the locus-specific mechanism.
Collapse
Affiliation(s)
- Michael Marotta
- Lerner Research Institute and Cleveland Clinic, Cleveland, OH, USA
| | - Taku Onodera
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jeffrey Johnson
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - G Thomas Budd
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Takaaki Watanabe
- Lerner Research Institute and Cleveland Clinic, Cleveland, OH, USA.,Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Armando E Giuliano
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Atsushi Niida
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hisashi Tanaka
- Lerner Research Institute and Cleveland Clinic, Cleveland, OH, USA.,Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| |
Collapse
|
16
|
Subramanian S, Chaparala S, Avali V, Ganapathiraju MK. A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 2016; 9:73. [PMID: 28117658 PMCID: PMC5260791 DOI: 10.1186/s12920-016-0232-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background DNA palindromes are a unique pattern of repeat sequences that are present in the human genome. It consists of a sequence of nucleotides in which the second half is the complement of the first half but appearing in reverse order. These palindromic sequences may have a significant role in DNA replication, transcription and gene regulation processes. They occur frequently in human cancers by clustering at specific locations of the genome that undergo gene amplification and tumorigenesis. Moreover, some studies showed that palindromes are clustered in amplified regions of breast cancer genomes especially in chromosomes (chr) 8 and 11. With the large number of personal genomes and cancer genomes becoming available, it is now possible to study their association to diseases using computational methods. Here, we conducted a pilot study on chromosomes 8 and 11 of cancer genomes to identify computationally the differentially occurring palindromes. Methods We processed 69 breast cancer genomes from The Cancer Genome Atlas including serum-normal and tumor genomes, and 1000 Genomes to serve as control group. The Biological Language Modelling Toolkit (BLMT) computes palindromes in whole genomes. We developed a computational pipeline integrating BLMT to compute and compare prevalence of palindromes in personal genomes. Results We carried out a pilot study on chr 8 and chr 11 taking into account single nucleotide polymorphisms, insertions and deletions. Of all the palindromes that showed any variation in cancer genomes, 38% of what were near breast cancer genes happened to be the most differentiated palindromes in tumor (i.e. they ranked among the top 25% by our heuristic measure). Conclusions These results will shed light on the prevalence of palindromes in oncogenes and the mutations that are present in the palindromic regions that could contribute to genomic rearrangements, and breast cancer progression.
Collapse
Affiliation(s)
- Sandeep Subramanian
- Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Srilakshmi Chaparala
- Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Blvd, Suite 522, Pittsburgh, PA, 15206, USA
| | - Viji Avali
- Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Blvd, Suite 522, Pittsburgh, PA, 15206, USA
| | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Blvd, Suite 522, Pittsburgh, PA, 15206, USA. .,Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
17
|
Telomere Dysfunction Triggers Palindrome Formation Independently of Double-Strand Break Repair Mechanisms. Genetics 2016; 203:1659-68. [PMID: 27334270 PMCID: PMC4981268 DOI: 10.1534/genetics.115.183020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 06/06/2016] [Indexed: 11/18/2022] Open
Abstract
Inverted chromosome duplications or palindromes are linked with genetic disorders and malignant transformation. They are considered by-products of DNA double-strand break (DSB) repair: the homologous recombination (HR) and the nonhomologous end joining (NHEJ). Palindromes near chromosome ends are often triggered by telomere losses. An important question is to what extent their formation depends upon DSB repair mechanisms. Here we addressed this question using yeast genetics and comparative genomic hybridization. We induced palindrome formation by passaging cells lacking any form of telomere maintenance (telomerase and telomere recombination). Surprisingly, we found that DNA ligase 4, essential for NHEJ, did not make a significant contribution to palindrome formation induced by telomere losses. Moreover RAD51, important for certain HR-derived mechanisms, had little effect. Furthermore RAD52, which is essential for HR in yeast, appeared to decrease the number of palindromes in cells proliferating without telomeres. This study also uncovered an important role for Rev3 and Rev7 (but not for Pol32) subunits of polymerase ζ in the survival of cells undergoing telomere losses and forming palindromes. We propose a model called short-inverted repeat-induced synthesis in which DNA synthesis, rather than DSB repair, drives the inverted duplication triggered by telomere dysfunction.
Collapse
|
18
|
Beerenwinkel N, Schwarz RF, Gerstung M, Markowetz F. Cancer evolution: mathematical models and computational inference. Syst Biol 2015; 64:e1-25. [PMID: 25293804 PMCID: PMC4265145 DOI: 10.1093/sysbio/syu081] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 09/26/2014] [Indexed: 12/12/2022] Open
Abstract
Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy.
Collapse
Affiliation(s)
- Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB20RE, United Kingdom Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB20RE, United Kingdom
| | - Roland F Schwarz
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB20RE, United Kingdom
| | - Moritz Gerstung
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB20RE, United Kingdom
| | - Florian Markowetz
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB20RE, United Kingdom
| |
Collapse
|
19
|
Yang H, Volfovsky N, Rattray A, Chen X, Tanaka H, Strathern J. GAP-Seq: a method for identification of DNA palindromes. BMC Genomics 2014; 15:394. [PMID: 24885769 PMCID: PMC4057610 DOI: 10.1186/1471-2164-15-394] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 04/26/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Closely spaced long inverted repeats, also known as DNA palindromes, can undergo intrastrand annealing to form DNA hairpins. The ability to form these hairpins results in genome instability, difficulties in maintaining clones in Escherichia coli and major problems for most DNA sequencing approaches. Because of their role in genomic instability and gene amplification in some human cancers, it is important to develop systematic approaches to detect and characterize DNA palindromes. RESULTS We developed a new protocol to identify palindromes that couples the S1 nuclease treated Cot0 DNA (GAPF) with high-throughput sequencing (GAP-Seq). Unlike earlier protocols, it does not involve restriction enzymatic digestion prior to DNA snap-back thereby preserving longer DNA sequences. It also indicates the location of the novel junction, which can then be recovered. Using MCF-7 breast cancer cell line as the proof-of-principle analysis, we have identified 35 palindrome candidates and physically characterized the top 5 candidates and their junctions. Because this protocol eliminates many of the false positives that plague earlier techniques, we have improved palindrome identification. CONCLUSIONS The GAP-Seq approach underscores the importance of developing new tools for identifying and characterizing palindromes, and provides a new strategy to systematically assess palindromes in genomes. It will be useful for studying human cancers and other diseases associated with palindromes.
Collapse
Affiliation(s)
- Hui Yang
- />Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, Cancer Research and Development Center, Frederick, MD 21702 USA
| | - Natalia Volfovsky
- />ABCC/ ISP, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Alison Rattray
- />Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, Cancer Research and Development Center, Frederick, MD 21702 USA
| | - Xiongfong Chen
- />ABCC/ ISP, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Hisashi Tanaka
- />Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195 USA
| | - Jeffrey Strathern
- />Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, Cancer Research and Development Center, Frederick, MD 21702 USA
| |
Collapse
|
20
|
Alisoltani A, Fallahi H, Ebrahimi M, Ebrahimi M, Ebrahimie E. Prediction of potential cancer-risk regions based on transcriptome data: towards a comprehensive view. PLoS One 2014; 9:e96320. [PMID: 24796549 PMCID: PMC4010480 DOI: 10.1371/journal.pone.0096320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022] Open
Abstract
A novel integrative pipeline is presented for discovery of potential cancer-susceptibility regions (PCSRs) by calculating the number of altered genes at each chromosomal region, using expression microarray datasets of different human cancers (HCs). Our novel approach comprises primarily predicting PCSRs followed by identification of key genes in these regions to obtain potential regions harboring new cancer-associated variants. In addition to finding new cancer causal variants, another advantage in prediction of such risk regions is simultaneous study of different types of genomic variants in line with focusing on specific chromosomal regions. Using this pipeline we extracted numbers of regions with highly altered expression levels in cancer condition. Regulatory networks were also constructed for different types of cancers following the identification of altered mRNA and microRNAs. Interestingly, results showed that GAPDH, LIFR, ZEB2, mir-21, mir-30a, mir-141 and mir-200c, all located at PCSRs, are common altered factors in constructed networks. We found a number of clusters of altered mRNAs and miRNAs on predicted PCSRs (e.g.12p13.31) and their common regulators including KLF4 and SOX10. Large scale prediction of risk regions based on transcriptome data can open a window in comprehensive study of cancer risk factors and the other human diseases.
Collapse
Affiliation(s)
- Arghavan Alisoltani
- Department of Plant Breeding and Biotechnology, University of Shahrekord, Shahrekord, Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Mahdi Ebrahimi
- Department of Informatics, Saarland University, Saarbrucken, Germany
| | - Mansour Ebrahimi
- Bioinformatics Research Group and Department of Biology, University of Qom, Qom, Iran
| | - Esmaeil Ebrahimie
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
21
|
Hermetz KE, Newman S, Conneely KN, Martin CL, Ballif BC, Shaffer LG, Cody JD, Rudd MK. Large inverted duplications in the human genome form via a fold-back mechanism. PLoS Genet 2014; 10:e1004139. [PMID: 24497845 PMCID: PMC3907307 DOI: 10.1371/journal.pgen.1004139] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/09/2013] [Indexed: 11/27/2022] Open
Abstract
Inverted duplications are a common type of copy number variation (CNV) in germline and somatic genomes. Large duplications that include many genes can lead to both neurodevelopmental phenotypes in children and gene amplifications in tumors. There are several models for inverted duplication formation, most of which include a dicentric chromosome intermediate followed by breakage-fusion-bridge (BFB) cycles, but the mechanisms that give rise to the inverted dicentric chromosome in most inverted duplications remain unknown. Here we have combined high-resolution array CGH, custom sequence capture, next-generation sequencing, and long-range PCR to analyze the breakpoints of 50 nonrecurrent inverted duplications in patients with intellectual disability, autism, and congenital anomalies. For half of the rearrangements in our study, we sequenced at least one breakpoint junction. Sequence analysis of breakpoint junctions reveals a normal-copy disomic spacer between inverted and non-inverted copies of the duplication. Further, short inverted sequences are present at the boundary of the disomic spacer and the inverted duplication. These data support a mechanism of inverted duplication formation whereby a chromosome with a double-strand break intrastrand pairs with itself to form a “fold-back” intermediate that, after DNA replication, produces a dicentric inverted chromosome with a disomic spacer corresponding to the site of the fold-back loop. This process can lead to inverted duplications adjacent to terminal deletions, inverted duplications juxtaposed to translocations, and inverted duplication ring chromosomes. Chromosomes with large inverted duplications and terminal deletions cause neurodevelopmental disorders in children. These chromosome rearrangements typically involve hundreds of genes, leading to significant changes in gene dosage. Though inverted duplications adjacent to terminal deletions are a relatively common type of chromosomal imbalance, the DNA repair mechanism responsible for their formation is not known. In this study, we analyze the genomic organization of the largest collection of human inverted duplications. We find a common inverted duplication structure, consistent with a model that requires DNA to fold back and form a dicentric chromosome intermediate. These data provide insight into the formation of nonrecurrent inverted duplications in the human genome.
Collapse
Affiliation(s)
- Karen E Hermetz
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Scott Newman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America ; Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, Georgia, United States of America
| | - Christa L Martin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Blake C Ballif
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington, United States of America
| | - Lisa G Shaffer
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington, United States of America
| | - Jannine D Cody
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America ; The Chromosome 18 Registry and Research Society, San Antonio, Texas, United States of America
| | - M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
22
|
Zhang Y, Saini N, Sheng Z, Lobachev KS. Genome-wide screen reveals replication pathway for quasi-palindrome fragility dependent on homologous recombination. PLoS Genet 2013; 9:e1003979. [PMID: 24339793 PMCID: PMC3855049 DOI: 10.1371/journal.pgen.1003979] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/12/2013] [Indexed: 02/07/2023] Open
Abstract
Inverted repeats capable of forming hairpin and cruciform structures present a threat to chromosomal integrity. They induce double strand breaks, which lead to gross chromosomal rearrangements, the hallmarks of cancers and hereditary diseases. Secondary structure formation at this motif has been proposed to be the driving force for the instability, albeit the mechanisms leading to the fragility are not well-understood. We carried out a genome-wide screen to uncover the genetic players that govern fragility of homologous and homeologous Alu quasi-palindromes in the yeast Saccharomyces cerevisiae. We found that depletion or lack of components of the DNA replication machinery, proteins involved in Fe-S cluster biogenesis, the replication-pausing checkpoint pathway, the telomere maintenance complex or the Sgs1-Top3-Rmi1 dissolvasome augment fragility at Alu-IRs. Rad51, a component of the homologous recombination pathway, was found to be required for replication arrest and breakage at the repeats specifically in replication-deficient strains. These data demonstrate that Rad51 is required for the formation of breakage-prone secondary structures in situations when replication is compromised while another mechanism operates in DSB formation in replication-proficient strains. Inverted repeats are found in many eukaryotic genomes including humans. They have a potential to cause chromosomal breakage and rearrangements that contribute to genome polymorphism and the development of diseases. Instability of inverted repeats is accounted for by their propensity to adopt DNA secondary structures that is negatively affected by the distance between the repeats and level of sequence divergence. However, the genetic factors that promote the abnormal structure formation or affect the ability of the repeats to break are largely unknown. Here, using a genome-wide screen we identified 38 mutants that destabilize imperfect human inverted Alu repeats and predispose them to breakage. The proteins that are required to maintain repeat stability belong to the core of the DNA replication machinery and to the accessory proteins that help replication fork to move through the difficult templates. Remarkably, when replication machinery is compromised, the proteins involved in homologous recombination promote the formation of secondary structures and replication block thereby triggering breakage at the inverted repeats. These results reveal a powerful pathway for the destabilization of chromosomes containing inverted repeats that requires the activity of homologous recombination.
Collapse
Affiliation(s)
- Yu Zhang
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Natalie Saini
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ziwei Sheng
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
23
|
Pécuchet N, Popova T, Manié E, Lucchesi C, Battistella A, Vincent-Salomon A, Caux-Moncoutier V, Bollet M, Sigal-Zafrani B, Sastre-Garau X, Stoppa-Lyonnet D, Stern MH. Loss of heterozygosity at 13q13 and 14q32 predicts BRCA2 inactivation in luminal breast carcinomas. Int J Cancer 2013; 133:2834-42. [PMID: 23754601 DOI: 10.1002/ijc.28315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/26/2013] [Accepted: 05/14/2013] [Indexed: 11/11/2022]
Abstract
BRCA2 is the major high-penetrance predisposition gene for luminal (estrogen receptor [ER] positive) breast cancers. However, many BRCA2 mutant carriers lack family history of breast/ovarian cancers and do not benefit from genetic testing. Specific genomic features associated with BRCA2 inactivation in tumors could help identify patients for whom a genetic test for BRCA2 may be proposed. A series of ER-positive invasive ductal carcinomas (IDCs) including 30 carriers of BRCA2 mutations and 215 control cases was studied by single-nucleotide polymorphism (SNP) arrays. Cases and controls were stratified by grade and HER2 status. Independently, 7 BRCA2 and 51 control cases were used for validation. Absolute copy number and Loss of heterozygosity (LOH) profiles were obtained from SNP arrays by the genome alteration print (GAP) method. BRCA2 tumors were observed to display a discriminatively greater number of chromosomal breaks calculated after filtering out and smoothing <3 Mb variations. This argues for a BRCA2-associated genomic instability responsible for long-segment aberrations. Co-occurrence of two genomic features-LOH of 13q13 and 14q32-was found to predict BRCA2 status with 90% of sensitivity and 87% of specificity in discovery series of high-grade HER2-negative IDCs and 100% of sensitivity and 88% of specificity in an independent series of 58 IDCs. Estimated positive predictive value was 17.2% (confidence interval: 6.7-33.5) in the whole series. In conclusion, the simplified BRCA2 classifier based on the co-occurrence of LOH at 13q13 and 14q32 could provide an indication to test for BRCA2 mutation in patients with ER-positive IDC.
Collapse
Affiliation(s)
- Nicolas Pécuchet
- Institut Curie, Centre de Recherche, Paris, France; INSERM U830, Paris, France; Department of Tumor Biology, Institut Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jones N, Bonnet F, Sfar S, Lafitte M, Lafon D, Sierankowski G, Brouste V, Banneau G, Tunon de Lara C, Debled M, MacGrogan G, Longy M, Sevenet N. Comprehensive analysis of PTEN status in breast carcinomas. Int J Cancer 2013; 133:323-34. [PMID: 23319441 DOI: 10.1002/ijc.28021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/17/2012] [Indexed: 02/01/2023]
Abstract
PTEN plays a well-established role in the negative regulation of the PI3K pathway, which is frequently activated in several cancer types, including breast cancer. A nuclear function in the maintenance of chromosomal stability has been proposed for PTEN but is yet to be clearly defined. In order to improve understanding of the role of PTEN in mammary tumorigenesis in terms of a possible gene dosage effect, its PI3K pathway function and its association with p53, we undertook comprehensive analysis of PTEN status in 135 sporadic invasive ductal carcinomas. Four PTEN status groups were defined; complete loss (19/135, 14%), reduced copy number (19/135, 14%), normal (86/135, 64%) and complex (11/135, 8%). Whereas the PTEN complete loss status was significantly associated with estrogen receptor (ER) negativity (p=0.006) and in particular the basal-like phenotype (p<0.0001), a reduced PTEN copy number was not associated with hormone receptor status or a particular breast cancer subtype. Overall, PI3K pathway alteration was suggested to be involved in 59% (79/134) of tumors as assessed by human epidermal growth factor receptor 2 overexpression, PIK3CA mutation or a complete loss of PTEN. A complex PTEN status was identified in a tumor subgroup which displayed a specific, complex DNA profile at the PTEN locus with a strikingly similar highly rearranged pan-genomic profile. All of these tumors had relapsed and were associated with a poorer prognosis in the context of node negative disease (p=1.4 × 10(-13) ) thus may represent a tumor subgroup with a common molecular alteration which could be targeted to improve clinical outcome.
Collapse
Affiliation(s)
- Natalie Jones
- INSERM U916 VINCO, University of Bordeaux, Institut Bergonié, Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Barber JCK, Hall V, Maloney VK, Huang S, Roberts AM, Brady AF, Foulds N, Bewes B, Volleth M, Liehr T, Mehnert K, Bateman M, White H. 16p11.2-p12.2 duplication syndrome; a genomic condition differentiated from euchromatic variation of 16p11.2. Eur J Hum Genet 2013; 21:182-9. [PMID: 22828807 PMCID: PMC3548261 DOI: 10.1038/ejhg.2012.144] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 11/08/2022] Open
Abstract
Chromosome 16 contains multiple copy number variations (CNVs) that predispose to genomic disorders. Here, we differentiate pathogenic duplications of 16p11.2-p12.2 from microscopically similar euchromatic variants of 16p11.2. Patient 1 was a girl of 18 with autism, moderate intellectual disability, behavioural difficulties, dysmorphic features and a 7.71-Mb (megabase pair) duplication (16:21 521 005-29 233 146). Patient 2 had a 7.81-Mb duplication (16:21 382 561-29 191 527), speech delay and obsessional behaviour as a boy and, as an adult, short stature, macrocephaly and mild dysmorphism. The duplications contain 65 coding genes of which Polo-like kinase 1 (PLK1) has the highest likelihood of being haploinsufficient and, by implication, a triplosensitive gene. An additional 1.11-Mb CNV of 10q11.21 in Patient 1 was a possible modifier containing the G-protein-regulated inducer of neurite growth 2 (GPRIN2) gene. In contrast, the euchromatic variants in Patients 3 and 4 were amplifications from a 945-kb region containing non-functional immunoglobulin heavy chain (IGHV), hect domain pseudogene (HERC2P4) and TP53-inducible target gene 3 (TP53TG3) loci in proximal 16p11.2 (16:31 953 353-32 898 635). Paralogous pyrosequencing gave a total copy number of 3-8 in controls and 8 to >10 in Patients 3 and 4. The 16p11.2-p12.2 duplication syndrome is a recurrent genomic disorder with a variable phenotype including developmental delay, dysmorphic features, mild to severe intellectual disability, autism, obsessive or stereotyped behaviour, short stature and anomalies of the hands and fingers. It is important to differentiate pathogenic 16p11.2-p12.2 duplications from harmless, microscopically similar euchromatic variants of proximal 16p11.2, especially at prenatal diagnosis.
Collapse
Affiliation(s)
- John C K Barber
- Department of Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, Hampshire, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Muraki K, Nyhan K, Han L, Murnane JP. Mechanisms of telomere loss and their consequences for chromosome instability. Front Oncol 2012; 2:135. [PMID: 23061048 PMCID: PMC3463808 DOI: 10.3389/fonc.2012.00135] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/19/2012] [Indexed: 12/17/2022] Open
Abstract
The ends of chromosomes in mammals, called telomeres, are composed of a 6-bp repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs) at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.
Collapse
Affiliation(s)
- Keiko Muraki
- Department of Radiation Oncology, University of California at San Francisco San Francisco, CA, USA
| | | | | | | |
Collapse
|
27
|
Kitada K, Aikawa S, Aida S. Alu-Alu fusion sequences identified at junction sites of copy number amplified regions in cancer cell lines. Cytogenet Genome Res 2012; 139:1-8. [PMID: 22986581 DOI: 10.1159/000342885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2012] [Indexed: 12/13/2022] Open
Abstract
Alu elements are short, ∼300-bp stretches of DNA and are the most abundant repetitive elements in the human genome. A large number of chromosomal rearrangements mediated by Alu-Alu recombination have been reported in germline cells, but only a few in somatic cells. Cancer development is frequently accompanied by various chromosomal rearrangements including gene amplification. To explore an involvement of Alu-Alu fusion in gene amplification events, we determined 20 junction site sequences of 5 highly amplified regions in 4 cancer cell lines. The amplified regions exhibited a common copy number profile: a stair-like increase with multiple segments, which is implicated in the breakage-fusion-bridge (BFB) cycle-mediated amplification. All of the sequences determined were characterized as head-to-head or tail-to-tail fusion of sequences separated by 1-5 kb in the genome sequence. Of these, 4 junction site sequences were identified as Alu-Alu fusions between inverted, paired Alu elements with relatively long overlapping sequences of 17, 21, 22, and 24 bp. Together with genome mapping data of Alu elements, these findings suggest that when breakages occur at or near inverted, paired Alu elements in the process of BFB cycle-mediated amplification, sequence homology of Alu elements is frequently used to repair the broken ends.
Collapse
Affiliation(s)
- K Kitada
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., Kamakura, Japan.
| | | | | |
Collapse
|
28
|
Affiliation(s)
- Gordon B Mills
- The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|