1
|
Novačić A, Menéndez D, Ljubas J, Barbarić S, Stutz F, Soudet J, Stuparević I. Antisense non-coding transcription represses the PHO5 model gene at the level of promoter chromatin structure. PLoS Genet 2022; 18:e1010432. [PMID: 36215302 PMCID: PMC9584416 DOI: 10.1371/journal.pgen.1010432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/20/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Pervasive transcription of eukaryotic genomes generates non-coding transcripts with regulatory potential. We examined the effects of non-coding antisense transcription on the regulation of expression of the yeast PHO5 gene, a paradigmatic case for gene regulation through promoter chromatin remodeling. A negative role for antisense transcription at the PHO5 gene locus was demonstrated by leveraging the level of overlapping antisense transcription through specific mutant backgrounds, expression from a strong promoter in cis, and use of the CRISPRi system. Furthermore, we showed that enhanced elongation of PHO5 antisense leads to a more repressive chromatin conformation at the PHO5 gene promoter, which is more slowly remodeled upon gene induction. The negative effect of antisense transcription on PHO5 gene transcription is mitigated upon inactivation of the histone deacetylase Rpd3, showing that PHO5 antisense RNA acts via histone deacetylation. This regulatory pathway leads to Rpd3-dependent decreased recruitment of the RSC chromatin remodeling complex to the PHO5 gene promoter upon induction of antisense transcription. Overall, the data in this work reveal an additional level in the complex regulatory mechanism of PHO5 gene expression by showing antisense transcription-mediated repression at the level of promoter chromatin structure remodeling.
Collapse
Affiliation(s)
- Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Dario Menéndez
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Jurica Ljubas
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Slobodan Barbarić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Françoise Stutz
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Julien Soudet
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (J.S.); (I.S.)
| | - Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
- * E-mail: (J.S.); (I.S.)
| |
Collapse
|
2
|
Wu PS, Grosser J, Cameron DP, Baranello L, Ström L. Deficiency of Polη in Saccharomyces cerevisiae reveals the impact of transcription on damage-induced cohesion. PLoS Genet 2021; 17:e1009763. [PMID: 34499654 PMCID: PMC8454932 DOI: 10.1371/journal.pgen.1009763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/21/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
The structural maintenance of chromosome (SMC) complex cohesin mediates sister chromatid cohesion established during replication, and damage-induced cohesion formed in response to DSBs post-replication. The translesion synthesis polymerase Polη is required for damage-induced cohesion through a hitherto unknown mechanism. Since Polη is functionally associated with transcription, and transcription triggers de novo cohesion in Schizosaccharomyces pombe, we hypothesized that transcription facilitates damage-induced cohesion in Saccharomyces cerevisiae. Here, we show dysregulated transcriptional profiles in the Polη null mutant (rad30Δ), where genes involved in chromatin assembly and positive transcription regulation were downregulated. In addition, chromatin association of RNA polymerase II was reduced at promoters and coding regions in rad30Δ compared to WT cells, while occupancy of the H2A.Z variant (Htz1) at promoters was increased in rad30Δ cells. Perturbing histone exchange at promoters inactivated damage-induced cohesion, similarly to deletion of the RAD30 gene. Conversely, altering regulation of transcription elongation suppressed the deficient damage-induced cohesion in rad30Δ cells. Furthermore, transcription inhibition negatively affected formation of damage-induced cohesion. These results indicate that the transcriptional deregulation of the Polη null mutant is connected with its reduced capacity to establish damage-induced cohesion. This also suggests a linkage between regulation of transcription and formation of damage-induced cohesion after replication.
Collapse
Affiliation(s)
- Pei-Shang Wu
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Jan Grosser
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Donald P. Cameron
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Laura Baranello
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Lena Ström
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| |
Collapse
|
3
|
Capp J. Interplay between genetic, epigenetic, and gene expression variability: Considering complexity in evolvability. Evol Appl 2021; 14:893-901. [PMID: 33897810 PMCID: PMC8061278 DOI: 10.1111/eva.13204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic variability, epigenetic variability, and gene expression variability (noise) are generally considered independently in their relationship with phenotypic variation. However, they appear to be intrinsically interconnected and influence it in combination. The study of the interplay between genetic and epigenetic variability has the longest history. This article rather considers the introduction of gene expression variability in its relationships with the two others and reviews for the first time experimental evidences over the four relationships connected to gene expression noise. They show how introducing this third source of variability complicates the way of thinking evolvability and the emergence of biological novelty. Finally, cancer cells are proposed to be an ideal model to decipher the dynamic interplay between genetic, epigenetic, and gene expression variability when one of them is either experimentally increased or therapeutically targeted. This interplay is also discussed in an evolutionary perspective in the context of cancer cell drug resistance.
Collapse
Affiliation(s)
- Jean‐Pascal Capp
- Toulouse Biotechnology InstituteINSACNRSINRAEUniversity of ToulouseToulouseFrance
| |
Collapse
|
4
|
Sánchez H, McCluskey K, van Laar T, van Veen E, Asscher FM, Solano B, Diffley JFX, Dekker NH. DNA replication origins retain mobile licensing proteins. Nat Commun 2021; 12:1908. [PMID: 33772005 PMCID: PMC7998030 DOI: 10.1038/s41467-021-22216-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/04/2021] [Indexed: 11/22/2022] Open
Abstract
DNA replication in eukaryotes initiates at many origins distributed across each chromosome. Origins are bound by the origin recognition complex (ORC), which, with Cdc6 and Cdt1, recruits and loads the Mcm2-7 (MCM) helicase as an inactive double hexamer during G1 phase. The replisome assembles at the activated helicase in S phase. Although the outline of replisome assembly is understood, little is known about the dynamics of individual proteins on DNA and how these contribute to proper complex formation. Here we show, using single-molecule optical trapping and confocal microscopy, that yeast ORC is a mobile protein that diffuses rapidly along DNA. Origin recognition halts this search process. Recruitment of MCM molecules in an ORC- and Cdc6-dependent fashion results in slow-moving ORC-MCM intermediates and MCMs that rapidly scan the DNA. Following ATP hydrolysis, salt-stable loading of MCM single and double hexamers was seen, both of which exhibit salt-dependent mobility. Our results demonstrate that effective helicase loading relies on an interplay between protein diffusion and origin recognition, and suggest that MCM is stably loaded onto DNA in multiple forms.
Collapse
Affiliation(s)
- Humberto Sánchez
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Kaley McCluskey
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Theo van Laar
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Edo van Veen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Filip M Asscher
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Belén Solano
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - John F X Diffley
- Chromosome Replication Laboratory, Francis Crick Institute, London, UK.
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
5
|
Chia M, Li C, Marques S, Pelechano V, Luscombe NM, van Werven FJ. High-resolution analysis of cell-state transitions in yeast suggests widespread transcriptional tuning by alternative starts. Genome Biol 2021; 22:34. [PMID: 33446241 PMCID: PMC7807719 DOI: 10.1186/s13059-020-02245-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The start and end sites of messenger RNAs (TSSs and TESs) are highly regulated, often in a cell-type-specific manner. Yet the contribution of transcript diversity in regulating gene expression remains largely elusive. We perform an integrative analysis of multiple highly synchronized cell-fate transitions and quantitative genomic techniques in Saccharomyces cerevisiae to identify regulatory functions associated with transcribing alternative isoforms. RESULTS Cell-fate transitions feature widespread elevated expression of alternative TSS and, to a lesser degree, TES usage. These dynamically regulated alternative TSSs are located mostly upstream of canonical TSSs, but also within gene bodies possibly encoding for protein isoforms. Increased upstream alternative TSS usage is linked to various effects on canonical TSS levels, which range from co-activation to repression. We identified two key features linked to these outcomes: an interplay between alternative and canonical promoter strengths, and distance between alternative and canonical TSSs. These two regulatory properties give a plausible explanation of how locally transcribed alternative TSSs control gene transcription. Additionally, we find that specific chromatin modifiers Set2, Set3, and FACT play an important role in mediating gene repression via alternative TSSs, further supporting that the act of upstream transcription drives the local changes in gene transcription. CONCLUSIONS The integrative analysis of multiple cell-fate transitions suggests the presence of a regulatory control system of alternative TSSs that is important for dynamic tuning of gene expression. Our work provides a framework for understanding how TSS heterogeneity governs eukaryotic gene expression, particularly during cell-fate changes.
Collapse
Affiliation(s)
- Minghao Chia
- The Francis Crick Institute, London, UK
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore, 138672, Singapore
| | - Cai Li
- The Francis Crick Institute, London, UK
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sueli Marques
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Vicente Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Nicholas M Luscombe
- The Francis Crick Institute, London, UK
- Okinawa Institute of Science & Technology Graduate University, Okinawa, 904-0495, Japan
- UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| | | |
Collapse
|
6
|
SIR2 Expression Noise Can Generate Heterogeneity in Viability but Does Not Affect Cell-to-Cell Epigenetic Silencing of Subtelomeric URA3 in Yeast. G3-GENES GENOMES GENETICS 2020; 10:3435-3443. [PMID: 32727919 PMCID: PMC7466964 DOI: 10.1534/g3.120.401589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromatin structure clearly modulates gene expression noise, but the reverse influence has never been investigated, namely how the cell-to-cell expression heterogeneity of chromatin modifiers may generate variable rates of epigenetic modification. Sir2 is a well-characterized histone deacetylase of the Sirtuin family. It strongly influences chromatin silencing, especially at telomeres, subtelomeres and rDNA. This ability to influence epigenetic landscapes makes it a good model to study the largely unexplored interplay between gene expression noise and other epigenetic processes leading to phenotypic diversification. Here, we addressed this question by investigating whether noise in the expression of SIR2 was associated with cell-to-cell heterogeneity in the frequency of epigenetic silencing at subtelomeres in Saccharomyces cerevisiae Using cell sorting to isolate subpopulations with various expression levels, we found that heterogeneity in the cellular concentration of Sir2 does not lead to heterogeneity in the epigenetic silencing of subtelomeric URA3 between these subpopulations. We also noticed that SIR2 expression noise can generate cell-to-cell variability in viability, with lower levels being associated with better viability. This work shows that SIR2 expression fluctuations are not sufficient to generate cell-to-cell heterogeneity in the epigenetic silencing of URA3 at subtelomeres in Saccharomyces cerevisiae but can strongly affect cellular viability.
Collapse
|
7
|
A regulatory circuit between lncRNA and TOR directs amino acid uptake in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118680. [PMID: 32081726 DOI: 10.1016/j.bbamcr.2020.118680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 01/09/2023]
Abstract
Long non coding RNAs (lncRNAs) have emerged as crucial players of several central cellular processes across eukaryotes. Target of Rapamycin (TOR) is a central regulator of myriad of fundamental cellular processes including amino acid transport under diverse environmental conditions. Here we investigated the role of lncRNA in TOR regulated amino acid uptake in S. cerevisiae. Transcription of lncRNA regulates local gene expression in eukaryotes. In silico analysis of many genome wide studies in S. cerevisiae revealed that transcriptome includes conditional expression of numerous lncRNAs in proximity to amino acid transporters (AATs). Considering regulatory role of these lncRNAs, we selected highly conserved TOR regulated locus of a pair of AATs present in tandem BAP2 and TAT1. We observed that the expression of antisense lncRNA XUT_2F-154 (TBRT) and AATs BAP2 and TAT1 depends on activities of TOR signaling pathway. The expression of TBRT is induced, while that of BAP2 TAT1 is repressed upon TOR inhibition by Torin2. Notably, upon TOR inhibition loss of TBRT contributed to enhanced activities of Bap2 and Tat1 leading to improved growth. Interestingly, nucleosome scanning assay reveal that TOR signaling pathway governs chromatin remodeling at BAP2 biphasic promoter to control the antagonism of TBRT and BAP2 expression. Further TBRT also reprograms local chromatin landscapes to decrease the transcription of TAT1. The current work demonstrates a functional correlation between lncRNA production and TOR governed amino acid uptake in yeast. Thus this work brings forth a novel avenue for identification of potential regulators for therapeutic interventions against TOR mediated diseases.
Collapse
|
8
|
Singh A, Choudhuri P, Chandradoss KR, Lal M, Mishra SK, Sandhu KS. Does genome surveillance explain the global discrepancy between binding and effect of chromatin factors? FEBS Lett 2020; 594:1339-1353. [PMID: 31930486 DOI: 10.1002/1873-3468.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 11/11/2022]
Abstract
Knocking out a chromatin factor often does not alter the transcription of its binding targets. What explains the observed disconnect between binding and effect? We hypothesize that this discrepancy could be associated with the role of chromatin factors in maintaining genetic and epigenetic integrity at promoters, and not necessarily with transcription. Through re-analysis of published datasets, we present several lines of evidence that support our hypothesis and deflate the popular assumptions. We also tested the hypothesis through mutation accumulation assays on yeast knockouts of chromatin factors. Altogether, the proposed hypothesis presents a simple explanation for the global discord between chromatin factor binding and effect. Future work in this direction might fortify the hypothesis and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Arashdeep Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, India
| | - Poulami Choudhuri
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, India
| | | | - Mohan Lal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, India
| | - Shravan Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, India
| | - Kuljeet Singh Sandhu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, India
| |
Collapse
|
9
|
Maya-Miles D, Andújar E, Pérez-Alegre M, Murillo-Pineda M, Barrientos-Moreno M, Cabello-Lobato MJ, Gómez-Marín E, Morillo-Huesca M, Prado F. Crosstalk between chromatin structure, cohesin activity and transcription. Epigenetics Chromatin 2019; 12:47. [PMID: 31331360 PMCID: PMC6647288 DOI: 10.1186/s13072-019-0293-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/10/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND A complex interplay between chromatin and topological machineries is critical for genome architecture and function. However, little is known about these reciprocal interactions, even for cohesin, despite its multiple roles in DNA metabolism. RESULTS We have used genome-wide analyses to address how cohesins and chromatin structure impact each other in yeast. Cohesin inactivation in scc1-73 mutants during the S and G2 phases causes specific changes in chromatin structure that preferentially take place at promoters; these changes include a significant increase in the occupancy of the - 1 and + 1 nucleosomes. In addition, cohesins play a major role in transcription regulation that is associated with specific promoter chromatin architecture. In scc1-73 cells, downregulated genes are enriched in promoters with short or no nucleosome-free region (NFR) and a fragile "nucleosome - 1/RSC complex" particle. These results, together with a preferential increase in the occupancy of nucleosome - 1 of these genes, suggest that cohesins promote transcription activation by helping RSC to form the NFR. In sharp contrast, the scc1-73 upregulated genes are enriched in promoters with an "open" chromatin structure and are mostly at cohesin-enriched regions, suggesting that a local accumulation of cohesins might help to inhibit transcription. On the other hand, a dramatic loss of chromatin integrity by histone depletion during DNA replication has a moderate effect on the accumulation and distribution of cohesin peaks along the genome. CONCLUSIONS Our analyses of the interplay between chromatin integrity and cohesin activity suggest that cohesins play a major role in transcription regulation, which is associated with specific chromatin architecture and cohesin-mediated nucleosome alterations of the regulated promoters. In contrast, chromatin integrity plays only a minor role in the binding and distribution of cohesins.
Collapse
Affiliation(s)
- Douglas Maya-Miles
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Eloísa Andújar
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Mónica Pérez-Alegre
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Marina Murillo-Pineda
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
- Present Address: Department of Biochemistry, University of Oxford, Oxford, UK
| | - Marta Barrientos-Moreno
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - María J. Cabello-Lobato
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
- Present Address: Division of Cancer Sciences, Manchester Cancer Research Center, University of Manchester, Manchester, UK
| | - Elena Gómez-Marín
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Macarena Morillo-Huesca
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Félix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| |
Collapse
|
10
|
de Jong TV, Moshkin YM, Guryev V. Gene expression variability: the other dimension in transcriptome analysis. Physiol Genomics 2019; 51:145-158. [DOI: 10.1152/physiolgenomics.00128.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transcriptome sequencing is a powerful technique to study molecular changes that underlie the differences in physiological conditions and disease progression. A typical question that is posed in such studies is finding genes with significant changes between sample groups. In this respect expression variability is regarded as a nuisance factor that is primarily of technical origin and complicates the data analysis. However, it is becoming apparent that the biological variation in gene expression might be an important molecular phenotype that can affect physiological parameters. In this review we explore the recent literature on technical and biological variability in gene expression, sources of expression variability, (epi-)genetic hallmarks, and evolutionary constraints in genes with robust and variable gene expression. We provide an overview of recent findings on effects of external cues, such as diet and aging, on expression variability and on other biological phenomena that can be linked to it. We discuss metrics and tools that were developed for quantification of expression variability and highlight the importance of future studies in this direction. To assist the adoption of expression variability analysis, we also provide a detailed description and computer code, which can easily be utilized by other researchers. We also provide a reanalysis of recently published data to highlight the value of the analysis method.
Collapse
Affiliation(s)
- Tristan V. de Jong
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Yuri M. Moshkin
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Kubik S, O'Duibhir E, de Jonge WJ, Mattarocci S, Albert B, Falcone JL, Bruzzone MJ, Holstege FCP, Shore D. Sequence-Directed Action of RSC Remodeler and General Regulatory Factors Modulates +1 Nucleosome Position to Facilitate Transcription. Mol Cell 2019; 71:89-102.e5. [PMID: 29979971 DOI: 10.1016/j.molcel.2018.05.030] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/17/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
Abstract
Accessible chromatin is important for RNA polymerase II recruitment and transcription initiation at eukaryotic promoters. We investigated the mechanistic links between promoter DNA sequence, nucleosome positioning, and transcription. Our results indicate that positioning of the transcription start site-associated +1 nucleosome in yeast is critical for efficient TBP binding and is driven by two key factors, the essential chromatin remodeler RSC and a small set of ubiquitous general regulatory factors (GRFs). Our findings indicate that the strength and directionality of RSC action on promoter nucleosomes depends on the arrangement and proximity of two specific DNA motifs. This, together with the effect on nucleosome position observed in double depletion experiments, suggests that, despite their widespread co-localization, RSC and GRFs predominantly act through independent signals to generate accessible chromatin. Our results provide mechanistic insight into how the promoter DNA sequence instructs trans-acting factors to control nucleosome architecture and stimulate transcription initiation.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Eoghan O'Duibhir
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Wim J de Jonge
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Stefano Mattarocci
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Benjamin Albert
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Jean-Luc Falcone
- Center for Advanced Modeling Sciences, Computer Science Department, University of Geneva, 7 route de Drize, 1227 Carouge, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Frank C P Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
12
|
Cheng X, Hou Y, Nie Y, Zhang Y, Huang H, Liu H, Sun X. Nucleosome Positioning of Intronless Genes in the Human Genome. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1111-1121. [PMID: 26415210 DOI: 10.1109/tcbb.2015.2476811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nucleosomes, the basic units of chromatin, are involved in transcription regulation and DNA replication. Intronless genes, which constitute 3 percent of the human genome, differ from intron-containing genes in evolution and function. Our analysis reveals that nucleosome positioning shows a distinct pattern in intronless and intron-containing genes. The nucleosome occupancy upstream of transcription start sites of intronless genes is lower than that of intron-containing genes. In contrast, high occupancy and well positioned nucleosomes are observed along the gene body of intronless genes, which is perfectly consistent with the barrier nucleosome model. Intronless genes have a significantly lower expression level than intron-containing genes and most of them are not expressed in CD4+ T cell lines and GM12878 cell lines, which results from their tissue specificity. However, the highly expressed genes are at the same expression level between the two types of genes. The highly expressed intronless genes require a higher density of RNA Pol II in an elongating state to compensate for the lack of introns. Additionally, 5' and 3' nucleosome depleted regions of highly expressed intronless genes are deeper than those of highly expressed intron-containing genes.
Collapse
|
13
|
Jensen MK. Design principles for nuclease-deficient CRISPR-based transcriptional regulators. FEMS Yeast Res 2018; 18:4966988. [PMID: 29726937 PMCID: PMC5932555 DOI: 10.1093/femsyr/foy039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/06/2018] [Indexed: 12/18/2022] Open
Abstract
The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated proteins continues to expand the toolkit available for genome editing, reprogramming gene regulation, genome visualisation and epigenetic studies of living organisms. In this review, the emerging design principles on the use of nuclease-deficient CRISPR-based reprogramming of gene expression will be presented. The review will focus on the designs implemented in yeast both at the level of CRISPR proteins and guide RNA (gRNA), but will lend due credits to the seminal studies performed in other species where relevant. In addition to design principles, this review also highlights applications benefitting from the use of CRISPR-mediated transcriptional regulation and discusses the future directions to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such, this review should be of general interest for experimentalists to get familiarised with the parameters underlying the power of reprogramming genomic functions by use of nuclease-deficient CRISPR technologies.
Collapse
Affiliation(s)
- Michael K Jensen
- Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
14
|
Structure and Chromosomal Organization of Yeast Genes Regulated by Topoisomerase II. Int J Mol Sci 2018; 19:ijms19010134. [PMID: 29301361 PMCID: PMC5796083 DOI: 10.3390/ijms19010134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 01/06/2023] Open
Abstract
Cellular DNA topoisomerases (topo I and topo II) are highly conserved enzymes that regulate the topology of DNA during normal genome transactions, such as DNA transcription and replication. In budding yeast, topo I is dispensable whereas topo II is essential, suggesting fundamental and exclusive roles for topo II, which might include the functions of the topo IIa and topo IIb isoforms found in mammalian cells. In this review, we discuss major findings of the structure and chromosomal organization of genes regulated by topo II in budding yeast. Experimental data was derived from short (10 min) and long term (120 min) responses to topo II inactivation in top-2 ts mutants. First, we discuss how short term responses reveal a subset of yeast genes that are regulated by topo II depending on their promoter architecture. These short term responses also uncovered topo II regulation of transcription across multi-gene clusters, plausibly by common DNA topology management. Finally, we examine the effects of deactivated topo II on the elongation of RNA transcripts. Each study provides an insight into the particular chromatin structure that interacts with the activity of topo II. These findings are of notable clinical interest as numerous anti-cancer therapies interfere with topo II activity.
Collapse
|
15
|
Ecker S, Pancaldi V, Valencia A, Beck S, Paul DS. Epigenetic and Transcriptional Variability Shape Phenotypic Plasticity. Bioessays 2017; 40. [PMID: 29251357 DOI: 10.1002/bies.201700148] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/31/2017] [Indexed: 12/15/2022]
Abstract
Epigenetic and transcriptional variability contribute to the vast diversity of cellular and organismal phenotypes and are key in human health and disease. In this review, we describe different types, sources, and determinants of epigenetic and transcriptional variability, enabling cells and organisms to adapt and evolve to a changing environment. We highlight the latest research and hypotheses on how chromatin structure and the epigenome influence gene expression variability. Further, we provide an overview of challenges in the analysis of biological variability. An improved understanding of the molecular mechanisms underlying epigenetic and transcriptional variability, at both the intra- and inter-individual level, provides great opportunity for disease prevention, better therapeutic approaches, and personalized medicine.
Collapse
Affiliation(s)
- Simone Ecker
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Vera Pancaldi
- Barcelona Supercomputing Center (BSC), C/ Jordi Girona 39-31, 08034, Barcelona, Spain
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), C/ Jordi Girona 39-31, 08034, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Stephan Beck
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Dirk S Paul
- MRC/BHF Cardiovascular Epidemiology Unit Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK.,Department of Human Genetics Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| |
Collapse
|
16
|
Laxa M. Regulatory cis-elements are located in accessible promoter regions of the CAT2 promoter and affect activating histone modifications in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2017; 93:49-60. [PMID: 27734290 DOI: 10.1007/s11103-016-0546-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/20/2016] [Indexed: 05/24/2023]
Abstract
Catalase 2 (CAT2) plays an important role in the detoxification of hydrogen peroxide released either during photorespiration or as a consequence of biotic and abiotic stress as well as in the initiation of senescence. To date, our understanding of the regulation of CAT2 gene expression is rather poor. Chromatin immunoprecipitation experiments revealed that a wide region of the CAT2 promoter is nucleosome depleted, reflecting the ability to rapidly respond to changing environmental and stress conditions and, thus, adjusting the transcript levels of CAT2. The lowest nucleosome density was found in the region of -900 bp relative to the transcription initiation start (TIS) where two regulatory elements are located. The distance of the nucleosome depleted region to the TIS is quite unusual because the majority of nucleosome free regions are generally located in close vicinity to the 5' untranslated region. The analysis of transgenic 5' upstream deletion::gusA Arabidopsis lines showed that this region is important for the regulation of CAT2 promoter activity. To evaluate the function of the two motifs, the contribution of each element to CAT2 promoter activity was analyzed by site directed mutagenesis. The data revealed that the CAT2 promoter is regulated by the ACGT motif (Box2) rather than by the G-Box binding motif (Box1) in the vegetative phase of development. Furthermore, the presence of both Box1 and Box2 positively affected the abundance of activating histone modifications.
Collapse
Affiliation(s)
- Miriam Laxa
- Institute of Botany, Leibniz University Hannover, Herrenhaeuser Strasse 2, 30419, Hanover, Germany.
| |
Collapse
|
17
|
Influence of Rotational Nucleosome Positioning on Transcription Start Site Selection in Animal Promoters. PLoS Comput Biol 2016; 12:e1005144. [PMID: 27716823 PMCID: PMC5055345 DOI: 10.1371/journal.pcbi.1005144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/11/2016] [Indexed: 01/20/2023] Open
Abstract
The recruitment of RNA-Pol-II to the transcription start site (TSS) is an important step in gene regulation in all organisms. Core promoter elements (CPE) are conserved sequence motifs that guide Pol-II to the TSS by interacting with specific transcription factors (TFs). However, only a minority of animal promoters contains CPEs. It is still unknown how Pol-II selects the TSS in their absence. Here we present a comparative analysis of promoters' sequence composition and chromatin architecture in five eukaryotic model organisms, which shows the presence of common and unique DNA-encoded features used to organize chromatin. Analysis of Pol-II initiation patterns uncovers that, in the absence of certain CPEs, there is a strong correlation between the spread of initiation and the intensity of the 10 bp periodic signal in the nearest downstream nucleosome. Moreover, promoters' primary and secondary initiation sites show a characteristic 10 bp periodicity in the absence of CPEs. We also show that DNA natural variants in the region immediately downstream the TSS are able to affect both the nucleosome-DNA affinity and Pol-II initiation pattern. These findings support the notion that, in addition to CPEs mediated selection, sequence-induced nucleosome positioning could be a common and conserved mechanism of TSS selection in animals.
Collapse
|
18
|
Zhang P, Du G, Zou H, Xie G, Chen J, Shi Z, Zhou J. Genome-wide mapping of nucleosome positions in Saccharomyces cerevisiae in response to different nitrogen conditions. Sci Rep 2016; 6:33970. [PMID: 27659668 PMCID: PMC5034280 DOI: 10.1038/srep33970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022] Open
Abstract
Well-organized chromatin is involved in a number of various transcriptional regulation and gene expression. We used genome-wide mapping of nucleosomes in response to different nitrogen conditions to determine both nucleosome profiles and gene expression events in Saccharomyces cerevisiae. Nitrogen conditions influence general nucleosome profiles and the expression of nitrogen catabolite repression (NCR) sensitive genes. The nucleosome occupancy of TATA-containing genes was higher compared to TATA-less genes. TATA-less genes in high or low nucleosome occupancy, showed a significant change in gene coding regions when shifting cells from glutamine to proline as the sole nitrogen resource. Furthermore, a correlation between the expression of nucleosome occupancy induced NCR sensitive genes or TATA containing genes in NCR sensitive genes, and nucleosome prediction were found when cells were cultured in proline or shifting from glutamine to proline as the sole nitrogen source compared to glutamine. These results also showed that variation of nucleosome occupancy accompany with chromatin-dependent transcription factor could influence the expression of a series of genes involved in the specific regulation of nitrogen utilization.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huijun Zou
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang, China
| | - Guangfa Xie
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhongping Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
19
|
Smith JD, Suresh S, Schlecht U, Wu M, Wagih O, Peltz G, Davis RW, Steinmetz LM, Parts L, St Onge RP. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biol 2016; 17:45. [PMID: 26956608 PMCID: PMC4784398 DOI: 10.1186/s13059-016-0900-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/12/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Genome-scale CRISPR interference (CRISPRi) has been used in human cell lines; however, the features of effective guide RNAs (gRNAs) in different organisms have not been well characterized. Here, we define rules that determine gRNA effectiveness for transcriptional repression in Saccharomyces cerevisiae. RESULTS We create an inducible single plasmid CRISPRi system for gene repression in yeast, and use it to analyze fitness effects of gRNAs under 18 small molecule treatments. Our approach correctly identifies previously described chemical-genetic interactions, as well as a new mechanism of suppressing fluconazole toxicity by repression of the ERG25 gene. Assessment of multiple target loci across treatments using gRNA libraries allows us to determine generalizable features associated with gRNA efficacy. Guides that target regions with low nucleosome occupancy and high chromatin accessibility are clearly more effective. We also find that the best region to target gRNAs is between the transcription start site (TSS) and 200 bp upstream of the TSS. Finally, unlike nuclease-proficient Cas9 in human cells, the specificity of truncated gRNAs (18 nt of complementarity to the target) is not clearly superior to full-length gRNAs (20 nt of complementarity), as truncated gRNAs are generally less potent against both mismatched and perfectly matched targets. CONCLUSIONS Our results establish a powerful functional and chemical genomics screening method and provide guidelines for designing effective gRNAs, which consider chromatin state and position relative to the target gene TSS. These findings will enable effective library design and genome-wide programmable gene repression in many genetic backgrounds.
Collapse
Affiliation(s)
- Justin D Smith
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Sundari Suresh
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
| | - Ulrich Schlecht
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
| | - Manhong Wu
- Department of Anesthesia, Stanford University School of Medicine, Stanford University, Stanford, California, 94305, USA
| | - Omar Wagih
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Genome Campus, Hinxton, CB101SD, UK
| | - Gary Peltz
- Department of Anesthesia, Stanford University School of Medicine, Stanford University, Stanford, California, 94305, USA
| | - Ronald W Davis
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117, Heidelberg, Germany
| | - Leopold Parts
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117, Heidelberg, Germany.
- Current address: Wellcome Trust Sanger Institute, Hinxton, CB101SA, UK.
| | - Robert P St Onge
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
20
|
Kubik S, Bruzzone MJ, Jacquet P, Falcone JL, Rougemont J, Shore D. Nucleosome Stability Distinguishes Two Different Promoter Types at All Protein-Coding Genes in Yeast. Mol Cell 2016; 60:422-34. [PMID: 26545077 DOI: 10.1016/j.molcel.2015.10.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/30/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
Previous studies indicate that eukaryotic promoters display a stereotypical chromatin landscape characterized by a well-positioned +1 nucleosome near the transcription start site and an upstream -1 nucleosome that together demarcate a nucleosome-free (or -depleted) region. Here we present evidence that there are two distinct types of promoters distinguished by the resistance of the -1 nucleosome to micrococcal nuclease digestion. These different architectures are characterized by two sequence motifs that are broadly deployed at one set of promoters where a nuclease-sensitive ("fragile") nucleosome forms, but concentrated in a narrower, nucleosome-free region at all other promoters. The RSC nucleosome remodeler acts through the motifs to establish stable +1 and -1 nucleosome positions, while binding of a small set of general regulatory (pioneer) factors at fragile nucleosome promoters plays a key role in their destabilization. We propose that the fragile nucleosome promoter architecture is adapted for regulation of highly expressed, growth-related genes.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Philippe Jacquet
- Swiss Institute of Bioinformatics (SIB) and Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jean-Luc Falcone
- Center for Advanced Modeling Sciences, Computer Science Department, University of Geneva, 7 route de Drize, 1227 Carouge, Switzerland
| | - Jacques Rougemont
- Swiss Institute of Bioinformatics (SIB) and Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
21
|
Deniz Ö, Flores O, Aldea M, Soler-López M, Orozco M. Nucleosome architecture throughout the cell cycle. Sci Rep 2016; 6:19729. [PMID: 26818620 PMCID: PMC4730144 DOI: 10.1038/srep19729] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/29/2015] [Indexed: 11/09/2022] Open
Abstract
Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity.
Collapse
Affiliation(s)
- Özgen Deniz
- Institute for Research in Biomedicine (IRB Barcelona). Baldiri Reixac 10-12. 08028 Barcelona, Spain.,Joint BSC-CRG-IRB Program in Computational Biology. Baldiri Reixac 10-12. 08028 Barcelona, Spain
| | - Oscar Flores
- Institute for Research in Biomedicine (IRB Barcelona). Baldiri Reixac 10-12. 08028 Barcelona, Spain.,Joint BSC-CRG-IRB Program in Computational Biology. Baldiri Reixac 10-12. 08028 Barcelona, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB) CSIC. Baldiri Reixac 4. 08028 Barcelona, Spain
| | - Montserrat Soler-López
- Institute for Research in Biomedicine (IRB Barcelona). Baldiri Reixac 10-12. 08028 Barcelona, Spain.,Joint BSC-CRG-IRB Program in Computational Biology. Baldiri Reixac 10-12. 08028 Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona). Baldiri Reixac 10-12. 08028 Barcelona, Spain.,Joint BSC-CRG-IRB Program in Computational Biology. Baldiri Reixac 10-12. 08028 Barcelona, Spain.,Department of Biochemistry and Molecular Biology. University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
22
|
Haberle V, Lenhard B. Promoter architectures and developmental gene regulation. Semin Cell Dev Biol 2016; 57:11-23. [PMID: 26783721 DOI: 10.1016/j.semcdb.2016.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/03/2023]
Abstract
Core promoters are minimal regions sufficient to direct accurate initiation of transcription and are crucial for regulation of gene expression. They are highly diverse in terms of associated core promoter motifs, underlying sequence composition and patterns of transcription initiation. Distinctive features of promoters are also seen at the chromatin level, including nucleosome positioning patterns and presence of specific histone modifications. Recent advances in identifying and characterizing promoters using next-generation sequencing-based technologies have provided the basis for their classification into functional groups and have shed light on their modes of regulation, with important implications for transcriptional regulation in development. This review discusses the methodology and the results of genome-wide studies that provided insight into the diversity of RNA polymerase II promoter architectures in vertebrates and other Metazoa, and the association of these architectures with distinct modes of regulation in embryonic development and differentiation.
Collapse
Affiliation(s)
- Vanja Haberle
- Institute of Clinical Sciences and MRC Clinical Sciences Center, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK; Department of Biology, University of Bergen, Thormøhlensgate 53A, N-5008 Bergen, Norway
| | - Boris Lenhard
- Institute of Clinical Sciences and MRC Clinical Sciences Center, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
23
|
Liu H, Wang P, Liu L, Min Z, Luo K, Wan Y. Nucleosome alterations caused by mutations at modifiable histone residues in Saccharomyces cerevisiae. Sci Rep 2015; 5:15583. [PMID: 26498326 PMCID: PMC4620441 DOI: 10.1038/srep15583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/28/2015] [Indexed: 01/13/2023] Open
Abstract
Nucleosome organization exhibits dynamic properties depending on the cell state and environment. Histone proteins, fundamental components of nucleosomes, are subject to chemical modifications on particular residues. We examined the effect of substituting modifiable residues of four core histones with the non-modifiable residue alanine on nucleosome dynamics. We mapped the genome-wide nucleosomes in 22 histone mutants of Saccharomyces cerevisiae and compared the nucleosome alterations relative to the wild-type strain. Our results indicated that different types of histone mutation resulted in different phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was altered at telomeres, but not at centromeres. The first nucleosomes upstream (−1) and downstream (+1) of the transcription start site (TSS) were more dynamic than other nucleosomes. Mutations in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, such as ribosome genes and genes involved in glycolysis, showed increased nucleosome occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telomeres, increased occupancy at the +1 and −1 nucleosomes, and a slow growth phenotype under stress conditions. Our findings provide insight into the influence of histone mutations on nucleosome dynamics.
Collapse
Affiliation(s)
- Hongde Liu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Pingyan Wang
- Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Lingjie Liu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Zhu Min
- Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kun Luo
- Department of Neurosurgery, Xinjiang Evidence-Based Medicine Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yakun Wan
- Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
24
|
Murray SC, Haenni S, Howe FS, Fischl H, Chocian K, Nair A, Mellor J. Sense and antisense transcription are associated with distinct chromatin architectures across genes. Nucleic Acids Res 2015; 43:7823-37. [PMID: 26130720 PMCID: PMC4652749 DOI: 10.1093/nar/gkv666] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/18/2015] [Indexed: 11/15/2022] Open
Abstract
Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.
Collapse
Affiliation(s)
- Struan C Murray
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Simon Haenni
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Françoise S Howe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Harry Fischl
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Karolina Chocian
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anitha Nair
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
25
|
Knight B, Kubik S, Ghosh B, Bruzzone MJ, Geertz M, Martin V, Dénervaud N, Jacquet P, Ozkan B, Rougemont J, Maerkl SJ, Naef F, Shore D. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes Dev 2014; 28:1695-709. [PMID: 25085421 PMCID: PMC4117944 DOI: 10.1101/gad.244434.114] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In yeast, ribosome production is controlled transcriptionally by tight coregulation of the 138 ribosomal protein genes (RPGs). RPG promoters display limited sequence homology, and the molecular basis for their coregulation remains largely unknown. Here we identify two prevalent RPG promoter types, both characterized by upstream binding of the general transcription factor (TF) Rap1 followed by the RPG-specific Fhl1/Ifh1 pair, with one type also binding the HMG-B protein Hmo1. We show that the regulatory properties of the two promoter types are remarkably similar, suggesting that they are determined to a large extent by Rap1 and the Fhl1/Ifh1 pair. Rapid depletion experiments allowed us to define a hierarchy of TF binding in which Rap1 acts as a pioneer factor required for binding of all other TFs. We also uncovered unexpected features underlying recruitment of Fhl1, whose forkhead DNA-binding domain is not required for binding at most promoters, and Hmo1, whose binding is supported by repeated motifs. Finally, we describe unusually micrococcal nuclease (MNase)-sensitive nucleosomes at all RPG promoters, located between the canonical +1 and -1 nucleosomes, which coincide with sites of Fhl1/Ifh1 and Hmo1 binding. We speculate that these "fragile" nucleosomes play an important role in regulating RPG transcriptional output.
Collapse
Affiliation(s)
- Britta Knight
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Slawomir Kubik
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Bhaswar Ghosh
- The Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Marcel Geertz
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland; The Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Victoria Martin
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Dénervaud
- The Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Philippe Jacquet
- Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Burak Ozkan
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Jacques Rougemont
- Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sebastian J Maerkl
- The Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Félix Naef
- The Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - David Shore
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
26
|
Abstract
Histone variant Htz1 substitution for H2A plays important roles in diverse DNA transactions. Histone chaperones Chz1 and Nap1 (nucleosome assembly protein 1) are important for the deposition Htz1 into nucleosomes. In literatures, it was suggested that Chz1 is a Htz1–H2B-specific chaperone, and it is relatively unstructured in solution but it becomes structured in complex with the Htz1–H2B histone dimer. Nap1 (nucleosome assembly protein 1) can bind (H3–H4)2 tetramers, H2A–H2B dimers and Htz1–H2B dimers. Nap1 can bind H2A–H2B dimer in the cytoplasm and shuttles the dimer into the nucleus. Moreover, Nap1 functions in nucleosome assembly by competitively interacting with non-nucleosomal histone–DNA. However, the exact roles of these chaperones in assembling Htz1-containing nucleosome remain largely unknown. In this paper, we revealed that Chz1 does not show a physical interaction with chromatin. In contrast, Nap1 binds exactly at the genomic DNA that contains Htz1. Nap1 and Htz1 show a preferential interaction with AG-rich DNA sequences. Deletion of chz1 results in a significantly decreased binding of Htz1 in chromatin, whereas deletion of nap1 dramatically increases the association of Htz1 with chromatin. Furthermore, genome-wide nucleosome-mapping analysis revealed that nucleosome occupancy for Htz1p-bound genes decreases upon deleting htz1 or chz1, suggesting that Htz1 is required for nucleosome structure at the specific genome loci. All together, these results define the distinct roles for histone chaperones Chz1 and Nap1 to regulate Htz1 incorporation into chromatin.
Collapse
|
27
|
Yadav VK, Thakur RK, Eckloff B, Baral A, Singh A, Halder R, Kumar A, Alam MP, Kundu TK, Pandita R, Pandita TK, Wieben ED, Chowdhury S. Promoter-proximal transcription factor binding is transcriptionally active when coupled with nucleosome repositioning in immediate vicinity. Nucleic Acids Res 2014; 42:9602-11. [PMID: 25081206 PMCID: PMC4150765 DOI: 10.1093/nar/gku596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/29/2014] [Accepted: 06/21/2014] [Indexed: 11/24/2022] Open
Abstract
Previous studies have analyzed patterns of transcription, transcription factor (TF) binding or mapped nucleosome occupancy across the genome. These suggest that the three aspects are genetically connected but the cause and effect relationships are still unknown. For example, physiologic TF binding studies involve many TFs, consequently, it is difficult to assign nucleosome reorganization to the binding site occupancy of any particular TF. Therefore, several aspects remain unclear: does TF binding influence nucleosome (re)organizations locally or impact the chromatin landscape at a more global level; are all or only a fraction of TF binding a result of reorganization in nucleosome occupancy and do all TF binding and associated changes in nucleosome occupancy result in altered gene expression? With these in mind, following characterization of two states (before and after induction of a single TF of choice) we determined: (i) genomic binding sites of the TF, (ii) promoter nucleosome occupancy and (iii) transcriptome profiles. Results demonstrated that promoter-proximal TF binding influenced expression of the target gene when it was coupled to nucleosome repositioning at or close to its binding site in most cases. In contrast, only in few cases change in target gene expression was found when TF binding occurred without local nucleosome reorganization.
Collapse
Affiliation(s)
- Vinod Kumar Yadav
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India
| | - Ram Krishna Thakur
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Bruce Eckloff
- Advanced Genomics Technology Center, Mayo Clinic, Rochester, MN, USA
| | - Aradhita Baral
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Ankita Singh
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Rashi Halder
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India
| | - Akinchan Kumar
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Mohammad Parwez Alam
- Dr B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Raj Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Eric D Wieben
- Advanced Genomics Technology Center, Mayo Clinic, Rochester, MN, USA
| | - Shantanu Chowdhury
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
28
|
Anderson MZ, Gerstein AC, Wigen L, Baller JA, Berman J. Silencing is noisy: population and cell level noise in telomere-adjacent genes is dependent on telomere position and sir2. PLoS Genet 2014; 10:e1004436. [PMID: 25057900 PMCID: PMC4109849 DOI: 10.1371/journal.pgen.1004436] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/27/2014] [Indexed: 11/18/2022] Open
Abstract
Cell-to-cell gene expression noise is thought to be an important mechanism for generating phenotypic diversity. Furthermore, telomeric regions are major sites for gene amplification, which is thought to drive genetic diversity. Here we found that individual subtelomeric TLO genes exhibit increased variation in transcript and protein levels at both the cell-to-cell level as well as at the population-level. The cell-to-cell variation, termed Telomere-Adjacent Gene Expression Noise (TAGEN) was largely intrinsic noise and was dependent upon genome position: noise was reduced when a TLO gene was expressed at an ectopic internal locus and noise was elevated when a non-telomeric gene was expressed at a telomere-adjacent locus. This position-dependent TAGEN also was dependent on Sir2p, an NAD+-dependent histone deacetylase. Finally, we found that telomere silencing and TAGEN are tightly linked and regulated in cis: selection for either silencing or activation of a TLO-adjacent URA3 gene resulted in reduced noise at the neighboring TLO but not at other TLO genes. This provides experimental support to computational predictions that the ability to shift between silent and active chromatin states has a major effect on cell-to-cell noise. Furthermore, it demonstrates that these shifts affect the degree of expression variation at each telomere individually.
Collapse
Affiliation(s)
- Matthew Z. Anderson
- Department of Genetics, Cell Biology and Development, University of Minnesota – Twin Cities, Minneapolis, Minnesota, United States of America
| | - Aleeza C. Gerstein
- Department of Genetics, Cell Biology and Development, University of Minnesota – Twin Cities, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Lauren Wigen
- Department of Genetics, Cell Biology and Development, University of Minnesota – Twin Cities, Minneapolis, Minnesota, United States of America
| | - Joshua A. Baller
- Department of Genetics, Cell Biology and Development, University of Minnesota – Twin Cities, Minneapolis, Minnesota, United States of America
| | - Judith Berman
- Department of Genetics, Cell Biology and Development, University of Minnesota – Twin Cities, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
- * E-mail:
| |
Collapse
|
29
|
Castelnuovo M, Zaugg JB, Guffanti E, Maffioletti A, Camblong J, Xu Z, Clauder-Münster S, Steinmetz LM, Luscombe NM, Stutz F. Role of histone modifications and early termination in pervasive transcription and antisense-mediated gene silencing in yeast. Nucleic Acids Res 2014; 42:4348-62. [PMID: 24497191 PMCID: PMC3985671 DOI: 10.1093/nar/gku100] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 01/09/2014] [Accepted: 01/12/2014] [Indexed: 12/15/2022] Open
Abstract
Most genomes, including yeast Saccharomyces cerevisiae, are pervasively transcribed producing numerous non-coding RNAs, many of which are unstable and eliminated by nuclear or cytoplasmic surveillance pathways. We previously showed that accumulation of PHO84 antisense RNA (asRNA), in cells lacking the nuclear exosome component Rrp6, is paralleled by repression of sense transcription in a process dependent on the Hda1 histone deacetylase (HDAC) and the H3K4 histone methyl transferase Set1. Here we investigate this process genome-wide and measure the whole transcriptome of various histone modification mutants in a Δrrp6 strain using tiling arrays. We confirm widespread occurrence of potentially antisense-dependent gene regulation and identify three functionally distinct classes of genes that accumulate asRNAs in the absence of Rrp6. These classes differ in whether the genes are silenced by the asRNA and whether the silencing is HDACs and histone methyl transferase-dependent. Among the distinguishing features of asRNAs with regulatory potential, we identify weak early termination by Nrd1/Nab3/Sen1, extension of the asRNA into the open reading frame promoter and dependence of the silencing capacity on Set1 and the HDACs Hda1 and Rpd3 particularly at promoters undergoing extensive chromatin remodelling. Finally, depending on the efficiency of Nrd1/Nab3/Sen1 early termination, asRNA levels are modulated and their capability of silencing is changed.
Collapse
Affiliation(s)
- Manuele Castelnuovo
- Department of Cell Biology and NCCR "Frontiers in Genetics", iGE3, University of Geneva, 1211 Geneva, Switzerland, EBI-EMBL Hinxton, Cambridge CB101SD, England, European Molecular Biology Laboratory, 69117 Heidelberg, Germany, Department of Genetics, Stanford University, Stanford, CA 94395 USA and Stanford Genome Technology Center, Palo Alto, CA 94303, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Magraner-Pardo L, Pelechano V, Coloma MD, Tordera V. Dynamic remodeling of histone modifications in response to osmotic stress in Saccharomyces cerevisiae. BMC Genomics 2014; 15:247. [PMID: 24678875 PMCID: PMC3986647 DOI: 10.1186/1471-2164-15-247] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/24/2014] [Indexed: 12/17/2022] Open
Abstract
Background Specific histone modifications play important roles in chromatin functions; i.e., activation or repression of gene transcription. This participation must occur as a dynamic process. Nevertheless, most of the histone modification maps reported to date provide only static pictures that link certain modifications with active or silenced states. This study, however, focuses on the global histone modification variation that occurs in response to the transcriptional reprogramming produced by a physiological perturbation in yeast. Results We did a genome-wide chromatin immunoprecipitation analysis for eight specific histone modifications before and after saline stress. The most striking change was rapid acetylation loss in lysines 9 and 14 of H3 and in lysine 8 of H4, associated with gene repression. The genes activated by saline stress increased the acetylation levels at these same sites, but this acetylation process was quantitatively minor if compared to that of the deacetylation of repressed genes. The changes in the tri-methylation of lysines 4, 36 and 79 of H3 and the di-methylation of lysine 79 of H3 were slighter than those of acetylation. Furthermore, we produced new genome-wide maps for seven histone modifications, and we analyzed, for the first time in S. cerevisiae, the genome-wide profile of acetylation of lysine 8 of H4. Conclusions This research reveals that the short-term changes observed in the post-stress methylation of histones are much more moderate than those of acetylation, and that the dynamics of the acetylation state of histones during activation or repression of transcription is a much quicker process than methylation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-247) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Vicente Tordera
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/Dr, Moliner 50, 46100 Burjassot, València, Spain.
| |
Collapse
|
31
|
Flores O, Deniz Ö, Soler-López M, Orozco M. Fuzziness and noise in nucleosomal architecture. Nucleic Acids Res 2014; 42:4934-46. [PMID: 24586063 PMCID: PMC4005669 DOI: 10.1093/nar/gku165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nucleosome organization plays a key role in the regulation of gene expression. However, despite the striking advances in the accuracy of nucleosome maps, there are still severe discrepancies on individual nucleosome positioning and how this influences gene regulation. The variability among nucleosome maps, which precludes the fine analysis of nucleosome positioning, might emerge from diverse sources. We have carefully inspected the extrinsic factors that may induce diversity by the comparison of microccocal nuclease (MNase)-Seq derived nucleosome maps generated under distinct conditions. Furthermore, we have also explored the variation originated from intrinsic nucleosome dynamics by generating additional maps derived from cell cycle synchronized and asynchronous yeast cultures. Taken together, our study has enabled us to measure the effect of noise in nucleosome occupancy and positioning and provides insights into the underlying determinants. Furthermore, we present a systematic approach that may guide the standardization of MNase-Seq experiments in order to generate reproducible genome-wide nucleosome patterns.
Collapse
Affiliation(s)
- Oscar Flores
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10-12, 08028 Barcelona, Spain, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain and Department of Biochemistry and Molecular Biology. University of Barcelona, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
32
|
Haberle V, Li N, Hadzhiev Y, Plessy C, Previti C, Nepal C, Gehrig J, Dong X, Akalin A, Suzuki AM, van IJcken WFJ, Armant O, Ferg M, Strähle U, Carninci P, Müller F, Lenhard B. Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 2014; 507:381-385. [PMID: 24531765 PMCID: PMC4820030 DOI: 10.1038/nature12974] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 12/23/2013] [Indexed: 12/17/2022]
Abstract
A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs1 and recruits general transcription factors to initiate transcription2. The nature and causative relationship of DNA sequence and chromatin signals that govern the selection of most TSS by RNA polymerase II remain unresolved. Maternal to zygotic transition (MZT) represents the most dramatic change of the transcriptome repertoire in vertebrate life cycle3-6. Early embryonic development in zebrafish is characterized by a series of transcriptionally silent cell cycles regulated by inherited maternal gene products: zygotic genome activation commences at the 10th cell cycle, marking the midblastula transition (MBT)7. This transition provides a unique opportunity to study the rules of TSS selection and the hierarchy of events linking transcription initiation with key chromatin modifications. We analysed TSS usage during zebrafish early embryonic development at high resolution using cap analysis of gene expression (CAGE)8 and determined the positions of H3K4me3-marked promoter-associated nucleosomes9. We show that the transition from maternal to zygotic transcriptome is characterised by a switch between two fundamentally different modes of defining transcription initiation, which drive the dynamic change of TSS usage and promoter shape. A maternal-specific TSS selection, which requires an A/T-rich (W-box) motif, is replaced with a zygotic TSS selection grammar characterized by broader patterns of dinucleotide enrichments, precisely aligned with the first downstream (+1) nucleosome. The developmental dynamics of the H3K4me3-marked nucleosomes reveals their DNA sequence-associated positioning at promoters prior to zygotic transcription and subsequent transcription-independent adjustment to the final position downstream of zygotic TSS. The two TSS-defining grammars coexist often in physical overlap in core promoters of constitutively expressed genes to enable their expression in the two regulatory environments. The dissection of overlapping core promoter determinants represents a framework for future studies of promoter structure and function across different regulatory contexts.
Collapse
Affiliation(s)
- Vanja Haberle
- Department of Biology, University of Bergen, Thormøhlensgate 53A, N-5008 Bergen, Norway.,Institute of Clinical Sciences and MRC Clinical Sciences Center, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | - Nan Li
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Yavor Hadzhiev
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Charles Plessy
- RIKEN Omics Science Center, Yokohama, Kanagawa, 230-0045 Japan (ceased to exist on 01 April 2013 due to RIKEN reorganisation).,RIKEN Center for Life Science Technologies, Division of Genomic Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Christopher Previti
- Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Chirag Nepal
- Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Jochen Gehrig
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Xianjun Dong
- Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Altuna Akalin
- Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Ana Maria Suzuki
- RIKEN Omics Science Center, Yokohama, Kanagawa, 230-0045 Japan (ceased to exist on 01 April 2013 due to RIKEN reorganisation).,RIKEN Center for Life Science Technologies, Division of Genomic Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Wilfred F J van IJcken
- Erasmus Medical Center, Center for Biomics, Room Ee679b, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Olivier Armant
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Marco Ferg
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Piero Carninci
- RIKEN Omics Science Center, Yokohama, Kanagawa, 230-0045 Japan (ceased to exist on 01 April 2013 due to RIKEN reorganisation).,RIKEN Center for Life Science Technologies, Division of Genomic Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ferenc Müller
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Boris Lenhard
- Institute of Clinical Sciences and MRC Clinical Sciences Center, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom.,Department of Informatics, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| |
Collapse
|
33
|
Perales R, Erickson B, Zhang L, Kim H, Valiquett E, Bentley D. Gene promoters dictate histone occupancy within genes. EMBO J 2013; 32:2645-56. [PMID: 24013117 DOI: 10.1038/emboj.2013.194] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 07/30/2013] [Indexed: 11/09/2022] Open
Abstract
Spt6 is a transcriptional elongation factor and histone chaperone that reassembles transcribed chromatin. Genome-wide H3 mapping showed that Spt6 preferentially maintains nucleosomes within the first 500 bases of genes and helps define nucleosome-depleted regions in 5' and 3' flanking sequences. In Spt6-depleted cells, H3 loss at 5' ends correlates with reduced pol II density suggesting enhanced transcription elongation. Consistent with its 'Suppressor of Ty' (Spt) phenotype, Spt6 inactivation caused localized H3 eviction over 1-2 nucleosomes at 5' ends of Ty elements. H3 displacement differed between genes driven by promoters with 'open'/DPN and 'closed'/OPN chromatin conformations with similar pol II densities. More eviction occurred on genes with 'closed' promoters, associated with 'noisy' transcription. Moreover, swapping of 'open' and 'closed' promoters showed that they can specify distinct downstream patterns of histone eviction/deposition. These observations suggest a novel function for promoters in dictating histone dynamics within genes possibly through effects on transcriptional bursting or elongation rate.
Collapse
Affiliation(s)
- Roberto Perales
- Program in Molecular Biology, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | | | | | | |
Collapse
|
34
|
Nikolaou C, Bermúdez I, Manichanh C, García-Martinez J, Guigó R, Pérez-Ortín JE, Roca J. Topoisomerase II regulates yeast genes with singular chromatin architectures. Nucleic Acids Res 2013; 41:9243-56. [PMID: 23935120 PMCID: PMC3814376 DOI: 10.1093/nar/gkt707] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic topoisomerase II (topo II) is the essential decatenase of newly replicated chromosomes and the main relaxase of nucleosomal DNA. Apart from these general tasks, topo II participates in more specialized functions. In mammals, topo IIα interacts with specific RNA polymerases and chromatin-remodeling complexes, whereas topo IIβ regulates developmental genes in conjunction with chromatin remodeling and heterochromatin transitions. Here we show that in budding yeast, topo II regulates the expression of specific gene subsets. To uncover this, we carried out a genomic transcription run-on shortly after the thermal inactivation of topo II. We identified a modest number of genes not involved in the general stress response but strictly dependent on topo II. These genes present distinctive functional and structural traits in comparison with the genome average. Yeast topo II is a positive regulator of genes with well-defined promoter architecture that associates to chromatin remodeling complexes; it is a negative regulator of genes extremely hypo-acetylated with complex promoters and undefined nucleosome positioning, many of which are involved in polyamine transport. These findings indicate that yeast topo II operates on singular chromatin architectures to activate or repress DNA transcription and that this activity produces functional responses to ensure chromatin stability.
Collapse
Affiliation(s)
- Christoforos Nikolaou
- Molecular Biology Institute of Barcelona, CSIC, 08028 Barcelona, Spain, Department of Biology, University of Crete, 71409 Heraklion, Greece, Department of Genetics and ERI Biotecmed, University of Valencia, 46100 Burjassot, Spain, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Department of Biochemistry and Molecular Biology and ERI Biotecmed, University of Valencia, 46100 Burjassot, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements. Genome Res 2013; 22:1735-47. [PMID: 22955985 PMCID: PMC3431490 DOI: 10.1101/gr.136366.111] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gene regulation at functional elements (e.g., enhancers, promoters, insulators) is governed by an interplay of nucleosome remodeling, histone modifications, and transcription factor binding. To enhance our understanding of gene regulation, the ENCODE Consortium has generated a wealth of ChIP-seq data on DNA-binding proteins and histone modifications. We additionally generated nucleosome positioning data on two cell lines, K562 and GM12878, by MNase digestion and high-depth sequencing. Here we relate 14 chromatin signals (12 histone marks, DNase, and nucleosome positioning) to the binding sites of 119 DNA-binding proteins across a large number of cell lines. We developed a new method for unsupervised pattern discovery, the Clustered AGgregation Tool (CAGT), which accounts for the inherent heterogeneity in signal magnitude, shape, and implicit strand orientation of chromatin marks. We applied CAGT on a total of 5084 data set pairs to obtain an exhaustive catalog of high-resolution patterns of histone modifications and nucleosome positioning signals around bound transcription factors. Our analyses reveal extensive heterogeneity in how histone modifications are deposited, and how nucleosomes are positioned around binding sites. With the exception of the CTCF/cohesin complex, asymmetry of nucleosome positioning is predominant. Asymmetry of histone modifications is also widespread, for all types of chromatin marks examined, including promoter, enhancer, elongation, and repressive marks. The fine-resolution signal shapes discovered by CAGT unveiled novel correlation patterns between chromatin marks, nucleosome positioning, and sequence content. Meta-analyses of the signal profiles revealed a common vocabulary of chromatin signals shared across multiple cell lines and binding proteins.
Collapse
|
36
|
Tsai ZTY, Tsai HK, Cheng JH, Lin CH, Tsai YF, Wang D. Evolution of cis-regulatory elements in yeast de novo and duplicated new genes. BMC Genomics 2012; 13:717. [PMID: 23256513 PMCID: PMC3553024 DOI: 10.1186/1471-2164-13-717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/18/2012] [Indexed: 12/22/2022] Open
Abstract
Background New genes that originate from non-coding DNA rather than being duplicated from parent genes are called de novo genes. Their short evolution time and lack of parent genes provide a chance to study the evolution of cis-regulatory elements in the initial stage of gene emergence. Although a few reports have discussed cis-regulatory elements in new genes, knowledge of the characteristics of these elements in de novo genes is lacking. Here, we conducted a comprehensive investigation to depict the emergence and establishment of cis-regulatory elements in de novo yeast genes. Results In a genome-wide investigation, we found that the number of transcription factor binding sites (TFBSs) in de novo genes of S. cerevisiae increased rapidly and quickly became comparable to the number of TFBSs in established genes. This phenomenon might have resulted from certain characteristics of de novo genes; namely, a relatively frequent gain of TFBSs, an unexpectedly high number of preexisting TFBSs, or lower selection pressure in the promoter regions of the de novo genes. Furthermore, we identified differences in the promoter architecture between de novo genes and duplicated new genes, suggesting that distinct regulatory strategies might be employed by genes of different origin. Finally, our functional analyses of the yeast de novo genes revealed that they might be related to reproduction. Conclusions Our observations showed that de novo genes and duplicated new genes possess mutually distinct regulatory characteristics, implying that these two types of genes might have different roles in evolution.
Collapse
|
37
|
Liu H, Luo K, Wen H, Ma X, Xie J, Sun X. Quantitative analysis reveals increased histone modifications and a broad nucleosome-free region bound by histone acetylases in highly expressed genes in human CD4+ T cells. Genomics 2012. [PMID: 23195408 DOI: 10.1016/j.ygeno.2012.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genome-wide mapping of nucleosomes and histone modifications revealed meaningful patterns. Despite advances in resolving the associations between chromatin and transcription, quantitative chromatin dynamics have not been well defined. We quantitatively determined differences in histone modifications, nucleosome positions, DNA methylation, and transcription factor binding in highly expressed and repressed genes in human CD4(+) T cells. We showed that the first (-1) nucleosome upstream of the transcription start site (TSS) is shifted to the 5' direction, thus forming a broad nucleosome-free region (NFR) near the TSS in highly expressed genes in CD4(+) T cells. Moreover, the transcription factor YY1 and histone acetyltransferases bind the NFR with high affinity. Most of histone acetylations drastically increase in transcription activation (>5 folds). We also suggested that single nucleotide polymorphisms (SNPs) occur at a much lower frequency in highly expressed genes than in repressed genes. Our analysis quantitatively revealed details of chromatin dynamics.
Collapse
Affiliation(s)
- Hongde Liu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| | - Kun Luo
- Department of Neurosurgery, Xinjiang Evidence-based Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Hao Wen
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Xin Ma
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jianming Xie
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
38
|
Teichmann SA, Wigge PA, Charoensawan V. Uncovering the interplay between DNA sequence preferences of transcription factors and nucleosomes. Cell Cycle 2012; 11:4487-8. [PMID: 23165207 PMCID: PMC3562284 DOI: 10.4161/cc.22666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
39
|
Goode DK, Elgar G. Capturing the regulatory interactions of eukaryote genomes. Brief Funct Genomics 2012; 12:142-60. [PMID: 23117864 DOI: 10.1093/bfgp/els041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A key finding from early genomics research is the remarkable consistency in the number of protein-coding regions across diverse species. This has led many researchers to look to the cis-regulatory elements of genes as the fundamental influence behind evolving gene function and subsequent species diversification. Historically, since these elements are often located in vast intergenic and intronic regions of the genome, their identification has been recalcitrant. Now, with the deluge of whole-genome data from representatives of numerous eukaryotic lineages, various approaches have enabled us to begin to recognize features that characterize regulatory regions of the genome. Here we endeavour to collate these approaches in order to give an overview of the complexities involved in extrapolating regulatory signatures. The resource provided by the escalating richness of whole-genome datasets enables more sophisticated modelling of these regulatory signatures yet at the same time introduces increasing potential for noise. While we are only at the advent of making these discoveries, the next decade promises to be a very exciting and rewarding time for genome researchers.
Collapse
Affiliation(s)
- Debbie K Goode
- Cambridge Institute for Medical Research, Deptartment of Haematology, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | | |
Collapse
|
40
|
Charoensawan V, Janga SC, Bulyk ML, Babu MM, Teichmann SA. DNA sequence preferences of transcriptional activators correlate more strongly than repressors with nucleosomes. Mol Cell 2012; 47:183-92. [PMID: 22841002 PMCID: PMC3566590 DOI: 10.1016/j.molcel.2012.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/22/2012] [Accepted: 06/05/2012] [Indexed: 12/28/2022]
Abstract
Transcription factors (TFs) and histone octamers are two abundant classes of DNA binding proteins that coordinate the transcriptional program in cells. Detailed studies of individual TFs have shown that TFs bind to nucleosome-occluded DNA sequences and induce nucleosome disruption/repositioning, while recent global studies suggest this is not the only mechanism used by all TFs. We have analyzed to what extent the intrinsic DNA binding preferences of TFs and histones play a role in determining nucleosome occupancy, in addition to nonintrinsic factors such as the enzymatic activity of chromatin remodelers. The majority of TFs in budding yeast have an intrinsic sequence preference overlapping with nucleosomal histones. TFs with intrinsic DNA binding properties highly correlated with those of histones tend to be associated with gene activation and might compete with histones to bind to genomic DNA. Consistent with this, we show that activators induce more nucleosome disruption upon transcriptional activation than repressors.
Collapse
|
41
|
Abstract
Transcription is a complex process that integrates the state of the cell and its environment to generate adequate responses for cell fitness and survival. Recent microscopy experiments have been able to monitor transcription from single genes in individual cells. These observations have revealed two striking features: transcriptional activity can vary markedly from one cell to another, and is subject to large changes over time, sometimes within minutes. How the chromatin structure, transcription machinery assembly and signalling networks generate such patterns is still unclear. In this review, we present the techniques used to investigate transcription from single genes, introduce quantitative modelling tools, and discuss transcription mechanisms and their implications for gene expression regulation.
Collapse
|
42
|
Hornung G, Oren M, Barkai N. Nucleosome organization affects the sensitivity of gene expression to promoter mutations. Mol Cell 2012; 46:362-8. [PMID: 22464732 DOI: 10.1016/j.molcel.2012.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 01/14/2012] [Accepted: 02/28/2012] [Indexed: 12/15/2022]
Abstract
Gene expression diverges rapidly between related species, playing a key role in the evolution of new phenotypes. The extent of divergence differs greatly between genes and is correlated to promoter nucleosome organization. We hypothesized that this may be partially explained by differential sensitivity of expression to mutations in the promoter region. We measured the sensitivity of 22 yeast promoters with varying nucleosome patterns to random mutations in sequence. Mutation sensitivity differed by up to 10-fold between promoters. This difference could not be explained by the abundance of transcription factor binding sites. Rather, mutation sensitivity positively correlated with the relative occupancy of nucleosomes at the proximal promoter region. Furthermore, mutation sensitivity was reduced upon introduction of a binding site for Reb1, a factor that blocks nucleosome formation, suggesting that nucleosome organization directly regulates mutation sensitivity. Our study suggests an important role for chromatin structure in the evolution of gene expression.
Collapse
Affiliation(s)
- Gil Hornung
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
43
|
Chalancon G, Ravarani CNJ, Balaji S, Martinez-Arias A, Aravind L, Jothi R, Babu MM. Interplay between gene expression noise and regulatory network architecture. Trends Genet 2012; 28:221-32. [PMID: 22365642 DOI: 10.1016/j.tig.2012.01.006] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/23/2012] [Accepted: 01/26/2012] [Indexed: 01/24/2023]
Abstract
Complex regulatory networks orchestrate most cellular processes in biological systems. Genes in such networks are subject to expression noise, resulting in isogenic cell populations exhibiting cell-to-cell variation in protein levels. Increasing evidence suggests that cells have evolved regulatory strategies to limit, tolerate or amplify expression noise. In this context, fundamental questions arise: how can the architecture of gene regulatory networks generate, make use of or be constrained by expression noise? Here, we discuss the interplay between expression noise and gene regulatory network at different levels of organization, ranging from a single regulatory interaction to entire regulatory networks. We then consider how this interplay impacts a variety of phenomena, such as pathogenicity, disease, adaptation to changing environments, differential cell-fate outcome and incomplete or partial penetrance effects. Finally, we highlight recent technological developments that permit measurements at the single-cell level, and discuss directions for future research.
Collapse
Affiliation(s)
- Guilhem Chalancon
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK.
| | | | | | | | | | | | | |
Collapse
|