1
|
Chen C, Bao Y, Ju S, Jiang C, Zou X, Zhang X, Chen L. Single-cell and bulk RNA-seq unveils the immune infiltration landscape associated with cuproptosis in cerebral cavernous malformations. Biomark Res 2024; 12:57. [PMID: 38835051 DOI: 10.1186/s40364-024-00603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are vascular abnormalities associated with deregulated angiogenesis. Their pathogenesis and optimal treatment remain unclear. This study aims to investigate the molecular signatures of cuproptosis, a newly identified type of cell death, associated with CCMs development. METHODS Bulk RNA sequencing (RNA-seq) from 15 CCM and 6 control samples were performed with consensus clustering and clustered to two subtypes based on expression levels of cuproptosis-related genes (CRGs). Differentially expressed genes and immune infiltration between subtypes were then identified. Machine learning algorithms including the least absolute shrinkage and selection operator and random forest were employed to screen for hub genes for CCMs associated with cuproptosis. Furthermore, Pathway enrichment and correlation analysis were used to explore the functions of hub genes and their association with immune phenotypes in CCMs. An external dataset was then employed for validation. Finally, employing the Cellchat algorithm on a single-cell RNA-seq dataset, we explored potential mechanisms underlying the participation of these hub genes in cell-cell communication in CCMs. RESULTS Our study revealed two distinct CCM subtypes with differential pattern of CRG expression and immune infiltration. Three hub genes (BTBD10, PFDN4, and CEMIP) were identified and validated, which may significantly associate with CCM pathogenesis. These genes were found to be significantly upregulated in CCM endothelial cells (ECs) and were validated through immunofluorescence and western blot analysis. Single-cell RNA-seq analysis revealed the cellular co-expression patterns of these hub genes, particularly highlighting the high expression of BTBD10 and PFDN4 in ECs. Additionally, a significant co-localization was also observed between BTBD10 and the pivotal cuproptosis gene FDX1 in Mki67+ tip cells, indicating the crucial role of cuproptosis for angiogenesis in CCMs. The study also explored the cell-cell communication between subcluster of ECs expressing these hub genes and immune cells, particularly M2 macrophages, suggesting a role for these interactions in CCM pathogenesis. CONCLUSION This study identifies molecular signatures linking cuproptosis to CCMs pathogenesis. Three hub genes-PFDN4, CEMIP, and BTBD10-may influence disease progression by modulating immunity. Further research is needed to understand their precise disease mechanisms and evaluate their potential as biomarkers or therapeutic targets for CCMs.
Collapse
Affiliation(s)
- Chengwei Chen
- Neurosurgical department of Huashan hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai, 200040, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuting Bao
- Neurosurgical department of Huashan hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai, 200040, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Sihan Ju
- Neurosurgical department of Huashan hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai, 200040, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Conglin Jiang
- Neurosurgical department of Huashan hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai, 200040, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Xiang Zou
- Neurosurgical department of Huashan hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai, 200040, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Xin Zhang
- Neurosurgical department of Huashan hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai, 200040, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Liang Chen
- Neurosurgical department of Huashan hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200040, China.
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai, 200040, China.
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
| |
Collapse
|
2
|
Wang SH, Yeh CH, Wu CW, Hsu CY, Tsai EM, Hung CM, Wang YW, Hsieh TH. PFDN4 as a Prognostic Marker Was Associated with Chemotherapy Resistance through CREBP1/AURKA Pathway in Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:3906. [PMID: 38612711 PMCID: PMC11012048 DOI: 10.3390/ijms25073906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer is the most common malignancy and its incidence is increasing. It is currently mainly treated by clinical chemotherapy, but chemoresistance remains poorly understood. Prefolded proteins 4 (PFDN4) are molecular chaperone complexes that bind to newly synthesized polypeptides and allow them to fold correctly to stabilize protein formation. This study aimed to investigate the role of PFDN4 in chemotherapy resistance in breast cancer. Our study found that PFDN4 was highly expressed in breast cancer compared to normal tissues and was statistically significantly associated with stage, nodal status, subclasses (luminal, HER2 positive and triple negative), triple-negative subtype and disease-specific survival by TCGA database analysis. CRISPR knockout of PFDN4 inhibited the growth of 89% of breast cancer cell lines, and the triple-negative cell line exhibited a stronger inhibitory effect than the non-triple-negative cell line. High PFDN4 expression was associated with poor overall survival in chemotherapy and resistance to doxorubicin and paclitaxel through the CREBP1/AURKA pathway in the triple-negative MDAMB231 cell line. This study provides insightful evidence for the value of PFDN4 in poor prognosis and chemotherapy resistance in breast cancer patients.
Collapse
Affiliation(s)
- Shih-Ho Wang
- Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Cheng-Hsi Yeh
- Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Wei Wu
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-W.W.); (Y.-W.W.)
| | - Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-Y.H.)
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-Y.H.)
| | - Chao-Ming Hung
- Department of Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yi-Wen Wang
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-W.W.); (Y.-W.W.)
| | - Tsung-Hua Hsieh
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-W.W.); (Y.-W.W.)
| |
Collapse
|
3
|
Wang Y, Ma C, Yang X, Gao J, Sun Z. ZNF217: An Oncogenic Transcription Factor and Potential Therapeutic Target for Multiple Human Cancers. Cancer Manag Res 2024; 16:49-62. [PMID: 38259608 PMCID: PMC10802126 DOI: 10.2147/cmar.s431135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Zinc finger protein 217 (ZNF217) is one of the well-researched members of the Krüppel-like factor transcription factor family. ZNF217 possesses a characteristic structure of zinc finger motifs and plays a crucial role in regulating the biological activities of cells. Recent findings have revealed that ZNF217 is strongly associated with multiple aspects of cancer progression, impacting patient prognosis. Notably, ZNF217 is subject to regulation by non-coding RNAs, suggesting the potential for targeted manipulation of such RNAs as a robust therapeutic avenue for managing cancer in the future. The main purpose of this article is to provide a detailed examination of the role of ZNF217 in human malignant tumors and the regulation of its expression, and to offer new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Yepeng Wang
- Department of Neurosurgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Chao Ma
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Xuekun Yang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Jun Gao
- Department of Neurosurgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Zhigang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
4
|
He Q, Ding Z, Chen T, Wu H, Song J, Xiang Z, Yang C, Wang S, Xiong B. PFDN2 promotes cell cycle progression via the hnRNPD-MYBL2 axis in gastric cancer. Front Oncol 2023; 13:1164070. [PMID: 37538116 PMCID: PMC10395514 DOI: 10.3389/fonc.2023.1164070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/16/2023] [Indexed: 08/05/2023] Open
Abstract
Gastric cancer (GC) is a major health burden worldwide, but our understanding of GC is limited, and the prognosis is poor. Novel therapeutic strategies and biomarkers are urgently needed to improve GC patient outcomes. Previously, we identified PFDN2 as a novel key gene in gastric cancer based on its differential expression between cancer and normal tissues. However, the role and underlying mechanisms of PFDN2 in GC remain elusive. In this article, we demonstrated that PFDN2 is highly expressed in GC and that upregulation of PFDN2 is associated with the progression of GC. We further found that PFDN2 could promote cell cycle progression by promoting MYBL2 expression. Mechanistically, we demonstrated that PFDN2 could upregulate MYBL2 expression by facilitating the nuclear translocation of hnRNPD, and thus promoting MYBL2 transcriptional program. In conclusion, we found that PFDN2 promotes cell cycle progression via the hnRNPD-MYBL2 axis and may serve as a potential biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Qiuming He
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Zheyu Ding
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Tingna Chen
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Haitao Wu
- Department of Thyroid and Breast Surgery, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialing Song
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Zhenxian Xiang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| |
Collapse
|
5
|
Zigo M, Kerns K, Sutovsky P. The Ubiquitin-Proteasome System Participates in Sperm Surface Subproteome Remodeling during Boar Sperm Capacitation. Biomolecules 2023; 13:996. [PMID: 37371576 PMCID: PMC10296210 DOI: 10.3390/biom13060996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Sperm capacitation is a complex process endowing biological and biochemical changes to a spermatozoon for a successful encounter with an oocyte. The present study focused on the role of the ubiquitin-proteasome system (UPS) in the remodeling of the sperm surface subproteome. The sperm surface subproteome from non-capacitated and in vitro capacitated (IVC) porcine spermatozoa, with and without proteasomal inhibition, was selectively isolated. The purified sperm surface subproteome was analyzed using high-resolution, quantitative liquid chromatography-mass spectrometry (LC-MS) in four replicates. We identified 1680 HUGO annotated proteins, out of which we found 91 to be at least 1.5× less abundant (p < 0.05) and 141 to be at least 1.5× more abundant (p < 0.05) on the surface of IVC spermatozoa. These proteins were associated with sperm capacitation, hyperactivation, metabolism, acrosomal exocytosis, and fertilization. Abundances of 14 proteins were found to be significantly different (p < 0.05), exceeding a 1.5-fold abundance between the proteasomally inhibited (100 µM MG132) and vehicle control (0.2% ethanol) groups. The proteins NIF3L1, CSE1L, NDUFB7, PGLS, PPP4C, STK39, and TPRG1L were found to be more abundant; while BPHL, GSN, GSPT1, PFDN4, STYXL1, TIMM10, and UBXN4 were found to be less abundant in proteasomally inhibited IVC spermatozoa. Despite the UPS having a narrow range of targets, it modulated sperm metabolism and binding by regulating susceptible surface proteins. Changes in CSE1L, PFDN4, and STK39 during in vitro capacitation were confirmed using immunocytochemistry, image-based flow cytometry, and Western blotting. The results confirmed the active participation of the UPS in the extensive sperm surface proteome remodeling that occurs during boar sperm capacitation. This work will help us to identify new pharmacological mechanisms to positively or negatively modulate sperm fertilizing ability in food animals and humans.
Collapse
Affiliation(s)
- Michal Zigo
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA;
| | - Karl Kerns
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA;
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA;
| | - Peter Sutovsky
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA;
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
The Intricate Interplay between the ZNF217 Oncogene and Epigenetic Processes Shapes Tumor Progression. Cancers (Basel) 2022; 14:cancers14246043. [PMID: 36551531 PMCID: PMC9776013 DOI: 10.3390/cancers14246043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The oncogenic transcription factor ZNF217 orchestrates several molecular signaling networks to reprogram integrated circuits governing hallmark capabilities within cancer cells. High levels of ZNF217 expression provide advantages to a specific subset of cancer cells to reprogram tumor progression, drug resistance and cancer cell plasticity. ZNF217 expression level, thus, provides a powerful biomarker of poor prognosis and a predictive biomarker for anticancer therapies. Cancer epigenetic mechanisms are well known to support the acquisition of hallmark characteristics during oncogenesis. However, the complex interactions between ZNF217 and epigenetic processes have been poorly appreciated. Deregulated DNA methylation status at ZNF217 locus or an intricate cross-talk between ZNF217 and noncoding RNA networks could explain aberrant ZNF217 expression levels in a cancer cell context. On the other hand, the ZNF217 protein controls gene expression signatures and molecular signaling for tumor progression by tuning DNA methylation status at key promoters by interfering with noncoding RNAs or by refining the epitranscriptome. Altogether, this review focuses on the recent advances in the understanding of ZNF217 collaboration with epigenetics processes to orchestrate oncogenesis. We also discuss the exciting burgeoning translational medicine and candidate therapeutic strategies emerging from those recent findings connecting ZNF217 to epigenetic deregulation in cancer.
Collapse
|
7
|
Herranz-Montoya I, Park S, Djouder N. A comprehensive analysis of prefoldins and their implication in cancer. iScience 2021; 24:103273. [PMID: 34761191 PMCID: PMC8567396 DOI: 10.1016/j.isci.2021.103273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prefoldins (PFDNs) are evolutionary conserved co-chaperones, initially discovered in archaea but universally present in eukaryotes. PFDNs are prevalently organized into hetero-hexameric complexes. Although they have been overlooked since their discovery and their functions remain elusive, several reports indicate they act as co-chaperones escorting misfolded or non-native proteins to group II chaperonins. Unlike the eukaryotic PFDNs which interact with cytoskeletal components, the archaeal PFDNs can bind and stabilize a wide range of substrates, possibly due to their great structural diversity. The discovery of the unconventional RPB5 interactor (URI) PFDN-like complex (UPC) suggests that PFDNs have versatile functions and are required for different cellular processes, including an important role in cancer. Here, we summarize their functions across different species. Moreover, a comprehensive analysis of PFDNs genomic alterations across cancer types by using large-scale cancer genomic data indicates that PFDNs are a new class of non-mutated proteins significantly overexpressed in some cancer types.
Collapse
Affiliation(s)
- Irene Herranz-Montoya
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Solip Park
- Computational Cancer Genomics Group, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| |
Collapse
|
8
|
Mantsou A, Pitou M, Papachristou E, Papi RM, Lamprou P, Choli-Papadopoulou T. Effect of a Bone Morphogenetic Protein-2-derived peptide on the expression of tumor marker ZNF217 in osteoblasts and MCF-7 cells. Bone Rep 2021; 15:101125. [PMID: 34632002 PMCID: PMC8487976 DOI: 10.1016/j.bonr.2021.101125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022] Open
Abstract
Zinc Finger Protein 217 (ZNF217), a transcription factor and oncogene product, has been found to dysregulate Bone Morphogenetic Protein (BMP) signaling and induce invasion in breast tumors. In this study, the effect of BMP-2 or an active BMP-2 peptide, AISMLYLDEN, on the expression of ZNF217, BMP4 and CDK-inhibitor p21 gene, CDKN1A, was investigated in MCF-7 breast cancer cells. In parallel, the entire protein (BMP-2) as well as the aforementioned peptide were investigated in hDPSCs during osteogenic differentiation. The treatment of MCF-7 cancer cells with different concentrations of peptide AISMLYLDEN showed that the addition of 22.6 ng/ml was more effective in comparison to the other used concentrations. In particular, 48 h after treatment, CDKN1A and BMP4 mRNA levels were substantially increased in contrast to ZNF217 mRNA levels which were decreased. These results are strongly supported by BrdU assay that clearly indicated inhibition of cancer cell proliferation. Taken together, these results open ways for a concurrent use, at appropriate concentrations, of the peptide AISMLYLDEN during conventional therapeutic treatment in breast tumors with a metastatic tendency to the bones. Regarding the effect of the entire protein as well as its peptide on hDPSCs differentiation into osteocytes, the mRNA levels of osteocalcin, an osteogenic marker, showed that the peptide enhanced osteogenesis at a higher degree in comparison to the entire BMP-2 without however altering ZNF217, CDKN1A and BMP4 expression levels, which remained as expected of non-cancer cells.
Collapse
Affiliation(s)
- Aglaia Mantsou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Maria Pitou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Eleni Papachristou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Rigini M Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Paraskevas Lamprou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
9
|
Li Y, Wu H, Wang Q, Xu S. ZNF217: the cerberus who fails to guard the gateway to lethal malignancy. Am J Cancer Res 2021; 11:3378-3405. [PMID: 34354851 PMCID: PMC8332857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/14/2021] [Indexed: 06/13/2023] Open
Abstract
The aberrant expression of the zinc finger protein 217 (ZNF217) promotes multiple malignant phenotypes, such as replicative immortality, maintenance of proliferation, malignant heterogeneity, metastasis, and cell death resistance, via diverse mechanisms, including transcriptional activation, mRNA N6-methyladenosine (m6A) regulation, and protein interactions. The induction of these cellular processes by ZNF217 leads to therapeutic resistance and patients' poor outcomes. However, few ZNF217 related clinical applications or trials, have been reported. Moreover, looming observations about ZNF217 roles in m6A regulation and cancer immune response triggered significant attention while lacking critical evidence. Thus, in this review, we revisit the literature about ZNF217 and emphasize its importance as a prognostic biomarker for early prevention and as a therapeutic target.
Collapse
Affiliation(s)
- Yingpu Li
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
| | - Hao Wu
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| |
Collapse
|
10
|
Urabe F, Kosaka N, Sawa Y, Yamamoto Y, Ito K, Yamamoto T, Kimura T, Egawa S, Ochiya T. miR-26a regulates extracellular vesicle secretion from prostate cancer cells via targeting SHC4, PFDN4, and CHORDC1. SCIENCE ADVANCES 2020; 6:eaay3051. [PMID: 32494663 PMCID: PMC7190312 DOI: 10.1126/sciadv.aay3051] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/10/2020] [Indexed: 05/12/2023]
Abstract
Extracellular vesicles (EVs) are involved in intercellular communication during cancer progression; thus, elucidating the mechanism of EV secretion in cancer cells will contribute to the development of an EV-targeted cancer treatment. However, the biogenesis of EVs in cancer cells is not fully understood. MicroRNAs (miRNAs) regulate a variety of biological phenomena; thus, miRNAs could regulate EV secretion. Here, we performed high-throughput miRNA-based screening to identify the regulators of EV secretion using an ExoScreen assay. By using this method, we identified miR-26a involved in EV secretion from prostate cancer (PCa) cells. In addition, we found that SHC4, PFDN4, and CHORDC1 genes regulate EV secretion in PCa cells. Furthermore, the progression of the PCa cells suppressing these genes was inhibited in an in vivo study. Together, our findings suggest that miR-26a regulates EV secretion via targeting SHC4, PFDN4, and CHORDC1 in PCa cells, resulting in the suppression of PCa progression.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuyoshi Kosaka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Corresponding author.
| | - Yurika Sawa
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Kagenori Ito
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Tomofumi Yamamoto
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shin Egawa
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
11
|
Li J, Song L, Qiu Y, Yin A, Zhong M. ZNF217 is associated with poor prognosis and enhances proliferation and metastasis in ovarian cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:3038-3047. [PMID: 25031722 PMCID: PMC4097264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
ZNF217 is an alternatively spliced Kruppel-like transcription factor that has recently been implicated to play a role in human carcinogenesis. Here, we used immunohistochemistry (IHC) to show that ZNF217 protein is overexpressed in nearly 60% of ovarian tumor samples. The disease-free survival time was shorter in patients with positive ZNF217 expression than in ZNF217-negative patients (P=0.042). Fluorescence in situ hybridization (FISH) analysis showed ZNF217 genomic amplification in the poorly differentiated tumors, suggesting that ZNF217 is associated with the progression of ovarian cancer. Invasion was enhanced in HO-8910 cells stably transfected with constructs carrying full-length ZNF217 relative to cells transfected with the empty vector. To confirm our findings in vivo, we performed a tumorigenicity assay in nude mice inoculated with the HO-8910 overexpressing ZNF217 cells. As expected, tumors grown in the ZNF217 group were more invasive and prone to metastasis than those formed control groups. Based on these clinical and laboratory observations, we conclude that ZNF217 may contribute to ovarian cancer invasion and metastasis, and associated with worse clinical outcomes.
Collapse
Affiliation(s)
- Jing Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University Guangzhou, Guangdong Province 510515, China
| | - Lanlin Song
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University Guangzhou, Guangdong Province 510515, China
| | - Yuwen Qiu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University Guangzhou, Guangdong Province 510515, China
| | - Ailan Yin
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University Guangzhou, Guangdong Province 510515, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University Guangzhou, Guangdong Province 510515, China
| |
Collapse
|
12
|
Hsu PY, Hsu HK, Lan X, Juan L, Yan PS, Labanowska J, Heerema N, Hsiao TH, Chiu YC, Chen Y, Liu Y, Li L, Li R, Thompson IM, Nephew KP, Sharp ZD, Kirma NB, Jin VX, Huang THM. Amplification of distant estrogen response elements deregulates target genes associated with tamoxifen resistance in breast cancer. Cancer Cell 2013; 24:197-212. [PMID: 23948299 PMCID: PMC3890247 DOI: 10.1016/j.ccr.2013.07.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/12/2013] [Accepted: 07/09/2013] [Indexed: 01/18/2023]
Abstract
A causal role of gene amplification in tumorigenesis is well known, whereas amplification of DNA regulatory elements as an oncogenic driver remains unclear. In this study, we integrated next-generation sequencing approaches to map distant estrogen response elements (DEREs) that remotely control the transcription of target genes through chromatin proximity. Two densely mapped DERE regions located on chromosomes 17q23 and 20q13 were frequently amplified in estrogen receptor-α-positive luminal breast cancer. These aberrantly amplified DEREs deregulated target gene expression potentially linked to cancer development and tamoxifen resistance. Progressive accumulation of DERE copies was observed in normal breast progenitor cells chronically exposed to estrogenic chemicals. These findings may extend to other DNA regulatory elements, the amplification of which can profoundly alter target transcriptome during tumorigenesis.
Collapse
Affiliation(s)
- Pei-Yin Hsu
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Hang-Kai Hsu
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Xun Lan
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Liran Juan
- Center of Computational Biology and Bioinformatics and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pearlly S. Yan
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Jadwiga Labanowska
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Nyla Heerema
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Tzu-Hung Hsiao
- Department of Greehey Children’s Cancer Research Institute, Cancer Therapy & Research Center, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Yu-Chiao Chiu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yidong Chen
- Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, TX 78245, USA
- Department of Greehey Children’s Cancer Research Institute, Cancer Therapy & Research Center, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Yunlong Liu
- Center of Computational Biology and Bioinformatics and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lang Li
- Center of Computational Biology and Bioinformatics and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rong Li
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Ian M. Thompson
- Department of Urology, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Zelton D. Sharp
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Nameer B. Kirma
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Victor X. Jin
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Tim H.-M. Huang
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, TX 78245, USA
- Correspondence: (T.H.-M.H.)
| |
Collapse
|
13
|
Vendrell JA, Thollet A, Nguyen NT, Ghayad SE, Vinot S, Bièche I, Grisard E, Josserand V, Coll JL, Roux P, Corbo L, Treilleux I, Rimokh R, Cohen PA. ZNF217 Is a Marker of Poor Prognosis in Breast Cancer That Drives Epithelial–Mesenchymal Transition and Invasion. Cancer Res 2012; 72:3593-606. [DOI: 10.1158/0008-5472.can-11-3095] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Littlepage LE, Adler AS, Kouros-Mehr H, Huang G, Chou J, Krig SR, Griffith OL, Korkola JE, Qu K, Lawson DA, Xue Q, Sternlicht MD, Dijkgraaf GJP, Yaswen P, Rugo HS, Sweeney CA, Collins CC, Gray JW, Chang HY, Werb Z. The transcription factor ZNF217 is a prognostic biomarker and therapeutic target during breast cancer progression. Cancer Discov 2012; 2:638-51. [PMID: 22728437 DOI: 10.1158/2159-8290.cd-12-0093] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED The transcription factor ZNF217 is a candidate oncogene in the amplicon on chromosome 20q13 that occurs in 20% to 30% of primary human breast cancers and that correlates with poor prognosis. We show that Znf217 overexpression drives aberrant differentiation and signaling events, promotes increased self-renewal capacity, mesenchymal marker expression, motility, and metastasis, and represses an adult tissue stem cell gene signature downregulated in cancers. By in silico screening, we identified candidate therapeutics that at low concentrations inhibit growth of cancer cells expressing high ZNF217. We show that the nucleoside analogue triciribine inhibits ZNF217-induced tumor growth and chemotherapy resistance and inhibits signaling events [e.g., phospho-AKT, phospho-mitogen-activated protein kinase (MAPK)] in vivo. Our data suggest that ZNF217 is a biomarker of poor prognosis and a therapeutic target in patients with breast cancer and that triciribine may be part of a personalized treatment strategy in patients overexpressing ZNF217. Because ZNF217 is amplified in numerous cancers, these results have implications for other cancers. SIGNIFICANCE This study finds that ZNF217 is a poor prognostic indicator and therapeutic target in patients with breast cancer and may be a strong biomarker of triciribine treatment efficacy in patients. Because previous clinical trials for triciribine did not include biomarkers of treatment efficacy, this study provides a rationale for revisiting triciribine in the clinical setting as a therapy for patients with breast cancer who overexpress ZNF217.
Collapse
Affiliation(s)
- Laurie E Littlepage
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bernard-Pierrot I, Gruel N, Stransky N, Vincent-Salomon A, Reyal F, Raynal V, Vallot C, Pierron G, Radvanyi F, Delattre O. Characterization of the recurrent 8p11-12 amplicon identifies PPAPDC1B, a phosphatase protein, as a new therapeutic target in breast cancer. Cancer Res 2008; 68:7165-75. [PMID: 18757432 DOI: 10.1158/0008-5472.can-08-1360] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 8p11-12 chromosome region is one of the regions most frequently amplified in breast carcinoma (10-15% of cases). Several genes within this region have been identified as candidate oncogenes, as they are both amplified and overexpressed. However, very few studies have explored the role of these genes in cell transformation, with the aim of identifying valuable therapeutic targets. An analysis of comparative genomic hybridization array and expression profiling data for a series of 152 ductal breast carcinomas and 21 cell lines identified five genes (LSM1, BAG4, DDHD2, PPAPDC1B, and WHSC1L1) within the amplified region as consistently overexpressed due to an increased gene copy number. The use of small interfering RNA to knock down the expression of each of these genes showed the major role played by two genes, PPAPDC1B and WHSC1L1, in regulating the survival and transformation of two different cell lines harboring the 8p amplicon. The role of these two genes in cell survival and cell transformation was also confirmed by long-term knockdown expression studies using short hairpin RNAs. The potential of PPAPDC1B, which encodes a transmembrane phosphatase, as a therapeutic target was further shown by the strong inhibition of growth of breast tumor xenografts displaying 8p11-12 amplification induced by the silencing of PPAPDC1B. The oncogenic properties of PPAPDC1B were further shown by its ability to transform NIH-3T3 fibroblasts, inducing their anchorage-independent growth. Finally, microarray experiments on PPAPDC1B knockdown indicated that this gene interfered with multiple cell signaling pathways, including the Janus-activated kinase-signal transducer and activator of transcription, mitogen-activated protein kinase, and protein kinase C pathways. PPAPDC1B may also potentiate the estrogen receptor pathway by down-regulating DUSP22.
Collapse
|
16
|
Ginestier C, Cervera N, Finetti P, Esteyries S, Esterni B, Adélaïde J, Xerri L, Viens P, Jacquemier J, Charafe-Jauffret E, Chaffanet M, Birnbaum D, Bertucci F. Prognosis and gene expression profiling of 20q13-amplified breast cancers. Clin Cancer Res 2007; 12:4533-44. [PMID: 16899599 DOI: 10.1158/1078-0432.ccr-05-2339] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Amplification of chromosomal region 20q13 occurs in breast cancer but remains poorly characterized. EXPERIMENTAL DESIGN To establish the frequency of 20q13 amplification and select the amplified cases to be studied, we used fluorescence in situ hybridization of bacterial artificial chromosome probes for three 20q13 loci (MYBL2, STK6, ZNF217) on sections of tissue microarrays containing 466 primary carcinoma samples. We used Affymetryx whole-genome DNA microarrays to establish the gene expression profiles of 20q13-amplified tumors and quantitative reverse transcription-PCR to validate the results. RESULTS We found 36 (8%) 20q13-amplified samples. They were distributed in two types: type 1 tumors showed ZNF217 amplification only, whereas type 2 tumors showed amplification at two or three loci. Examination of the histoclinical features of the amplified tumors showed two strikingly opposite data. First, type 1 tumors were more frequently lymph node-negative tumors but were paradoxically associated with a poor prognosis. Second, type 2 tumors were more frequently lymph node-positive tumors but were paradoxically associated with a good prognosis. Type 1 and type 2 showed different gene expression profiles. No 20q13 gene could be associated with type 1 amplification, whereas several 20q13 genes were overexpressed in type 2 tumors. CONCLUSIONS Our results suggest that amplified tumors of types 1 and 2 are two distinct entities resulting from two different mechanisms and associated to different prognosis.
Collapse
Affiliation(s)
- Christophe Ginestier
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, UMR599 Inserm, Marseilles, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang ZQ, Streicher KL, Ray ME, Abrams J, Ethier SP. Multiple Interacting Oncogenes on the 8p11-p12 Amplicon in Human Breast Cancer. Cancer Res 2006; 66:11632-43. [PMID: 17178857 DOI: 10.1158/0008-5472.can-06-2946] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 8p11-p12 genomic region is amplified in 15% of breast cancers and harbors several candidate oncogenes. However, functional evidence for a transforming role for these genes is lacking. We identified 21 genes from this region as potential oncogenes based on statistical association between copy number and expression. We further showed that three of these genes (LSM1, BAG4, and C8orf4) induce transformed phenotypes when overexpressed in MCF-10A cells, and overexpression of these genes in combination influences the growth factor independence phenotype and the ability of the cells to grow under anchorage-independent conditions. Thus, LSM1, BAG4, and C8orf4 are breast cancer oncogenes that can work in combination to influence the transformed phenotype in human mammary epithelial cells.
Collapse
Affiliation(s)
- Zeng Quan Yang
- Breast Cancer Program, University of Michigan School of Medicine, Ann Arbor, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
18
|
Stilwell JL, Guan Y, Neve RM, Gray JW. Systems biology in cancer research: genomics to cellomics. Methods Mol Biol 2006; 356:353-65. [PMID: 16988415 PMCID: PMC2733877 DOI: 10.1385/1-59745-217-3:353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancers result from large-scale deregulation of genes that lead to cancer pathophysiologies such as increase proliferation, decreased apoptosis, increased motility, increased angiogenesis, and others. Genes that influence proliferation and apoptosis are particularly attractive as therapeutic targets. To identify genes that influence these phenotypes, we have developed simple and rapid methods to measure apoptosis and cell proliferation using high content screening with YO-PRO-1 and anti-BrdU staining of BrdU pulsed cells, respectively.
Collapse
|
19
|
Melchor L, Alvarez S, Honrado E, Palacios J, Barroso A, Díez O, Osorio A, Benítez J. The Accumulation of Specific Amplifications Characterizes Two Different Genomic Pathways of Evolution of Familial Breast Tumors. Clin Cancer Res 2005; 11:8577-84. [PMID: 16361540 DOI: 10.1158/1078-0432.ccr-05-1278] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE AND METHODS High-level DNA amplifications are recurrently found in breast cancer, and some of them are associated with poor patient prognosis. To determine their frequency and co-occurrence in familial breast cancer, we have analyzed 80 tumors previously characterized for BRCA1 and BRCA2 germ-line mutations (26 BRCA1, 18 BRCA2, and 36 non-BRCA1/2) using high-resolution comparative genomic hybridization. RESULTS Twenty-one regions were identified as recurrently amplified, such as 8q21-23 (26.25%), 17q22-25 (13.75%), 13q21-31 (12.50%), and 8q24 (11.25%), many of which were altered in each familial breast cancer group. These amplifications defined an amplifier phenotype that is correlated with a higher genomic instability. Based on these amplifications, two different genomic pathways have been established in association with 8q21-23 and/or 17q22-25 and with 13q21-31 amplification. These pathways are associated with specific genomic regions of amplification, carry specific immunohistochemical characteristics coincident with high and low aggressiveness, and have a trend to be associated with BRCA1 and BRCA2/X, respectively. CONCLUSION In summary, our data suggest the existence of two different patterns of evolution, probably common to familial and sporadic breast tumors.
Collapse
Affiliation(s)
- Lorenzo Melchor
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Center, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mehta KR, Nakao K, Zuraek MB, Ruan DT, Bergsland EK, Venook AP, Moore DH, Tokuyasu TA, Jain AN, Warren RS, Terdiman JP, Waldman FM. Fractional Genomic Alteration Detected by Array-Based Comparative Genomic Hybridization Independently Predicts Survival after Hepatic Resection for Metastatic Colorectal Cancer. Clin Cancer Res 2005; 11:1791-7. [PMID: 15756001 DOI: 10.1158/1078-0432.ccr-04-1418] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Although liver resection is the primary curative therapy for patients with colorectal hepatic metastases, most patients have a recurrence. Identification of molecular markers that predict patients at highest risk for recurrence may help to target further therapy. EXPERIMENTAL DESIGN Array-based comparative genomic hybridization was used to investigate the association of DNA copy number alterations with outcome in patients with colorectal liver metastasis resected with curative intent. DNA from 50 liver metastases was labeled and hybridized onto an array consisting of 2,463 bacterial artificial chromosome clones covering the entire genome. The total fraction of genome altered (FGA) in the metastases and the patient's clinical risk score (CRS) were calculated to identify independent prognostic factors for survival. RESULTS An average of 30 +/- 14% of the genome was altered in the liver metastases (14% gained and 16% lost). As expected, a lower CRS was an independent predictor of overall survival (P = 0.03). In addition, a high FGA also was an independent predictor of survival (P = 0.01). The median survival time in patients with a low CRS (score 0-2) and a high (> or =20%) FGA was 38 months compared with 18 months in patients with a low CRS and a low FGA. Supervised analyses, using Prediction Analysis of Microarrays and Significance Analysis of Microarrays, identified a set of clones, predominantly located on chromosomes 7 and 20, which best predicted survival. CONCLUSIONS Both FGA and CRS are independent predictors of survival in patients with resected hepatic colorectal cancer metastases. The greater the FGA, the more likely the patient is to survive.
Collapse
Affiliation(s)
- Kshama R Mehta
- Comprehensive Cancer Center, Department of Surgery, University of California-San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Holzmann K, Kohlhammer H, Schwaenen C, Wessendorf S, Kestler HA, Schwoerer A, Rau B, Radlwimmer B, Döhner H, Lichter P, Gress T, Bentz M. Genomic DNA-chip hybridization reveals a higher incidence of genomic amplifications in pancreatic cancer than conventional comparative genomic hybridization and leads to the identification of novel candidate genes. Cancer Res 2004; 64:4428-33. [PMID: 15231651 DOI: 10.1158/0008-5472.can-04-0431] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genomic analyses aimed at the detection of high-level DNA amplifications were performed on 13 widely used pancreatic cancer cell lines and 6 pancreatic tumor specimens. For these analyses, array-based comparative genomic hybridization (Matrix-CGH) onto dedicated microarrays was used. In comparison with chromosomal CGH (eight amplifications), a >3-fold number of DNA amplifications was detected (n = 29). The most frequent amplifications mapped to 7p12.3 (three pancreatic cancer cell lines and three pancreatic tumor specimens), 8q24 (four pancreatic cancer cell lines and one pancreatic tumor specimen), 11q13 (three pancreatic cancer cell lines and three pancreatic tumor specimens), and 20q13 (four pancreatic cancer cell lines and three pancreatic tumor specimens). Genes contained in the consensus regions were MYC (8q24), EGFR (7p12.3), and FGF3 (11q13). In six of seven pancreatic cancer cell lines and pancreatic tumor specimens with 20q13 amplifications, the novel candidate gene NFAT C2, which plays a role in the activation of cytokines, was amplified. Other amplifications also affected genes for which a pathogenetic role in pancreatic carcinoma has not been described, such as BCL10 and BCL6, two members of the BCL family. A subset of amplified genes was checked for overexpression by means of real-time PCR, revealing the highest expression levels for BCL6 and BCL10. Thus, Matrix-CGH allows the detection of a high number of amplifications, resulting in the identification of novel candidate genes in pancreatic cancer.
Collapse
|
22
|
Watson JEV, Doggett NA, Albertson DG, Andaya A, Chinnaiyan A, van Dekken H, Ginzinger D, Haqq C, James K, Kamkar S, Kowbel D, Pinkel D, Schmitt L, Simko JP, Volik S, Weinberg VK, Paris PL, Collins C. Integration of high-resolution array comparative genomic hybridization analysis of chromosome 16q with expression array data refines common regions of loss at 16q23–qter and identifies underlying candidate tumor suppressor genes in prostate cancer. Oncogene 2004; 23:3487-94. [PMID: 15007382 DOI: 10.1038/sj.onc.1207474] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have constructed a high-resolution genomic microarray of human chromosome 16q, and used it for comparative genomic hybridization analysis of 16 prostate tumors. We demarcated 10 regions of genomic loss between 16q23.1 and 16qter that occurred in five or more samples. Mining expression array data from four independent studies allowed us to identify 11 genes that were frequently underexpressed in prostate cancer and that co-localized with a region of genomic loss. Quantitative expression analyses of these genes in matched tumor and benign tissue from 13 patients showed that six of these 11 (WWOX, WFDC1, MAF, FOXF1, MVD and the predicted novel transcript Q9H0B8 (NM_031476)) had significant and consistent downregulation in the tumors relative to normal prostate tissue expression making them candidate tumor suppressor genes.
Collapse
Affiliation(s)
- J E Vivienne Watson
- Collins Lab, UCSF Comprehensive Cancer Center, University of California, 2340 Sutter Street, San Francisco, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hurst CD, Fiegler H, Carr P, Williams S, Carter NP, Knowles MA. High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization. Oncogene 2004; 23:2250-63. [PMID: 14968109 DOI: 10.1038/sj.onc.1207260] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have screened 22 bladder tumour-derived cell lines and one normal urothelium-derived cell line for genome-wide copy number changes using array comparative genomic hybridization (CGH). Comparison of array CGH with existing multiplex-fluorescence in situ hybridization (M-FISH) results revealed excellent concordance. Regions of gain and loss were defined more accurately by array CGH, and several small regions of deletion were detected that were not identified by M-FISH. Numerous genetic changes were identified, many of which were compatible with previous results from conventional CGH and loss of heterozygosity analyses on bladder tumours. The most frequent changes involved complete or partial loss of 4q (83%) and gain of 20q (78%). Other frequent losses were of 18q (65%), 8p (65%), 2q (61%), 6q (61%), 3p (56%), 13q (56%), 4p (52%), 6p (52%), 10p (52%), 10q (52%) and 5p (43%). We have refined the localization of a region of deletion at 8p21.2-p21.3 to an interval of approximately 1 Mb. Five homozygous deletions of tumour suppressor genes were confirmed, and several potentially novel homozygous deletions were identified. In all, 15 high-level amplifications were detected, with a previously reported amplification at 6p22.3 being the most frequent. Real-time PCR analysis revealed a novel candidate gene with consistent overexpression in all cell lines with the 6p22.3 amplicon.
Collapse
Affiliation(s)
- Carolyn D Hurst
- Cancer Research UK Clinical Centre, St James's University Hospital, Beckett St, Leeds LS9 7TF, UK
| | | | | | | | | | | |
Collapse
|
24
|
Volik S, Zhao S, Chin K, Brebner JH, Herndon DR, Tao Q, Kowbel D, Huang G, Lapuk A, Kuo WL, Magrane G, De Jong P, Gray JW, Collins C. End-sequence profiling: sequence-based analysis of aberrant genomes. Proc Natl Acad Sci U S A 2003; 100:7696-701. [PMID: 12788976 PMCID: PMC164650 DOI: 10.1073/pnas.1232418100] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome rearrangements are important in evolution, cancer, and other diseases. Precise mapping of the rearrangements is essential for identification of the involved genes, and many techniques have been developed for this purpose. We show here that end-sequence profiling (ESP) is particularly well suited to this purpose. ESP is accomplished by constructing a bacterial artificial chromosome (BAC) library from a test genome, measuring BAC end sequences, and mapping end-sequence pairs onto the normal genome sequence. Plots of BAC end-sequences density identify copy number abnormalities at high resolution. BACs spanning structural aberrations have end pairs that map abnormally far apart on the normal genome sequence. These pairs can then be sequenced to determine the involved genes and breakpoint sequences. ESP analysis of the breast cancer cell line MCF-7 demonstrated its utility for analysis of complex genomes. End sequencing of approximately 8,000 clones (0.37-fold haploid genome clonal coverage) produced a comprehensive genome copy number map of the MCF-7 genome at better than 300-kb resolution and identified 381 genome breakpoints, a subset of which was verified by fluorescence in situ hybridization mapping and sequencing.
Collapse
Affiliation(s)
- Stanislav Volik
- Cancer Research Institute and Department of Laboratory Medicine, University of California Comprehensive Cancer Center, 2340 Sutter Street, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Neve RM, Ylstra B, Chang CH, Albertson DG, Benz CC. ErbB2 activation of ESX gene expression. Oncogene 2002; 21:3934-8. [PMID: 12032832 DOI: 10.1038/sj.onc.1205503] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Revised: 03/15/2002] [Accepted: 03/19/2002] [Indexed: 11/09/2022]
Abstract
Various members of the Ets multigene family exhibit diverse roles in development, cell differentiation, tissue-specific gene expression and human malignancy. In the search for Ets factors involved in mammary gland development and malignancy, ESX was found to be upregulated in a subset of breast tumours and cell lines. We report the transcriptional regulation of ESX in epithelial breast cancer cells. Transient reporter assays using the ESX promoter show that ESX transcription is regulated by ErbB receptor signalling. In cell lines and in 45 primary ductal breast cancers we show that ESX transcript expression significantly correlates with ErbB2 transcript levels. Moreover, expression of ErbB2 in cells upregulates ESX promoter activity while inhibition of ErbB2 or its downstream signaling pathways decrease both ESX promoter activity and endogenous ESX protein levels. These results indicate that the ESX promoter represents a transcriptional target of ErbB2, and ESX expression may represent a downstream mediator of ErbB2 signaling and ErbB2-induced gene expression.
Collapse
Affiliation(s)
- Richard M Neve
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | | | | | | | | |
Collapse
|