1
|
Yavuz S, Abraham TE, Houtsmuller AB, van Royen ME. Phase Separation Mediated Sub-Nuclear Compartmentalization of Androgen Receptors. Cells 2024; 13:1693. [PMID: 39451211 PMCID: PMC11506798 DOI: 10.3390/cells13201693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The androgen receptor (AR), a member of the nuclear steroid hormone receptor family of transcription factors, plays a crucial role not only in the development of the male phenotype but also in the development and growth of prostate cancer. While AR structure and AR interactions with coregulators and chromatin have been studied in detail, improving our understanding of AR function in gene transcription regulation, the spatio-temporal organization and the role of microscopically discernible AR foci in the nucleus are still underexplored. This review delves into the molecular mechanisms underlying AR foci formation, focusing on liquid-liquid phase separation and its role in spatially organizing ARs and their binding partners within the nucleus at transcription sites, as well as the influence of 3D-genome organization on AR-mediated gene transcription.
Collapse
Affiliation(s)
- Selçuk Yavuz
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
| | - Tsion E. Abraham
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.E.A.)
| | - Adriaan B. Houtsmuller
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.E.A.)
| | - Martin E. van Royen
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
| |
Collapse
|
2
|
Zhao SG, Bootsma M, Zhou S, Shrestha R, Moreno-Rodriguez T, Lundberg A, Pan C, Arlidge C, Hawley JR, Foye A, Weinstein AS, Sjöström M, Zhang M, Li H, Chesner LN, Rydzewski NR, Helzer KT, Shi Y, Lynch M, Dehm SM, Lang JM, Alumkal JJ, He HH, Wyatt AW, Aggarwal R, Zwart W, Small EJ, Quigley DA, Lupien M, Feng FY. Integrated analyses highlight interactions between the three-dimensional genome and DNA, RNA and epigenomic alterations in metastatic prostate cancer. Nat Genet 2024; 56:1689-1700. [PMID: 39020220 PMCID: PMC11319208 DOI: 10.1038/s41588-024-01826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
The impact of variations in the three-dimensional structure of the genome has been recognized, but solid cancer tissue studies are limited. Here, we performed integrated deep Hi-C sequencing with matched whole-genome sequencing, whole-genome bisulfite sequencing, 5-hydroxymethylcytosine (5hmC) sequencing and RNA sequencing across a cohort of 80 biopsy samples from patients with metastatic castration-resistant prostate cancer. Dramatic differences were present in gene expression, 5-methylcytosine/5hmC methylation and in structural variation versus mutation rate between A and B (open and closed) chromatin compartments. A subset of tumors exhibited depleted regional chromatin contacts at the AR locus, linked to extrachromosomal circular DNA (ecDNA) and worse response to AR signaling inhibitors. We also identified topological subtypes associated with stark differences in methylation structure, gene expression and prognosis. Our data suggested that DNA interactions may predispose to structural variant formation, exemplified by the recurrent TMPRSS2-ERG fusion. This comprehensive integrated sequencing effort represents a unique clinical tumor resource.
Collapse
Grants
- R01 CA270539 NCI NIH HHS
- R01 CA276269 NCI NIH HHS
- R01 CA174777 NCI NIH HHS
- P50 CA097186 NCI NIH HHS
- 1DP2CA271832-01, P30 CA014520 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- DP2 CA271832 NCI NIH HHS
- P50 CA186786 NCI NIH HHS
- R01 CA251245, P50 CA097186, P50 CA186786, P50 CA186786-07S1, P30 CA046592, and W81XWH-20-1-0405 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- P30 CA046592 NCI NIH HHS
- R01 CA251245 NCI NIH HHS
- P30 CA014520 NCI NIH HHS
- W81XWH2010799 U.S. Department of Defense (United States Department of Defense)
- W81XWH-21-1-0046 U.S. Department of Defense (United States Department of Defense)
- SU2C-AACR-DT0812 EIF | Stand Up To Cancer (SU2C)
- Prostate Cancer Foundation (PCF)
- UCSF Benioff Initiative for Prostate Cancer Research
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- Canadian Institute of Health Research (CIHR) (FRN-153234 & 168933), the Canadian Epigenetics, Environment, and Health Research Consortium (CEEHRC) (FRN-158225), the Ontario Institute for Cancer Research (OICR) through funding provided by the Government of Ontario (IA 031), and the Princess Margaret Cancer Foundation.
Collapse
Affiliation(s)
- Shuang G Zhao
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Madison, WI, USA
| | - Matthew Bootsma
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Stanley Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Raunak Shrestha
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Thaidy Moreno-Rodriguez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Arian Lundberg
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Chu Pan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Arlidge
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - James R Hawley
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alana S Weinstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Meng Zhang
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Haolong Li
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Lisa N Chesner
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas R Rydzewski
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kyle T Helzer
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Yue Shi
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Molly Lynch
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Joshua M Lang
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshi J Alumkal
- Department of Internal Medicine, Division of Hematology-Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Hansen H He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Alexander W Wyatt
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Wilbert Zwart
- Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Ma T, Jin L, Bai S, Liu Z, Wang S, Shen B, Cho Y, Cao S, Sun MJS, Fazli L, Zhang D, Wedderburn C, Zhang DY, Mugon G, Ungerleider N, Baddoo M, Zhang K, Schiavone LH, Burkhardt BR, Fan J, You Z, Flemington EK, Dong X, Dong Y. Loss of feedback regulation between FAM3B and androgen receptor driving prostate cancer progression. J Natl Cancer Inst 2024; 116:421-433. [PMID: 37847647 PMCID: PMC10919334 DOI: 10.1093/jnci/djad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Although the fusion of the transmembrane serine protease 2 gene (TMPRSS2) with the erythroblast transformation-specific-related gene (ERG), or TMPRSS2-ERG, occurs frequently in prostate cancer, its impact on clinical outcomes remains controversial. Roughly half of TMPRSS2-ERG fusions occur through intrachromosomal deletion of interstitial genes and the remainder via insertional chromosomal rearrangements. Because prostate cancers with deletion-derived TMPRSS2-ERG fusions are more aggressive than those with insertional fusions, we investigated the impact of interstitial gene loss on prostate cancer progression. METHODS We conducted an unbiased analysis of transcriptome data from large collections of prostate cancer samples and employed diverse in vitro and in vivo models combined with genetic approaches to characterize the interstitial gene loss that imposes the most important impact on clinical outcome. RESULTS This analysis identified FAM3B as the top-ranked interstitial gene whose loss is associated with a poor prognosis. The association between FAM3B loss and poor clinical outcome extended to fusion-negative prostate cancers where FAM3B downregulation occurred through epigenetic imprinting. Importantly, FAM3B loss drives disease progression in prostate cancer. FAM3B acts as an intermediator of a self-governing androgen receptor feedback loop. Specifically, androgen receptor upregulates FAM3B expression by binding to an intronic enhancer to induce an enhancer RNA and facilitate enhancer-promoter looping. FAM3B, in turn, attenuates androgen receptor signaling. CONCLUSION Loss of FAM3B in prostate cancer, whether through the TMPRSS2-ERG translocation or epigenetic imprinting, causes an exit from this autoregulatory loop to unleash androgen receptor activity and prostate cancer progression. These findings establish FAM3B loss as a new driver of prostate cancer progression and support the utility of FAM3B loss as a biomarker to better define aggressive prostate cancer.
Collapse
Affiliation(s)
- Tianfang Ma
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Lianjin Jin
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Shanshan Bai
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Zhan Liu
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Shuo Wang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Urological Department, Peking University Cancer Hospital & Institute, Beijing, China
| | - Beibei Shen
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yeyoung Cho
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Subing Cao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Meijuan J S Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ladan Fazli
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - David Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Duke University, Durham, NC, USA
| | - Chiyaro Wedderburn
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Derek Y Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Gavisha Mugon
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Kun Zhang
- Department of Computer Science, Bioinformatics Facility of Xavier RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
| | | | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Jia Fan
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Xuesen Dong
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| |
Collapse
|
4
|
Abbas A, Chandratre K, Gao Y, Yuan J, Zhang MQ, Mani RS. ChIPr: accurate prediction of cohesin-mediated 3D genome organization from 2D chromatin features. Genome Biol 2024; 25:15. [PMID: 38217027 PMCID: PMC10785520 DOI: 10.1186/s13059-023-03158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/22/2023] [Indexed: 01/14/2024] Open
Abstract
The three-dimensional genome organization influences diverse nuclear processes. Here we present Chromatin Interaction Predictor (ChIPr), a suite of regression models based on deep neural networks, random forest, and gradient boosting to predict cohesin-mediated chromatin interaction strength between any two loci in the genome. The predictions of ChIPr correlate well with ChIA-PET data in four cell lines. The standard ChIPr model requires three experimental inputs: ChIP-Seq signals for RAD21, H3K27ac, and H3K27me3 but works well with just RAD21 signal. Integrative analysis reveals novel insights into the role of CTCF motif, its orientation, and CTCF binding on cohesin-mediated chromatin interactions.
Collapse
Affiliation(s)
- Ahmed Abbas
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Khyati Chandratre
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yunpeng Gao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiapei Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - Ram S Mani
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
5
|
Bhattacharyya S, Ehsan SF, Karacosta LG. Phenotypic maps for precision medicine: a promising systems biology tool for assessing therapy response and resistance at a personalized level. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1256104. [PMID: 37964768 PMCID: PMC10642209 DOI: 10.3389/fnetp.2023.1256104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023]
Abstract
In this perspective we discuss how tumor heterogeneity and therapy resistance necessitate a focus on more personalized approaches, prompting a shift toward precision medicine. At the heart of the shift towards personalized medicine, omics-driven systems biology becomes a driving force as it leverages high-throughput technologies and novel bioinformatics tools. These enable the creation of systems-based maps, providing a comprehensive view of individual tumor's functional plasticity. We highlight the innovative PHENOSTAMP program, which leverages high-dimensional data to construct a visually intuitive and user-friendly map. This map was created to encapsulate complex transitional states in cancer cells, such as Epithelial-Mesenchymal Transition (EMT) and Mesenchymal-Epithelial Transition (MET), offering a visually intuitive way to understand disease progression and therapeutic responses at single-cell resolution in relation to EMT-related single-cell phenotypes. Most importantly, PHENOSTAMP functions as a reference map, which allows researchers and clinicians to assess one clinical specimen at a time in relation to their phenotypic heterogeneity, setting the foundation on constructing phenotypic maps for personalized medicine. This perspective argues that such dynamic predictive maps could also catalyze the development of personalized cancer treatment. They hold the potential to transform our understanding of cancer biology, providing a foundation for a future where therapy is tailored to each patient's unique molecular and cellular tumor profile. As our knowledge of cancer expands, these maps can be continually refined, ensuring they remain a valuable tool in precision oncology.
Collapse
Affiliation(s)
- Sayantan Bhattacharyya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shafqat F. Ehsan
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Loukia G. Karacosta
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Abstract
The human genome is organized into multiple structural layers, ranging from chromosome territories to progressively smaller substructures, such as topologically associating domains (TADs) and chromatin loops. These substructures, collectively referred to as long-range chromatin interactions (LRIs), have a significant role in regulating gene expression. TADs are regions of the genome that harbour groups of genes and regulatory elements that frequently interact with each other and are insulated from other regions, thereby preventing widespread uncontrolled DNA contacts. Chromatin loops formed within TADs through enhancer and promoter interactions are elastic, allowing transcriptional heterogeneity and stochasticity. Over the past decade, it has become evident that the 3D genome structure, also referred to as the chromatin architecture, is central to many transcriptional cellular decisions. In this Review, we delve into the intricate relationship between steroid receptors and LRIs, discussing how steroid receptors interact with and modulate these chromatin interactions. Genetic alterations in the many processes involved in organizing the nuclear architecture are often associated with the development of hormone-dependent cancers. A better understanding of the interplay between architectural proteins and hormone regulatory networks can ultimately be exploited to develop improved approaches for cancer treatment.
Collapse
Affiliation(s)
- Theophilus T Tettey
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Lorenzo Rinaldi
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
7
|
Dai D, Yu J, Huang T, Li Y, Wang Z, Yang S, Li S, Li Y, Gou W, Li D, Hou W, Fan S, Li Y, Zhao Y. PET imaging of new target CDK19 in prostate cancer. Eur J Nucl Med Mol Imaging 2023; 50:3452-3464. [PMID: 37278941 DOI: 10.1007/s00259-023-06277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA)-positron emission tomography (PET) is a superior method to predict patients' risk of cancer progression and response to specific therapies. However, its performance is limited for neuroendocrine prostate cancer (NEPC) and PSMA-low prostate cancer cells, resulting in diagnostic blind spots. Hence, identifying novel specific targets is our aim for diagnosing those prostate cancers with low PSMA expression. METHODS The Cancer Genome Atlas (TCGA) database and our cohorts from men with biopsy-proven high-risk metastatic prostate cancer were used to identify CDK19 and PSMA expression. PDX lines neP-09 and P-16 primary cells were used for cellular uptake and imaging mass cytometry in vitro. To evaluate in vivo CDK19-specific uptake of gallium(Ga)-68-IRM-015-DOTA, xenograft mice models and blocking assays were used. PET/CT imaging data were obtained to estimate the absorbed dose in organs. RESULTS Our study group had reported the overexpression of a novel tissue-specific gene CDK19 in high-risk metastatic prostate cancer and CDK19 expression correlated with metastatic status and tumor staging, independently with PSMA and PSA levels. Following up on this new candidate for use in diagnostics, small molecules targeting CDK19 labeled with Ga-68 (68Ga-IRM-015-DOTA) were used for PET in this study. We found that the 68Ga-IRM-015-DOTA was specificity for prostate cancer cells, but the other cancer cells also took up little 68Ga-IRM-015-DOTA. Importantly, mouse imaging data showed that the NEPC and CRPC xenografts exhibited similar signal strength with 68Ga-IRM-015-DOTA, but 68Ga-PSMA-11 only stained the CRPC xenografts. Furthermore, target specificity was elucidated by a blocking experiment on a CDK19-bearing tumor xenograft. These data concluded that 68Ga-CDK19 PET/CT was an effective technology to detect lesions with or without PSMA in vitro, in vivo, and in the PDX model. CONCLUSION Thus, we have generated a novel PET small molecule with predictive value for prostate cancer. The findings indicate that 68Ga-CDK19 may merit further evaluation as a predictive biomarker for PET scans in prospective cohorts and may facilitate the identification of molecular types of prostate cancer independent of PSMA.
Collapse
Affiliation(s)
- Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300000, Tianjin, China
- Department of Molecular Medicine, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, 300308, Tianjin, China
| | - Jiang Yu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China
| | - Ting Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China
| | - Yansheng Li
- Department of PET-CT Diagnostic, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, 300020, Tianjin, China
| | - Ziyang Wang
- Department of Molecular Medicine, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, 300308, Tianjin, China
| | - Shuangmeng Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China
| | - Shuai Li
- Department of PET-CT Diagnostic, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, 300020, Tianjin, China
| | - Yanli Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China
| | - Wenbin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China.
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China.
| | - Yu Zhao
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300000, Tianjin, China.
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 300192, Tianjin, China.
| |
Collapse
|
8
|
Barker R, Biernacka K, Kingshott G, Sewell A, Gwiti P, Martin RM, Lane JA, McGeagh L, Koupparis A, Rowe E, Oxley J, Perks CM, Holly JMP. Associations of CTCF and FOXA1 with androgen and IGF pathways in men with localized prostate cancer. Growth Horm IGF Res 2023; 69-70:101533. [PMID: 37086646 DOI: 10.1016/j.ghir.2023.101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
AIMS To examine associations between the transcription factors CCCTC-binding factor (CTCF) and forkhead box protein A1 (FOXA1) and the androgen receptor (AR) and their association with components of the insulin-like growth factor (IGF)-pathway in a cohort of men with localized prostate cancer. METHODS Using prostate tissue samples collected during the Prostate cancer: Evidence of Exercise and Nutrition Trial (PrEvENT) trial (N = 70 to 92, depending on section availability), we assessed the abundance of CTCF, FOXA1, AR, IGFIR, p-mTOR, PTEN and IGFBP-2 proteins using a modified version of the Allred scoring system. Validation studies were performed using large, publicly available datasets (TCGA) (N = 489). RESULTS We identified a strong correlation between CTCF and AR staining with benign prostate tissue. CTCF also strongly associated with the IGFIR, with PTEN and with phospho-mTOR. FOXA1 was also correlated with staining for the IGF-IR, with IGFBP-2 and with staining for activated phosphor-mTOR. The staining for the IGF-IR was strongly correlated with the AR. CONCLUSION Our findings emphasise the close and complex links between the endocrine controls, well known to play an important role in prostate cancer, and the transcription factors implicated by the recent genetic evidence.
Collapse
Affiliation(s)
- Rachel Barker
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| | - Kalina Biernacka
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| | - Georgina Kingshott
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| | - Alex Sewell
- Department of Cellular Pathology, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Paida Gwiti
- Department of Cellular Pathology, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK; Department of Pathology, North West Anglia NHS Foundation Trust, Peterborough PE3 9GZ, UK
| | - Richard M Martin
- Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK; National Institute for Health Research, Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Biomedical Research Unit Offices, University Hospitals Bristol Education Centre, Dental Hospital, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - J Athene Lane
- Bristol Trials Centre, Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
| | - Lucy McGeagh
- Supportive Cancer Care Research Group, Faculty of Health and Life Sciences, Oxford Institute of Nursing, Midwifery and Allied Health Research, Oxford Brookes University, Jack Straws Lane, Marston, Oxford OX3 0FL, UK
| | - Anthony Koupparis
- Department of Urology, Bristol Urological Institute, Southmead Hospital, Bristol BS10 5NB, UK
| | - Edward Rowe
- Department of Urology, Bristol Urological Institute, Southmead Hospital, Bristol BS10 5NB, UK
| | - Jon Oxley
- Department of Cellular Pathology, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Claire M Perks
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK.
| | - Jeff M P Holly
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| |
Collapse
|
9
|
Wei Z, Wang S, Xu Y, Wang W, Soares F, Ahmed M, Su P, Wang T, Orouji E, Xu X, Zeng Y, Chen S, Liu X, Jia T, Liu Z, Du L, Wang Y, Chen S, Wang C, He HH, Guo H. MYC reshapes CTCF-mediated chromatin architecture in prostate cancer. Nat Commun 2023; 14:1787. [PMID: 36997534 PMCID: PMC10063626 DOI: 10.1038/s41467-023-37544-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
MYC is a well characterized oncogenic transcription factor in prostate cancer, and CTCF is the main architectural protein of three-dimensional genome organization. However, the functional link between the two master regulators has not been reported. In this study, we find that MYC rewires prostate cancer chromatin architecture by interacting with CTCF protein. Through combining the H3K27ac, AR and CTCF HiChIP profiles with CRISPR deletion of a CTCF site upstream of MYC gene, we show that MYC activation leads to profound changes of CTCF-mediated chromatin looping. Mechanistically, MYC colocalizes with CTCF at a subset of genomic sites, and enhances CTCF occupancy at these loci. Consequently, the CTCF-mediated chromatin looping is potentiated by MYC activation, resulting in the disruption of enhancer-promoter looping at neuroendocrine lineage plasticity genes. Collectively, our findings define the function of MYC as a CTCF co-factor in three-dimensional genome organization.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Song Wang
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Yaning Xu
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Wenzheng Wang
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Fraser Soares
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Musaddeque Ahmed
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Ping Su
- National Administration of Health Data, Jinan, 250000, China
| | - Tingting Wang
- Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Elias Orouji
- Epigenetics Initiative, Princess Margaret Genomics Centre, Toronto, ON, Canada
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Xu
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Yong Zeng
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Sujun Chen
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Xiaoyu Liu
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Tianwei Jia
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lutao Du
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Shaoyong Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Chuanxin Wang
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China
| | - Housheng Hansen He
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, M5G 1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada.
| | - Haiyang Guo
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China.
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China.
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China.
| |
Collapse
|
10
|
Yuan J, Houlahan KE, Ramanand SG, Lee S, Baek G, Yang Y, Chen Y, Strand DW, Zhang MQ, Boutros PC, Mani RS. Prostate Cancer Transcriptomic Regulation by the Interplay of Germline Risk Alleles, Somatic Mutations, and 3D Genomic Architecture. Cancer Discov 2022; 12:2838-2855. [PMID: 36108240 PMCID: PMC9722594 DOI: 10.1158/2159-8290.cd-22-0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/18/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023]
Abstract
Prostate cancer is one of the most heritable human cancers. Genome-wide association studies have identified at least 185 prostate cancer germline risk alleles, most noncoding. We used integrative three-dimensional (3D) spatial genomics to identify the chromatin interaction targets of 45 prostate cancer risk alleles, 31 of which were associated with the transcriptional regulation of target genes in 565 localized prostate tumors. To supplement these 31, we verified transcriptional targets for 56 additional risk alleles using linear proximity and linkage disequilibrium analysis in localized prostate tumors. Some individual risk alleles influenced multiple target genes; others specifically influenced only distal genes while leaving proximal ones unaffected. Several risk alleles exhibited widespread germline-somatic interactions in transcriptional regulation, having different effects in tumors with loss of PTEN or RB1 relative to those without. These data clarify functional prostate cancer risk alleles in large linkage blocks and outline a strategy to model multidimensional transcriptional regulation. SIGNIFICANCE Many prostate cancer germline risk alleles are enriched in the noncoding regions of the genome and are hypothesized to regulate transcription. We present a 3D genomics framework to unravel risk SNP function and describe the widespread germline-somatic interplay in transcription control. This article is highlighted in the In This Issue feature, p. 2711.
Collapse
Affiliation(s)
- Jiapei Yuan
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas,State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China
| | - Kathleen E Houlahan
- Department of Human Genetics, University of California, Los Angeles, California,Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, California,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada,Vector Institute, Toronto, ON M5G 1M1, Canada,Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | | | - Sora Lee
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - GuemHee Baek
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Yang Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yong Chen
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey
| | - Douglas W. Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Michael Q. Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas,MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department Automation, Tsinghua University, Beijing 100084, China
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, California,Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, California,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada,Vector Institute, Toronto, ON M5G 1M1, Canada,Department of Urology, University of California, Los Angeles, California,Institute for Precision Health, University of California, Los Angeles, California
| | - Ram S. Mani
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas,Department of Urology, UT Southwestern Medical Center, Dallas, Texas,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
11
|
Kneppers J, Severson TM, Siefert JC, Schol P, Joosten SEP, Yu IPL, Huang CCF, Morova T, Altıntaş UB, Giambartolomei C, Seo JH, Baca SC, Carneiro I, Emberly E, Pasaniuc B, Jerónimo C, Henrique R, Freedman ML, Wessels LFA, Lack NA, Bergman AM, Zwart W. Extensive androgen receptor enhancer heterogeneity in primary prostate cancers underlies transcriptional diversity and metastatic potential. Nat Commun 2022; 13:7367. [PMID: 36450752 PMCID: PMC9712620 DOI: 10.1038/s41467-022-35135-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Androgen receptor (AR) drives prostate cancer (PCa) development and progression. AR chromatin binding profiles are highly plastic and form recurrent programmatic changes that differentiate disease stages, subtypes and patient outcomes. While prior studies focused on concordance between patient subgroups, inter-tumor heterogeneity of AR enhancer selectivity remains unexplored. Here we report high levels of AR chromatin binding heterogeneity in human primary prostate tumors, that overlap with heterogeneity observed in healthy prostate epithelium. Such heterogeneity has functional consequences, as somatic mutations converge on commonly-shared AR sites in primary over metastatic tissues. In contrast, less-frequently shared AR sites associate strongly with AR-driven gene expression, while such heterogeneous AR enhancer usage also distinguishes patients' outcome. These findings indicate that epigenetic heterogeneity in primary disease is directly informative for risk of biochemical relapse. Cumulatively, our results illustrate a high level of AR enhancer heterogeneity in primary PCa driving differential expression and clinical impact.
Collapse
Affiliation(s)
- Jeroen Kneppers
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tesa M Severson
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joseph C Siefert
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pieter Schol
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Stacey E P Joosten
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ivan Pak Lok Yu
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Chia-Chi Flora Huang
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Tunç Morova
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | | | - Claudia Giambartolomei
- Central RNA Lab, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
| | - Ji-Heui Seo
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
- The Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, USA
| | - Sylvan C Baca
- The Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, USA
| | - Isa Carneiro
- Department of Pathology, Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto and Porto Comprehensive Cancer Center, Porto, Portugal
| | - Eldon Emberly
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
| | - Carmen Jerónimo
- Department of Pathology, Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto and Porto Comprehensive Cancer Center, Porto, Portugal
| | - Rui Henrique
- Department of Pathology, Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto and Porto Comprehensive Cancer Center, Porto, Portugal
| | - Matthew L Freedman
- The Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, USA
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, USA
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nathan A Lack
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
- School of Medicine, Koç University, Istanbul, Turkey
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
12
|
Eickhoff N, Bergman AM, Zwart W. Homing in on a Moving Target: Androgen Receptor Cistromic Plasticity in Prostate Cancer. Endocrinology 2022; 163:6705578. [PMID: 36125208 DOI: 10.1210/endocr/bqac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/19/2022]
Abstract
The androgen receptor (AR) is the critical driver in prostate cancer and exerts its function mainly through transcriptional control. Recent advances in clinical studies and cell line models have illustrated that AR chromatin binding features are not static; rather they are highly variable yet reproducibly altered between clinical stages. Extensive genomic analyses of AR chromatin binding features in different disease stages have revealed a high degree of plasticity of AR chromatin interactions in clinical samples. Mechanistically, AR chromatin binding patterns are associated with specific somatic mutations on AR and other permutations, including mutations of AR-interacting proteins. Here we summarize the most recent studies on how the AR cistrome is dynamically altered in prostate cancer models and patient samples, and what implications this has for the identification of therapeutic targets to avoid the emergence of treatment resistance.
Collapse
Affiliation(s)
- Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
13
|
Baca SC, Singler C, Zacharia S, Seo JH, Morova T, Hach F, Ding Y, Schwarz T, Huang CCF, Anderson J, Fay AP, Kalita C, Groha S, Pomerantz MM, Wang V, Linder S, Sweeney CJ, Zwart W, Lack NA, Pasaniuc B, Takeda DY, Gusev A, Freedman ML. Genetic determinants of chromatin reveal prostate cancer risk mediated by context-dependent gene regulation. Nat Genet 2022; 54:1364-1375. [PMID: 36071171 PMCID: PMC9784646 DOI: 10.1038/s41588-022-01168-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/19/2022] [Indexed: 12/25/2022]
Abstract
Many genetic variants affect disease risk by altering context-dependent gene regulation. Such variants are difficult to study mechanistically using current methods that link genetic variation to steady-state gene expression levels, such as expression quantitative trait loci (eQTLs). To address this challenge, we developed the cistrome-wide association study (CWAS), a framework for identifying genotypic and allele-specific effects on chromatin that are also associated with disease. In prostate cancer, CWAS identified regulatory elements and androgen receptor-binding sites that explained the association at 52 of 98 known prostate cancer risk loci and discovered 17 additional risk loci. CWAS implicated key developmental transcription factors in prostate cancer risk that are overlooked by eQTL-based approaches due to context-dependent gene regulation. We experimentally validated associations and demonstrated the extensibility of CWAS to additional epigenomic datasets and phenotypes, including response to prostate cancer treatment. CWAS is a powerful and biologically interpretable paradigm for studying variants that influence traits by affecting transcriptional regulation.
Collapse
Affiliation(s)
- Sylvan C. Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA,The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Cassandra Singler
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Soumya Zacharia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tunc Morova
- Vancouver Prostate Centre University of British Columbia, Vancouver, BC, Canada
| | - Faraz Hach
- Vancouver Prostate Centre University of British Columbia, Vancouver, BC, Canada
| | - Yi Ding
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA
| | - Tommer Schwarz
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA
| | | | - Jacob Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - André P. Fay
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cynthia Kalita
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Division of Genetics, Brigham & Women’s Hospital, Boston, MA, USA
| | - Stefan Groha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Mark M. Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Victoria Wang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA,Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Simon Linder
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Nathan A. Lack
- Vancouver Prostate Centre University of British Columbia, Vancouver, BC, Canada,School of Medicine, Koç University, Istanbul, Turkey
| | - Bogdan Pasaniuc
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA,Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA USA,Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David Y. Takeda
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,The Eli and Edythe L. Broad Institute, Cambridge, MA, USA,Division of Genetics, Brigham & Women’s Hospital, Boston, MA, USA,These authors jointly supervised this work. Correspondence should be directed to M.L.F or A.G. ()
| | - Matthew L. Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA,The Eli and Edythe L. Broad Institute, Cambridge, MA, USA,These authors jointly supervised this work. Correspondence should be directed to M.L.F or A.G. ()
| |
Collapse
|
14
|
Linder S, Hoogstraat M, Stelloo S, Eickhoff N, Schuurman K, de Barros H, Alkemade M, Bekers EM, Severson TM, Sanders J, Huang CCF, Morova T, Altintas UB, Hoekman L, Kim Y, Baca SC, Sjostrom M, Zaalberg A, Hintzen DC, de Jong J, Kluin RJC, de Rink I, Giambartolomei C, Seo JH, Pasaniuc B, Altelaar M, Medema RH, Feng FY, Zoubeidi A, Freedman ML, Wessels LFA, Butler LM, Lack NA, van der Poel H, Bergman AM, Zwart W. Drug-induced epigenomic plasticity reprograms circadian rhythm regulation to drive prostate cancer towards androgen-independence. Cancer Discov 2022; 12:2074-2097. [PMID: 35754340 PMCID: PMC7613567 DOI: 10.1158/2159-8290.cd-21-0576] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/17/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
In prostate cancer, androgen receptor (AR)-targeting agents are very effective in various disease stages. However, therapy resistance inevitably occurs and little is known about how tumor cells adapt to bypass AR suppression. Here, we performed integrative multi-omics analyses on tissues isolated before and after 3 months of AR-targeting enzalutamide monotherapy from high-risk prostate cancer patients enrolled in a neoadjuvant clinical trial. Transcriptomic analyses demonstrated that AR inhibition drove tumors towards a neuroendocrine-like disease state. Additionally, epigenomic profiling revealed massive enzalutamide-induced reprogramming of pioneer factor FOXA1 - from inactive chromatin sites towards active cis-regulatory elements that dictate pro-survival signals. Notably, treatment-induced FOXA1 sites were enriched for circadian clock component ARNTL. Post-treatment ARNTL levels associated with poor outcome, and ARNTL knockout strongly decreased prostate cancer cell growth. Our data highlight a remarkable cistromic plasticity of FOXA1 following AR-targeted therapy, and revealed an acquired dependency on circadian regulator ARNTL, a novel candidate therapeutic target.
Collapse
Affiliation(s)
- Simon Linder
- The Netherlands Cancer Institute, Amsterdam, North Holland, Netherlands
| | | | - Suzan Stelloo
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Nils Eickhoff
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | | - Elise M Bekers
- The Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Joyce Sanders
- The Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Tunc Morova
- University of British Columbia, Vancouver, BC, Canada
| | | | | | | | - Sylvan C Baca
- Hungarian Academy of Sciences, Boston, United States
| | - Martin Sjostrom
- University of California, San Francisco, San Francisco, United States
| | | | | | | | - Roelof J C Kluin
- The Netherlands Cancer Institute, Amsterdam, Noord-Holland, Netherlands
| | | | | | - Ji-Heui Seo
- Dana-Farber Cancer Institute, BOSTON, Massachusetts, United States
| | - Bogdan Pasaniuc
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | | | - Rene H Medema
- University Medical Center Utrecht, Amsterdam, Netherlands
| | - Felix Y Feng
- University of California, San Francisco, San Francisco, CA, United States
| | - Amina Zoubeidi
- University of British Columbia, Vancouver, British Colombia, Canada
| | | | | | - Lisa M Butler
- University of Adelaide, School of Medicine and Freemasons Foundation Centre for Men's Health, Adelaide, SA, Australia
| | - Nathan A Lack
- University of British Columbia, Vancouver, BC, Canada
| | | | | | - Wilbert Zwart
- Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
15
|
Özturan D, Morova T, Lack NA. Androgen Receptor-Mediated Transcription in Prostate Cancer. Cells 2022; 11:898. [PMID: 35269520 PMCID: PMC8909478 DOI: 10.3390/cells11050898] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Androgen receptor (AR)-mediated transcription is critical in almost all stages of prostate cancer (PCa) growth and differentiation. This process involves a complex interplay of coregulatory proteins, chromatin remodeling complexes, and other transcription factors that work with AR at cis-regulatory enhancer regions to induce the spatiotemporal transcription of target genes. This enhancer-driven mechanism is remarkably dynamic and undergoes significant alterations during PCa progression. In this review, we discuss the AR mechanism of action in PCa with a focus on how cis-regulatory elements modulate gene expression. We explore emerging evidence of genetic variants that can impact AR regulatory regions and alter gene transcription in PCa. Finally, we highlight several outstanding questions and discuss potential mechanisms of this critical transcription factor.
Collapse
Affiliation(s)
- Doğancan Özturan
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Tunç Morova
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| | - Nathan A. Lack
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| |
Collapse
|
16
|
Kneppers J, Bergman AM, Zwart W. Prostate Cancer Epigenetic Plasticity and Enhancer Heterogeneity: Molecular Causes, Consequences and Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:255-275. [DOI: 10.1007/978-3-031-11836-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
|
17
|
Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, Asim M, Morrissey C, Palanisamy N, Ateeq B. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun 2021; 12:5325. [PMID: 34493733 PMCID: PMC8423767 DOI: 10.1038/s41467-021-25623-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Distal-less homeobox-1 (DLX1) is a well-established non-invasive biomarker for prostate cancer (PCa) diagnosis, however, its mechanistic underpinnings in disease pathobiology are not known. Here, we reveal the oncogenic role of DLX1 and show that abrogating its function leads to reduced tumorigenesis and metastases. We observed that ~60% of advanced-stage and metastatic patients display higher DLX1 levels. Moreover, ~96% of TMPRSS2-ERG fusion-positive and ~70% of androgen receptor (AR)-positive patients show elevated DLX1, associated with aggressive disease and poor survival. Mechanistically, ERG coordinates with enhancer-bound AR and FOXA1 to drive transcriptional upregulation of DLX1 in ERG-positive background. However, in ERG-negative context, AR/AR-V7 and FOXA1 suffice to upregulate DLX1. Notably, inhibiting ERG/AR-mediated DLX1 transcription using BET inhibitor (BETi) or/and anti-androgen drugs reduce its expression and downstream oncogenic effects. Conclusively, this study establishes DLX1 as a direct-target of ERG/AR with an oncogenic role and demonstrates the clinical significance of BETi and anti-androgens for DLX1-positive patients.
Collapse
Affiliation(s)
- Sakshi Goel
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Vipul Bhatia
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Sushmita Kundu
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Tanay Biswas
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Shannon Carskadon
- grid.239864.20000 0000 8523 7701Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI USA
| | - Nilesh Gupta
- grid.239864.20000 0000 8523 7701Department of Pathology, Henry Ford Health System, Detroit, MI USA
| | - Mohammad Asim
- grid.5475.30000 0004 0407 4824Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Colm Morrissey
- grid.34477.330000000122986657Department of Urology, University of Washington, Seattle, WA USA
| | - Nallasivam Palanisamy
- grid.239864.20000 0000 8523 7701Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI USA
| | - Bushra Ateeq
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India ,grid.417965.80000 0000 8702 0100The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| |
Collapse
|
18
|
Strittmatter BG, Jerde TJ, Hollenhorst PC. Ras/ERK and PI3K/AKT signaling differentially regulate oncogenic ERG mediated transcription in prostate cells. PLoS Genet 2021; 17:e1009708. [PMID: 34314419 PMCID: PMC8345871 DOI: 10.1371/journal.pgen.1009708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/06/2021] [Accepted: 07/10/2021] [Indexed: 11/19/2022] Open
Abstract
The TMPRSS2/ERG gene rearrangement occurs in 50% of prostate tumors and results in expression of the transcription factor ERG, which is normally silent in prostate cells. ERG expression promotes prostate tumor formation and luminal epithelial cell fates when combined with PI3K/AKT pathway activation, however the mechanism of synergy is not known. In contrast to luminal fates, expression of ERG alone in immortalized normal prostate epithelial cells promotes cell migration and epithelial to mesenchymal transition (EMT). Migration requires ERG serine 96 phosphorylation via endogenous Ras/ERK signaling. We found that a phosphomimetic mutant, S96E ERG, drove tumor formation and clonogenic survival without activated AKT. S96 was only phosphorylated on nuclear ERG, and differential recruitment of ERK to a subset of ERG-bound chromatin associated with ERG-activated, but not ERG-repressed genes. S96E did not alter ERG genomic binding, but caused a loss of ERG-mediated repression, EZH2 binding and H3K27 methylation. In contrast, AKT activation altered the ERG cistrome and promoted expression of luminal cell fate genes. These data suggest that, depending on AKT status, ERG can promote either luminal or EMT transcription programs, but ERG can promote tumorigenesis independent of these cell fates and tumorigenesis requires only the transcriptional activation function. ERG is the most common oncogene in prostate cancer. The ERG protein can bind DNA and can activate some genes and repress others. Previous studies indicated that ERG cannot promote cancer by itself, but that ERG works together with mutations that activate the protein AKT. In this study we found that activation of AKT changes the genes that ERG regulates, leading to luminal epithelial differentiation, which is a hallmark of most prostate tumors. However, we also found that a mutant version of ERG that can activate, but cannot repress genes, can drive prostate tumorigenesis without activation of AKT, but this mutant ERG cannot promote luminal differentiation. Our findings suggest that ERG mediated tumorigenesis only requires ERG’s activation function and can occur independent of luminal cell differentiation.
Collapse
Affiliation(s)
- Brady G. Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Travis J. Jerde
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Peter C. Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
19
|
Paakinaho V, Palvimo JJ. Genome-wide crosstalk between steroid receptors in breast and prostate cancers. Endocr Relat Cancer 2021; 28:R231-R250. [PMID: 34137734 PMCID: PMC8345902 DOI: 10.1530/erc-21-0038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Steroid receptors (SRs) constitute an important class of signal-dependent transcription factors (TFs). They regulate a variety of key biological processes and are crucial drug targets in many disease states. In particular, estrogen (ER) and androgen receptors (AR) drive the development and progression of breast and prostate cancer, respectively. Thus, they represent the main specific drug targets in these diseases. Recent evidence has suggested that the crosstalk between signal-dependent TFs is an important step in the reprogramming of chromatin sites; a signal-activated TF can expand or restrict the chromatin binding of another TF. This crosstalk can rewire gene programs and thus alter biological processes and influence the progression of disease. Lately, it has been postulated that there may be an important crosstalk between the AR and the ER with other SRs. Especially, progesterone (PR) and glucocorticoid receptor (GR) can reprogram chromatin binding of ER and gene programs in breast cancer cells. Furthermore, GR can take the place of AR in antiandrogen-resistant prostate cancer cells. Here, we review the current knowledge of the crosstalk between SRs in breast and prostate cancers. We emphasize how the activity of ER and AR on chromatin can be modulated by other SRs on a genome-wide scale. We also highlight the knowledge gaps in the interplay of SRs and their complex interactions with other signaling pathways and suggest how to experimentally fill in these gaps.
Collapse
Affiliation(s)
- Ville Paakinaho
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Correspondence should be addressed to J J Palvimo:
| |
Collapse
|
20
|
Kukkonen K, Taavitsainen S, Huhtala L, Uusi-Makela J, Granberg KJ, Nykter M, Urbanucci A. Chromatin and Epigenetic Dysregulation of Prostate Cancer Development, Progression, and Therapeutic Response. Cancers (Basel) 2021; 13:3325. [PMID: 34283056 PMCID: PMC8268970 DOI: 10.3390/cancers13133325] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The dysregulation of chromatin and epigenetics has been defined as the overarching cancer hallmark. By disrupting transcriptional regulation in normal cells and mediating tumor progression by promoting cancer cell plasticity, this process has the ability to mediate all defined hallmarks of cancer. In this review, we collect and assess evidence on the contribution of chromatin and epigenetic dysregulation in prostate cancer. We highlight important mechanisms leading to prostate carcinogenesis, the emergence of castration-resistance upon treatment with androgen deprivation therapy, and resistance to antiandrogens. We examine in particular the contribution of chromatin structure and epigenetics to cell lineage commitment, which is dysregulated during tumorigenesis, and cell plasticity, which is altered during tumor progression.
Collapse
Affiliation(s)
- Konsta Kukkonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Sinja Taavitsainen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Joonas Uusi-Makela
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Kirsi J. Granberg
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
21
|
Huang CCF, Lingadahalli S, Morova T, Ozturan D, Hu E, Yu IPL, Linder S, Hoogstraat M, Stelloo S, Sar F, van der Poel H, Altintas UB, Saffarzadeh M, Le Bihan S, McConeghy B, Gokbayrak B, Feng FY, Gleave ME, Bergman AM, Collins C, Hach F, Zwart W, Emberly E, Lack NA. Functional mapping of androgen receptor enhancer activity. Genome Biol 2021; 22:149. [PMID: 33975627 PMCID: PMC8112059 DOI: 10.1186/s13059-021-02339-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/02/2021] [Indexed: 01/22/2023] Open
Abstract
Background Androgen receptor (AR) is critical to the initiation, growth, and progression of prostate cancer. Once activated, the AR binds to cis-regulatory enhancer elements on DNA that drive gene expression. Yet, there are 10–100× more binding sites than differentially expressed genes. It is unclear how or if these excess binding sites impact gene transcription. Results To characterize the regulatory logic of AR-mediated transcription, we generated a locus-specific map of enhancer activity by functionally testing all common clinical AR binding sites with Self-Transcribing Active Regulatory Regions sequencing (STARRseq). Only 7% of AR binding sites displayed androgen-dependent enhancer activity. Instead, the vast majority of AR binding sites were either inactive or constitutively active enhancers. These annotations strongly correlated with enhancer-associated features of both in vitro cell lines and clinical prostate cancer samples. Evaluating the effect of each enhancer class on transcription, we found that AR-regulated enhancers frequently interact with promoters and form central chromosomal loops that are required for transcription. Somatic mutations of these critical AR-regulated enhancers often impact enhancer activity. Conclusions Using a functional map of AR enhancer activity, we demonstrated that AR-regulated enhancers act as a regulatory hub that increases interactions with other AR binding sites and gene promoters.
Collapse
Affiliation(s)
- Chia-Chi Flora Huang
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Shreyas Lingadahalli
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Tunc Morova
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Dogancan Ozturan
- School of Medicine, Koç University, Istanbul, Turkey.,Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Eugene Hu
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Ivan Pak Lok Yu
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Simon Linder
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marlous Hoogstraat
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Suzan Stelloo
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Funda Sar
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Henk van der Poel
- Division of Urology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Umut Berkay Altintas
- School of Medicine, Koç University, Istanbul, Turkey.,Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Mohammadali Saffarzadeh
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Stephane Le Bihan
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Brian McConeghy
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Bengul Gokbayrak
- School of Medicine, Koç University, Istanbul, Turkey.,Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, USA
| | - Martin E Gleave
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Colin Collins
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Faraz Hach
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Eldon Emberly
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Nathan A Lack
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada. .,School of Medicine, Koç University, Istanbul, Turkey. .,Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
| |
Collapse
|
22
|
Fu Z, Rais Y, Bismar TA, Hyndman ME, Le XC, Drabovich AP. Mapping Isoform Abundance and Interactome of the Endogenous TMPRSS2-ERG Fusion Protein by Orthogonal Immunoprecipitation-Mass Spectrometry Assays. Mol Cell Proteomics 2021; 20:100075. [PMID: 33771697 PMCID: PMC8102805 DOI: 10.1016/j.mcpro.2021.100075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 01/02/2023] Open
Abstract
TMPRSS2-ERG gene fusion, a molecular alteration found in nearly half of primary prostate cancer cases, has been intensively characterized at the transcript level. However limited studies have explored the molecular identity and function of the endogenous fusion at the protein level. Here, we developed immunoprecipitation-mass spectrometry assays for the measurement of a low-abundance T1E4 TMPRSS2-ERG fusion protein, its isoforms, and its interactome in VCaP prostate cancer cells. Our assays quantified total ERG (∼27,000 copies/cell) and its four unique isoforms and revealed that the T1E4-ERG isoform accounted for 52 ± 3% of the total ERG protein in VCaP cells, and 50 ± 11% in formalin-fixed paraffin-embedded prostate cancer tissues. For the first time, the N-terminal peptide (methionine-truncated and N-acetylated TASSSSDYGQTSK) unique for the T1/E4 fusion was identified. ERG interactome profiling with the C-terminal, but not the N-terminal, antibodies identified 29 proteins, including mutually exclusive BRG1- and BRM-associated canonical SWI/SNF chromatin remodeling complexes. Our sensitive and selective IP-SRM assays present alternative tools to quantify ERG and its isoforms in clinical samples, thus paving the way for development of more accurate diagnostics of prostate cancer.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, and Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - M Eric Hyndman
- Division of Urology, Department of Surgery, Southern Alberta Institute of Urology, University of Calgary, Alberta, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
23
|
Bauer S, Ratz L, Heckmann-Nötzel D, Kaczorowski A, Hohenfellner M, Kristiansen G, Duensing S, Altevogt P, Klauck SM, Sültmann H. miR-449a Repression Leads to Enhanced NOTCH Signaling in TMPRSS2:ERG Fusion Positive Prostate Cancer Cells. Cancers (Basel) 2021; 13:964. [PMID: 33669024 PMCID: PMC7975324 DOI: 10.3390/cancers13050964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022] Open
Abstract
About 50% of prostate cancer (PCa) tumors are TMPRSS2:ERG (T2E) fusion-positive (T2E+), but the role of T2E in PCa progression is not fully understood. We were interested in investigating epigenomic alterations associated with T2E+ PCa. Using different sequencing cohorts, we found several transcripts of the miR-449 cluster to be repressed in T2E+ PCa. This repression correlated strongly with enhanced expression of NOTCH and several of its target genes in TCGA and ICGC PCa RNA-seq data. We corroborated these findings using a cellular model with inducible T2E expression. Overexpression of miR-449a in vitro led to silencing of genes associated with NOTCH signaling (NOTCH1, HES1) and HDAC1. Interestingly, HDAC1 overexpression led to the repression of HES6, a negative regulator of the transcription factor HES1, the primary effector of NOTCH signaling, and promoted cell proliferation by repressing the cell cycle inhibitor p21. Inhibition of NOTCH as well as knockdown of HES1 reduced the oncogenic properties of PCa cell lines. Using tissue microarray analysis encompassing 533 human PCa cores, ERG-positive areas exhibited significantly increased HES1 expression. Taken together, our data suggest that an epigenomic regulatory network enhances NOTCH signaling and thereby contributes to the oncogenic properties of T2E+ PCa.
Collapse
Affiliation(s)
- Simone Bauer
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; (S.B.); (D.H.-N.); (S.M.K.)
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Leonie Ratz
- Department of Obstetrics and Gynecology, University Hospital of Cologne, 50937 Cologne, Germany;
| | - Doreen Heckmann-Nötzel
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; (S.B.); (D.H.-N.); (S.M.K.)
- Computer Assisted Medical Interventions, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Adam Kaczorowski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (A.K.); (S.D.)
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
| | - Glen Kristiansen
- Center for Integrated Oncology, Institute of Pathology, University of Bonn, 53127 Bonn, Germany;
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (A.K.); (S.D.)
- Department of Urology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Sabine M. Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; (S.B.); (D.H.-N.); (S.M.K.)
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; (S.B.); (D.H.-N.); (S.M.K.)
| |
Collapse
|
24
|
Scaravilli M, Koivukoski S, Latonen L. Androgen-Driven Fusion Genes and Chimeric Transcripts in Prostate Cancer. Front Cell Dev Biol 2021; 9:623809. [PMID: 33634124 PMCID: PMC7900491 DOI: 10.3389/fcell.2021.623809] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Androgens are steroid hormones governing the male reproductive development and function. As such, androgens and the key mediator of their effects, androgen receptor (AR), have a leading role in many diseases. Prostate cancer is a major disease where AR and its transcription factor function affect a significant number of patients worldwide. While disease-related AR-driven transcriptional programs are connected to the presence and activity of the receptor itself, also novel modes of transcriptional regulation by androgens are exploited by cancer cells. One of the most intriguing and ingenious mechanisms is to bring previously unconnected genes under the control of AR. Most often this occurs through genetic rearrangements resulting in fusion genes where an androgen-regulated promoter area is combined to a protein-coding area of a previously androgen-unaffected gene. These gene fusions are distinctly frequent in prostate cancer compared to other common solid tumors, a phenomenon still requiring an explanation. Interestingly, also another mode of connecting androgen regulation to a previously unaffected gene product exists via transcriptional read-through mechanisms. Furthermore, androgen regulation of fusion genes and transcripts is not linked to only protein-coding genes. Pseudogenes and non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) can also be affected by androgens and de novo functions produced. In this review, we discuss the prevalence, molecular mechanisms, and functional evidence for androgen-regulated prostate cancer fusion genes and transcripts. We also discuss the clinical relevance of especially the most common prostate cancer fusion gene TMPRSS2-ERG, as well as present open questions of prostate cancer fusions requiring further investigation.
Collapse
Affiliation(s)
- Mauro Scaravilli
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sonja Koivukoski
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
25
|
Ramanand SG, Chen Y, Yuan J, Daescu K, Lambros MB, Houlahan KE, Carreira S, Yuan W, Baek G, Sharp A, Paschalis A, Kanchwala M, Gao Y, Aslam A, Safdar N, Zhan X, Raj GV, Xing C, Boutros PC, de Bono J, Zhang MQ, Mani RS. The landscape of RNA polymerase II-associated chromatin interactions in prostate cancer. J Clin Invest 2021; 130:3987-4005. [PMID: 32343676 DOI: 10.1172/jci134260] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Transcriptional dysregulation is a hallmark of prostate cancer (PCa). We mapped the RNA polymerase II-associated (RNA Pol II-associated) chromatin interactions in normal prostate cells and PCa cells. We discovered thousands of enhancer-promoter, enhancer-enhancer, as well as promoter-promoter chromatin interactions. These transcriptional hubs operate within the framework set by structural proteins - CTCF and cohesins - and are regulated by the cooperative action of master transcription factors, such as the androgen receptor (AR) and FOXA1. By combining analyses from metastatic castration-resistant PCa (mCRPC) specimens, we show that AR locus amplification contributes to the transcriptional upregulation of the AR gene by increasing the total number of chromatin interaction modules comprising the AR gene and its distal enhancer. We deconvoluted the transcription control modules of several PCa genes, notably the biomarker KLK3, lineage-restricted genes (KRT8, KRT18, HOXB13, FOXA1, ZBTB16), the drug target EZH2, and the oncogene MYC. By integrating clinical PCa data, we defined a germline-somatic interplay between the PCa risk allele rs684232 and the somatically acquired TMPRSS2-ERG gene fusion in the transcriptional regulation of multiple target genes - VPS53, FAM57A, and GEMIN4. Our studies implicate changes in genome organization as a critical determinant of aberrant transcriptional regulation in PCa.
Collapse
Affiliation(s)
- Susmita G Ramanand
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Yong Chen
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas, USA.,Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey, USA
| | - Jiapei Yuan
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kelly Daescu
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas, USA
| | - Maryou Bk Lambros
- Prostate Cancer Targeted Therapy and Cancer Biomarkers Group, Institute of Cancer Research (ICR) and Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Kathleen E Houlahan
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Vector Institute, Toronto, Ontario, Canada.,Department of Urology.,Department of Human Genetics, and.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Suzanne Carreira
- Prostate Cancer Targeted Therapy and Cancer Biomarkers Group, Institute of Cancer Research (ICR) and Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Wei Yuan
- Prostate Cancer Targeted Therapy and Cancer Biomarkers Group, Institute of Cancer Research (ICR) and Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - GuemHee Baek
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Adam Sharp
- Prostate Cancer Targeted Therapy and Cancer Biomarkers Group, Institute of Cancer Research (ICR) and Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Alec Paschalis
- Prostate Cancer Targeted Therapy and Cancer Biomarkers Group, Institute of Cancer Research (ICR) and Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | | | - Yunpeng Gao
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Adam Aslam
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Nida Safdar
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Chao Xing
- Department of Urology.,Department of Human Genetics, and.,Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Vector Institute, Toronto, Ontario, Canada.,Department of Urology.,Department of Human Genetics, and.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Johann de Bono
- Prostate Cancer Targeted Therapy and Cancer Biomarkers Group, Institute of Cancer Research (ICR) and Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas, USA.,MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST/Department of Automation, Tsinghua University, Beijing, China
| | - Ram S Mani
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Urology, and.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
26
|
Zhao SG, Chen WS, Li H, Foye A, Zhang M, Sjöström M, Aggarwal R, Playdle D, Liao A, Alumkal JJ, Das R, Chou J, Hua JT, Barnard TJ, Bailey AM, Chow ED, Perry MD, Dang HX, Yang R, Moussavi-Baygi R, Zhang L, Alshalalfa M, Laura Chang S, Houlahan KE, Shiah YJ, Beer TM, Thomas G, Chi KN, Gleave M, Zoubeidi A, Reiter RE, Rettig MB, Witte O, Yvonne Kim M, Fong L, Spratt DE, Morgan TM, Bose R, Huang FW, Li H, Chesner L, Shenoy T, Goodarzi H, Asangani IA, Sandhu S, Lang JM, Mahajan NP, Lara PN, Evans CP, Febbo P, Batzoglou S, Knudsen KE, He HH, Huang J, Zwart W, Costello JF, Luo J, Tomlins SA, Wyatt AW, Dehm SM, Ashworth A, Gilbert LA, Boutros PC, Farh K, Chinnaiyan AM, Maher CA, Small EJ, Quigley DA, Feng FY. The DNA methylation landscape of advanced prostate cancer. Nat Genet 2020; 52:778-789. [PMID: 32661416 PMCID: PMC7454228 DOI: 10.1038/s41588-020-0648-8] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Although DNA methylation is a key regulator of gene expression, the comprehensive methylation landscape of metastatic cancer has never been defined. Through whole-genome bisulfite sequencing paired with deep whole-genome and transcriptome sequencing of 100 castration-resistant prostate metastases, we discovered alterations affecting driver genes only detectable with integrated whole-genome approaches. Notably, we observed that 22% of tumors exhibited a novel epigenomic subtype associated with hyper-methylation and somatic mutations in TET2, DNMT3B, IDH1, and BRAF. We also identified intergenic regions where methylation is associated with RNA expression of the oncogenic driver genes AR, MYC and ERG. Finally, we showed that differential methylation during progression preferentially occurs at somatic mutational hotspots and putative regulatory regions. This study is a large integrated study of whole-genome, whole-methylome and whole-transcriptome sequencing in metastatic cancer and provides a comprehensive overview of the important regulatory role of methylation in metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - William S Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Yale School of Medicine, New Haven, CT, USA
| | - Haolong Li
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Meng Zhang
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Denise Playdle
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Joshi J Alumkal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Rajdeep Das
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan Chou
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Junjie T Hua
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Travis J Barnard
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Adina M Bailey
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Eric D Chow
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.,Center for Advanced Technology, University of California San Francisco, San Francisco, CA, USA
| | - Marc D Perry
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ha X Dang
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA.,Department of Internal Medicine, Washington University, St. Louis, MO, USA.,Siteman Cancer Center, Washington University, St. Louis, MO, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ruhollah Moussavi-Baygi
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Li Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Mohammed Alshalalfa
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - S Laura Chang
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen E Houlahan
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Human Genetics, Institute for Precision Health, UCLA, Los Angeles, CA, USA
| | - Yu-Jia Shiah
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Hematology/Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - George Thomas
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Cancer Agency, Vancouver Centre, Vancouver, British Columbia, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert E Reiter
- Jonsson Comprehensive Cancer Center, Departments of Medicine and Urology, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew B Rettig
- Jonsson Comprehensive Cancer Center, Departments of Medicine and Urology, University of California Los Angeles, Los Angeles, CA, USA.,Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Owen Witte
- Department of Microbiology, Immunology, and Molecular Genetics at the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - M Yvonne Kim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Todd M Morgan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Rohit Bose
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA.,Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Franklin W Huang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Hui Li
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Lisa Chesner
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Tanushree Shenoy
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Irfan A Asangani
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Nupam P Mahajan
- Siteman Cancer Center, Washington University, St. Louis, MO, USA.,Department of Surgery, Washington University, St. Louis, MO, USA
| | - Primo N Lara
- Division of Hematology Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA.,Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Christopher P Evans
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.,Department of Urologic Surgery, University of California Davis, Sacramento, CA, USA
| | | | | | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Housheng H He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC, USA
| | - Wilbert Zwart
- Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott A Tomlins
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Luke A Gilbert
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Human Genetics, Institute for Precision Health, UCLA, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, Departments of Medicine and Urology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Arul M Chinnaiyan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher A Maher
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA.,Department of Internal Medicine, Washington University, St. Louis, MO, USA.,Siteman Cancer Center, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA. .,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA. .,Department of Urology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
27
|
Jahangiri L, Tsaprouni L, Trigg RM, Williams JA, Gkoutos GV, Turner SD, Pereira J. Core regulatory circuitries in defining cancer cell identity across the malignant spectrum. Open Biol 2020; 10:200121. [PMID: 32634370 PMCID: PMC7574545 DOI: 10.1098/rsob.200121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene expression programmes driving cell identity are established by tightly regulated transcription factors that auto- and cross-regulate in a feed-forward manner, forming core regulatory circuitries (CRCs). CRC transcription factors create and engage super-enhancers by recruiting acetylation writers depositing permissive H3K27ac chromatin marks. These super-enhancers are largely associated with BET proteins, including BRD4, that influence higher-order chromatin structure. The orchestration of these events triggers accessibility of RNA polymerase machinery and the imposition of lineage-specific gene expression. In cancers, CRCs drive cell identity by superimposing developmental programmes on a background of genetic alterations. Further, the establishment and maintenance of oncogenic states are reliant on CRCs that drive factors involved in tumour development. Hence, the molecular dissection of CRC components driving cell identity and cancer state can contribute to elucidating mechanisms of diversion from pre-determined developmental programmes and highlight cancer dependencies. These insights can provide valuable opportunities for identifying and re-purposing drug targets. In this article, we review the current understanding of CRCs across solid and liquid malignancies and avenues of investigation for drug development efforts. We also review techniques used to understand CRCs and elaborate the indication of discussed CRC transcription factors in the wider context of cancer CRC models.
Collapse
Affiliation(s)
- Leila Jahangiri
- Department of Life Sciences, Birmingham City University, Birmingham, UK.,Division of Cellular and Molecular Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Loukia Tsaprouni
- Department of Life Sciences, Birmingham City University, Birmingham, UK
| | - Ricky M Trigg
- Division of Cellular and Molecular Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.,Department of Functional Genomics, GlaxoSmithKline, Stevenage, UK
| | - John A Williams
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire, UK
| | - Georgios V Gkoutos
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,MRC Health Data Research, UK.,NIHR Experimental Cancer Medicine Centre, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK.,NIHR Biomedical Research Centre, Birmingham, UK
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Joao Pereira
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| |
Collapse
|
28
|
De Bosscher K, Desmet SJ, Clarisse D, Estébanez-Perpiña E, Brunsveld L. Nuclear receptor crosstalk - defining the mechanisms for therapeutic innovation. Nat Rev Endocrinol 2020; 16:363-377. [PMID: 32303708 DOI: 10.1038/s41574-020-0349-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Nuclear receptor crosstalk can be defined as the interplay between different nuclear receptors or between their overlapping signalling pathways. A subset of nuclear receptors (such as PPARs and RARs) engage in the formation of well-characterized 'typical' heterodimers with RXR. 'Atypical' heterodimers (such as GR with PPARs, or PPAR with ERR) might form a novel class of physical complexes that might be more transient in nature. These heterodimers might harbour strong transcriptional flexibility, with no strict need for DNA binding of both partners. Direct crosstalk could stem from a pairwise physical association between atypical nuclear receptor heterodimers, either via pre-existing interaction pairs or via interactions that are newly induced with small molecules; such crosstalk might constitute an uncharted space to target nuclear receptor physiological and/or pathophysiological actions. In this Review, we discuss the emerging aspects of crosstalk in the nuclear receptor field and present various mechanistic crosstalk modes with examples that support applicability of the atypical heterodimer concept. Stabilization or disruption, in a context-dependent or cell type-dependent manner, of these more transient heterodimers is expected to fuel unprecedented translational approaches to yield novel therapeutic agents to treat major human diseases with higher precision.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium.
| | - Sofie J Desmet
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Dorien Clarisse
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Eva Estébanez-Perpiña
- Laboratory of Structural Biology, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, Netherlands
| |
Collapse
|
29
|
Advances in technologies for 3D genomics research. SCIENCE CHINA-LIFE SCIENCES 2020; 63:811-824. [PMID: 32394244 DOI: 10.1007/s11427-019-1704-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023]
Abstract
The spatial structure of the orderly organized chromatin in the nucleus has important roles in maintaining normal cell function and in regulation of gene expression, and the high-throughput Hi-C and ChIA-PET methods have been widely used in various biological studies for determining potential spatial genome structures and their functions. However, there are still great difficulties and challenges in three-dimensional (3D) genomics research. More efficient, economical, and unbiased approaches to studying 3D genomics need to be developed for more widespread and easier applications. Here, we review the most recent studies on new 3D genomics research technologies, such as improvements of the traditional Hi-C and ChIA-PET methods, new approaches based on non-proximal-ligation strategies, and imaging-based methods improved in recent years. Especially, we review the CRISPR-based methods for functional validations in 3D genomics, which could be the forthcoming directions. We hope this review can show some insights into the potential improvements for future 3D genomics.
Collapse
|
30
|
Adelaiye-Ogala R, Gryder BE, Nguyen YTM, Alilin AN, Grayson AR, Bajwa W, Jansson KH, Beshiri ML, Agarwal S, Rodriguez-Nieves JA, Capaldo B, Kelly K, VanderWeele DJ. Targeting the PI3K/AKT Pathway Overcomes Enzalutamide Resistance by Inhibiting Induction of the Glucocorticoid Receptor. Mol Cancer Ther 2020; 19:1436-1447. [PMID: 32371590 DOI: 10.1158/1535-7163.mct-19-0936] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/28/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022]
Abstract
The PI3K-AKT pathway has pleiotropic effects and its inhibition has long been of interest in the management of prostate cancer, where a compensatory increase in PI3K signaling has been reported following androgen receptor (AR) blockade. Prostate cancer cells can also bypass AR blockade through induction of other hormone receptors, in particular the glucocorticoid receptor (GR). Here we demonstrate that AKT inhibition significantly decreases cell proliferation through both cytostatic and cytotoxic effects. The cytotoxic effect is enhanced by AR inhibition and is most pronounced in models that induce compensatory GR expression. AKT inhibition increases canonical AR activity and remodels the chromatin landscape, decreasing enhancer interaction at the GR gene (NR3C1) locus. Importantly, it blocks induction of GR expression and activity following AR blockade. This is confirmed in multiple in vivo models, where AKT inhibition of established xenografts leads to increased canonical AR activity, decreased GR expression, and marked antitumor activity. Overall, our results demonstrate that inhibition of the PI3K/AKT pathway can block GR activity and overcome GR-mediated resistance to AR-targeted therapy. Ipatasertib is currently in clinical development, and GR induction may be a biomarker to identify responsive patients or a responsive disease state.
Collapse
Affiliation(s)
- Remi Adelaiye-Ogala
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Berkley E Gryder
- Oncogenomics Section, Genetics Branch, NCI, NIH, Bethesda, Maryland
| | - Yen Thi Minh Nguyen
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Aian Neil Alilin
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Adlai R Grayson
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Wardah Bajwa
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Keith H Jansson
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Michael L Beshiri
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Supreet Agarwal
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - Brian Capaldo
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Kathleen Kelly
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - David J VanderWeele
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
31
|
Association of germline genetic variants with TMPRSS2-ERG fusion status in prostate cancer. Oncotarget 2020; 11:1321-1333. [PMID: 32341752 PMCID: PMC7170497 DOI: 10.18632/oncotarget.27534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/03/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction: Oncogenic activation of ERG resulting from TMPRSS2-ERG gene fusion is a key molecular genetic alteration in prostate cancer (CaP). The frequency of ERG fusion is variable by race; however, there are limited data available on germline polymorphisms associating with ERG fusion status. The goal of this study is to identify the inherited risk variants associating with ERG status of CaP. Materials and Methods: SNP genotyping was performed on the Illumina platform using Infinium Oncoarray SNP chip on blood derived genomic DNA samples from 400 patients treated by radical prostatectomy at a single military institution. ERG status was determined in whole mounted prostate specimens by immuno-histochemistry (IHC) for ERG protein expression. Data analysis approaches included association analyses based on EMMAX and imputation by IMPUTE2. Imputed SNPs were validated by ddPCR. Results: SNP genotyping analysis using imputation identified rs34349373 (p 4.68 × 10-8) and rs2055272 (p 5.62 × 10-8) in TBC1D22B to be significantly associated with ERG fusion status in index tumor and non-index tumor foci. Imputed SNP rs2055272 was further experimentally validated by ddPCR with 98.04% (100/102) concordance. Initial discovery analysis based on SNPs on Oncoarray SNP chip, showed significant (p 10-5) association for SNPs (rs6698333, rs1889877, rs3798999, rs10215144, rs3818136, rs9380660 and rs1792695) with ERG fusion status. The study also replicated two previously known ERG fusion associated SNPs (rs11704416 in chromsome 22; rs16901979 in chromosome 8). Conclusions: This study identified SNPs associated with ERG status of CaP. Impact: The findings may contribute towards defining the underlying genetics of ERG positive and ERG negative CaP patients.
Collapse
|
32
|
Modulation of androgen receptor DNA binding activity through direct interaction with the ETS transcription factor ERG. Proc Natl Acad Sci U S A 2020; 117:8584-8592. [PMID: 32220959 PMCID: PMC7165421 DOI: 10.1073/pnas.1922159117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Progress in studying the androgen receptor (AR), the primary drug target in prostate cancer, has been hampered by challenges in expressing and purifying active multidomain AR for use in cell-free biochemical reconstitution assays. Here we successfully express full-length and truncated AR variants and demonstrate that the oncogenic ETS protein ERG, responsible for half of all prostate cancers, enhances the ability of AR to bind DNA through direct interaction with AR. In addition to providing a biochemical system to evaluate AR activity on different DNA templates, our findings provide insight into why ERG-positive prostate cancers have an expanded AR cistrome. The androgen receptor (AR) is a type I nuclear hormone receptor and the primary drug target in prostate cancer due to its role as a lineage survival factor in prostate luminal epithelium. In prostate cancer, the AR cistrome is reprogrammed relative to normal prostate epithelium and particularly in cancers driven by oncogenic ETS fusion genes. The molecular basis for this change has remained elusive. Using purified proteins, we report a minimal cell-free system that demonstrates interdomain cooperativity between the ligand (LBD) and DNA binding domains (DBD) of AR, and its autoinhibition by the N terminus of AR. Furthermore, we identify ERG as a cofactor that activates AR’s ability to bind DNA in both high and lower affinity contexts through direct interaction within a newly identified AR-interacting motif (AIM) in the ETS domain, independent of ERG’s own DNA binding ability. Finally, we present evidence that this interaction is conserved among ETS factors whose expression is altered in prostate cancer. Our work highlights, at a biochemical level, how tumor-initiating ETS translocations result in reprogramming of the AR cistrome.
Collapse
|
33
|
Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential Pathobiological Implications. Cancers (Basel) 2019; 11:cancers11111729. [PMID: 31694235 PMCID: PMC6895793 DOI: 10.3390/cancers11111729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023] Open
Abstract
High mobility group box B (HMGB) proteins are pivotal in the development of cancer. Although the proteomics of prostate cancer (PCa) cells has been reported, the involvement of HMGB proteins and their interactome in PCa is an unexplored field of considerable interest. We describe herein the results of the first HMGB1/HMGB2 interactome approach to PCa. Libraries constructed from the PCa cell line, PC-3, and from patients’ PCa primary tumor have been screened by the yeast 2-hybrid approach (Y2H) using HMGB1 and HMGB2 baits. Functional significance of this PCa HMGB interactome has been validated through expression and prognosis data available on public databases. Copy number alterations (CNA) affecting these newly described HMGB interactome components are more frequent in the most aggressive forms of PCa: those of neuroendocrine origin or castration-resistant PCa. Concordantly, adenocarcinoma PCa samples showing CNA in these genes are also associated with the worse prognosis. These findings open the way to their potential use as discriminatory biomarkers between high and low risk patients. Gene expression of a selected set of these interactome components has been analyzed by qPCR after HMGB1 and HMGB2 silencing. The data show that HMGB1 and HMGB2 control the expression of several of their interactome partners, which might contribute to the orchestrated action of these proteins in PCa
Collapse
|
34
|
Emerging epigenomic landscapes of pancreatic cancer in the era of precision medicine. Nat Commun 2019; 10:3875. [PMID: 31462645 PMCID: PMC6713756 DOI: 10.1038/s41467-019-11812-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic studies have advanced our understanding of pancreatic cancer at a mechanistic and translational level. Genetic concepts and tools are increasingly starting to be applied to clinical practice, in particular for precision medicine efforts. However, epigenomics is rapidly emerging as a promising conceptual and methodological paradigm for advancing the knowledge of this disease. More importantly, recent studies have uncovered potentially actionable pathways, which support the prediction that future trials for pancreatic cancer will involve the vigorous testing of epigenomic therapeutics. Thus, epigenomics promises to generate a significant amount of new knowledge of both biological and medical importance. In pancreatic cancer, the epigenomic landscape can strongly impact the disease phenotype. Here, the authors discuss recent advances in our understanding of pancreatic cancer epigenomics, and how this knowledge can integrate with precision medicine approaches in this lethal disease.
Collapse
|
35
|
Dysregulated Transcriptional Control in Prostate Cancer. Int J Mol Sci 2019; 20:ijms20122883. [PMID: 31200487 PMCID: PMC6627928 DOI: 10.3390/ijms20122883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Recent advances in whole-genome and transcriptome sequencing of prostate cancer at different stages indicate that a large number of mutations found in tumors are present in non-protein coding regions of the genome and lead to dysregulated gene expression. Single nucleotide variations and small mutations affecting the recruitment of transcription factor complexes to DNA regulatory elements are observed in an increasing number of cases. Genomic rearrangements may position coding regions under the novel control of regulatory elements, as exemplified by the TMPRSS2-ERG fusion and the amplified enhancer identified upstream of the androgen receptor (AR) gene. Super-enhancers are increasingly found to play important roles in aberrant oncogenic transcription. Several players involved in these processes are currently being evaluated as drug targets and may represent new vulnerabilities that can be exploited for prostate cancer treatment. They include factors involved in enhancer and super-enhancer function such as bromodomain proteins and cyclin-dependent kinases. In addition, non-coding RNAs with an important gene regulatory role are being explored. The rapid progress made in understanding the influence of the non-coding part of the genome and of transcription dysregulation in prostate cancer could pave the way for the identification of novel treatment paradigms for the benefit of patients.
Collapse
|
36
|
Stelloo S, Bergman AM, Zwart W. Androgen receptor enhancer usage and the chromatin regulatory landscape in human prostate cancers. Endocr Relat Cancer 2019; 26:R267-R285. [PMID: 30865928 DOI: 10.1530/erc-19-0032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
The androgen receptor (AR) is commonly known as a key transcription factor in prostate cancer development, progression and therapy resistance. Genome-wide chromatin association studies revealed that transcriptional regulation by AR mainly depends on binding to distal regulatory enhancer elements that control gene expression through chromatin looping to gene promoters. Changes in the chromatin epigenetic landscape and DNA sequence can locally alter AR-DNA-binding capacity and consequently impact transcriptional output and disease outcome. The vast majority of reports describing AR chromatin interactions have been limited to cell lines, identifying numerous other factors and interacting transcription factors that impact AR chromatin interactions. Do these factors also impact AR cistromics - the genome-wide chromatin-binding landscape of AR - in vivo? Recent technological advances now enable researchers to identify AR chromatin-binding sites and their target genes in human specimens. In this review, we provide an overview of the different factors that influence AR chromatin binding in prostate cancer specimens, which is complemented with knowledge from cell line studies. Finally, we discuss novel perspectives on studying AR cistromics in clinical samples.
Collapse
Affiliation(s)
- Suzan Stelloo
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|