1
|
Xia H, Hoang MH, Schmidt E, Kiwala S, McMichael J, Skidmore ZL, Fisk B, Song JJ, Hundal J, Mooney T, Walker JR, Goedegebuure SP, Miller CA, Gillanders WE, Griffith OL, Griffith M. pVACview: an interactive visualization tool for efficient neoantigen prioritization and selection. Genome Med 2024; 16:132. [PMID: 39538339 PMCID: PMC11562694 DOI: 10.1186/s13073-024-01384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Neoantigen-targeting therapies including personalized vaccines have shown promise in the treatment of cancers, particularly when used in combination with checkpoint blockade therapy. At least 100 clinical trials involving these therapies have been initiated globally. Accurate identification and prioritization of neoantigens is crucial for designing these trials, predicting treatment response, and understanding mechanisms of resistance. With the advent of massively parallel DNA and RNA sequencing technologies, it is now possible to computationally predict neoantigens based on patient-specific variant information. However, numerous factors must be considered when prioritizing neoantigens for use in personalized therapies. Complexities such as alternative transcript annotations, various binding, presentation and immunogenicity prediction algorithms, and variable peptide lengths/registers all potentially impact the neoantigen selection process. There has been a rapid development of computational tools that attempt to account for these complexities. While these tools generate numerous algorithmic predictions for neoantigen characterization, results from these pipelines are difficult to navigate and require extensive knowledge of the underlying tools for accurate interpretation. This often leads to over-simplification of pipeline outputs to make them tractable, for example, limiting prediction to a single RNA isoform or only summarizing the top ranked of many possible peptide candidates. In addition to variant detection, gene expression, and predicted peptide binding affinities, recent studies have also demonstrated the importance of mutation location, allele-specific anchor locations, and variation of T-cell response to long versus short peptides. Due to the intricate nature and number of salient neoantigen features, presenting all relevant information to facilitate candidate selection for downstream applications is a difficult challenge that current tools fail to address. RESULTS We have created pVACview, the first interactive tool designed to aid in the prioritization and selection of neoantigen candidates for personalized neoantigen therapies including cancer vaccines. pVACview has a user-friendly and intuitive interface where users can upload, explore, select, and export their neoantigen candidates. The tool allows users to visualize candidates at multiple levels of detail including variant, transcript, peptide, and algorithm prediction information. CONCLUSIONS pVACview will allow researchers to analyze and prioritize neoantigen candidates with greater efficiency and accuracy in basic and translational settings. The application is available as part of the pVACtools software at pvactools.org and as an online server at pvacview.org.
Collapse
Affiliation(s)
- Huiming Xia
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - My H Hoang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Evelyn Schmidt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Susanna Kiwala
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua McMichael
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Zachary L Skidmore
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Bryan Fisk
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan J Song
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jasreet Hundal
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas Mooney
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason R Walker
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Miller
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Obi L Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Baron M, Labreche K, Veyri M, Désiré N, Bouzidi A, Seck-Thiam F, Charlotte F, Rousseau A, Morin V, Nakid-Cordero C, Abbar B, Picca A, Le Cann M, Balegroune N, Gauthier N, Theodorou I, Touat M, Morel V, Bielle F, Samri A, Alentorn A, Sanson M, Roos-Weil D, Haioun C, Poullot E, De Septenville AL, Davi F, Guihot A, Boelle PY, Leblond V, Coulet F, Spano JP, Choquet S, Autran B. Epstein-Barr virus and immune status imprint the immunogenomics of non-Hodgkin lymphomas occurring in immune-suppressed environments. Haematologica 2024; 109:3615-3630. [PMID: 38841782 PMCID: PMC11532699 DOI: 10.3324/haematol.2023.284332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Non-Hodgkin lymphomas (NHL) commonly occur in immunodeficient patients, both those infected by human immunodeficiency virus (HIV) and those who have been transplanted, and are often driven by Epstein-Barr virus (EBV) with cerebral localization, raising the question of tumor immunogenicity, a critical issue for treatment responses. We investigated the immunogenomics of 68 lymphoproliferative disorders from 51 immunodeficient (34 post-transplant, 17 HIV+) and 17 immunocompetent patients. Overall, 72% were large B-cell lymphoma and 25% were primary central nervous system lymphoma, while 40% were EBV+. Tumor whole-exome and RNA sequencing, along with a bioinformatics pipeline allowed analysis of tumor mutational burden, tumor landscape and tumor microenvironment and prediction of tumor neoepitopes. Both tumor mutational burden (2.2 vs. 3.4/Mb, P=0.001) and numbers of neoepitopes (40 vs. 200, P=0.00019) were lower in EBV+ than in EBV- NHL, regardless of the immune status. In contrast both EBV and the immune status influenced the tumor mutational profile, with HNRNPF and STAT3 mutations observed exclusively in EBV+ and immunodeficient NHL, respectively. Peripheral blood T-cell responses against tumor neoepitopes were detected in all EBV- cases but in only half of the EBV+ ones, including responses against IgH-derived MHC-class-II restricted neoepitopes. The tumor microenvironment analysis showed higher CD8 T-cell infiltrates in EBV+ versus EBV- NHL, together with a more tolerogenic profile composed of regulatory T cells, type-M2 macrophages and an increased expression of negative immune-regulators. Our results highlight that the immunogenomics of NHL in patients with immunodeficiency primarily relies on the tumor EBV status, while T-cell recognition of tumor- and IgH-specific neoepitopes is conserved in EBV- patients, offering potential opportunities for future T-cell-based immune therapies.
Collapse
Affiliation(s)
- Marine Baron
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France; Sorbonne Université, Department of Clinical Haematology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris.
| | - Karim Labreche
- Sorbonne Université, CinBioS, UMS 37 PASS Production de données en Sciences de la vie et de la Santé, INSERM, 75013 Paris
| | - Marianne Veyri
- Sorbonne Université, INSERM, Pierre et Louis Institute of Epidemiology and Public Health, F-75013 Paris France, Theravir Team, Department of Medical Oncology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Nathalie Désiré
- Sorbonne Université, CinBioS, UMS 37 PASS Production de données en Sciences de la vie et de la Santé, INSERM, 75013 Paris
| | - Amira Bouzidi
- Sorbonne Université, INSERM, Research Unit on Cardiovascular and Metabolic Disease UMR ICAN, Department of Endocrine Biochemistry and Oncology, AP-HP, Hôpital-Pitié-Salpêtrière, F-75013 Paris
| | - Fatou Seck-Thiam
- Sorbonne Université, CinBioS, UMS 37 PASS Production de données en Sciences de la vie et de la Santé, INSERM, 75013 Paris
| | - Frédéric Charlotte
- Sorbonne Université, Department of Anatomy and Pathologic Cytology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Alice Rousseau
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Véronique Morin
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Cécilia Nakid-Cordero
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Baptiste Abbar
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Alberto Picca
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Marie Le Cann
- Department of Clinical Haematology, AP-HP, Hôpital Kremlin Bicêtre, F-94270 Le Kremlin
| | - Noureddine Balegroune
- Sorbonne Université, Department of Clinical Haematology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Nicolas Gauthier
- Sorbonne Université, Department of Clinical Haematology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | | | - Mehdi Touat
- Sorbonne Université, INSERM, CNRS, Brain and Spine Institute, ICM, Department of Neurology 2-Mazarin, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Véronique Morel
- Sorbonne Université, Department of Clinical Haematology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Franck Bielle
- Sorbonne Université, Department of Neuropathology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris
| | - Assia Samri
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Agusti Alentorn
- Sorbonne Université, INSERM, CNRS, Brain and Spine Institute, ICM, Department of Neurology 2-Mazarin, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Marc Sanson
- Sorbonne Université, INSERM, CNRS, Brain and Spine Institute, ICM, Department of Neurology 2-Mazarin, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Damien Roos-Weil
- Sorbonne Université, Department of Clinical Haematology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Corinne Haioun
- Lymphoid malignancies Unit, AP-HP, Mondor Hospital, F-94000 Créteil
| | - Elsa Poullot
- Department of Anatomy and Pathologic Cytology, AP-HP, Mondor Hospital, F-94000 Créteil
| | - Anne Langlois De Septenville
- Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Department of Biological Hematology, AP-HP, Hôpital Pitié-Salpêtrière, Paris
| | - Frédéric Davi
- Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Department of Biological Hematology, AP-HP, Hôpital Pitié-Salpêtrière, Paris
| | - Amélie Guihot
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Pierre-Yves Boelle
- Sorbonne Université, CinBioS, UMS 37 PASS Production de données en Sciences de la vie et de la Santé, INSERM, 75013 Paris
| | - Véronique Leblond
- Sorbonne Université, Department of Clinical Haematology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Florence Coulet
- Sorbonne Université, INSERM, Saint-Antoine Research Center, Microsatellites Instability and Cancer, CRSA, Department of Medical Genetics, AP-HP, Pitié-Salpêtrière Hospital, F-75013 Paris
| | - Jean-Philippe Spano
- Sorbonne Université, INSERM, Pierre et Louis Institute of Epidemiology and Public Health, F-75013 Paris France, Theravir Team, Department of Medical Oncology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Sylvain Choquet
- Sorbonne Université, Department of Clinical Haematology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Brigitte Autran
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| |
Collapse
|
3
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
4
|
Rus Bakarurraini NAA, Kamarudin AA, Jamal R, Abu N. Engineered T cells for Colorectal Cancer. Immunotherapy 2024; 16:987-998. [PMID: 39229803 PMCID: PMC11485792 DOI: 10.1080/1750743x.2024.2391733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Colorectal cancer (CRC) is a major contributor to global cancer incidence and mortality. Conventional treatments have limitations; hence, innovative approaches are imperative. Recent advancements in cancer research have led to the development of personalized targeted therapies and immunotherapies. Immunotherapy, in particular, T cell-based therapies, exhibited to be promising in enhancing cancer treatment outcomes. This review focuses on the landscape of engineered T cells as a potential option for the treatment of CRC. It highlights the approaches, challenges and current advancements in this field. As the understanding of molecular mechanisms increases, engineered T cells hold great potential in revolutionizing cancer treatment. To fully explore their safety efficacy in improving patient outcomes, further research and clinical trials are necessary.
Collapse
Affiliation(s)
| | - Ammar Akram Kamarudin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Yang C, Trivedi V, Dyson K, Gu T, Candelario KM, Yegorov O, Mitchell DA. Identification of tumor rejection antigens and the immunologic landscape of medulloblastoma. Genome Med 2024; 16:102. [PMID: 39160595 PMCID: PMC11331754 DOI: 10.1186/s13073-024-01363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND The current standard of care treatments for medulloblastoma are insufficient as these do not take tumor heterogeneity into account. Newer, safer, patient-specific treatment approaches are required to treat high-risk medulloblastoma patients who are not cured by the standard therapies. Immunotherapy is a promising treatment modality that could be key to improving survival and avoiding morbidity. For an effective immune response, appropriate tumor antigens must be targeted. While medulloblastoma patients with subgroup-specific genetic substitutions have been previously reported, the immunogenicity of these genetic alterations remains unknown. The aim of this study is to identify potential tumor rejection antigens for the development of antigen-directed cellular therapies for medulloblastoma. METHODS We developed a cancer immunogenomics pipeline and performed a comprehensive analysis of medulloblastoma subgroup-specific transcription profiles (n = 170, 18 WNT, 46 SHH, 41 Group 3, and 65 Group 4 patient tumors) available through International Cancer Genome Consortium (ICGC) and European Genome-Phenome Archive (EGA). We performed in silico antigen prediction across a broad array of antigen classes including neoantigens, tumor-associated antigens (TAAs), and fusion proteins. Furthermore, we evaluated the antigen processing and presentation pathway in tumor cells and the immune infiltrating cell landscape using the latest computational deconvolution methods. RESULTS Medulloblastoma patients were found to express multiple private and shared immunogenic antigens. The proportion of predicted TAAs was higher than neoantigens and gene fusions for all molecular subgroups, except for sonic hedgehog (SHH), which had a higher neoantigen burden. Importantly, cancer-testis antigens, as well as previously unappreciated neurodevelopmental antigens, were found to be expressed by most patients across all medulloblastoma subgroups. Despite being immunologically cold, medulloblastoma subgroups were found to have distinct immune cell gene signatures. CONCLUSIONS Using a custom antigen prediction pipeline, we identified potential tumor rejection antigens with important implications for the development of immunotherapy for medulloblastoma.
Collapse
Affiliation(s)
- Changlin Yang
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Vrunda Trivedi
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Kyle Dyson
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Tongjun Gu
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Kate M Candelario
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Oleg Yegorov
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Duane A Mitchell
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA.
| |
Collapse
|
6
|
Liu W, Zhou H, Lai W, Hu C, Xu R, Gu P, Luo M, Zhang R, Li G. The immunosuppressive landscape in tumor microenvironment. Immunol Res 2024; 72:566-582. [PMID: 38691319 DOI: 10.1007/s12026-024-09483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Recent advances in cancer immunotherapy, especially immune checkpoint inhibitors (ICIs), have revolutionized the clinical outcome of many cancer patients. Despite the fact that impressive progress has been made in recent decades, the response rate remains unsatisfactory, and many patients do not benefit from ICIs. Herein, we summarized advanced studies and the latest insights on immune inhibitory factors in the tumor microenvironment. Our in-depth discussion and updated landscape of tumor immunosuppressive microenvironment may provide new strategies for reversing tumor immune evasion, enhancing the efficacy of ICIs therapy, and ultimately achieving a better clinical outcome.
Collapse
Affiliation(s)
- Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rufu Xu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Peng Gu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Menglin Luo
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| |
Collapse
|
7
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
8
|
Zanotta S, Galati D, De Filippi R, Pinto A. Enhancing Dendritic Cell Cancer Vaccination: The Synergy of Immune Checkpoint Inhibitors in Combined Therapies. Int J Mol Sci 2024; 25:7509. [PMID: 39062753 PMCID: PMC11277144 DOI: 10.3390/ijms25147509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Dendritic cell (DC) cancer vaccines are a promising therapeutic approach, leveraging the immune system to fight tumors. These vaccines utilize DCs' ability to present tumor-associated antigens to T cells, triggering a robust immune response. DC vaccine development has progressed through three generations. The first generation involved priming DCs with tumor-associated antigens or messenger RNA outside the body, showing limited clinical success. The second generation improved efficacy by using cytokine mixtures and specialized DC subsets to enhance immunogenicity. The third generation used blood-derived DCs to elicit a stronger immune response. Clinical trials indicate that cancer vaccines have lower toxicity than traditional cytotoxic treatments. However, achieving significant clinical responses with DC immunotherapy remains challenging. Combining DC vaccines with immune checkpoint inhibitors (ICIs), such as anticytotoxic T-lymphocyte Antigen 4 and antiprogrammed death-1 antibodies, has shown promise by enhancing T-cell responses and improving clinical outcomes. These combinations can transform non-inflamed tumors into inflamed ones, boosting ICIs' efficacy. Current research is exploring new checkpoint targets like LAG-3, TIM-3, and TIGIT, considering their potential with DC vaccines. Additionally, engineering T cells with chimeric antigen receptors or T-cell receptors could further augment the antitumor response. This comprehensive strategy aims to enhance cancer immunotherapy, focusing on increased efficacy and improved patient survival rates.
Collapse
Affiliation(s)
- Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| | - Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy;
| | - Antonio Pinto
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| |
Collapse
|
9
|
Taheri M, Tehrani HA, Dehghani S, Alibolandi M, Arefian E, Ramezani M. Nanotechnology and bioengineering approaches to improve the potency of mesenchymal stem cell as an off-the-shelf versatile tumor delivery vehicle. Med Res Rev 2024; 44:1596-1661. [PMID: 38299924 DOI: 10.1002/med.22023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Targeting actionable mutations in oncogene-driven cancers and the evolution of immuno-oncology are the two prominent revolutions that have influenced cancer treatment paradigms and caused the emergence of precision oncology. However, intertumoral and intratumoral heterogeneity are the main challenges in both fields of precision cancer treatment. In other words, finding a universal marker or pathway in patients suffering from a particular type of cancer is challenging. Therefore, targeting a single hallmark or pathway with a single targeted therapeutic will not be efficient for fighting against tumor heterogeneity. Mesenchymal stem cells (MSCs) possess favorable characteristics for cellular therapy, including their hypoimmune nature, inherent tumor-tropism property, straightforward isolation, and multilineage differentiation potential. MSCs can be loaded with various chemotherapeutics and oncolytic viruses. The combination of these intrinsic features with the possibility of genetic manipulation makes them a versatile tumor delivery vehicle that can be used for in vivo selective tumor delivery of various chemotherapeutic and biological therapeutics. MSCs can be used as biofactory for the local production of chemical or biological anticancer agents at the tumor site. MSC-mediated immunotherapy could facilitate the sustained release of immunotherapeutic agents specifically at the tumor site, and allow for the achievement of therapeutic concentrations without the need for repetitive systemic administration of high therapeutic doses. Despite the enthusiasm evoked by preclinical studies that used MSC in various cancer therapy approaches, the translation of MSCs into clinical applications has faced serious challenges. This manuscript, with a critical viewpoint, reviewed the preclinical and clinical studies that have evaluated MSCs as a selective tumor delivery tool in various cancer therapy approaches, including gene therapy, immunotherapy, and chemotherapy. Then, the novel nanotechnology and bioengineering approaches that can improve the potency of MSC for tumor targeting and overcoming challenges related to their low localization at the tumor sites are discussed.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Hossain SM, Carpenter C, Eccles MR. Genomic and Epigenomic Biomarkers of Immune Checkpoint Immunotherapy Response in Melanoma: Current and Future Perspectives. Int J Mol Sci 2024; 25:7252. [PMID: 39000359 PMCID: PMC11241335 DOI: 10.3390/ijms25137252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) demonstrate durable responses, long-term survival benefits, and improved outcomes in cancer patients compared to chemotherapy. However, the majority of cancer patients do not respond to ICIs, and a high proportion of those patients who do respond to ICI therapy develop innate or acquired resistance to ICIs, limiting their clinical utility. The most studied predictive tissue biomarkers for ICI response are PD-L1 immunohistochemical expression, DNA mismatch repair deficiency, and tumour mutation burden, although these are weak predictors of ICI response. The identification of better predictive biomarkers remains an important goal to improve the identification of patients who would benefit from ICIs. Here, we review established and emerging biomarkers of ICI response, focusing on epigenomic and genomic alterations in cancer patients, which have the potential to help guide single-agent ICI immunotherapy or ICI immunotherapy in combination with other ICI immunotherapies or agents. We briefly review the current status of ICI response biomarkers, including investigational biomarkers, and we present insights into several emerging and promising epigenomic biomarker candidates, including current knowledge gaps in the context of ICI immunotherapy response in melanoma patients.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Carien Carpenter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
11
|
Xia H, Hoang M, Schmidt E, Kiwala S, McMichael J, Skidmore ZL, Fisk B, Song JJ, Hundal J, Mooney T, Walker JR, Peter Goedegebuure S, Miller CA, Gillanders WE, Griffith OL, Griffith M. pVACview: an interactive visualization tool for efficient neoantigen prioritization and selection. ARXIV 2024:arXiv:2406.06985v1. [PMID: 38947921 PMCID: PMC11213132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Neoantigen targeting therapies including personalized vaccines have shown promise in the treatment of cancers, particularly when used in combination with checkpoint blockade therapy. At least 100 clinical trials involving these therapies are underway globally. Accurate identification and prioritization of neoantigens is highly relevant to designing these trials, predicting treatment response, and understanding mechanisms of resistance. With the advent of massively parallel DNA and RNA sequencing technologies, it is now possible to computationally predict neoantigens based on patient-specific variant information. However, numerous factors must be considered when prioritizing neoantigens for use in personalized therapies. Complexities such as alternative transcript annotations, various binding, presentation and immunogenicity prediction algorithms, and variable peptide lengths/registers all potentially impact the neoantigen selection process. There has been a rapid development of computational tools that attempt to account for these complexities. While these tools generate numerous algorithmic predictions for neoantigen characterization, results from these pipelines are difficult to navigate and require extensive knowledge of the underlying tools for accurate interpretation. This often leads to over-simplification of pipeline outputs to make them tractable, for example limiting prediction to a single RNA isoform or only summarizing the top ranked of many possible peptide candidates. In addition to variant detection, gene expression and predicted peptide binding affinities, recent studies have also demonstrated the importance of mutation location, allele-specific anchor locations, and variation of T-cell response to long versus short peptides. Due to the intricate nature and number of salient neoantigen features, presenting all relevant information to facilitate candidate selection for downstream applications is a difficult challenge that current tools fail to address. Results We have created pVACview, the first interactive tool designed to aid in the prioritization and selection of neoantigen candidates for personalized neoantigen therapies including cancer vaccines. pVACview has a user-friendly and intuitive interface where users can upload, explore, select and export their neoantigen candidates. The tool allows users to visualize candidates across three different levels, including variant, transcript and peptide information. Conclusions pVACview will allow researchers to analyze and prioritize neoantigen candidates with greater efficiency and accuracy in basic and translational settings The application is available as part of the pVACtools pipeline at pvactools.org and as an online server at pvacview.org.
Collapse
Affiliation(s)
- Huiming Xia
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - My Hoang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Evelyn Schmidt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Susanna Kiwala
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua McMichael
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Zachary L Skidmore
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Bryan Fisk
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan J Song
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jasreet Hundal
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas Mooney
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason R Walker
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Miller
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Obi L Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Song J, Zhang Y, Zhou C, Zhan J, Cheng X, Huang H, Mao S, Zong Z. The dawn of a new Era: mRNA vaccines in colorectal cancer immunotherapy. Int Immunopharmacol 2024; 132:112037. [PMID: 38599100 DOI: 10.1016/j.intimp.2024.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Colorectal cancer (CRC) is a typical cancer that accounts for 10% of all new cancer cases annually and nearly 10% of all cancer deaths. Despite significant progress in current classical interventions for CRC, these traditional strategies could be invasive and with numerous adverse effects. The poor prognosis of CRC patients highlights the evident and pressing need for more efficient and targeted treatment. Novel strategies regarding mRNA vaccines for anti-tumor therapy have also been well-developed since the successful application for the prevention of COVID-19. mRNA vaccine technology won the 2023 Nobel Prize in Physiology or Medicine, signaling a new direction in human anti-cancer treatment: mRNA medicine. As a promising new immunotherapy in CRC and other multiple cancer treatments, the mRNA vaccine has higher specificity, better efficacy, and fewer side effects than traditional strategies. The present review outlines the basics of mRNA vaccines and their advantages over other vaccines and informs an available strategy for developing efficient mRNA vaccines for CRC precise treatment. In the future, more exploration of mRNA vaccines for CRC shall be attached, fostering innovation to address existing limitations.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yujun Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chulin Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; The Second Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianhao Zhan
- Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
13
|
Khushman MM, Toboni MD, Xiu J, Manne U, Farrell A, Lou E, Shields AF, Philip PA, Salem ME, Abraham J, Spetzler D, Marshall J, Jayachandran P, Hall MJ, Lenz HJ, Sahin IH, Seeber A, Powell MA. Differential Responses to Immune Checkpoint Inhibitors are Governed by Diverse Mismatch Repair Gene Alterations. Clin Cancer Res 2024; 30:1906-1915. [PMID: 38350001 DOI: 10.1158/1078-0432.ccr-23-3004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
PURPOSE The response to immune checkpoint inhibitors (ICI) in deficient mismatch repair (dMMR) colorectal cancer and endometrial cancer is variable. Here, we explored the differential response to ICIs according to different mismatch repair alterations. EXPERIMENTAL DESIGN Colorectal cancer (N = 13,701) and endometrial cancer (N = 3,315) specimens were tested at Caris Life Sciences. Median overall survival (mOS) was estimated using Kaplan-Meier. The prediction of high-, intermediate-, and low-affinity epitopes by tumor mutation burden (TMB) values was conducted using R-squared (R2). RESULTS Compared with mutL (MLH1 and PMS2) co-loss, the mOS was longer in mutS (MSH2 and MSH6) co-loss in all colorectal cancer (54.6 vs. 36 months; P = 0.0.025) and endometrial cancer (81.5 vs. 48.2 months; P < 0.001) patients. In ICI-treated patients, the mOS was longer in mutS co-loss in colorectal cancer [not reached (NR) vs. 36 months; P = 0.011). In endometrial cancer, the mOS was NR vs. 42.2 months; P = 0.711]. The neoantigen load (NAL) in mutS co-loss compared with mutL co-loss was higher in colorectal cancer (high-affinity epitopes: 25.5 vs. 19; q = 0.017, intermediate: 39 vs. 32; q = 0.004, low: 87.5 vs. 73; q < 0.001) and endometrial cancer (high-affinity epitopes: 15 vs. 11; q = 0.002, intermediate: 27.5 vs. 19; q < 0.001, low: 59 vs. 41; q < 0.001), respectively. R2 ranged from 0.25 in mutS co-loss colorectal cancer to 0.95 in mutL co-loss endometrial cancer. CONCLUSIONS Patients with mutS co-loss experienced longer mOS in colorectal cancer and endometrial cancer and better response to ICIs in colorectal cancer. Among all explored biomarkers, NAL was higher in mutS co-loss and may be a potential driving factor for the observed better outcomes. TMB did not reliably predict NAL.
Collapse
Affiliation(s)
- Moh'd M Khushman
- Washington University in St. Louis/Siteman Cancer Center, St. Louis, Missouri
| | - Michael D Toboni
- The University of Alabama at Birmingham/O'Neal Comprehensive Cancer Center, Birmingham, Alabama
| | | | - Upender Manne
- The University of Alabama at Birmingham/O'Neal Comprehensive Cancer Center, Birmingham, Alabama
| | | | - Emil Lou
- University of Minnesota/Masonic Cancer Center, Minneapolis, Minnesota
| | - Anthony F Shields
- Wayne State University/Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Philip A Philip
- Wayne State University/Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | | | | | | | - John Marshall
- Georgetown University/Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Priya Jayachandran
- University of South California/Norris Comprehensive Cancer Center, Los Angeles, California
| | | | - Heinz-Josef Lenz
- University of South California/Norris Comprehensive Cancer Center, Los Angeles, California
| | - Ibrahim Halil Sahin
- University of Pittsburgh Medical Center/Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Andreas Seeber
- Medical University of Innsbruck, Comprehensive Cancer Center Innsbruck, Innsbruck, Austria
| | - Mathew A Powell
- Washington University in St. Louis/Siteman Cancer Center, St. Louis, Missouri
| |
Collapse
|
14
|
Szulc A, Woźniak M. Targeting Pivotal Hallmarks of Cancer for Enhanced Therapeutic Strategies in Triple-Negative Breast Cancer Treatment-In Vitro, In Vivo and Clinical Trials Literature Review. Cancers (Basel) 2024; 16:1483. [PMID: 38672570 PMCID: PMC11047913 DOI: 10.3390/cancers16081483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This literature review provides a comprehensive overview of triple-negative breast cancer (TNBC) and explores innovative targeted therapies focused on specific hallmarks of cancer cells, aiming to revolutionize breast cancer treatment. TNBC, characterized by its lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), presents distinct features, categorizing these invasive breast tumors into various phenotypes delineated by key elements in molecular assays. This article delves into the latest advancements in therapeutic strategies targeting components of the tumor microenvironment and pivotal hallmarks of cancer: deregulating cellular metabolism and the Warburg effect, acidosis and hypoxia, the ability to metastasize and evade the immune system, aiming to enhance treatment efficacy while mitigating systemic toxicity. Insights from in vitro and in vivo studies and clinical trials underscore the promising effectiveness and elucidate the mechanisms of action of these novel therapeutic interventions for TNBC, particularly in cases refractory to conventional treatments. The integration of targeted therapies tailored to the molecular characteristics of TNBC holds significant potential for optimizing clinical outcomes and addressing the pressing need for more effective treatment options for this aggressive subtype of breast cancer.
Collapse
Affiliation(s)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
15
|
Goldberg J, Qiao N, Guerriero JL, Gross B, Meneksedag Y, Lu YF, Philips AV, Rahman T, Meric-Bernstam F, Roszik J, Chen K, Jeselsohn R, Tolaney SM, Peoples GE, Alatrash G, Mittendorf EA. Estrogen Receptor Mutations as Novel Targets for Immunotherapy in Metastatic Estrogen Receptor-positive Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:496-504. [PMID: 38335301 PMCID: PMC10883292 DOI: 10.1158/2767-9764.crc-23-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/12/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Estrogen receptor-positive (ER+) breast cancer is not considered immunogenic and, to date, has been proven resistant to immunotherapy. Endocrine therapy remains the cornerstone of treatment for ER+ breast cancers. However, constitutively activating mutations in the estrogen receptor alpha (ESR1) gene can emerge during treatment, rendering tumors resistant to endocrine therapy. Although these mutations represent a pathway of resistance, they also represent a potential source of neoepitopes that can be targeted by immunotherapy. In this study, we investigated ESR1 mutations as novel targets for breast cancer immunotherapy. Using machine learning algorithms, we identified ESR1-derived peptides predicted to form stable complexes with HLA-A*0201. We then validated the binding affinity and stability of the top predicted peptides through in vitro binding and dissociation assays and showed that these peptides bind HLA-A*0201 with high affinity and stability. Using tetramer assays, we confirmed the presence and expansion potential of antigen-specific CTLs from healthy female donors. Finally, using in vitro cytotoxicity assays, we showed the lysis of peptide-pulsed targets and breast cancer cells expressing common ESR1 mutations by expanded antigen-specific CTLs. Ultimately, we identified five peptides derived from the three most common ESR1 mutations (D538G, Y537S, and E380Q) and their associated wild-type peptides, which were the most immunogenic. Overall, these data confirm the immunogenicity of epitopes derived from ESR1 and highlight the potential of these peptides to be targeted by novel immunotherapy strategies. SIGNIFICANCE Estrogen receptor (ESR1) mutations have emerged as a key factor in endocrine therapy resistance. We identified and validated five novel, immunogenic ESR1-derived peptides that could be targeted through vaccine-based immunotherapy.
Collapse
Affiliation(s)
- Jonathan Goldberg
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | - Na Qiao
- Department of Hematopoietic Biology & Malignancy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer L Guerriero
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Brett Gross
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | | | - Yoshimi F Lu
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Anne V Philips
- Department of Hematopoietic Biology & Malignancy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tasnim Rahman
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rinath Jeselsohn
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sara M Tolaney
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Gheath Alatrash
- Department of Hematopoietic Biology & Malignancy, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Stem Cell Transplant and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Ganguly A, Mukherjee S, Chatterjee K, Spada S. Factors affecting heterogeneity in breast cancer microenvironment: A narrative mini review. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:211-226. [PMID: 38663960 DOI: 10.1016/bs.ircmb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Breast cancer (BC) heterogeneity is a key trait of BC tumors with crucial implications on tumorigenesis, diagnosis, and therapeutic modalities. It is influenced by tumor intrinsic features and by the tumor microenvironment (TME) composition of different intra-tumoral regions, which in turn affect cancer progression within patients. In this mini review, we will highlight the mechanisms that generate cancer heterogeneity in BC and how they affect the responses to cancer therapies.
Collapse
Affiliation(s)
- Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar, India
| | - Sumit Mukherjee
- Department of Cardiothoracic and Vascular Surgery, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
17
|
Shao J, Zhan C, Jin C, Jin Y. Cost-effectiveness analysis of toripalimab for metastatic or recurrent triple-negative breast cancer. Front Oncol 2024; 13:1268584. [PMID: 38304039 PMCID: PMC10833221 DOI: 10.3389/fonc.2023.1268584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Background Toliparibizumab in combination with nab-paclitaxel (T+N) has excellent efficacy inmetastatic or recurrent triple-negative breast cancer (TNBC), but the optimal choice of sequence of therapy is unclear given the trade-offs between quality of life and cost. Cost-effectiveness analyses can quantify these tradeoffs, leading to more informed decisions. Our objective was to assess the societal cost-effectiveness of the T+N regimen for metastatic or recurrent TNBC. Methods Clinical data were extracted from a multicenter, randomized, double-blind trial, TORCHLIGHT (NCT04085276). Patients were randomized into the T+N group or placebo plus nab-paclitaxel (P+N) group. 531 patients from 53 study locations were randomly assigned (T+N, n=353; P+N, n=178) into intend to treat (ITT) population; 200 and 100 patients, respectively had programmed death protein 1 (PD-L1) positive TNBC. A Markov model was established with a 21-day cycle length. Costs were acquired from local hospitals, effect parameters included quality-adjusted life year (QALY) and incremental cost-effectiveness ratio (ICER). Results The cost differences were 47,538.3 CNY in ITT population (T+N, 143,725.67 CNY; P+N group, 96,187.37 CNY) and 29,258.84 CNY in PD-L1+ subgroup (T+N, 100,128.28 CNY; P+N group, 70,869.45 CNY). Meanwhile, the IEs were 0.03409 in the ITT population (T+N, 0.55323 QALY; P+N, 0.51914 QALY) and 0.03409 in the PD-L1+ subgroup (T+N, 0.42327 QALY; P+N, 0.37628 QALY). The ICERs between T+N and P+N groups were 1,394,548.41 CNY/QALY in the ITT population and 622,663.98 CNY/QALY in the PD-L1+ subgroup. We also analyzed the cost-effectiveness of toripalimab could be received in the Chinese medical insurance catalog. If toripalimab could be reimbursed at an 80% rate, the cost differences were changed to 16,598.99 CNY in ITT population (T+N, 112,786.36 CNY; P+N group, 96,187.37 CNY) and 7,704.58 CNY in PD-L1+ subgroup (T+N, 78,574.03 CNY; P+N group, 70,869.45 CNY). Meanwhile, the IEs remained unchanged. The ICERs between T+N and P+N groups were changed to 486,935.82 CNY/QALY in the ITT population and 163,962.96 CNY/QALY in the PD-L1+ subgroup. Sensitivity analyses indicated the stability of the model and the impact of utility. Conclusion At current drug prices, the T+N group is not more cost-effective than the P+N group, but after incorporating toripalimab into medical insurance, the T+N group will be more cost-effective for patients with PD-L1+ metastatic or recurrent triple-negative breast cancer.
Collapse
Affiliation(s)
- Jiangbo Shao
- Department of Ultrasound, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Cuiping Zhan
- Department of Ultrasound, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chunxiang Jin
- Department of Ultrasound, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Jin
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
18
|
Rodriguez GM, Yakubovich E, Murshed H, Maranda V, Galpin KJ, Cudmore A, Hanna AMR, Macdonald E, Ramesh S, Garson K, Vanderhyden BC. NLRC5 overexpression in ovarian tumors remodels the tumor microenvironment and increases T-cell reactivity toward autologous tumor-associated antigens. Front Immunol 2024; 14:1295208. [PMID: 38235131 PMCID: PMC10791902 DOI: 10.3389/fimmu.2023.1295208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Epithelial ovarian cancer (OC) stands as one of the deadliest gynecologic malignancies, urgently necessitating novel therapeutic strategies. Approximately 60% of ovarian tumors exhibit reduced expression of major histocompatibility complex class I (MHC I), intensifying immune evasion mechanisms and rendering immunotherapies ineffective. NOD-like receptor CARD domain containing 5 (NLRC5) transcriptionally regulates MHC I genes and many antigen presentation machinery components. We therefore explored the therapeutic potential of NLRC5 in OC. Methods We generated OC cells overexpressing NLRC5 to rescue MHC I expression and antigen presentation and then assessed their capability to respond to PD-L1 blockade and an infected cell vaccine. Results Analysis of microarray datasets revealed a correlation between elevated NLRC5 expression and extended survival in OC patients; however, NLRC5 was scarcely detected in the OC tumor microenvironment. OC cells overexpressing NLRC5 exhibited slower tumor growth and resulted in higher recruitment of leukocytes in the TME with lower CD4/CD8 T-cell ratios and increased activation of T cells. Immune cells from peripheral blood, spleen, and ascites from these mice displayed heightened activation and interferon-gamma production when exposed to autologous tumor-associated antigens. Finally, as a proof of concept, NLRC5 overexpression within an infected cell vaccine platform enhanced responses and prolonged survival in comparison with control groups when challenged with parental tumors. Discussion These findings provide a compelling rationale for utilizing NLRC5 overexpression in "cold" tumor models to enhance tumor susceptibility to T-cell recognition and elimination by boosting the presentation of endogenous tumor antigens. This approach holds promise for improving antitumoral immune responses in OC.
Collapse
Affiliation(s)
- Galaxia M. Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Edward Yakubovich
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Humaira Murshed
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Vincent Maranda
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kristianne J.C. Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alison Cudmore
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Andrew M. R. Hanna
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Elizabeth Macdonald
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Shashankan Ramesh
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kenneth Garson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Andreescu M, Andreescu B. Immune Evasion Through Human Leukocyte Antigen Implications and Its Impact on Targeted Therapy. Cureus 2024; 16:e52737. [PMID: 38384647 PMCID: PMC10880808 DOI: 10.7759/cureus.52737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The malfunctioning of human leukocyte antigen (HLA) class I antigens has a substantial negative impact on the effectiveness of leukemia treatment, particularly in the development of immunotherapies that rely on T-cell activation. HLA-G, a molecule that suppresses the immune response, plays a role in repressing the activation and proliferation of T cells, natural killer cells, and antigen-presenting cells. The expression of HLA-G is associated with various pathological conditions. Tumor cells exploit the immune evasion capabilities of HLA, allowing them to evade detection and elimination by the immune system. Understanding and modifying the HLA molecules is crucial for the advancement of innovative immunotherapies targeting chronic lymphocytic leukemia. Numerous mechanisms have been investigated to elucidate how HLA facilitates tumor evasion in patients with chronic lymphocytic leukemia and other malignancies. These mechanisms include inhibiting immune cell cytolysis, altering cytokine production levels, promoting immune cell programmed cell death, and impairing chemotaxis. This review provides a comprehensive overview of immune evasion mediated by HLA and its implications for targeted therapy.
Collapse
Affiliation(s)
- Mihaela Andreescu
- Faculty of Medicine, Titu Maiorescu University, Bucharest, ROU
- Hematology, Colentina Clinical Hospital, Bucharest, ROU
| | | |
Collapse
|
20
|
Wang Y, Xu J, Lan T, Zhou C, Liu P. The loss of neoantigens is an important reason for immune escape in multiple myeloma patients with high intratumor heterogeneity. Cancer Med 2023; 12:21651-21665. [PMID: 37965778 PMCID: PMC10757111 DOI: 10.1002/cam4.6721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/30/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
OBJECTIVES Intratumor heterogeneity (ITH) is an important factor for clinical outcomes in patients with multiple myeloma (MM). High ITH has been proven to be a key reason for tumor immune escape and treatment resistance. Neoantigens are thought to be associated with ITH, but the specific correlation and functional basis for this remains unclear. METHODS We study this question through the whole-exome sequencing (WES) data from 43 high ITH newly diagnosed MM patients in our center. Mutant allele tumor heterogeneity (MATH) was conducted to quantify ITH. The cutoff value for high intratumor heterogeneity was determined by comparing MATH of different kinds of tumors. NeoPredPipe was performed to predict neoantigens and binding affinity. RESULTS Compared to other tumors, MM has a relatively low tumor mutation burden but a high ITH. Patients with high MATH had significantly shorter progression-free survival times than those with low MATH (p = 0.001). In high ITH samples, there is a decrease in strong-binding neoantigens (p = 0.019). The loss of strong-binding neoantigens is a key factor for insensitivity to therapy (p = 0.015). Loss of heterozygosity in HLA was not observed. In addition, patients with fewer neoantigens loss had higher rates of disease remission (p = 0.047). CD8 + T cells (p = 0.012) and NK cells (p = 0.011) decreased significantly in patients with high neoantigens loss rate. A prediction model based on neoantigens was built to evaluate the strength of immune escape. CONCLUSION The loss of strong-binding neoantigens explains why tumors with high ITH have a higher degree of immune escape and may be feasible for deciding the clinical treatment of MM.
Collapse
Affiliation(s)
- Yue Wang
- Department of Hematology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jiadai Xu
- Department of Hematology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Tianwei Lan
- Department of Hematology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Chi Zhou
- Department of Hematology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Peng Liu
- Department of Hematology, Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
21
|
Mannan A, Kakkar C, Dhiman S, Singh TG. Advancing the frontiers of adaptive cell therapy: A transformative mechanistic journey from preclinical to clinical settings. Int Immunopharmacol 2023; 125:111095. [PMID: 37875038 DOI: 10.1016/j.intimp.2023.111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
Although the concept of using the patient's immune system to combat cancer has been around for a while, it is only in recent times that substantial progress has been achieved in this field. Over the last ten years, there has been a significant advancement in the treatment of cancer through immune checkpoint blockade. This treatment has been approved for multiple types of tumors. Another approach to modifying the immune system to detect tumor cells and fight them off is adaptive cell therapy (ACT). This therapy involves using T cells that have been modified with either T cell receptors (TCR) or chimeric antigen receptors (CAR) to target the tumor cells. ACT has demonstrated encouraging outcomes in different types of tumors, and clinical trials are currently underway worldwide to enhance this form of treatment. This review focuses on the advancements that have been made in ACT from preclinical to clinical settings till now.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Chirag Kakkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
22
|
Zhang W, He Y, Tang Y, Dai W, Si Y, Mao F, Xu J, Yu C, Sun X. A meta-analysis of application of PD-1/PD-L1 inhibitor-based immunotherapy in unresectable locally advanced triple-negative breast cancer. Immunotherapy 2023; 15:1073-1088. [PMID: 37337734 DOI: 10.2217/imt-2023-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Aims: The purpose of this study was to explore the efficacy of immunotherapy for patients with triple-negative breast cancer (TNBC). Materials & methods: Randomized clinical trials comparing immunotherapy with chemotherapy for advanced TNBC patients were included. Results: A total of six articles (3183 patients) were eligible for this meta-analysis. PD-1/PD-L1 inhibitor-based immunotherapy combined with chemotherapy can significantly increase the progression-free survival (hazard ratio [HR] = 0.82; 95% CI = 0.76-1.14; p < 0.001) of unresectable locally advanced or metastatic TNBC patients without effect on overall survival, compared with chemotherapy. Conclusion: PD-1/PD-L1 inhibitors-based immunotherapy can safely improve progression-free survival in patients with unresectable locally advanced or metastatic TNBC, but has no effect on overall survival.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Breast Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Yujing He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuning Tang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Wei Dai
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Feiyan Mao
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Jiaxuan Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Chiyuan Yu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Xing Sun
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| |
Collapse
|
23
|
Heinze K, Cairns ES, Thornton S, Harris B, Milne K, Grube M, Meyer C, Karnezis AN, Fereday S, Garsed DW, Leung SC, Chiu DS, Moubarak M, Harter P, Heitz F, McAlpine JN, DeFazio A, Bowtell DD, Goode EL, Pike M, Ramus SJ, Pearce CL, Staebler A, Köbel M, Kommoss S, Talhouk A, Nelson BH, Anglesio MS. The Prognostic Effect of Immune Cell Infiltration Depends on Molecular Subtype in Endometrioid Ovarian Carcinomas. Clin Cancer Res 2023; 29:3471-3483. [PMID: 37339172 PMCID: PMC10472107 DOI: 10.1158/1078-0432.ccr-22-3815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE Endometrioid ovarian carcinoma (ENOC) is the second most-common type of ovarian carcinoma, comprising 10%-20% of cases. Recently, the study of ENOC has benefitted from comparisons to endometrial carcinomas including defining ENOC with four prognostic molecular subtypes. Each subtype suggests differential mechanisms of progression, although tumor-initiating events remain elusive. There is evidence that the ovarian microenvironment may be critical to early lesion establishment and progression. However, while immune infiltrates have been well studied in high-grade serous ovarian carcinoma, studies in ENOC are limited. EXPERIMENTAL DESIGN We report on 210 ENOC, with clinical follow-up and molecular subtype annotation. Using multiplex IHC and immunofluorescence, we examine the prevalence of T-cell lineage, B-cell lineage, macrophages, and populations with programmed cell death protein 1 or programmed death-ligand 1 across subtypes of ENOC. RESULTS Immune cell infiltrates in tumor epithelium and stroma showed higher densities in ENOC subtypes with known high mutation burden (POLEmut and MMRd). While molecular subtypes were prognostically significant, immune infiltrates were not (overall survival P > 0.2). Analysis by molecular subtype revealed that immune cell density was prognostically significant in only the no specific molecular profile (NSMP) subtype, where immune infiltrates lacking B cells (TILB minus) had inferior outcome (disease-specific survival: HR, 4.0; 95% confidence interval, 1.1-14.7; P < 0.05). Similar to endometrial carcinomas, molecular subtype stratification was generally superior to immune response in predicting outcomes. CONCLUSIONS Subtype stratification is critical for better understanding of ENOC, in particular the distribution and prognostic significance of immune cell infiltrates. The role of B cells in the immune response within NSMP tumors warrants further study.
Collapse
Affiliation(s)
- Karolin Heinze
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan S. Cairns
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - Shelby Thornton
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
| | - Bronwyn Harris
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
| | - Katy Milne
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
| | - Marcel Grube
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Charlotte Meyer
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Anthony N. Karnezis
- Department of Pathology and Laboratory, UC Davis Medical Center, Sacramento, California
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Samuel C.Y. Leung
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Derek S. Chiu
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Malak Moubarak
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Philipp Harter
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Florian Heitz
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
- Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jessica N. McAlpine
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - David D.L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ellen L. Goode
- Mayo Clinic, Department of Health Science Research, Division of Epidemiology, Rochester, Minnesota
| | - Malcolm Pike
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales Sydney, Sydney, Australia
- Multidisciplinary Ovarian Cancer Outcomes Group (Consortium)
| | - C. Leigh Pearce
- Multidisciplinary Ovarian Cancer Outcomes Group (Consortium)
- School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Annette Staebler
- Institute of Pathology, University Hospital of Tübingen, Tübingen, Germany
| | - Martin Köbel
- Department of Pathology, University of Calgary, Calgary, Alberta, Canada
| | - Stefan Kommoss
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Aline Talhouk
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Brad H. Nelson
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
- Multidisciplinary Ovarian Cancer Outcomes Group (Consortium)
| | - Michael S. Anglesio
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Hamza S, Garanina EE, Alsaadi M, Khaiboullina SF, Tezcan G. Blocking the Hormone Receptors Modulates NLRP3 in LPS-Primed Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24054846. [PMID: 36902278 PMCID: PMC10002867 DOI: 10.3390/ijms24054846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
NOD-like receptor protein 3 (NLRP3) may contribute to the growth and propagation of breast cancer (BC). The effect of estrogen receptor-α (ER-α), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) on NLRP3 activation in BC remains unknown. Additionally, our knowledge of the effect of blocking these receptors on NLRP3 expression is limited. We used GEPIA, UALCAN, and the Human Protein Atlas for transcriptomic profiling of NLRP3 in BC. Lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP) were used to activate NLRP3 in luminal A MCF-7 and in TNBC MDA-MB-231 and HCC1806 cells. Tamoxifen (Tx), mifepristone (mife), and trastuzumab (Tmab) were used to block ER-α, PR, and HER2, respectively, on inflammasome activation in LPS-primed MCF7 cells. The transcript level of NLRP3 was correlated with ER-ɑ encoding gene ESR1 in luminal A (ER-α+, PR+) and TNBC tumors. NLRP3 protein expression was higher in untreated and LPS/ATP-treated MDA-MB-231 cells than in MCF7 cells. LPS/ATP-mediated NLRP3 activation reduced cell proliferation and recovery of wound healing in both BC cell lines. LPS/ATP treatment prevented spheroid formation in MDA-MB-231 cells but did not affect MCF7. HGF, IL-3, IL-8, M-CSF, MCP-1, and SCGF-b cytokines were secreted in both MDA-MB-231 and MCF7 cells in response to LPS/ATP treatment. Tx (ER-α inhibition) promoted NLRP3 activation and increased migration and sphere formation after LPS treatment of MCF7 cells. Tx-mediated activation of NLRP3 was associated with increased secretion of IL-8 and SCGF-b compared to LPS-only-treated MCF7 cells. In contrast, Tmab (Her2 inhibition) had a limited effect on NLRP3 activation in LPS-treated MCF7 cells. Mife (PR inhibition) opposed NLRP3 activation in LPS-primed MCF7 cells. We have found that Tx increased the expression of NLRP3 in LPS-primed MCF7. These data suggest a link between blocking ER-α and activation of NLRP3, which was associated with increased aggressiveness of the ER-α+ BC cells.
Collapse
Affiliation(s)
- Shaimaa Hamza
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Mohammad Alsaadi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: or (S.F.K.); (G.T.); Fax: +1-775682-8258 (S.F.K.); +90-224-294-00-78 (G.T.)
| | - Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa 16059, Turkey
- Correspondence: or (S.F.K.); (G.T.); Fax: +1-775682-8258 (S.F.K.); +90-224-294-00-78 (G.T.)
| |
Collapse
|
25
|
Han Y, Wang J, Xu B. Cytotoxic Lymphocyte-Related Gene Signature in Triple-Negative Breast Cancer. J Pers Med 2023; 13:457. [PMID: 36983639 PMCID: PMC10054905 DOI: 10.3390/jpm13030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
To curate the signature genes of cytotoxic lymphocytes (CLs) and explore the heterogeneity based on the CL-related (CLR) gene signature, we analyzed the gene expression of 592 patients with histologically diagnosed triple-negative breast cancer. Based on the 13-gene panel, CLR signatures were curated and associated with the stage of tumor size. Patients in the CLR-low group exhibited the worse overall survival (OS) (median OS, 75.23 months vs. 292.66 months, p < 0.0001) and were characterized by the upregulation of the NF-κB, Wnt, and p53 pathways, the positive regulation of angiogenesis, and a higher expression of immune checkpoints including CTLA4, LAG3, CD86, ICOS, ICOSLG, and TNFSF9. In cancer immunotherapy cohorts (GSE157284, GSE35640, IMvigor210), a higher CLR signature score was remarkably associated with greater tumor shrinkage and immune characteristics consisting of higher PD-L1 and neoantigen expression, as well as an inflamed tumor microenvironment. In the pan-cancer atlas, the CLR signature was notably associated with patient survival and revealed a profound heterogeneity across the malignancy types. In sum, the CLR signature is a promising indicator for immune characteristics, tumor shrinkage, and survival outcomes following cancer immunotherapy in addition to the prognostic heterogeneity in the pan-cancer atlas.
Collapse
Affiliation(s)
| | - Jiayu Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research, Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China; (Y.H.); (B.X.)
| | | |
Collapse
|
26
|
Esposito Abate R, Cheetham MH, Fairley JA, Pasquale R, Sacco A, Nicola W, Deans ZC, Patton SJ, Normanno N. External quality assessment (EQA) for tumor mutational burden: results of an international IQN path feasibility pilot scheme. Virchows Arch 2023; 482:347-355. [PMID: 36355212 PMCID: PMC9931778 DOI: 10.1007/s00428-022-03444-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Tumor mutational burden (TMB) has recently been approved as an agnostic biomarker for immune checkpoint inhibitors. However, methods for TMB testing have not yet been standardized. The International Quality Network for Pathology (IQNPath) organized a pilot external quality assessment (EQA) scheme for TMB testing. The aim of this program was the validation of the materials and the procedures for the EQA of this complex biomarker. Five formalin-fixed paraffin-embedded (FFPE) cell lines were selected to mimic the various TMB values observed in clinical practice. The FFPE samples were tested with the FoundationOne CDx (F1CDx) assay as the reference test and three commercially available targeted sequencing panels. Following this internal validation, the five cell lines were sent to 29 laboratories selected on the basis of a previous survey. Nineteen of the 23 laboratories that submitted results (82.6%) used targeted sequencing for TMB estimation. Only two laboratories performed whole exome sequencing (WES) and two assessed TMB by clinical exome. A high variability in the reported TMB values was observed. The variability was higher for samples with the highest TMB value according to the F1CDx test. However, good reproducibility of the TMB score was shown by laboratories using the same panel. The majority of laboratories did not indicate a TMB cut-off value for clinical interpretation. In conclusion, this pilot EQA scheme suggests that it is feasible to run such an EQA program for TMB assessment. However, the results of our pilot highlight the numerous challenges for the standardization of this test.
Collapse
Affiliation(s)
- Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Melanie H Cheetham
- European Molecular Genetics Quality Network (EMQN), Unit 4, Enterprise House, Pencroft Way, Manchester Science Park, Manchester, M15 6SE, UK
| | - Jennifer A Fairley
- GenQA, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Little France Crescent, Edinburgh, EH16 4SA, UK
| | - Raffaella Pasquale
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Alessandra Sacco
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Wolstenholme Nicola
- European Molecular Genetics Quality Network (EMQN), Unit 4, Enterprise House, Pencroft Way, Manchester Science Park, Manchester, M15 6SE, UK
| | - Zandra C Deans
- GenQA, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Little France Crescent, Edinburgh, EH16 4SA, UK
| | - Simon J Patton
- European Molecular Genetics Quality Network (EMQN), Unit 4, Enterprise House, Pencroft Way, Manchester Science Park, Manchester, M15 6SE, UK
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy.
| |
Collapse
|
27
|
Anang V, Singh A, Kottarath SK, Verma C. Receptors of immune cells mediates recognition for tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:219-267. [PMID: 36631194 DOI: 10.1016/bs.pmbts.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the last few decades, the immune system has been steered toward eradication of cancer cells with the help of cancer immunotherapy. T cells, B cells, monocytes/macrophages, dendritic cells, T-reg cells, and natural killer (NK) cells are some of the numerous immune cell types that play a significant part in cancer cell detection and reduction of inflammation, and the antitumor response. Briefly stated, chimeric antigen receptors, adoptive transfer and immune checkpoint modulators are currently the subjects of research focus for successful immunotherapy-based treatments for a variety of cancers. This chapter discusses ongoing investigations on the mechanisms and recent developments by which receptors of immune cells especially that of lymphocytes and monocytes/macrophages regulate the detection of immune system leading to malignancies. We will also be looking into the treatment strategies based on these mechanisms.
Collapse
Affiliation(s)
- Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Sarat Kumar Kottarath
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Huston, TX, United States.
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
28
|
Sim HW, Wachsmuth L, Barnes EH, Yip S, Koh ES, Hall M, Jennens R, Ashley DM, Verhaak RG, Heimberger AB, Rosenthal MA, Hovey EJ, Ellingson BM, Tognela A, Gan HK, Wheeler H, Back M, McDonald KL, Long A, Cuff K, Begbie S, Gedye C, Mislang A, Le H, Johnson MO, Kong BY, Simes JR, Lwin Z, Khasraw M. NUTMEG: A randomized phase II study of nivolumab and temozolomide versus temozolomide alone in newly diagnosed older patients with glioblastoma. Neurooncol Adv 2023; 5:vdad124. [PMID: 37841696 PMCID: PMC10576515 DOI: 10.1093/noajnl/vdad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Background There is an immunologic rationale to evaluate immunotherapy in the older glioblastoma population, who have been underrepresented in prior trials. The NUTMEG study evaluated the combination of nivolumab and temozolomide in patients with glioblastoma aged 65 years and older. Methods NUTMEG was a multicenter 2:1 randomized phase II trial for patients with newly diagnosed glioblastoma aged 65 years and older. The experimental arm consisted of hypofractionated chemoradiation with temozolomide, then adjuvant nivolumab and temozolomide. The standard arm consisted of hypofractionated chemoradiation with temozolomide, then adjuvant temozolomide. The primary objective was to improve overall survival (OS) in the experimental arm. Results A total of 103 participants were randomized, with 69 in the experimental arm and 34 in the standard arm. The median (range) age was 73 (65-88) years. After 37 months of follow-up, the median OS was 11.6 months (95% CI, 9.7-13.4) in the experimental arm and 11.8 months (95% CI, 8.3-14.8) in the standard arm. For the experimental arm relative to the standard arm, the OS hazard ratio was 0.85 (95% CI, 0.54-1.33). In the experimental arm, there were three grade 3 immune-related adverse events which resolved, with no unexpected serious adverse events. Conclusions Due to insufficient evidence of benefit with nivolumab, the decision was made not to transition to a phase III trial. No new safety signals were identified with nivolumab. This complements the existing series of immunotherapy trials. Research is needed to identify biomarkers and new strategies including combinations.
Collapse
Affiliation(s)
- Hao-Wen Sim
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, New South Wales, Australia
| | - Luke Wachsmuth
- The Brain Tumor Immunotherapy Program, Duke University School of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Elizabeth H Barnes
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Sonia Yip
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Eng-Siew Koh
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Radiation Oncology, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Merryn Hall
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Ross Jennens
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Epworth HealthCare Richmond, Melbourne, Victoria, Australia
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Roel G Verhaak
- The Jackson Laboratory for Genomic Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mark A Rosenthal
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Elizabeth J Hovey
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Medical Oncology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, University of California Los Angeles, Los Angeles, California, USA
| | - Annette Tognela
- Department of Medical Oncology, Campbelltown Hospital, Sydney, New South Wales, Australia
| | - Hui K Gan
- Department of Medical Oncology, Austin Hospital, Melbourne, Victoria, Australia
| | - Helen Wheeler
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Michael Back
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Kerrie L McDonald
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Anne Long
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Katharine Cuff
- Department of Medical Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Stephen Begbie
- Department of Medical Oncology, Port Macquarie Base Hospital, Port Macquarie, New South Wales, Australia
| | - Craig Gedye
- Department of Medical Oncology, Calvary Mater Newcastle, Newcastle, New South Wales, Australia
| | - Anna Mislang
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Medical Oncology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Margaret O Johnson
- The Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Benjamin Y Kong
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Medical Oncology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - John R Simes
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, New South Wales, Australia
| | - Zarnie Lwin
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Medical Oncology, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | - Mustafa Khasraw
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
- The Brain Tumor Immunotherapy Program, Duke University School of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- The Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
29
|
Post-irradiation intratumoral heterogeneity modulates response to immune checkpoint inhibition therapy in a murine melanoma model. Neoplasia 2022; 36:100864. [PMID: 36571944 PMCID: PMC9800194 DOI: 10.1016/j.neo.2022.100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The underlying mechanism for radiation as a potentiator of immune checkpoint inhibition (ICI) is unclear. We developed a novel murine model to investigate the effects of post-irradiation intratumoral heterogeneity (ITH) on response to ICI. EXPERIMENTAL DESIGN Parental mouse melanoma B16F10 cells were irradiated in vitro (5Gy x 3 fractions), then an a priori determined number of resulting colonies were implanted in C57BL/6J immunocompetent mice creating syngeneic models of unirradiated (parental) and irradiated tumors with low (irradiated-L) and high (irradiated-H) ITH. Mice were treated with placebo, α-PD-L1, α-CTLA-4 or dual ICI. Murine tumors underwent whole exome sequencing (WES). Clinically correlated paired pre- and post-irradiation patient rectal adenocarcinoma samples underwent WES. RESULTS Irradiated-L tumors showed increased tumor mutational burden (TMB) and a sustained decrease in ITH. Irradiated-L tumors were predicted to express five neoantigens with high variant allele frequency/clonal distribution. Mice with irradiated-L and irradiated-H versus parental B16F10 tumors demonstrated longer overall survival with dual ICI. Only mice with irradiated-L tumors experienced an overall survival benefit with single agent ICI. Clinically correlated rectal adenocarcinoma samples showed similarly increased TMB and decreased ITH following irradiation. CONCLUSIONS Post-irradiation ITH modulates ICI response in a murine melanoma model. Irradiation may offer a mechanism to widen the therapeutic window of ICI.
Collapse
|
30
|
Zheng C, Ren Z, Chen H, Yuan X, Suye S, Yin H, Zhou Z, Fu C. FANCD2 promotes the malignant behavior of endometrial cancer cells and its prognostic value. Exp Cell Res 2022; 421:113388. [PMID: 36257352 DOI: 10.1016/j.yexcr.2022.113388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022]
Abstract
Defective DNA damage repair is a key mechanism affecting tumor susceptibility, treatment response, and survival outcome of endometrial cancer (EC). Fanconi anemia complementation group D2 (FANCD2) is the core component of the Fanconi anemia repair pathway. To explore the function of FANCD2 in EC, we examined the expression of FANCD2 in human specimens and databases, and discussed the possible mechanism of carcinogenesis by in vitro assays. Immunohistochemistry results showed overexpression of FANCD2 was detected in EC tissues compared to normal and atypical hyperplasia endometrium. Higher FANCD2 expression was correlated with deeper myometrial invasion (MI) and proficient mismatch repair status. The Cancer Genome Atlas (TCGA) database analysis showed FANCD2 was upregulated in EC compared with normal tissue. The high expression of FANCD2 was associated with poor overall survival in EC. Knockdown of FANCD2 expression in EC cell lines inhibited malignant proliferation and migration ability. We demonstrated that decreased FANCD2 expression results in increased DNA damage and decreased S-phase cells, leading to a decrease in proliferative capacity in EC cells. Down-regulated FANCD2 confers sensitivity of EC cells to interstrand crosslinking agents. This study provides evidence for the malignant progression and prognostic value of FANCD2 in EC.
Collapse
Affiliation(s)
- Chunying Zheng
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhen Ren
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hongliang Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaorui Yuan
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Suye Suye
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Huan Yin
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhixian Zhou
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
31
|
Schwarz S, Schmitz J, Löffler MW, Ghosh M, Rammensee HG, Olshvang E, Markel M, Mockel-Tenbrinck N, Dzionek A, Krake S, Arslan B, Kampe KD, Wendt A, Bauer P, Mullins CS, Schlosser A, Linnebacher M. T cells of colorectal cancer patients' stimulated by neoantigenic and cryptic peptides better recognize autologous tumor cells. J Immunother Cancer 2022; 10:jitc-2022-005651. [PMID: 36460334 PMCID: PMC9723954 DOI: 10.1136/jitc-2022-005651] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Patients with cancers that exhibit extraordinarily high somatic mutation numbers are ideal candidates for immunotherapy and enable identifying tumor-specific peptides through stimulation of tumor-reactive T cells (Tc). METHODS Colorectal cancers (CRC) HROC113 and HROC285 were selected based on high TMB, microsatellite instability and HLA class I expression. Their HLA ligandome was characterized using mass spectrometry, compared with the HLA ligand atlas and HLA class I-binding affinity was predicted. Cryptic peptides were identified using Peptide-PRISM. Patients' Tc were isolated from either peripheral blood (pTc) or tumor material (tumor-infiltrating Tc, TiTc) and expanded. In addition, B-lymphoblastoid cells (B-LCL) were generated and used as antigen-presenting cells. pTc and TiTc were stimulated twice for 7 days using peptide pool-loaded B-LCL. Subsequently, interferon gamma (IFNγ) release was quantified by ELISpot. Finally, cytotoxicity against autologous tumor cells was assessed in a degranulation assay. RESULTS 100 tumor-specific candidate peptides-97 cryptic peptides and 3 classically mutated neoantigens-were selected. The neoantigens originated from single nucleotide substitutions in the genes IQGAP1, CTNNB1, and TRIT1. Cryptic and neoantigenic peptides inducing IFNγ secretion of Tc were further investigated. Stimulation of pTc and TiTc with neoantigens and selected cryptic peptides resulted in increased release of cytotoxic granules in the presence of autologous tumor cells, substantiating their improved tumor cell recognition. Tetramer staining showed an enhanced number of pTc and TiTc specific for the IQGAP1 neoantigen. Subpopulation analysis prior to peptide stimulation revealed that pTc mainly consisted of memory Tc, whereas TiTc constituted primarily of effector and effector memory Tc. This allows to infer that TiTc reacting to neoantigens and cryptic peptides must be present within the tumor microenvironment. CONCLUSION These results prove that the analyzed CRC present both mutated neoantigenic and cryptic peptides on their HLA class I molecules. Moreover, stimulation with these peptides significantly strengthened tumor cell recognition by Tc. Since the overall number of neoantigenic peptides identifiable by HLA ligandome analysis hitherto is small, our data emphasize the relevance of increasing the target scope for cancer vaccines by the cryptic peptide category.
Collapse
Affiliation(s)
- Sandra Schwarz
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Johanna Schmitz
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Markus W Löffler
- Department of General, Visceral and Transplant Surgery, Universitätsklinikum Tübingen, Tubingen, Germany,Department of Immunology, University of Tübingen, Tubingen, Germany,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, University of Tübingen, Tübingen, Germany,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Michael Ghosh
- Department of Immunology, University of Tübingen, Tubingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, University of Tübingen, Tubingen, Germany,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, University of Tübingen, Tübingen, Germany
| | | | - Marvin Markel
- Miltenyi Biotec BV & Co KG, Bergisch Gladbach, Germany
| | | | | | | | | | | | | | | | - Christina S Mullins
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Andreas Schlosser
- Center for Integrative and Translational Bioimaging, Rudolf-Virchow Center, University of Würzburg, Würzburg, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
32
|
Hu X, Zhang Y, Yu H, Zhao Y, Sun X, Li Q, Wang Y. The role of YAP1 in survival prediction, immune modulation, and drug response: A pan-cancer perspective. Front Immunol 2022; 13:1012173. [PMID: 36479120 PMCID: PMC9719955 DOI: 10.3389/fimmu.2022.1012173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction Dysregulation of the Hippo signaling pathway has been implicated in multiple pathologies, including cancer, and YAP1 is the major effector of the pathway. In this study, we assessed the role of YAP1 in prognostic value, immunomodulation, and drug response from a pan-cancer perspective. Methods We compared YAP1 expression between normal and cancerous tissues and among different pathologic stages survival analysis and gene set enrichment analysis were performed. Additionally, we performed correlation analyses of YAP1 expression with RNA modification-related gene expression, tumor mutation burden (TMB), microsatellite instability (MSI), immune checkpoint regulator expression, and infiltration of immune cells. Correlations between YAP1 expression and IC50s (half-maximal inhibitory concentrations) of drugs in the CellMiner database were calculated. Results We found that YAP1 was aberrantly expressed in various cancer types and regulated by its DNA methylation and post-transcriptional modifications, particularly m6A methylation. High expression of YAP1 was associated with poor survival outcomes in ACC, BLCA, LGG, LUAD, and PAAD. YAP1 expression was negatively correlated with the infiltration of CD8+ T lymphocytes, CD4+ Th1 cells, T follicular helper cells, NKT cells, and activated NK cells, and positively correlated with the infiltration of myeloid-derived suppressor cells (MDSCs) and cancer-associated fibroblasts (CAFs) in pan-cancer. Higher YAP1 expression showed upregulation of TGF-β signaling, Hedgehog signaling, and KRAS signaling. IC50s of FDA-approved chemotherapeutic drugs capable of inhibiting DNA synthesis, including teniposide, dacarbazine, and doxorubicin, as well as inhibitors of hypoxia-inducible factor, MCL-1, ribonucleotide reductase, and FASN in clinical trials were negatively correlated with YAP1 expression. Discussion In conclusion, YAP1 is aberrantly expressed in various cancer types and regulated by its DNA methylation and post-transcriptional modifications. High expression of YAP1 is associated with poor survival outcomes in certain cancer types. YAP1 may promote tumor progression through immunosuppression, particularly by suppressing the infiltration of CD8+ T lymphocytes, CD4+ Th1 cells, T follicular helper cells, NKT cells, and activated NK cells, as well as recruiting MDSCs and CAFs in pan-cancer. The tumor-promoting activity of YAP1 is attributed to the activation of TGF-β, Hedgehog, and KRAS signaling pathways. AZD2858 and varlitinib might be effective in cancer patients with high YAP1 expression.
Collapse
Affiliation(s)
- Xueqing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Yu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Nakamura K, Ashida A, Kiniwa Y, Okuyama R. Chemokine level predicts the therapeutic effect of anti-PD-1 antibody (nivolumab) therapy for malignant melanoma. Arch Dermatol Res 2022; 314:887-895. [PMID: 34842960 DOI: 10.1007/s00403-021-02305-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
Anti-programmed cell death protein 1 (PD-1) antibody drugs, nivolumab and pembrolizumab, are regarded as first-line therapies for advanced malignant melanoma. Anti-PD-1 therapy suppresses tumor immunity, and the therapeutic effect is frequently correlated with the number of tumor-infiltrating lymphocytes (TIL) and tumor mutation burden (TMB). However, sampling tumor tissues from the metastatic sites to examine the number of TILs and TMB level is often challenging. Herein, we focused on chemokines in blood to determine whether they can predict the therapeutic effect of anti-PD-1 (nivolumab) therapy. First, we measured 44 types of chemokines and cytokines in the blood of 8 advanced malignant melanomas before anti-PD-1 (nivolumab) treatment and examined the relationship between the levels of these proteins and therapeutic effect of the drug treatment, which suggested that C-C motif chemokine 5 (CCL5) and C-X-C motif chemokine ligand 12 (CXCL12) were candidates for biomarkers to predict the therapeutic effect of anti-PD-1 therapy. Next, we measured the blood levels of CCL5 and CXCL12 in 22 patients with advanced malignant melanomas before the administration of anti-PD-1 antibody. We evaluated tumor infiltration of CD8-positive T cells by immunostaining in nine patients in whom the metastatic site could be sampled at the beginning of the treatment. The patients with lower than average levels of CCL5 and CXCL12 had a large number of TILs (P = 0.04) and good disease-specific survival rate (P = 0.04). Therefore, CCL5 and CXCL12 could likely be used as biomarkers to predict the therapeutic effect of anti-PD-1 (nivolumab) therapy.
Collapse
Affiliation(s)
- Kenta Nakamura
- Department of Dermatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Atsuko Ashida
- Department of Dermatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yukiko Kiniwa
- Department of Dermatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Ryuhei Okuyama
- Department of Dermatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| |
Collapse
|
34
|
Georgoulias G, Zaravinos A. Genomic landscape of the immunogenicity regulation in skin melanomas with diverse tumor mutation burden. Front Immunol 2022; 13:1006665. [PMID: 36389735 PMCID: PMC9650672 DOI: 10.3389/fimmu.2022.1006665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Skin melanoma cells are tightly interconnected with their tumor microenvironment (TME), which influences their initiation, progression, and sensitivity/resistance to therapeutic interventions. An immune-active TME favors patient response to immune checkpoint inhibition (ICI), but not all patients respond to therapy. Here, we assessed differential gene expression in primary and metastatic tumors from the TCGA-SKCM dataset, compared to normal skin samples from the GTEx project and validated key findings across 4 independent GEO datasets, as well as using immunohistochemistry in independent patient cohorts. We focused our attention on examining the expression of various immune receptors, immune-cell fractions, immune-related signatures and mutational signatures across cutaneous melanomas with diverse tumor mutation burdens (TMB). Globally, the expression of most immunoreceptors correlated with patient survival, but did not differ between TMBhigh and TMBlow tumors. Melanomas were enriched in "naive T-cell", "effector memory T-cell", "exhausted T-cell", "resting Treg T-cell" and "Th1-like" signatures, irrespective of their BRAF, NF1 or RAS mutational status. Somatic mutations in IDO1 and HLA-DRA were frequent and could be involved in hindering patient response to ICI therapies. We finally analyzed transcriptome profiles of ICI-treated patients and associated their response with high levels of IFNγ, Merck18, CD274, CD8, and low levels of myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs) and M2 macrophages, irrespective of their TMB status. Overall, our findings highlight the importance of pre-existing T-cell immunity in ICI therapeutic outcomes in skin melanoma and suggest that TMBlow patients could also benefit from such therapies.
Collapse
Affiliation(s)
- George Georgoulias
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus
| |
Collapse
|
35
|
Design Strategies and Precautions for Using Vaccinia Virus in Tumor Virotherapy. Vaccines (Basel) 2022; 10:vaccines10091552. [PMID: 36146629 PMCID: PMC9504998 DOI: 10.3390/vaccines10091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Oncolytic virotherapy has emerged as a novel form of cancer immunotherapy. Oncolytic viruses (OVs) can directly infect and lyse the tumor cells, and modulate the beneficial immune microenvironment. Vaccinia virus (VACV) is a promising oncolytic vector because of its high safety, easy gene editing, and tumor intrinsic selectivity. To further improve the safety, tumor-targeting ability, and OV-induced cancer-specific immune activation, various approaches have been used to modify OVs. The recombinant oncolytic VACVs with deleting viral virulence factors and/or arming various therapeutic genes have displayed better therapeutic effects in multiple tumor models. Moreover, the combination of OVs with other cancer immunotherapeutic approaches, such as immune checkpoint inhibitors and CAR-T cells, has the potential to improve the outcome in cancer patients. This will open up new possibilities for the application of OVs in cancer treatment, especially for personalized cancer therapies.
Collapse
|
36
|
Genetic and microenvironmental intra-tumor heterogeneity impacts colorectal cancer evolution and metastatic development. Commun Biol 2022; 5:937. [PMID: 36085309 PMCID: PMC9463147 DOI: 10.1038/s42003-022-03884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractColorectal cancer (CRC) is a highly diverse disease, where different genomic instability pathways shape genetic clonal diversity and tumor microenvironment. Although intra-tumor heterogeneity has been characterized in primary tumors, its origin and consequences in CRC outcome is not fully understood. Therefore, we assessed intra- and inter-tumor heterogeneity of a prospective cohort of 136 CRC samples. We demonstrate that CRC diversity is forged by asynchronous forms of molecular alterations, where mutational and chromosomal instability collectively boost CRC genetic and microenvironment intra-tumor heterogeneity. We were able to depict predictor signatures of cancer-related genes that can foresee heterogeneity levels across the different tumor consensus molecular subtypes (CMS) and primary tumor location. Finally, we show that high genetic and microenvironment heterogeneity are associated with lower metastatic potential, whereas late-emerging copy number variations favor metastasis development and polyclonal seeding. This study provides an exhaustive portrait of the interplay between genetic and microenvironment intra-tumor heterogeneity across CMS subtypes, depicting molecular events with predictive value of CRC progression and metastasis development.
Collapse
|
37
|
Bound NT, Vandenberg CJ, Kartikasari AER, Plebanski M, Scott CL. Improving PARP inhibitor efficacy in high-grade serous ovarian carcinoma: A focus on the immune system. Front Genet 2022; 13:886170. [PMID: 36159999 PMCID: PMC9505691 DOI: 10.3389/fgene.2022.886170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is a genomically unstable malignancy responsible for over 70% of all deaths due to ovarian cancer. With roughly 50% of all HGSOC harboring defects in the homologous recombination (HR) DNA repair pathway (e.g., BRCA1/2 mutations), the introduction of poly ADP-ribose polymerase inhibitors (PARPi) has dramatically improved outcomes for women with HR defective HGSOC. By blocking the repair of single-stranded DNA damage in cancer cells already lacking high-fidelity HR pathways, PARPi causes the accumulation of double-stranded DNA breaks, leading to cell death. Thus, this synthetic lethality results in PARPi selectively targeting cancer cells, resulting in impressive efficacy. Despite this, resistance to PARPi commonly develops through diverse mechanisms, such as the acquisition of secondary BRCA1/2 mutations. Perhaps less well documented is that PARPi can impact both the tumour microenvironment and the immune response, through upregulation of the stimulator of interferon genes (STING) pathway, upregulation of immune checkpoints such as PD-L1, and by stimulating the production of pro-inflammatory cytokines. Whilst targeted immunotherapies have not yet found their place in the clinic for HGSOC, the evidence above, as well as ongoing studies exploring the synergistic effects of PARPi with immune agents, including immune checkpoint inhibitors, suggests potential for targeting the immune response in HGSOC. Additionally, combining PARPi with epigenetic-modulating drugs may improve PARPi efficacy, by inducing a BRCA-defective phenotype to sensitise resistant cancer cells to PARPi. Finally, invigorating an immune response during PARPi therapy may engage anti-cancer immune responses that potentiate efficacy and mitigate the development of PARPi resistance. Here, we will review the emerging PARPi literature with a focus on PARPi effects on the immune response in HGSOC, as well as the potential of epigenetic combination therapies. We highlight the potential of transforming HGSOC from a lethal to a chronic disease and increasing the likelihood of cure.
Collapse
Affiliation(s)
- Nirashaa T. Bound
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Cassandra J. Vandenberg
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Apriliana E. R. Kartikasari
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Magdalena Plebanski
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Clare L. Scott
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
| |
Collapse
|
38
|
Huang S, Sun L, Hou P, Liu K, Wu J. A comprehensively prognostic and immunological analysis of actin-related protein 2/3 complex subunit 5 in pan-cancer and identification in hepatocellular carcinoma. Front Immunol 2022; 13:944898. [PMID: 36148220 PMCID: PMC9485570 DOI: 10.3389/fimmu.2022.944898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background Actin-related protein 2/3 complex subunit 5 (ARPC5) is one of the members of actin-related protein 2/3 complex and plays an important role in cell migration and invasion. However, little is known about the expression pattern, prognosis value, and biological function of ARPC5 in pan-cancer. Thus, we focus on ARPC5 as cut point to explore a novel prognostic and immunological biomarker for cancers. Methods The public databases, including TCGA, GTEx, and UCEC, were used to analyze ARPC5 expression in pan-cancer. The Human Protein Atlas website was applied to obtain the expression of ARPC5 in different tissues, cell lines, and single-cell types. Univariate Cox regression analysis and Kaplan–Meier analysis were used to explore the prognosis value of ARPC5 in various cancers. Spearman’s correlation analysis was performed to investigate the association between ARPC5 expression and tumor microenvironment scores, immune cell infiltration, immune-related genes, TMB, MSI, RNA modification genes, DNA methyltransferases, and tumor stemness. Moreover, qPCR, Western blot, and immunohistochemistry were carried out to examine the differential expression of ARPC5 in HCC tissues and cell lines. CCK8, EdU, flow cytometry, wound-healing assays, and transwell assays were conducted to explore its role in tumor proliferation, apoptosis, migration, and invasion among HCC cells. Results ARPC5 expression was upregulated in most cancer types and significantly associated with worse prognosis in KIRC, KIRP, LGG, and LIHC. mRNA expression of ARPC5 showed low tissue and cell specificity in normal tissues, cell lines, and single-cell types. ARPC5 expression was positively correlated with the tumor microenvironment scores, immune infiltrating cells, immune checkpoint–related genes in most cancers. ARPC5 in STAD and BRCA was positively associated with TMB, MSI, and neoantigens. We also discovered that ARPC5 was correlated with the expression of m1A-related genes, m5C-related genes, m6A-related genes, and DNA methyltransferases. In experiment analyses, we found that ARPC5 was significantly highly expressed in HCC tissues and HCC cells. Functionally, silencing ARPC5 dramatically decreased proliferation, migration, and invasion ability of HCC cells. Conclusions ARPC5 expression affects the prognosis of multiple tumors and is closely correlated to tumor immune infiltration and immunotherapy. Furthermore, ARPC5 may function as an oncogene and promote tumor progression in HCC.
Collapse
Affiliation(s)
- Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liying Sun
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ping Hou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kan Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Jianbing Wu,
| |
Collapse
|
39
|
Almeda AF, Grimes SM, Lee H, Greer S, Shin G, McNamara M, Hooker AC, Arce MM, Kubit M, Schauer MC, Van Hummelen P, Ma C, Mills MA, Huang RJ, Hwang JH, Amieva MR, Han SS, Ford JM, Ji HP. The Gastric Cancer Registry: A Genomic Translational Resource for Multidisciplinary Research in Gastric Cancer. Cancer Epidemiol Biomarkers Prev 2022; 31:1693-1700. [PMID: 35771165 PMCID: PMC9813806 DOI: 10.1158/1055-9965.epi-22-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Gastric cancer is a leading cause of cancer morbidity and mortality. Developing information systems which integrate clinical and genomic data may accelerate discoveries to improve cancer prevention, detection, and treatment. To support translational research in gastric cancer, we developed the Gastric Cancer Registry (GCR), a North American repository of clinical and cancer genomics data. METHODS Participants self-enrolled online. Entry criteria into the GCR included the following: (i) diagnosis of gastric cancer, (ii) history of gastric cancer in a first- or second-degree relative, or (iii) known germline mutation in the gene CDH1. Participants provided demographic and clinical information through a detailed survey. Some participants provided specimens of saliva and tumor samples. Tumor samples underwent exome sequencing, whole-genome sequencing, and transcriptome sequencing. RESULTS From 2011 to 2021, 567 individuals registered and returned the clinical questionnaire. For this cohort 65% had a personal history of gastric cancer, 36% reported a family history of gastric cancer, and 14% had a germline CDH1 mutation. 89 patients with gastric cancer provided tumor samples. For the initial study, 41 tumors were sequenced using next-generation sequencing. The data was analyzed for cancer mutations, copy-number variations, gene expression, microbiome, neoantigens, immune infiltrates, and other features. We developed a searchable, web-based interface (the GCR Genome Explorer) to enable researchers' access to these datasets. CONCLUSIONS The GCR is a unique, North American gastric cancer registry which integrates clinical and genomic annotation. IMPACT Available for researchers through an open access, web-based explorer, the GCR Genome Explorer will accelerate collaborative gastric cancer research across the United States and world.
Collapse
Affiliation(s)
- Alison F. Almeda
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Susan M Grimes
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - HoJoon Lee
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Stephanie Greer
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - GiWon Shin
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Madeline McNamara
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Anna C Hooker
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Maya M Arce
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Matthew Kubit
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Marie C Schauer
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Paul Van Hummelen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Cindy Ma
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Meredith A. Mills
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Robert J. Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Joo Ha Hwang
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Manuel R. Amieva
- Division of Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Summer S Han
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - James M. Ford
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Hanlee P. Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| |
Collapse
|
40
|
Recent Advances and Challenges in Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14163972. [PMID: 36010965 PMCID: PMC9406446 DOI: 10.3390/cancers14163972] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immunotherapy helps a person’s immune system to target tumor cells. Recent advances in cancer immunotherapy, including immune checkpoint inhibition, chimeric antigen receptor T-cell therapy and cancer vaccination, have changed the landscape of cancer treatment. These approaches have had profound success in certain cancer types but still fail in the majority of cases. This review will cover both successes and current challenges in cancer immunotherapy, as well as recent advances in the field of basic tumor immunology that will allow us to overcome resistance to existing treatments. Abstract Cancer immunotherapy has revolutionized the field of oncology in recent years. Harnessing the immune system to treat cancer has led to a large growth in the number of novel immunotherapeutic strategies, including immune checkpoint inhibition, chimeric antigen receptor T-cell therapy and cancer vaccination. In this review, we will discuss the current landscape of immuno-oncology research, with a focus on elements that influence immunotherapeutic outcomes. We will also highlight recent advances in basic aspects of tumor immunology, in particular, the role of the immunosuppressive cells within the tumor microenvironment in regulating antitumor immunity. Lastly, we will discuss how the understanding of basic tumor immunology can lead to the development of new immunotherapeutic strategies.
Collapse
|
41
|
Dyckhoff G, Herold-Mende C, Scherer S, Plinkert PK, Warta R. Human Leucocyte Antigens as Prognostic Markers in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14153828. [PMID: 35954492 PMCID: PMC9367389 DOI: 10.3390/cancers14153828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The induction and regulation of immune responses depend on human leucocyte antigen (HLA) molecules that present peptides derived from mutated neoantigens or tumor-associated antigens to cytotoxic T cells. The natural variation of HLA molecules might differ between tumor patients and the normal population. Thus, there might be associations between the frequencies of HLA alleles and the survival of tumor patients. METHODS This issue was studied in a cohort of 84 patients with head and neck squamous cell carcinomas (HNSCCs) of different localizations. The cohort was followed up for more than 10 years. HLA-A/B/C CTS-PCR-SSP typing at 1 field level from blood samples was performed, and the results were correlated with survival. RESULTS HLA-A*02 was the most prevalent allele in our cohort and was present in 51.1% of patients. The HLA-A*25 and HLA-C*06 alleles exhibited a significantly higher frequency in cancer patients than in the normal population of 174 blood and kidney donors (p = 0.02 and p = 0.01, respectively, Fisher's exact test). For HLA-C*04, a negative impact on overall survival in univariate analysis (p = 0.045) and a negative, but statistically insignificant effect on survival toward poorer survival in multivariate analysis (HR: 1.82; 95% CI: 0.99-3.34, p = 0.053) were observed. In addition, HLA-A*02 was also beneficial for overall survival and progression-free survival in multivariate analysis (HR 0.54; 95% CI: 0.31-0.92; p = 0.023). CONCLUSION HLA-A*02 allele expression might not only predict better survival but might also indicate superior tumor antigen presentation and, thus, help to select patients who could benefit from T-cell-dependent immunotherapies.
Collapse
Affiliation(s)
- Gerhard Dyckhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Correspondence: (G.D.); (R.W.)
| | - Christel Herold-Mende
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sabine Scherer
- Transplantation Immunology, Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Peter K. Plinkert
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Rolf Warta
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, 69120 Heidelberg, Germany
- Correspondence: (G.D.); (R.W.)
| |
Collapse
|
42
|
Shen Y, Yu L, Xu X, Yu S, Yu Z. Neoantigen vaccine and neoantigen-specific cell adoptive transfer therapy in solid tumors: Challenges and future directions. CANCER INNOVATION 2022; 1:168-182. [PMID: 38090649 PMCID: PMC10686129 DOI: 10.1002/cai2.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 06/11/2024]
Abstract
The phenomenon of tumor hierarchy and genetic instability can be explained by the "two-hits theory" and results in the occurrence of many somatic mutations. The expression of nonsynonymous mutations results in the production of mutant proteins from tumor cells, namely tumor-specific antigens called neoantigens. Because neoantigens do not exist in healthy cells, they have the potential to stimulate antitumor immune responses by CD4+ and CD8+ T-cell activation without jeopardizing normal tissues. Immunotherapy has reshaped the cancer treatment paradigm in recent decades with the introduction of immune-checkpoint blockade therapy and transgenic T-cell receptor/chimeric antigen receptor T cells. However, these strategies performed poorly in solid tumors because of the obstacles of the immunosuppressive microenvironment caused by regulatory T cells and other suppressor cells. Therefore, other immunotherapeutic strategies are under development, such as personalized vaccines, to trigger de novo T-cell responses against neoantigens and lead to the amplification of tumor-specific T-cell subclones. Neoantigen epitope prediction algorithms have enabled the detection of neoantigens and the creation of tailored neoantigen vaccines as a result of the fast development of next-generation sequencing and cancer bioinformatics. Here we provide an overview of the current neoantigen cancer vaccines and adoptive T-cell transfer therapy with neoantigen-specific lymphocytes. We also discuss the challenges in developing neoantigen-targeted immunotherapeutic strategies for cancer.
Collapse
Affiliation(s)
- Yanwei Shen
- Shanghai Jianshan Medical Tech Co LtdShanghaiChina
| | - Lu Yu
- Shanghai Jianshan Medical Tech Co LtdShanghaiChina
| | - Xiaoli Xu
- Shanghai Jianshan Medical Tech Co LtdShanghaiChina
| | - Shaojun Yu
- Department of Surgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhuo Yu
- Department of Medical Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| |
Collapse
|
43
|
A 25-gene panel predicting the benefits of immunotherapy in head and neck squamous cell carcinoma. Int Immunopharmacol 2022; 110:108846. [PMID: 35816946 DOI: 10.1016/j.intimp.2022.108846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/17/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Abstract
Tumor mutation burden high (TMB-H) is widely used in the guidance of immune checkpoint blocking (ICB) therapy for head and neck squamous cell carcinoma (HNSCC) patients. However, a few patients still had a poor response. Therefore, it is necessary to investigate a better model to guide ICB therapy. We constructed a genomic mutation model conducive to ICB therapy using an available HNSCC dataset. Moreover, treatment procedures for patients with HNSCC from our internal cohort confirmed this model. Here, a genomic mutation signature based on a list of 25 candidate genes that are favorable for immunotherapy was established. Patients with combined mutation had a respectable clinical outcome under ICB treatment. Notably, compared with patients who obtained TMB-H (TMB ≥ 10, but did not have combined mutation), those patients with TMB-L (TMB < 10) and combined mutation acquired remarkably beneficial overall survival. Moreover, the combined mutation signature predicting the survival status of patients was superior to TMB, with a Youden index of 0.55. Furthermore, higher immune cell infiltration levels, more active cancer-immunity cycle activities and immune response pathways were observed in patients with combined mutation. Finally, our internal cohort further confirmed that combined mutated patients can benefit from ICB therapy rather than any other patients.
Collapse
|
44
|
Lv D, Khawar MB, Liang Z, Gao Y, Sun H. Neoantigens and NK Cells: “Trick or Treat” the Cancers? Front Immunol 2022; 13:931862. [PMID: 35874694 PMCID: PMC9302773 DOI: 10.3389/fimmu.2022.931862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has become an important treatment strategy for cancer patients nowadays. Targeting cancer neoantigens presented by major histocompatibility complex (MHC) molecules, which emerge as a result of non-synonymous somatic mutations with high immunogenicity, is one of the most promising cancer immunotherapy strategies. Currently, several therapeutic options based on the personalized or shared neoantigens have been developed, including neoantigen vaccine and adoptive T-cell therapy, both of which are now being tested in clinical trials for various malignancies. The goal of this review is to outline the use of neoantigens as cancer therapy targets, with an emphasis on neoantigen identification, clinical usage of personalized neoantigen-based cancer therapy agents, and the development of off-the-shelf products based on shared neoantigens. In addition, we introduce and discuss the potential impact of the neoantigen–MHC complex on natural killer (NK) cell antitumor function, which could be a novel way to boost immune response-induced cytotoxicity against malignancies.
Collapse
Affiliation(s)
- Dan Lv
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- School of Life Sciences, Anqing Normal University, Anqing, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Zhengyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Yu Gao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
- *Correspondence: Haibo Sun,
| |
Collapse
|
45
|
Lee KM, Lin CC, Servetto A, Bae J, Kandagatla V, Ye D, Kim G, Sudhan DR, Mendiratta S, González Ericsson PI, Balko JM, Lee J, Barnes S, Malladi VS, Tabrizi S, Reddy SM, Yum S, Chang CW, Hutchinson KE, Yost SE, Yuan Y, Chen ZJ, Fu YX, Hanker AB, Arteaga CL. Epigenetic Repression of STING by MYC Promotes Immune Evasion and Resistance to Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer. Cancer Immunol Res 2022; 10:829-843. [PMID: 35561311 PMCID: PMC9250627 DOI: 10.1158/2326-6066.cir-21-0826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/09/2022] [Accepted: 05/10/2022] [Indexed: 01/03/2023]
Abstract
The MYC oncogene is frequently amplified in triple-negative breast cancer (TNBC). Here, we show that MYC suppression induces immune-related hallmark gene set expression and tumor-infiltrating T cells in MYC-hyperactivated TNBCs. Mechanistically, MYC repressed stimulator of interferon genes (STING) expression via direct binding to the STING1 enhancer region, resulting in downregulation of the T-cell chemokines CCL5, CXCL10, and CXCL11. In primary and metastatic TNBC cohorts, tumors with high MYC expression or activity exhibited low STING expression. Using a CRISPR-mediated enhancer perturbation approach, we demonstrated that MYC-driven immune evasion is mediated by STING repression. STING repression induced resistance to PD-L1 blockade in mouse models of TNBC. Finally, a small-molecule inhibitor of MYC combined with PD-L1 blockade elicited a durable response in immune-cold TNBC with high MYC expression, suggesting a strategy to restore PD-L1 inhibitor sensitivity in MYC-overexpressing TNBC.
Collapse
Affiliation(s)
- Kyung-min Lee
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul 04736, Republic of Korea
| | - Chang-Ching Lin
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alberto Servetto
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Joonbeom Bae
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vishal Kandagatla
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dan Ye
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - GunMin Kim
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dhivya R. Sudhan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Saurabh Mendiratta
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Paula I. González Ericsson
- Breast Cancer Research Program, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Justin M. Balko
- Breast Cancer Research Program, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Departments of Medicine and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Spencer Barnes
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Venkat S. Malladi
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Siamak Tabrizi
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sangeetha M. Reddy
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Seoyun Yum
- Howard Hughes Medical Institute, Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ching-Wei Chang
- Oncology Biostatistics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | | | - Susan E. Yost
- Department of Medical Oncology and Therapeutic Research, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yuan Yuan
- Department of Medical Oncology and Therapeutic Research, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Zhijian J. Chen
- Howard Hughes Medical Institute, Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ariella B. Hanker
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carlos L. Arteaga
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
46
|
Shao XM, Huang J, Niknafs N, Balan A, Cherry C, White J, Velculescu VE, Anagnostou V, Karchin R. HLA class II immunogenic mutation burden predicts response to immune checkpoint blockade. Ann Oncol 2022; 33:728-738. [PMID: 35339648 PMCID: PMC10621650 DOI: 10.1016/j.annonc.2022.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Whereas human leukocyte antigen (HLA) class I mutation-associated neoantigen burden has been linked with response to immune checkpoint blockade (ICB), the role of HLA class II-restricted neoantigens in clinical responses to ICB is less studied. We used computational approaches to assess HLA class II immunogenic mutation (IMM) burden in patients with melanoma and lung cancer treated with ICB. PATIENTS AND METHODS We analyzed whole-exome sequence data from four cohorts of ICB-treated patients with melanoma (n = 110) and non-small-cell lung cancer (NSCLC) (n = 123). MHCnuggets, a neural network-based model, was applied to estimate HLA class II IMM burdens and cellular fractions of IMMs were calculated to assess mutation clonality. We evaluated the combined impact of HLA class II germline genetic variation and class II IMM burden on clinical outcomes. Correlations between HLA class II IMM burden and density of tumor-infiltrating lymphocytes were computed from expression data. RESULTS Responding tumors harbored a significantly higher HLA class II IMM burden for both melanoma and NSCLC (P ≤ 9.6e-3). HLA class II IMM burden was correlated with longer survival, particularly in the NSCLC cohort and in the context of low intratumoral IMM heterogeneity (P < 0.001). HLA class I and II IMM landscapes were largely distinct suggesting a complementary role for class II IMMs in tumor rejection. A higher HLA class II IMM burden was associated with CD4+ T-cell infiltration and programmed death-ligand 1 expression. Transcriptomic analyses revealed an inflamed tumor microenvironment for tumors harboring a high HLA class II IMM burden. CONCLUSIONS HLA class II IMM burden identified patients with NSCLC and melanoma that attained longer survival after ICB treatment. Our findings suggest that HLA class II IMMs may impact responses to ICB in a manner that is distinct and complementary to HLA class I-mediated responses.
Collapse
Affiliation(s)
- X M Shao
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - J Huang
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, USA
| | - N Niknafs
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - A Balan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - C Cherry
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - J White
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - V E Velculescu
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - V Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - R Karchin
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
47
|
Sobhani N, Scaggiante B, Morris R, Chai D, Catalano M, Tardiel-Cyril DR, Neeli P, Roviello G, Mondani G, Li Y. Therapeutic cancer vaccines: From biological mechanisms and engineering to ongoing clinical trials. Cancer Treat Rev 2022; 109:102429. [PMID: 35759856 PMCID: PMC9217071 DOI: 10.1016/j.ctrv.2022.102429] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
Therapeutic vaccines are currently at the forefront of medical innovation. Various endeavors have been made to develop more consolidated approaches to producing nucleic acid-based vaccines, both DNA and mRNA vaccines. These innovations have continued to propel therapeutic platforms forward, especially for mRNA vaccines, after the successes that drove emergency FDA approval of two mRNA vaccines against SARS-CoV-2. These vaccines use modified mRNAs and lipid nanoparticles to improve stability, antigen translation, and delivery by evading innate immune activation. Simple alterations of mRNA structure- such as non-replicating, modified, or self-amplifying mRNAs- can provide flexibility for future vaccine development. For protein vaccines, the use of long synthetic peptides of tumor antigens instead of short peptides has further enhanced antigen delivery success and peptide stability. Efforts to identify and target neoantigens instead of antigens shared between tumor cells and normal cells have also improved protein-based vaccines. Other approaches use inactivated patient-derived tumor cells to elicit immune responses, or purified tumor antigens are given to patient-derived dendritic cells that are activated in vitro prior to reinjection. This review will discuss recent developments in therapeutic cancer vaccines such as, mode of action and engineering new types of anticancer vaccines, in order to summarize the latest preclinical and clinical data for further discussion of ongoing clinical endeavors in the field.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| | - Rachel Morris
- Thunder Biotech, 395 Cougar Blvd, Provo, UT 84604, USA.
| | - Dafei Chai
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Martina Catalano
- School of Human Health Sciences, University of Florence, Largo Brambilla 3, Florence 50134, Italy.
| | - Dana Rae Tardiel-Cyril
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Praveen Neeli
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, Florence 50139, Italy.
| | - Giuseppina Mondani
- Royal Infirmary Hospital, Foresterhill Health Campus, Foresterhill Rd, Aberdeen AB25 2ZN, United Kingdom.
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
48
|
Rad HS, Shiravand Y, Radfar P, Ladwa R, Perry C, Han X, Warkiani ME, Adams MN, Hughes BGM, O'Byrne K, Kulasinghe A. Understanding the tumor microenvironment in head and neck squamous cell carcinoma. Clin Transl Immunology 2022; 11:e1397. [PMID: 35686027 PMCID: PMC9170522 DOI: 10.1002/cti2.1397] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a heterogeneous group of tumors. While significant progress has been made using multimodal treatment, the 5-year survival remains at 50%. Developing effective therapies, such as immunotherapy, will likely lead to better treatment of primary and metastatic disease. However, not all HNSCC tumors respond to immune checkpoint blockade therapy. Understanding the complex cellular composition and interactions of the tumor microenvironment is likely to lead to new knowledge for effective therapies and treatment resistance. In this review, we discuss HNSCC characteristics, predictive biomarkers, factors influencing immunotherapy response, with a focus on the tumor microenvironment.
Collapse
Affiliation(s)
- Habib Sadeghi Rad
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
| | - Yavar Shiravand
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Payar Radfar
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
| | - Rahul Ladwa
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
- Princess Alexandra HospitalBrisbaneQLDAustralia
| | - Chris Perry
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
- Princess Alexandra HospitalBrisbaneQLDAustralia
| | - Xiaoyuan Han
- Department of Biomedical ScienceUniversity of the Pacific, Arthur A. Dugoni School of DentistryStocktonCAUSA
| | - Majid Ebrahimi Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
- Institute of Molecular MedicineSechenov First Moscow State UniversityMoscowRussia
| | - Mark N Adams
- Centre for Genomics and Personalised HealthSchool of Biomedical SciencesQueensland University of TechnologyBrisbaneQLDAustralia
| | - Brett GM Hughes
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
- Royal Brisbane and Women's HospitalBrisbaneQLDAustralia
| | - Ken O'Byrne
- Princess Alexandra HospitalBrisbaneQLDAustralia
- Centre for Genomics and Personalised HealthSchool of Biomedical SciencesQueensland University of TechnologyBrisbaneQLDAustralia
| | - Arutha Kulasinghe
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
49
|
Rojas F, Parra ER, Wistuba II, Haymaker C, Solis Soto LM. Pathological Response and Immune Biomarker Assessment in Non-Small-Cell Lung Carcinoma Receiving Neoadjuvant Immune Checkpoint Inhibitors. Cancers (Basel) 2022; 14:cancers14112775. [PMID: 35681755 PMCID: PMC9179283 DOI: 10.3390/cancers14112775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Recently, the U.S. Food and Drug Administration (FDA) approved neoadjuvant immunotherapy plus chemotherapy for the treatment of resectable non-small-cell lung carcinoma (NSCLC) due to the clinical benefits reported in several clinical trials. In these settings, the pathological assessment of the tumor bed to quantify a pathological response has been used as a surrogate method of clinical benefit to neoadjuvant therapy. In addition, several clinical trials are including the assessment of tissue-, blood-, or host-based biomarkers to predict therapy response and to monitor the response to neoadjuvant treatment. In this manuscript, we provide an overview of current recommendations for the evaluation of pathological response and describe potential biomarkers used in clinical trials of neoadjuvant immunotherapy in resectable NSCLC. Abstract Lung cancer is the leading cause of cancer incidence and mortality worldwide. Adjuvant and neoadjuvant chemotherapy have been used in the perioperative setting of non-small-cell carcinoma (NSCLC); however, the five-year survival rate only improves by about 5%. Neoadjuvant treatment with immune checkpoint inhibitors (ICIs) has become significant due to improved survival in advanced NSCLC patients treated with immunotherapy agents. The assessment of pathology response has been proposed as a surrogate indicator of the benefits of neaodjuvant therapy. An outline of recommendations has been published by the International Association for the Study of Lung Cancer (IASLC) for the evaluation of pathologic response (PR). However, recent studies indicate that evaluations of immune-related changes are distinct in surgical resected samples from patients treated with immunotherapy. Several clinical trials of neoadjuvant immunotherapy in resectable NSCLC have included the study of biomarkers that can predict the response of therapy and monitor the response to treatment. In this review, we provide relevant information on the current recommendations of the assessment of pathological responses in surgical resected NSCLC tumors treated with neoadjuvant immunotherapy, and we describe current and potential biomarkers to predict the benefits of neoadjuvant immunotherapy in patients with resectable NSCLC.
Collapse
|
50
|
Xu H, Clemenceau JR, Park S, Choi J, Lee SH, Hwang TH. Spatial heterogeneity and organization of tumor mutation burden with immune infiltrates within tumors based on whole slide images correlated with patient survival in bladder cancer. J Pathol Inform 2022; 13:100105. [PMID: 36268064 PMCID: PMC9577053 DOI: 10.1016/j.jpi.2022.100105] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Background High tumor mutation burden (TMB-H) could result in an increased number of neoepitopes from somatic mutations expressed by a patient's own tumor cell which can be recognized and targeted by neighboring tumor-infiltrating lymphocytes (TILs). Deeper understanding of spatial heterogeneity and organization of tumor cells and their neighboring immune infiltrates within tumors could provide new insights into tumor progression and treatment response. Methods Here we first developed computational approaches using whole slide images (WSIs) to predict bladder cancer patients' TMB status and TILs across tumor regions, and then investigate spatial heterogeneity and organization of regions harboring TMB-H tumor cells and TILs within tumors, as well as their prognostic utility. Results: In experiments using WSIs from The Cancer Genome Atlas (TCGA) bladder cancer (BLCA), our findings show that computational pathology can reliably predict patient-level TMB status and delineate spatial TMB heterogeneity and co-organization with TILs. TMB-H patients with low spatial heterogeneity enriched with high TILs show improved overall survival. Conclusions Computational approaches using WSIs have the potential to provide rapid and cost-effective TMB testing and TILs detection. Survival analysis illuminates potential clinical utility of spatial heterogeneity and co-organization of TMB and TILs as a prognostic biomarker in BLCA which warrants further validation in future studies.
Collapse
Affiliation(s)
- Hongming Xu
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Jean René Clemenceau
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sunho Park
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jinhwan Choi
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sung Hak Lee
- Department of Hospital Pathology, Seoul St.Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Tae Hyun Hwang
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|