1
|
Abstract
Designing the expression cassettes with desired properties remains the most important consideration of gene engineering technology. One of the challenges for predictive gene expression is the modeling of synthetic gene switches to regulate one or more target genes which would directly respond to specific chemical, environmental, and physiological stimuli. Assessment of natural promoter, high-throughput sequencing, and modern biotech inventory aided in deciphering the structure of cis elements and molding the native cis elements into desired synthetic promoter. Synthetic promoters which are molded by rearrangement of cis motifs can greatly benefit plant biotechnology applications. This review gives a glimpse of the manual in vivo gene regulation through synthetic promoters. It summarizes the integrative design strategy of synthetic promoters and enumerates five approaches for constructing synthetic promoters. Insights into the pattern of cis regulatory elements in the pursuit of desirable "gene switches" to date has also been reevaluated. Joint strategies of bioinformatics modeling and randomized biochemical synthesis are addressed in an effort to construct synthetic promoters for intricate gene regulation.
Collapse
|
2
|
PATZ1 is a new prognostic marker of glioblastoma associated with the stem-like phenotype and enriched in the proneural subtype. Oncotarget 2017; 8:59282-59300. [PMID: 28938636 PMCID: PMC5601732 DOI: 10.18632/oncotarget.19546] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/19/2017] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma (GBM), the most malignant of the brain tumors, has been classified on the basis of molecular signature into four subtypes: classical, mesenchymal, proneural and neural, among which the mesenchymal and proneural subtypes have the shortest and longest survival, respectively. Here we show that the transcription factor PATZ1 gene is upregulated in gliomas compared to normal brain and, among GBMs, is particularly enriched in the proneural subtype and co-localize with stemness markers. Accordingly, in GBM-derived glioma-initiating stem cells (GSCs) PATZ1 is overexpressed compared to differentiated tumor cells and its expression significantly correlates with the characteristic stem cell capacity to grow as neurospheres in vitro. Interestingly, survival analysis demonstrated that PATZ1 lower levels informed poor prognosis in GBM and, specifically, in the proneural subgroup, suggesting it may serve a role as diagnostic and prognostic biomarker for intra-subtype heterogeneity of proneural GBM. We also show that PATZ1 suppresses the expression of the mesenchyme-inducer CXCR4, and that PATZ1 and CXCR4 are inversely correlated in GSC and proneural GBM. Overall these findings support a central role of PATZ1 in regulating malignancy of GBM.
Collapse
|
3
|
Roberts ML, Katsoupi P, Tseveleki V, Taoufik E. Bioinformatically Informed Design of Synthetic Mammalian Promoters. Methods Mol Biol 2017; 1651:93-112. [PMID: 28801902 DOI: 10.1007/978-1-4939-7223-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synthetic promoters have been developed in a number of different organisms and are capable of mediating specific and enhanced levels of gene expression. Typically, cis-regulatory regions from a few genes are randomly combined to generate a synthetic promoter library, and the sequences with the highest activity are selected for in target cell lines. Here we describe a novel approach that can be employed in the construction of synthetic promoters . Specifically, we use gene expression profiles obtained from microarray datasets to select the cis-regulatory elements that comprise the synthetic promoter library. By adopting this approach, we were able to construct several promoters that could specifically mediate gene expression in colorectal cancer cells. We develop a new selection criteria based on the observed transcriptome of target cells, the frequency that identified cis-regulatory sequences occur in identified gene modules, and the length of identified cis-regulatory regions. Our method allows for the generation of synthetic promoter libraries with increased level of specificity and facilitates the selection of promoters that are highly active only under predefined gene expression profiles.
Collapse
Affiliation(s)
| | | | - Vivian Tseveleki
- Hellenic Pasteur Institute, Vas Sofias 127, Athens, 11521, Greece
| | - Era Taoufik
- Hellenic Pasteur Institute, Vas Sofias 127, Athens, 11521, Greece
| |
Collapse
|
4
|
Gao X, Goggin K, Dowling C, Qian J, Hawdon JM. Two potential hookworm DAF-16 target genes, SNR-3 and LPP-1: gene structure, expression profile, and implications of a cis-regulatory element in the regulation of gene expression. Parasit Vectors 2015; 8:14. [PMID: 25573064 PMCID: PMC4298947 DOI: 10.1186/s13071-014-0609-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hookworms infect nearly 700 million people, causing anemia and developmental stunting in heavy infections. Little is known about the genomic structure or gene regulation in hookworms, although recent publication of draft genome assemblies has allowed the first investigations of these topics to be undertaken. The transcription factor DAF-16 mediates multiple developmental pathways in the free living nematode Caenorhabditis elegans, and is involved in the recovery from the developmentally arrested L3 in hookworms. Identification of downstream targets of DAF-16 will provide a better understanding of the molecular mechanism of hookworm infection. METHODS Genomic Fragment 2.23 containing a DAF-16 binding element (DBE) was used to identify overlapping complementary expressed sequence tags (ESTs). These sequences were used to search a draft assembly of the Ancylostoma caninum genome, and identified two neighboring genes, snr-3 and lpp-1, in a tail-to-tail orientation. Expression patterns of both genes during parasitic development were determined by qRT-PCR. DAF-16 dependent cis-regulatory activity of fragment 2.23 was investigated using an in vitro reporter system. RESULTS The snr-3 gene spans approximately 5.6 kb in the genome and contains 3 exons and 2 introns, and contains the DBE in its 3' untranslated region. Downstream from snr-3 in a tail-to-tail arrangement is the gene lpp-1. The lpp-1 gene spans more than 6 kb and contains 10 exons and 9 introns. The A. caninum genome contains 2 apparent splice variants, but there are 7 splice variants in the A. ceylanicum genome. While the gene order is similar, the gene structures of the hookworm genes differ from their C. elegans orthologs. Both genes show peak expression in the late L4 stage. Using a cell culture based expression system, fragment 2.23 was found to have both DAF-16-dependent promoter and enhancer activity that required an intact DBE. CONCLUSIONS Two putative DAF-16 targets were identified by genome wide screening for DAF-16 binding elements. Aca-snr-3 encodes a core small nuclear ribonucleoprotein, and Aca-lpp-1 encodes a lipid phosphate phosphohydrolase. Expression of both genes peaked at the late L4 stage, suggesting a role in L4 development. The 3'-terminal genomic fragment of the snr-3 gene displayed Ac-DAF-16-dependent cis-regulatory activity.
Collapse
Affiliation(s)
- Xin Gao
- Current affiliation: The Genome Institute at Washington University, 4444 Forest Park Ave, St. Louis, MO, 63108, USA.
| | - Kevin Goggin
- Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Washington, DC, USA.
| | - Camille Dowling
- Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Washington, DC, USA.
| | - Jason Qian
- Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Washington, DC, USA.
| | - John M Hawdon
- Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Washington, DC, USA.
| |
Collapse
|
5
|
Navarro C, Lopez FJ, Cano C, Garcia-Alcalde F, Blanco A. CisMiner: genome-wide in-silico cis-regulatory module prediction by fuzzy itemset mining. PLoS One 2014; 9:e108065. [PMID: 25268582 PMCID: PMC4182448 DOI: 10.1371/journal.pone.0108065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/25/2014] [Indexed: 01/18/2023] Open
Abstract
Eukaryotic gene control regions are known to be spread throughout non-coding DNA sequences which may appear distant from the gene promoter. Transcription factors are proteins that coordinately bind to these regions at transcription factor binding sites to regulate gene expression. Several tools allow to detect significant co-occurrences of closely located binding sites (cis-regulatory modules, CRMs). However, these tools present at least one of the following limitations: 1) scope limited to promoter or conserved regions of the genome; 2) do not allow to identify combinations involving more than two motifs; 3) require prior information about target motifs. In this work we present CisMiner, a novel methodology to detect putative CRMs by means of a fuzzy itemset mining approach able to operate at genome-wide scale. CisMiner allows to perform a blind search of CRMs without any prior information about target CRMs nor limitation in the number of motifs. CisMiner tackles the combinatorial complexity of genome-wide cis-regulatory module extraction using a natural representation of motif combinations as itemsets and applying the Top-Down Fuzzy Frequent- Pattern Tree algorithm to identify significant itemsets. Fuzzy technology allows CisMiner to better handle the imprecision and noise inherent to regulatory processes. Results obtained for a set of well-known binding sites in the S. cerevisiae genome show that our method yields highly reliable predictions. Furthermore, CisMiner was also applied to putative in-silico predicted transcription factor binding sites to identify significant combinations in S. cerevisiae and D. melanogaster, proving that our approach can be further applied genome-wide to more complex genomes. CisMiner is freely accesible at: http://genome2.ugr.es/cisminer. CisMiner can be queried for the results presented in this work and can also perform a customized cis-regulatory module prediction on a query set of transcription factor binding sites provided by the user.
Collapse
Affiliation(s)
- Carmen Navarro
- Department of Computer Science and AI, University of Granada, Granada, Spain
| | - Francisco J. Lopez
- Andalusian Human Genome Sequencing Centre (CASEGH), Medical Genome Project (MGP), Sevilla, Spain
| | - Carlos Cano
- Department of Computer Science and AI, University of Granada, Granada, Spain
| | | | - Armando Blanco
- Department of Computer Science and AI, University of Granada, Granada, Spain
| |
Collapse
|
6
|
PATZ1 interacts with p53 and regulates expression of p53-target genes enhancing apoptosis or cell survival based on the cellular context. Cell Death Dis 2013; 4:e963. [PMID: 24336083 PMCID: PMC3877567 DOI: 10.1038/cddis.2013.500] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/06/2013] [Accepted: 11/13/2013] [Indexed: 01/08/2023]
Abstract
PATZ1 is a transcriptional factor functioning either as an activator or a repressor of gene transcription depending upon the cellular context. It appears to have a dual oncogenic/anti-oncogenic activity. Indeed, it is overexpressed in colon carcinomas, and its silencing inhibits colon cancer cell proliferation or increases sensitivity to apoptotic stimuli of glioma cells, suggesting an oncogenic role. Conversely, the development of B-cell lymphomas, sarcomas, hepatocellular carcinomas and lung adenomas in Patz1-knockout (ko) mice supports its tumour suppressor function. PATZ1 role in mouse lymphomagenesis is mainly because of the involvement of PATZ1 in BCL6-negative autoregulation. However, this does not exclude that PATZ1 may be involved in tumorigenesis by other mechanisms. Here, we report that PATZ1 interacts with the tumour suppressor p53 and binds p53-dependent gene promoters, including those of BAX, CDKN1A and MDM2. Knockdown of PATZ1 in HEK293 cells reduces promoter activity of these genes and inhibits their expression, suggesting a role of PATZ in enhancing p53 transcriptional activity. Consistently, Patz1-ko mouse embryonic fibroblasts (MEFs) show decreased expression of Bax, Cdkn1a and Mdm2 compared with wild-type (wt) MEFs. Moreover, Patz1-ko MEFs show a decreased percentage of apoptotic cells, either spontaneous or induced by treatment with 5-fluorouracil (5FU), compared with wt controls, suggesting a pro-apoptotic role for PATZ1 in these cells. However, PATZ1 binds p53-target genes also independently from p53, exerting, in the absence of p53, an opposite function on their expression. Indeed, knockdown of PATZ1 in p53-null osteosarcoma cells upregulates BAX expression and decreases survival of 5FU-treated cells, then suggesting an anti-apoptotic role of PATZ1 in p53-null cancer cells. Therefore, these data support a PATZ1 tumour-suppressive function based on its ability to enhance p53-dependent transcription and apoptosis. Conversely, its opposite and anti-apoptotic role in p53-null cancer cells provides the perspective of PATZ1 silencing as a possible adjuvant in the treatment of p53-null cancer.
Collapse
|
7
|
Abstract
Mouse genetic engineering has revolutionized our understanding of the molecular and genetic basis of heart development and disease. This technology involves conditional tissue-specific and temporal transgenic and gene targeting approaches, as well as introduction of polymorphisms into the mouse genome. These approaches are increasingly used to elucidate the genetic pathways underlying tissue homeostasis, physiology, and pathophysiology of adult heart. They have also led to the development of clinically relevant models of human cardiac diseases. Here, we review the technologies and their limitations in general and the cardiovascular research community in particular.
Collapse
Affiliation(s)
- Thomas Doetschman
- BIO5 Institute and Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
8
|
Ohadi M, Mirabzadeh A, Esmaeilzadeh-Gharehdaghi E, Rezazadeh M, Hosseinkhanni S, Oladnabi M, Firouzabadi SG, Darvish H. Novel evidence of the involvement of calreticulin in major psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:276-81. [PMID: 22507216 DOI: 10.1016/j.pnpbp.2012.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/12/2012] [Accepted: 02/14/2012] [Indexed: 12/20/2022]
Abstract
Calreticulin (CALR) is a multi-functional protein that is strictly conserved across species. Two mRNA transcripts have been recognized for the CALR gene in humans, which use a common promoter sequence. We have recently reported mutations in the CALR promoter that co-occur with psychosis. One of those mutations at -220A increases gene expression in human BE(2)-C and HEK-293 cell lines. This mutation is the first instance of a functional cognition-deficit mutation reversing a human gene promoter to the primitive type. In the current study, we analyzed the effect of the most widely-used mood-stabilizing drug, valproic acid (VPA), on nucleotide -220 in two neuronal cell lines, LAN-5 and N2A. Remarkably, VPA increased gene expression in the cells with the wild-type -220C construct, whereas a dramatic decrease in gene expression was observed in the cell lines with the mutant construct (p<0.000004 and p<0.016, respectively). We also sequenced the 600-bp CALR promoter, and the highly conserved intron 1 sequence in an independent sample of patients afflicted with major psychiatric disorders and controls. A new case of major depressive disorder with psychotic features with the -220A mutation was identified. A novel 1-bp insertion was also detected in intron 1 at IVSI-310, in a case of amphetamine-induced psychosis. As for the psychosis-linked CALR promoter mutations identified to-date, the IVSI mutation was not detected in the control pool. This mutation creates a RREB-1 transcription factor binding site within the first intron. Our present findings identify the site of action of VPA in the CALR promoter, and introduce a novel mutation in a case of substance-induced psychosis in the first intron of CALR.
Collapse
Affiliation(s)
- M Ohadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Aittokallio T, Kurki M, Nevalainen O, Nikula T, West A, Lahesmaa R. Computational Strategies for Analyzing Data in Gene Expression Microarray Experiments. J Bioinform Comput Biol 2012; 1:541-86. [PMID: 15290769 DOI: 10.1142/s0219720003000319] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Revised: 07/02/2003] [Indexed: 11/18/2022]
Abstract
Microarray analysis has become a widely used method for generating gene expression data on a genomic scale. Microarrays have been enthusiastically applied in many fields of biological research, even though several open questions remain about the analysis of such data. A wide range of approaches are available for computational analysis, but no general consensus exists as to standard for microarray data analysis protocol. Consequently, the choice of data analysis technique is a crucial element depending both on the data and on the goals of the experiment. Therefore, basic understanding of bioinformatics is required for optimal experimental design and meaningful interpretation of the results. This review summarizes some of the common themes in DNA microarray data analysis, including data normalization and detection of differential expression. Algorithms are demonstrated by analyzing cDNA microarray data from an experiment monitoring gene expression in T helper cells. Several computational biology strategies, along with their relative merits, are overviewed and potential areas for additional research discussed. The goal of the review is to provide a computational framework for applying and evaluating such bioinformatics strategies. Solid knowledge of microarray informatics contributes to the implementation of more efficient computational protocols for the given data obtained through microarray experiments.
Collapse
Affiliation(s)
- Tero Aittokallio
- Department of Computational Biology, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-Shi, Chiba 277-8562, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Lee MP, Yutzey KE. Twist1 directly regulates genes that promote cell proliferation and migration in developing heart valves. PLoS One 2011; 6:e29758. [PMID: 22242143 PMCID: PMC3248441 DOI: 10.1371/journal.pone.0029758] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
Twist1, a basic helix-loop-helix transcription factor, is expressed in mesenchymal precursor populations during embryogenesis and in metastatic cancer cells. In the developing heart, Twist1 is highly expressed in endocardial cushion (ECC) valve mesenchymal cells and is down regulated during valve differentiation and remodeling. Previous studies demonstrated that Twist1 promotes cell proliferation, migration, and expression of primitive extracellular matrix (ECM) molecules in ECC mesenchymal cells. Furthermore, Twist1 expression is induced in human pediatric and adult diseased heart valves. However, the Twist1 downstream target genes that mediate increased cell proliferation and migration during early heart valve development remain largely unknown. Candidate gene and global gene profiling approaches were used to identify transcriptional targets of Twist1 during heart valve development. Candidate target genes were analyzed for evolutionarily conserved regions (ECRs) containing E-box consensus sequences that are potential Twist1 binding sites. ECRs containing conserved E-box sequences were identified for Twist1 responsive genes Tbx20, Cdh11, Sema3C, Rab39b, and Gadd45a. Twist1 binding to these sequences in vivo was determined by chromatin immunoprecipitation (ChIP) assays, and binding was detected in ECCs but not late stage remodeling valves. In addition identified Twist1 target genes are highly expressed in ECCs and have reduced expression during heart valve remodeling in vivo, which is consistent with the expression pattern of Twist1. Together these analyses identify multiple new genes involved in cell proliferation and migration that are differentially expressed in the developing heart valves, are responsive to Twist1 transcriptional function, and contain Twist1-responsive regulatory sequences.
Collapse
Affiliation(s)
- Mary P. Lee
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
11
|
MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 2011; 108:12740-5. [PMID: 21768389 DOI: 10.1073/pnas.1109987108] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRs) play a key role in the control of gene expression in a wide array of tissue systems, where their functions include the regulation of self-renewal, cellular differentiation, proliferation, and apoptosis. However, the functional importance of individual miRs in controlling spermatogonial stem cell (SSC) homeostasis has not been investigated. Using high-throughput sequencing, we profiled the expression of miRs in the Thy1(+) testis cell population, which is highly enriched for SSCs, and the Thy1(-) cell population, composed primarily of testis somatic cells. In addition, we profiled the global expression of miRs in cultured germ cells, also enriched for SSCs. Our results demonstrate that miR-21, along with miR-34c, -182, -183, and -146a, are preferentially expressed in the Thy1(+) SSC-enriched population, compared with Thy1(-) somatic cells. Importantly, we demonstrate that transient inhibition of miR-21 in SSC-enriched germ cell cultures increased the number of germ cells undergoing apoptosis and significantly reduced the number of donor-derived colonies of spermatogenesis formed from transplanted treated cells in recipient mouse testes, indicating that miR-21 is important in maintaining the SSC population. Moreover, we show that in SSC-enriched germ cell cultures, miR-21 is regulated by the transcription factor ETV5, known to be critical for SSC self-renewal.
Collapse
|
12
|
Dojer N, Biecek P, Tiuryn J. Bi-billboard: symmetrization and careful choice of informant species results in higher accuracy of regulatory element prediction. J Comput Biol 2011; 18:809-19. [PMID: 21563976 DOI: 10.1089/cmb.2010.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The identification of cis-regulatory modules (CRM) is one of the most important problems towards the understanding of transcriptional regulation in higher eukaryotes. Computational methods for CRM detection are gaining importance due to the availability of genomic data on one side, and costs and difficulties of experimental methods on the other side. One of proposed approaches, called Billboard, predicts CRMs based on the location of transcription factor binding sites in an analyzed sequence and a related one in so-called informant species. In the present article, we show how to combine information obtained in two symmetric runs (on the sequence of interest and on the related one) of the Billboard tool. In a series of experiments on data from various organisms, we show that the predictive power of our symmetric approach is significantly higher than the power of the one-way approach of Billboard. Moreover, we show that the evolutionary distance between organisms considerably influences the quality of prediction and we provide guidelines on the choice of an informant species.
Collapse
Affiliation(s)
- Norbert Dojer
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland.
| | | | | |
Collapse
|
13
|
Lim EJ, Lu TX, Blanchard C, Rothenberg ME. Epigenetic regulation of the IL-13-induced human eotaxin-3 gene by CREB-binding protein-mediated histone 3 acetylation. J Biol Chem 2011; 286:13193-204. [PMID: 21325281 DOI: 10.1074/jbc.m110.210724] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The etiology of a variety of chronic inflammatory disorders has been attributed to the interaction of genetic and environmental factors. Herein, we identified a link between epigenetic regulation and IL-13-driven eotaxin-3 in the pathogenesis of chronic allergic inflammation. We first demonstrated that the cAMP-responsive element (CRE) site in the eotaxin-3 promoter affects IL-13-induced eotaxin-3 promoter activity. Furthermore, the CRE-binding protein-binding protein (CBP), a histone acetyltransferase, induced base-line and IL-13-induced eotaxin-3 promoter activity. Additionally, IL-13 treatment promoted global histone 3 acetylation as well as the formation of a complex containing CBP and STAT6 and the subsequent acetylation of histone 3 at the eotaxin-3 promoter. CBP gene silencing decreased IL-13-induced transcription of eotaxin-3. Conversely, inhibition of histone deacetylation increased IL-13-induced eotaxin-3 production. Clinical studies demonstrated markedly increased global acetylation of histone 3 in the inflamed tissue of patients with allergic inflammation. Collectively, these results identify an epigenetic mechanism involving CBP and chromatin remodeling in regulating IL-13-induced chemokine transcription.
Collapse
Affiliation(s)
- Eun Jin Lim
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
14
|
Ito T, Kwon HY, Zimdahl B, Congdon KL, Blum J, Lento WE, Zhao C, Lagoo A, Gerrard G, Foroni L, Goldman J, Goh H, Kim SH, Kim DW, Chuah C, Oehler VG, Radich JP, Jordan CT, Reya T. Regulation of myeloid leukaemia by the cell-fate determinant Musashi. Nature 2010; 466:765-8. [PMID: 20639863 PMCID: PMC2918284 DOI: 10.1038/nature09171] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 05/13/2010] [Indexed: 12/25/2022]
Abstract
Chronic myelogenous leukemia (CML) can progress from an indolent chronic phase to an aggressive blast crisis phase1 but the molecular basis of this transition remains poorly understood. Here we have used mouse models of CML2,3 to show that disease progression is regulated by the Musashi-Numb signaling axis4,5. Specifically, we find that chronic phase is marked by high and blast crisis phase by low levels of Numb expression, and that ectopic expression of Numb promotes differentiation and impairs advanced phase disease in vivo. As a possible explanation for the decreased levels of Numb in blast crisis, we show that NUP98-HOXA9, an oncogene associated with blast crisis CML6,7, can trigger expression of the RNA binding protein Musashi2 (Msi2) which in turn represses Numb. Importantly, loss of Msi2 restores Numb expression and significantly impairs the development and propagation of blast crisis CML in vitro and in vivo. Finally, we show that Msi2 expression is not only highly upregulated during human CML progression but is also an early indicator of poorer prognosis. These data show that the Musashi-Numb pathway can control the differentiation of CML cells, and raise the possibility that targeting this pathway may provide a new strategy for therapy of aggressive leukemias.
Collapse
Affiliation(s)
- Takahiro Ito
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Takemoto CM, Brandal S, Jegga AG, Lee YN, Shahlaee A, Ying Y, Dekoter R, McDevitt MA. PU.1 positively regulates GATA-1 expression in mast cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:4349-61. [PMID: 20304827 DOI: 10.4049/jimmunol.0900927] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Coexpression of PU.1 and GATA-1 is required for proper specification of the mast cell lineage; however, in the myeloid and erythroid lineages, PU.1 and GATA-1 are functionally antagonistic. In this study, we report a transcriptional network in which PU.1 positively regulates GATA-1 expression in mast cell development. We isolated a variant mRNA isoform of GATA-1 in murine mast cells that is significantly upregulated during mast cell differentiation. This isoform contains an alternatively spliced first exon (IB) that is distinct from the first exon (IE) incorporated in the major erythroid mRNA transcript. In contrast to erythroid and megakaryocyte cells, in mast cells we show that PU.1 and GATA-2 predominantly occupy potential cis-regulatory elements in the IB exon region in vivo. Using reporter assays, we identify an enhancer flanking the IB exon that is activated by PU.1. Furthermore, we observe that in PU.1(-/-) fetal liver cells, low levels of the IE GATA-1 isoform is expressed, but the variant IB isoform is absent. Reintroduction of PU.1 restores variant IB isoform and upregulates total GATA-1 protein expression, which is concurrent with mast cell differentiation. Our results are consistent with a transcriptional hierarchy in which PU.1, possibly in concert with GATA-2, activates GATA-1 expression in mast cells in a pathway distinct from that seen in the erythroid and megakaryocytic lineages.
Collapse
Affiliation(s)
- Clifford M Takemoto
- Division of Pediatric Hematology, The Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Van Loo P, Marynen P. Computational methods for the detection of cis-regulatory modules. Brief Bioinform 2009; 10:509-24. [DOI: 10.1093/bib/bbp025] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
17
|
Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. THE JOURNAL OF IMMUNOLOGY 2009; 182:4994-5002. [PMID: 19342679 DOI: 10.4049/jimmunol.0803560] [Citation(s) in RCA: 463] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allergic airway inflammation is characterized by marked in situ changes in gene and protein expression, yet the role of microRNAs (miRNAs), a new family of key mRNA regulatory molecules, in this process has not yet been reported. Using a highly sensitive microarray-based approach, we identified 21 miRNAs with differential expression between doxycycline-induced lung-specific IL-13 transgenic mice (with allergic airway inflammation) and control mice. In particular, we observed overexpression of miR-21 and underexpression of miR-1 in the induced IL-13 transgenic mice compared with control mice. These findings were validated in two independent models of allergen-induced allergic airway inflammation and in IL-4 lung transgenic mice. Although IL-13-induced miR-21 expression was IL-13Ralpha1 dependent, allergen-induced miR-21 expression was mediated mainly independent of IL-13Ralpha1 and STAT6. Notably, predictive algorithms identified potential direct miR-21 targets among IL-13-regulated lung transcripts, such as IL-12p35 mRNA, which was decreased in IL-13 transgenic mice. Introduction of pre-miR-21 dose dependently inhibited cellular expression of a reporter vector harboring the 3'-untranslated region of IL-12p35. Moreover, mutating miR-21 binding sites in IL-12p35 3'-untranslated region abrogated miR-21-mediated repression. In summary, we have identified a miRNA signature in allergic airway inflammation, which includes miR-21 that modulates IL-12, a molecule germane to Th cell polarization.
Collapse
Affiliation(s)
- Thomas X Lu
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
18
|
Gotea V, Ovcharenko I. DiRE: identifying distant regulatory elements of co-expressed genes. Nucleic Acids Res 2008; 36:W133-9. [PMID: 18487623 PMCID: PMC2447744 DOI: 10.1093/nar/gkn300] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression in eukaryotic genomes is established through a complex cooperative activity of proximal promoters and distant regulatory elements (REs) such as enhancers, repressors and silencers. We have developed a web server named DiRE, based on the Enhancer Identification (EI) method, for predicting distant regulatory elements in higher eukaryotic genomes, namely for determining their chromosomal location and functional characteristics. The server uses gene co-expression data, comparative genomics and profiles of transcription factor binding sites (TFBSs) to determine TFBS-association signatures that can be used for discriminating specific regulatory functions. DiRE's unique feature is its ability to detect REs outside of proximal promoter regions, as it takes advantage of the full gene locus to conduct the search. DiRE can predict common REs for any set of input genes for which the user has prior knowledge of co-expression, co-function or other biologically meaningful grouping. The server predicts function-specific REs consisting of clusters of specifically-associated TFBSs and it also scores the association of individual transcription factors (TFs) with the biological function shared by the group of input genes. Its integration with the Array2BIO server allows users to start their analysis with raw microarray expression data. The DiRE web server is freely available at http://dire.dcode.org.
Collapse
Affiliation(s)
| | - Ivan Ovcharenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894
| |
Collapse
|
19
|
Yang E, Maguire T, Yarmush M, Androulakis I. Informative gene selection and design of regulatory networks using integer optimization. Comput Chem Eng 2008. [DOI: 10.1016/j.compchemeng.2007.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Exact p-value calculation for heterotypic clusters of regulatory motifs and its application in computational annotation of cis-regulatory modules. Algorithms Mol Biol 2007; 2:13. [PMID: 17927813 PMCID: PMC2174486 DOI: 10.1186/1748-7188-2-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 10/10/2007] [Indexed: 11/15/2022] Open
Abstract
Background cis-Regulatory modules (CRMs) of eukaryotic genes often contain multiple binding sites for transcription factors. The phenomenon that binding sites form clusters in CRMs is exploited in many algorithms to locate CRMs in a genome. This gives rise to the problem of calculating the statistical significance of the event that multiple sites, recognized by different factors, would be found simultaneously in a text of a fixed length. The main difficulty comes from overlapping occurrences of motifs. So far, no tools have been developed allowing the computation of p-values for simultaneous occurrences of different motifs which can overlap. Results We developed and implemented an algorithm computing the p-value that s different motifs occur respectively k1, ..., ks or more times, possibly overlapping, in a random text. Motifs can be represented with a majority of popular motif models, but in all cases, without indels. Zero or first order Markov chains can be adopted as a model for the random text. The computational tool was tested on the set of cis-regulatory modules involved in D. melanogaster early development, for which there exists an annotation of binding sites for transcription factors. Our test allowed us to correctly identify transcription factors cooperatively/competitively binding to DNA. Method The algorithm that precisely computes the probability of simultaneous motif occurrences is inspired by the Aho-Corasick automaton and employs a prefix tree together with a transition function. The algorithm runs with the O(n|Σ|(m|ℋ
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaat0uy0HwzTfgDPnwy1egaryqtHrhAL1wy0L2yHvdaiqaacqWFlecsaaa@3762@| + K|σ|K) ∏i ki) time complexity, where n is the length of the text, |Σ| is the alphabet size, m is the maximal motif length, |ℋ
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaat0uy0HwzTfgDPnwy1egaryqtHrhAL1wy0L2yHvdaiqaacqWFlecsaaa@3762@| is the total number of words in motifs, K is the order of Markov model, and ki is the number of occurrences of the ith motif. Conclusion The primary objective of the program is to assess the likelihood that a given DNA segment is CRM regulated with a known set of regulatory factors. In addition, the program can also be used to select the appropriate threshold for PWM scanning. Another application is assessing similarity of different motifs. Availability Project web page, stand-alone version and documentation can be found at
Collapse
|
21
|
Mao G, Brody JP. Dynamic SPR monitoring of yeast nuclear protein binding to a cis-regulatory element. Biochem Biophys Res Commun 2007; 363:153-8. [PMID: 17850763 PMCID: PMC2699948 DOI: 10.1016/j.bbrc.2007.08.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 08/22/2007] [Indexed: 11/19/2022]
Abstract
Gene expression is controlled by protein complexes binding to short specific sequences of DNA, called cis-regulatory elements. Expression of most eukaryotic genes is controlled by dozens of these elements. Comprehensive identification and monitoring of these elements is a major goal of genomics. In pursuit of this goal, we are developing a surface plasmon resonance (SPR) based assay to identify and monitor cis-regulatory elements. To test whether we could reliably monitor protein binding to a regulatory element, we immobilized a 16bp region of Saccharomyces cerevisiae chromosome 5 onto a gold surface. This 16bp region of DNA is known to bind several proteins and thought to control expression of the gene RNR1, which varies through the cell cycle. We synchronized yeast cell cultures, and then sampled these cultures at a regular interval. These samples were processed to purify nuclear lysate, which was then exposed to the sensor. We found that nuclear protein binds this particular element of DNA at a significantly higher rate (as compared to unsynchronized cells) during G1 phase. Other time points show levels of DNA-nuclear protein binding similar to the unsynchronized control. We also measured the apparent association complex of the binding to be 0.014s(-1). We conclude that (1) SPR-based assays can monitor DNA-nuclear protein binding and that (2) for this particular cis-regulatory element, maximum DNA-nuclear protein binding occurs during G1 phase.
Collapse
Affiliation(s)
- Grace Mao
- Department of Biomedical Engineering, University of California--Irvine, Irvine, CA 92697-2715, USA
| | | |
Collapse
|
22
|
Perreault J, Perreault JP, Boire G. Ro-associated Y RNAs in metazoans: evolution and diversification. Mol Biol Evol 2007; 24:1678-89. [PMID: 17470436 DOI: 10.1093/molbev/msm084] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Y genes encode small noncoding RNAs whose functions remain elusive, whose numbers vary between species, and whose major property is to be bound by the Ro60 protein (or its ortholog in other species). To better understand the evolution of the Y gene family, we performed a homology search in 27 different genomes along with a structural search using Y RNA specific motifs. These searches confirmed that Y RNAs are well conserved in the animal kingdom and resulted in the detection of several new Y RNA genes, including the first Y RNAs in insects and a second Y RNA detected in Caenorhabditis elegans. Unexpectedly, Y5 genes were retrieved almost as frequently as Y1 and Y3 genes, and, consequently are not the result of a relatively recent apparition as is generally believed. Investigation of the organization of the Y genes demonstrated that the synteny was conserved among species. Interestingly, it revealed the presence of six putative "fossil" Y genes, all of which were Y4 and Y5 related. Sequence analysis led to inference of the ancestral sequences for all Y RNAs. In addition, the evolution of existing Y RNAs was deduced for many families, orders and classes. Moreover, a consensus sequence and secondary structure for each Y species was determined. Further evolutionary insight was obtained from the analysis of several thousand Y retropseudogenes among various species. Taken together, these results confirm the rich and diversified evolution history of Y RNAs.
Collapse
Affiliation(s)
- Jonathan Perreault
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
23
|
Young HWJ, Williams OW, Chandra D, Bellinghausen LK, Pérez G, Suárez A, Tuvim MJ, Roy MG, Alexander SN, Moghaddam SJ, Adachi R, Blackburn MR, Dickey BF, Evans CM. Central role of Muc5ac expression in mucous metaplasia and its regulation by conserved 5' elements. Am J Respir Cell Mol Biol 2007; 37:273-90. [PMID: 17463395 PMCID: PMC1994232 DOI: 10.1165/rcmb.2005-0460oc] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mucus hypersecretion contributes to morbidity and mortality in many obstructive lung diseases. Gel-forming mucins are the chief glycoprotein components of airway mucus, and elevated expression of these during mucous metaplasia precedes the hypersecretory phenotype. Five orthologous genes (MUC2, MUC5AC, MUC5B, MUC6, and MUC19) encode the mammalian gel-forming mucin family, and several have been implicated in asthma, cystic fibrosis, and chronic obstructive pulmonary disease pathologies. However, in the absence of a comprehensive analysis, their relative contributions remain unclear. Here, we assess the expression of the entire gel-forming mucin gene family in allergic mouse airways and show that Muc5ac is the predominant gel-forming mucin induced. We previously showed that the induction of mucous metaplasia in ovalbumin-sensitized and -challenged mouse lungs occurs within bronchial Clara cells. The temporal induction and localization of Muc5ac transcripts correlate with the induced expression and localization of mucin glycoproteins in bronchial airways. To better understand the tight regulation of Muc5ac expression, we analyzed all available 5'-flanking sequences of mammalian MUC5AC orthologs and identified evolutionarily conserved regions within domains proximal to the mRNA coding region. Analysis of luciferase reporter gene activity in a mouse transformed Clara cell line demonstrates that this region possesses strong promoter activity and harbors multiple conserved transcription factor-binding motifs. In particular, SMAD4 and HIF-1alpha bind to the promoter, and mutation of their recognition motifs abolishes promoter function. In conclusion, Muc5ac expression is the central event in antigen-induced mucous metaplasia, and phylogenetically conserved 5' noncoding domains control its regulation.
Collapse
Affiliation(s)
- Hays W J Young
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Markey MP, Bergseid J, Bosco EE, Stengel K, Xu H, Mayhew CN, Schwemberger SJ, Braden WA, Jiang Y, Babcock GF, Jegga AG, Aronow BJ, Reed MF, Wang JYJ, Knudsen ES. Loss of the retinoblastoma tumor suppressor: differential action on transcriptional programs related to cell cycle control and immune function. Oncogene 2007; 26:6307-18. [PMID: 17452985 DOI: 10.1038/sj.onc.1210450] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Functional inactivation of the retinoblastoma tumor suppressor gene product (RB) is a common event in human cancers. Classically, RB functions to constrain cellular proliferation, and loss of RB is proposed to facilitate the hyperplastic proliferation associated with tumorigenesis. To understand the repertoire of regulatory processes governed by RB, two models of RB loss were utilized to perform microarray analysis. In murine embryonic fibroblasts harboring germline loss of RB, there was a striking deregulation of gene expression, wherein distinct biological pathways were altered. Specifically, genes involved in cell cycle control and classically associated with E2F-dependent gene regulation were upregulated via RB loss. In contrast, a program of gene expression associated with immune function and response to pathogens was significantly downregulated with the loss of RB. To determine the specific influence of RB loss during a defined period and without the possibility of developmental compensation as occurs in embryonic fibroblasts, a second system was employed wherein Rb was acutely knocked out in adult fibroblasts. This model confirmed the distinct regulation of cell cycle and immune modulatory genes through RB loss. Analyses of cis-elements supported the hypothesis that the majority of those genes upregulated with RB loss are regulated via the E2F family of transcription factors. In contrast, those genes whose expression was reduced with the loss of RB harbored different promoter elements. Consistent with these analyses, we found that disruption of E2F-binding function of RB was associated with the upregulation of gene expression. In contrast, cells harboring an RB mutant protein (RB-750F) that retains E2F-binding activity, but is specifically deficient in the association with LXCXE-containing proteins, failed to upregulate these same target genes. However, downregulation of genes involved in immune function was readily observed with disruption of the LXCXE-binding function of RB. Thus, these studies demonstrate that RB plays a significant role in both the positive and negative regulations of transcriptional programs and indicate that loss of RB has distinct biological effects related to both cell cycle control and immune function.
Collapse
Affiliation(s)
- M P Markey
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, OH 45267-0521, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bioinformatics analysis of the early inflammatory response in a rat thermal injury model. BMC Bioinformatics 2007; 8:10. [PMID: 17214898 PMCID: PMC1797813 DOI: 10.1186/1471-2105-8-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Accepted: 01/10/2007] [Indexed: 12/25/2022] Open
Abstract
Background Thermal injury is among the most severe forms of trauma and its effects are both local and systemic. Response to thermal injury includes cellular protection mechanisms, inflammation, hypermetabolism, prolonged catabolism, organ dysfunction and immuno-suppression. It has been hypothesized that gene expression patterns in the liver will change with severe burns, thus reflecting the role the liver plays in the response to burn injury. Characterizing the molecular fingerprint (i.e., expression profile) of the inflammatory response resulting from burns may help elucidate the activated mechanisms and suggest new therapeutic intervention. In this paper we propose a novel integrated framework for analyzing time-series transcriptional data, with emphasis on the burn-induced response within the context of the rat animal model. Our analysis robustly identifies critical expression motifs, indicative of the dynamic evolution of the inflammatory response and we further propose a putative reconstruction of the associated transcription factor activities. Results Implementation of our algorithm on data obtained from an animal (rat) burn injury study identified 281 genes corresponding to 4 unique profiles. Enrichment evaluation upon both gene ontologies and transcription factors, verifies the inflammation-specific character of the selections and the rationalization of the burn-induced inflammatory response. Conducting the transcription network reconstruction and analysis, we have identified transcription factors, including AHR, Octamer Binding Proteins, Kruppel-like Factors, and cell cycle regulators as being highly important to an organism's response to burn response. These transcription factors are notable due to their roles in pathways that play a part in the gross physiological response to burn such as changes in the immune response and inflammation. Conclusion Our results indicate that our novel selection/classification algorithm has been successful in selecting out genes with play an important role in thermal injury. Additionally, we have demonstrated the value of an integrative approach in identifying possible points of intervention, namely the activation of certain transcription factors that govern the organism's response.
Collapse
|
26
|
Liu C, Aronow BJ, Jegga AG, Wang N, Miethke A, Mourya R, Bezerra JA. Novel resequencing chip customized to diagnose mutations in patients with inherited syndromes of intrahepatic cholestasis. Gastroenterology 2007; 132:119-26. [PMID: 17241866 PMCID: PMC2190109 DOI: 10.1053/j.gastro.2006.10.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 10/05/2006] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Inherited syndromes of intrahepatic cholestasis commonly result from mutations in the genes SERPINA1 (alpha(1)-antitrypsin deficiency), JAG1 (Alagille syndrome), ATP8B1 (progressive familial intrahepatic cholestasis type 1 [PFIC1]), ABCB11 (PFIC2), and ABCB4 (PFIC3). However, the large gene sizes and lack of mutational hotspots make it difficult to survey for disease-causing mutations in clinical practice. Here, we aimed to develop a technological tool that reads out the nucleotide sequence of these genes rapidly and accurately. METHODS 25-mer nucleotide probes were designed to identify each base for all exons, 10 bases of intronic sequence bordering exons, 280-500 bases upstream from the first exon for each gene, and 350 bases of the second intron of the JAG1 gene and tiled using the Affymetrix resequencing platform. We then developed high-fidelity polymerase chain reactions to produce amplicons using 1 mL of blood from each subject; amplicons were hybridized to the chip, and nucleotide calls were validated by standard capillary sequencing methods. RESULTS Hybridization of amplicons with the chip produced a high nucleotide sequence readout for all 5 genes in a single assay, with an automated call rate of 93.5% (range, 90.3%-95.7%). The accuracy of nucleotide calls was 99.99% when compared with capillary sequencing. Testing the chip on subjects with cholestatic syndromes identified disease-causing mutations in SERPINA1, JAG1, ATP8B1, ABCB11, or ABCB4. CONCLUSIONS The resequencing chip efficiently reads SERPINA1, JAG1, ATP8B1, ABCB11, and ABCB4 with a high call rate and accuracy in one assay and identifies disease-causing mutations.
Collapse
Affiliation(s)
- Cong Liu
- Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Müller F, Borycki AG. Sequence analyses to study the evolutionary history and cis-regulatory elements of Hedgehog genes. Methods Mol Biol 2007; 397:231-250. [PMID: 18025724 DOI: 10.1007/978-1-59745-516-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sequence analysis and comparative genomics are powerful tools to gain knowledge on multiple aspects of gene and protein regulation and function. These have been widely used to understand the evolutionary history and the biochemistry of Hedgehog (Hh) proteins, and the molecular control of Hedgehog gene expression. Here, we report on some of the methods available to retrieve protein and genomic sequences. We describe how protein sequence comparison can produce information on the evolutionary history of Hh proteins. Moreover, we describe the use of genomic sequence analysis including phylogenetic footprinting and transcription factor-binding site search tools, techniques that allow for the characterization of cis-regulatory elements of developmental genes such as the Hedgehog genes.
Collapse
|
28
|
Jegga AG, Chen J, Gowrisankar S, Deshmukh MA, Gudivada R, Kong S, Kaimal V, Aronow BJ. GenomeTrafac: a whole genome resource for the detection of transcription factor binding site clusters associated with conventional and microRNA encoding genes conserved between mouse and human gene orthologs. Nucleic Acids Res 2006; 35:D116-21. [PMID: 17178752 PMCID: PMC1781107 DOI: 10.1093/nar/gkl1011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcriptional cis-regulatory control regions frequently are found within non-coding DNA segments conserved across multi-species gene orthologs. Adopting a systematic gene-centric pipeline approach, we report here the development of a web-accessible database resource--GenomeTraFac (http://genometrafac.cchmc.org)--that allows genome-wide detection and characterization of compositionally similar cis-clusters that occur in gene orthologs between any two genomes for both microRNA genes as well as conventional RNA-encoding genes. Each ortholog gene pair can be scanned to visualize overall conserved sequence regions, and within these, the relative density of conserved cis-element motif clusters form graph peak structures. The results of these analyses can be mined en masse to identify most frequently represented cis-motifs in a list of genes. The system also provides a method for rapid evaluation and visualization of gene model-consistency between orthologs, and facilitates consideration of the potential impact of sequence variation in conserved non-coding regions to impact complex cis-element structures. Using the mouse and human genomes via the NCBI Reference Sequence database and the Sanger Institute miRBase, the system demonstrated the ability to identify validated transcription factor targets within promoter and distal genomic regulatory regions of both conventional and microRNA genes.
Collapse
Affiliation(s)
- Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical CenterCincinnati, OH 45229, USA
- Department of Pediatrics, College of MedicineCincinnati, OH 45229, USA
| | - Jing Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical CenterCincinnati, OH 45229, USA
- Department of Biomedical Engineering, University of CincinnatiCincinnati, OH 45229, USA
| | - Sivakumar Gowrisankar
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical CenterCincinnati, OH 45229, USA
- Department of Biomedical Engineering, University of CincinnatiCincinnati, OH 45229, USA
| | - Mrunal A. Deshmukh
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical CenterCincinnati, OH 45229, USA
| | - RangaChandra Gudivada
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical CenterCincinnati, OH 45229, USA
- Department of Biomedical Engineering, University of CincinnatiCincinnati, OH 45229, USA
| | - Sue Kong
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical CenterCincinnati, OH 45229, USA
| | - Vivek Kaimal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical CenterCincinnati, OH 45229, USA
- Department of Biomedical Engineering, University of CincinnatiCincinnati, OH 45229, USA
| | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical CenterCincinnati, OH 45229, USA
- Department of Pediatrics, College of MedicineCincinnati, OH 45229, USA
- Department of Biomedical Engineering, University of CincinnatiCincinnati, OH 45229, USA
- To whom correspondence should be addressed at Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue–MLC 7024, Cincinnati, OH 45229-3039, USA. Tel: +1 513 636 4865; Fax: +1 513 636 2056;
| |
Collapse
|
29
|
Schweitzer BL, Huang KJ, Kamath MB, Emelyanov AV, Birshtein BK, DeKoter RP. Spi-C has opposing effects to PU.1 on gene expression in progenitor B cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:2195-207. [PMID: 16887979 DOI: 10.4049/jimmunol.177.4.2195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ets transcription factor Spi-C, expressed in B cells and macrophages, is closely related to PU.1 and has the ability to recognize the same DNA consensus sequence. However, the function of Spi-C has yet to be determined. The purpose of this study is to further examine Spi-C activity in B cell development. First, using retroviral vectors to infect PU.1(-/-) fetal liver progenitors, Spi-C was found to be inefficient at inducing cytokine-dependent proliferation and differentiation of progenitor B (pro-B) cells or macrophages relative to PU.1 or Spi-B. Next, Spi-C was ectopically expressed in fetal liver-derived, IL-7-dependent pro-B cell lines. Wild-type (WT) pro-B cells ectopically expressing Spi-C (WT-Spi-C) have several phenotypic characteristics of pre-B cells such as increased CD25 and decreased c-Kit surface expression. In addition, WT-Spi-C pro-B cells express increased levels of IgH sterile transcripts and reduced levels of expression and transcription of the FcgammaRIIb gene. Gel-shift analysis suggests that Spi-C, ectopically expressed in pro-B cells, can bind PU.1 consensus sites in the IgH intronic enhancer and FcgammaRIIb promoter. Transient transfection analysis demonstrated that PU.1 functions to repress the IgH intronic enhancer and activate the FcgammaRIIb promoter, while Spi-C opposes these activities. WT-Spi-C pro-B cells have reduced levels of dimethylation on lysine 9 of histone H3 within the IgH 3' regulatory region, indicating that Spi-C can contribute to removal of repressive features in the IgH locus. Overall, these studies suggest that Spi-C may promote B cell differentiation by modulating the activity of PU.1-dependent genes.
Collapse
Affiliation(s)
- Brock L Schweitzer
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | | | | | | | |
Collapse
|
30
|
Blanco E, Messeguer X, Smith TF, Guigó R. Transcription factor map alignment of promoter regions. PLoS Comput Biol 2006; 2:e49. [PMID: 16733547 PMCID: PMC1464811 DOI: 10.1371/journal.pcbi.0020049] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 03/31/2006] [Indexed: 11/18/2022] Open
Abstract
We address the problem of comparing and characterizing the promoter regions of genes with similar expression patterns. This remains a challenging problem in sequence analysis, because often the promoter regions of co-expressed genes do not show discernible sequence conservation. In our approach, thus, we have not directly compared the nucleotide sequence of promoters. Instead, we have obtained predictions of transcription factor binding sites, annotated the predicted sites with the labels of the corresponding binding factors, and aligned the resulting sequences of labels--to which we refer here as transcription factor maps (TF-maps). To obtain the global pairwise alignment of two TF-maps, we have adapted an algorithm initially developed to align restriction enzyme maps. We have optimized the parameters of the algorithm in a small, but well-curated, collection of human-mouse orthologous gene pairs. Results in this dataset, as well as in an independent much larger dataset from the CISRED database, indicate that TF-map alignments are able to uncover conserved regulatory elements, which cannot be detected by the typical sequence alignments.
Collapse
Affiliation(s)
- Enrique Blanco
- Research Group in Biomedical Informatics, Institut Municipal d'Investigació Mèdica/Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
31
|
Chowdhary R, Tan SL, Ali RA, Boerlage B, Wong L, Bajic VB. Dragon Promoter Mapper (DPM): a Bayesian framework for modelling promoter structures. Bioinformatics 2006; 22:2310-2. [PMID: 16613910 DOI: 10.1093/bioinformatics/btl125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED Dragon Promoter Mapper (DPM) is a tool to model promoter structure of co-regulated genes using methodology of Bayesian networks. DPM exploits an exhaustive set of motif features (such as motif, its strand, the order of motif occurrence and mutual distance between the adjacent motifs) and generates models from the target promoter sequences, which may be used to (1) detect regions in a genomic sequence which are similar to the target promoters or (2) to classify other promoters as similar or not to the target promoter group. DPM can also be used for modelling of enhancers and silencers. AVAILABILITY http://defiant.i2r.a-star.edu.sg/projects/BayesPromoter/ CONTACT vlad@sanbi.ac.za SUPPLEMENTARY INFORMATION Manual for using DPM web server is provided at http://defiant.i2r.a-star.edu.sg/projects/BayesPromoter/html/manual/manual.htm.
Collapse
Affiliation(s)
- Rajesh Chowdhary
- Knowledge Extraction Lab, Institute for Infocomm Research 21 Heng Mui Keng Terrace, Singapore 119613, Singapore
| | | | | | | | | | | |
Collapse
|
32
|
Hoppe R, Breer H, Strotmann J. Promoter motifs of olfactory receptor genes expressed in distinct topographic patterns. Genomics 2006; 87:711-23. [PMID: 16600568 DOI: 10.1016/j.ygeno.2006.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2005] [Revised: 11/07/2005] [Accepted: 02/09/2006] [Indexed: 11/25/2022]
Abstract
Novel olfactory receptor-encoding genes that are expressed in olfactory sensory neurons arranged in a clustered pattern in the nasal epithelium, typical of the mOR262 (approved gene symbol Olfr) family, were identified. The genes share sequence motifs upstream of their transcription start sites that are highly related to those previously identified as characteristic of the mOR262 genes, suggesting that these regulatory elements may contribute to governing their unique expression pattern. Promoter analyses of genes encoding class I receptors that are expressed in the dorsal region of the epithelium revealed a different, but again common set of sequence motifs. A prominent feature of the class I gene promoters are multiple O/E-like binding sites, and O/E-type transcription factors that bind to the putative promoter region of class I OR genes were in fact identified. The findings support the concept that common elements in the promoter region of these OR genes may determine their congenic expression pattern in the epithelium.
Collapse
Affiliation(s)
- Reiner Hoppe
- Institute of Physiology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | | | | |
Collapse
|
33
|
Erwin CR, Jarboe MD, Sartor MA, Medvedovic M, Stringer KF, Warner BW, Bates MD. Developmental characteristics of adapting mouse small intestine crypt cells. Gastroenterology 2006; 130:1324-32. [PMID: 16618423 DOI: 10.1053/j.gastro.2006.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 11/30/2005] [Indexed: 01/30/2023]
Abstract
BACKGROUND & AIMS Following massive small bowel resection (SBR), the remnant intestine undergoes an adaptive process characterized by increases in a number of physiologic and morphologic parameters. These changes are the result of a stimulus that increases crypt cell mitosis and augments cellular progression along the villus axis. To better define this process, we identified patterns of gene expression specifically within adapting intestinal crypt cells following SBR. METHODS Laser capture microdissection was used to isolate mouse intestinal crypt cells following SBR or sham operation. Multiple biological and technical complementary DNA microarray replicates allowed rigorous statistical analyses for identification of important expression profiles. Major groups of genes were classified as to site of action, functional pathway, and possible regulatory groups. RESULTS A total of 300 genes differentially expressed at significant levels within adapting crypt enterocytes were analyzed. Comparison of this list of differentially expressed adapting crypt cell genes with a generalized mouse gene expression database (from 82 developing and adult mouse tissues) showed the greatest overlap with developing and immature intestinal tissues. We identified prominent groups of genes involved with cell growth, signal transduction, and nucleic acid binding. Genes not previously shown to be involved with adaptation or development and maturation were identified. CONCLUSIONS Identification of similar genes coordinately regulated during both adaptation and development, processes that share key morphologic features, provides a basis for new mechanistic insights into these shared characteristics.
Collapse
Affiliation(s)
- Christopher R Erwin
- Division of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Currently, more than 10 million DNA sequence variations have been uncovered in the human genome. The most detailed variation discovery efforts have focused on candidate genes involved in cardiovascular disease or in susceptibilities associated with exposure to environmental agents. Here we provide an overview of natural genetic variation from the literature and in 510 human candidate genes resequenced for variation discovery. The average human gene contains 126 biallelic polymorphisms, 46 of which are common (> or =5% minor allele frequency) and 5 of which are found in coding regions. Using this complete picture of genetic diversity, we explore conservation, signatures of selection, and historical recombination to mine information useful for candidate gene association studies. In general, we find that the patterns of human gene variation suggest that no one approach will be appropriate for genetic association studies across all genes. Therefore, many different approaches may be required to identify the elusive genotypes associated with common human phenotypes.
Collapse
Affiliation(s)
- Dana C Crawford
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
35
|
Corcoran DL, Feingold E, Dominick J, Wright M, Harnaha J, Trucco M, Giannoukakis N, Benos PV. Footer: a quantitative comparative genomics method for efficient recognition of cis-regulatory elements. Genome Res 2005; 15:840-7. [PMID: 15930494 PMCID: PMC1142474 DOI: 10.1101/gr.2952005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The search for mammalian DNA regulatory regions poses a challenging problem in computational biology. The short length of the DNA patterns compared with the size of the promoter regions and the degeneracy of the patterns makes their identification difficult. One way to overcome this problem is to use evolutionary information to reduce the number of false-positive predictions. We developed a novel method for pattern identification that compares a pair of putative binding sites in two species (e.g., human and mouse) and assigns two probability scores based on the relative position of the sites in the promoter and their agreement with a known model of binding preferences. We tested the algorithm's ability to predict known binding sites on various promoters. Overall, it exhibited 83% sensitivity and the specificity was 72%, which is a clear improvement over existing methods. Our algorithm also successfully predicted two novel NF-kappaB binding sites in the promoter region of the mouse autotaxin gene (ATX, ENPP2), which we were able to verify by using chromatin immunoprecipitation assay coupled with quantitative real-time PCR.
Collapse
Affiliation(s)
- David L Corcoran
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15621, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jegga AG, Gupta A, Gowrisankar S, Deshmukh MA, Connolly S, Finley K, Aronow BJ. CisMols Analyzer: identification of compositionally similar cis-element clusters in ortholog conserved regions of coordinately expressed genes. Nucleic Acids Res 2005; 33:W408-11. [PMID: 15980500 PMCID: PMC1160246 DOI: 10.1093/nar/gki486] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Combinatorial interactions of sequence-specific trans-acting factors with localized genomic cis-element clusters are the principal mechanism for regulating tissue-specific and developmental gene expression. With the emergence of expanding numbers of genome-wide expression analyses, the identification of the cis-elements responsible for specific patterns of transcriptional regulation represents a critical area of investigation. Computational methods for the identification of functional cis-regulatory modules are difficult to devise, principally because of the short length and degenerate nature of individual cis-element binding sites and the inherent complexity that is generated by combinatorial interactions within cis-clusters. Filtering candidate cis-element clusters based on phylogenetic conservation is helpful for an individual ortholog gene pair, but combining data from cis-conservation and coordinate expression across multiple genes is a more difficult problem. To approach this, we have extended an ortholog gene-pair database with additional analytical architecture to allow for the analysis and identification of maximal numbers of compositionally similar and phylogenetically conserved cis-regulatory element clusters from a list of user-selected genes. The system has been successfully tested with a series of functionally related and microarray profile-based co-expressed ortholog pairs of promoters and genes using known regulatory regions as training sets and co-expressed genes in the olfactory and immunohematologic systems as test sets. CisMols Analyzer is accessible via a Web interface at .
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bruce J. Aronow
- To whom correspondence should be addressed. Tel: +1 513 636 4865; Fax: +1 513 636 2056;
| |
Collapse
|
37
|
Shanmukhappa K, Mourya R, Sabla GE, Degen JL, Bezerra JA. Hepatic to pancreatic switch defines a role for hemostatic factors in cellular plasticity in mice. Proc Natl Acad Sci U S A 2005; 102:10182-7. [PMID: 16006527 PMCID: PMC1177369 DOI: 10.1073/pnas.0501691102] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Indexed: 12/16/2022] Open
Abstract
In multiple systems, impaired proteolysis associated with the loss of the hemostatic factor plasminogen (Plg) results in fibrin-dependent defects in tissue repair. However, repair within the liver is known to be defective in Plg-deficient (Plg(o)) mice independent of fibrin clearance and appears to be compromised in part by the poor clearance of necrotic cells. Based on these findings, we examined the hepatic transcriptome after injury in search of transcriptional programs that are sensitive to the Plg/fibrinogen system. To this end, we generated biotinylated cRNA pools from livers of Plg(o) mice and controls before and after a single dose of the hepatotoxin carbon tetrachloride and hybridized them against high-density oligonucleotide arrays. Analysis of the gene expression platform identified an unexpected transcriptional signature within challenged livers of Plg(o) mice for pancreatic gene products, including trypsinogen-2, amylase-2, elastase-1, elastase-2, and cholesteryl-ester lipase. Validation studies found that this transcriptional program also contained products of the endocrine pancreas (Reg-1 and insulin genes) and the expression of the pancreatic transcription factors p48 and PDX-1. By using a LacZ transgene to trace the cellular source of pancreatic gene expression, we found that PDX-1 was expressed in albumin-positive cells that were morphologically indistinguishable from hepatocytes, and in albumin-negative epithelioid cells within zones of pericentral injury. More detailed studies revealed that the mechanisms of heterotopic gene expression in Plg(o) mice required fibrin(ogen). Collectively, these data reveal a regulatory role for the hemostatic factors plasmin(ogen) and fibrin(ogen) in cellular plasticity within adult tissues of the digestive system.
Collapse
Affiliation(s)
- Kumar Shanmukhappa
- Division of Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | | | |
Collapse
|
38
|
Donaldson IJ, Chapman M, Göttgens B. TFBScluster: a resource for the characterization of transcriptional regulatory networks. Bioinformatics 2005; 21:3058-9. [PMID: 15855248 DOI: 10.1093/bioinformatics/bti461] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SUMMARY One major challenge of the post-sequencing era of the human genome project will be the functional annotation of the non-coding portion of the genome, in particular gene regulatory sequences. We have developed a new web-based tool, TFBScluster, which performs genome-wide identification of transcription factor binding site clusters that are conserved in multiple mammalian genomes. Clusters representing candidate gene regulatory elements can be filtered further, based on the presence or absence of additional user-defined DNA sequence motifs or by constraining the orientation or order of binding sites. Comprehensive results files, returned by email, are designed to facilitate experimental validation of computationally identified candidate gene regulatory sequences. TFBScluster, therefore, has the potential to contribute to deciphering transcriptional networks that regulate a wide range of mammalian developmental processes.
Collapse
Affiliation(s)
- Ian John Donaldson
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge Hills Road, Cambridge CB2 2XY, UK
| | | | | |
Collapse
|
39
|
Koide T, Hayata T, Cho KWY. Xenopus as a model system to study transcriptional regulatory networks. Proc Natl Acad Sci U S A 2005; 102:4943-8. [PMID: 15795378 PMCID: PMC555977 DOI: 10.1073/pnas.0408125102] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Indexed: 11/18/2022] Open
Abstract
Development is controlled by a complex series of events requiring sequential gene activation. Understanding the logic of gene networks during development is necessary for a complete understanding of how genes contribute to phenotype. Pioneering work initiated in the sea urchin and Drosophila has demonstrated that reasonable transcriptional regulatory network diagrams representing early development in multicellular animals can be generated through use of appropriate genomic, genetic, and biochemical tools. Establishment of similar regulatory network diagrams for vertebrate development is a necessary step. The amphibian Xenopus has long been used as a model for vertebrate early development and has contributed greatly to the elucidation of gene regulation. Because the best and most extensively studied transcriptional regulatory network in Xenopus is that underlying the formation and function of Spemann's organizer, we describe the current status of our understanding of this gene regulatory network and its relationship to mesodermal patterning. Seventy-four transcription factors currently known to be expressed in the mesoendoderm of Xenopus gastrula were characterized according to their modes of action, DNA binding consensus sequences, and target genes. Among them, nineteen transcription factors were characterized sufficiently in detail, allowing us to generate a gene regulatory network diagram. Additionally, we discuss recent amphibian work using a combined DNA microarray and bioinformatics approach that promises to accelerate regulatory network studies.
Collapse
Affiliation(s)
- Tetsuya Koide
- Developmental Biology Center and the Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | | | | |
Collapse
|
40
|
Marinescu VD, Kohane IS, Riva A. MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes. BMC Bioinformatics 2005; 6:79. [PMID: 15799782 PMCID: PMC1131891 DOI: 10.1186/1471-2105-6-79] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 03/30/2005] [Indexed: 12/19/2022] Open
Abstract
Background Cis-regulatory modules are combinations of regulatory elements occurring in close proximity to each other that control the spatial and temporal expression of genes. The ability to identify them in a genome-wide manner depends on the availability of accurate models and of search methods able to detect putative regulatory elements with enhanced sensitivity and specificity. Results We describe the implementation of a search method for putative transcription factor binding sites (TFBSs) based on hidden Markov models built from alignments of known sites. We built 1,079 models of TFBSs using experimentally determined sequence alignments of sites provided by the TRANSFAC and JASPAR databases and used them to scan sequences of the human, mouse, fly, worm and yeast genomes. In several cases tested the method identified correctly experimentally characterized sites, with better specificity and sensitivity than other similar computational methods. Moreover, a large-scale comparison using synthetic data showed that in the majority of cases our method performed significantly better than a nucleotide weight matrix-based method. Conclusion The search engine, available at , allows the identification, visualization and selection of putative TFBSs occurring in the promoter or other regions of a gene from the human, mouse, fly, worm and yeast genomes. In addition it allows the user to upload a sequence to query and to build a model by supplying a multiple sequence alignment of binding sites for a transcription factor of interest. Due to its extensive database of models, powerful search engine and flexible interface, MAPPER represents an effective resource for the large-scale computational analysis of transcriptional regulation.
Collapse
Affiliation(s)
- Voichita D Marinescu
- Children's Hospital Informatics Program, Children's Hospital Boston, Harvard Medical School,300 Longwood Avenue, Boston, MA 02115, USA
| | - Isaac S Kohane
- Children's Hospital Informatics Program, Children's Hospital Boston, Harvard Medical School,300 Longwood Avenue, Boston, MA 02115, USA
| | - Alberto Riva
- Children's Hospital Informatics Program, Children's Hospital Boston, Harvard Medical School,300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
41
|
Bina M, Wyss P, Ren W, Szpankowski W, Thomas E, Randhawa R, Reddy S, John PM, Pares-Matos EI, Stein A, Xu H, Lazarus SA. Exploring the characteristics of sequence elements in proximal promoters of human genes. Genomics 2005; 84:929-40. [PMID: 15533710 DOI: 10.1016/j.ygeno.2004.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 08/16/2004] [Indexed: 11/28/2022]
Abstract
Central to reconstruction of cis-regulatory networks is identification and classification of naturally occurring transcription factor-binding sites according to the genes that they control. We have examined salient characteristics of 9-mers that occur in various orders and combinations in the proximal promoters of human genes. In evaluations of a dataset derived with respect to experimentally defined transcription initiation sites, in some cases we observed a clear correspondence of highly ranked 9-mers with protein-binding sites in genomic DNA. Evaluations of the larger dataset, derived with respect to the 5' end of human ESTs, revealed that a subset of the highly ranked 9-mers corresponded to sites for several known transcription factor families (including CREB, ETS, EGR-1, SP1, KLF, MAZ, HIF-1, and STATs) that play important roles in the regulation of vertebrate genes. We identified several highly ranked CpG-containing 9-mers, defining sites for interactions with the CREB and ETS families of proteins, and identified potential target genes for these proteins. The results of the studies imply that the CpG-containing transcription factor-binding sites regulate the expression of genes with important roles in pathways leading to cell-type-specific gene expression and pathways controlled by the complex networks of signaling systems.
Collapse
Affiliation(s)
- Minou Bina
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bennett CS, Khorram Khorshid HR, Kitchen JA, Arteta D, Dalgleish R. Characterization of the human secreted phosphoprotein 24 gene (SPP2) and comparison of the protein sequence in nine species. Matrix Biol 2005; 22:641-51. [PMID: 15062857 DOI: 10.1016/j.matbio.2003.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Revised: 11/11/2003] [Accepted: 12/03/2003] [Indexed: 10/26/2022]
Abstract
Secreted phosphoprotein 24 (spp24) is a member of the cystatin superfamily, which was first identified in cattle as a minor component of cortical bone and subsequently has been identified as a component of the fetuin-mineral complex. We have localized the human SPP2 gene, which encodes spp24 to chromosome 2q37.1, determined its structure and mapped the start of transcription in liver. There is no CAAT or TATA box in the promoter region but potential transcription factor (TF)-binding sites have been identified. The gene comprises eight exons spread over a region of approximately 27 kb with the cystatin-like region of spp24 encoded by four exons, rather than the three-exon structure typical of the genes encoding the archetypal cystatins. A rare single amino acid polymorphism (p.S38F) has been identified within the mature protein and its significance has been assessed by comparing the sequence of human spp24 with that of eight other species.
Collapse
Affiliation(s)
- Clare S Bennett
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | | | | | | |
Collapse
|
43
|
Huddleson JP, Srinivasan S, Ahmad N, Lingrel JB. Fluid shear stress induces endothelial KLF2 gene expression through a defined promoter region. Biol Chem 2005; 385:723-9. [PMID: 15449708 DOI: 10.1515/bc.2004.088] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluid shear stress is crucial for maintenance of a properly functioning endothelium. In this study we demonstrate that the KLF2 transcription factor is greatly induced by pulsatile shear stress in murine microvascular endothelial cells. The promoter elements responsible for the induction were studied by transfection with luciferase-reporter plasmids including the 5' flanking region of the murine KLF2 gene. Deletion analysis reveals that the responses are regulated by a region from -157 to -95 bp from the start site of transcription. Furthermore, shear stress induces specific nuclear binding within this region. These results define a novel shear stress response region that is highly conserved between mouse and human homologs.
Collapse
Affiliation(s)
- Justin P Huddleson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0524, USA
| | | | | | | |
Collapse
|
44
|
Vukkadapu SS, Belli JM, Ishii K, Jegga AG, Hutton JJ, Aronow BJ, Katz JD. Dynamic interaction between T cell-mediated beta-cell damage and beta-cell repair in the run up to autoimmune diabetes of the NOD mouse. Physiol Genomics 2005; 21:201-11. [PMID: 15671250 DOI: 10.1152/physiolgenomics.00173.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In type 1 diabetes mellitus (T1DM), also known as autoimmune diabetes, the pathogenic destruction of the insulin-producing pancreatic beta-cells is under the control of and influenced by distinct subsets of T lymphocytes. To identify the critical genes expressed by autoimmune T cells, antigen presenting cells, and pancreatic beta-cells during the evolution of T1DM in the nonobese diabetic (NOD) mouse, and the genetically-altered NOD mouse (BDC/N), we used functional genomics. Microarray analysis revealed increased transcripts of genes encoding inflammatory cytokines, particularly interleukin (IL)-17, and islet cell regenerating genes, Reg3alpha, Reg3beta, and Reg3gamma. Our data indicate that progression to insulitis was connected to marked changes in islet antigen expression, beta-cell differentiation, and T cell activation and signaling, all associated with tumor necrosis factor-alpha and IL-6 expression. Overt diabetes saw a clear shift in cytokine, chemokine, and T cell differentiation factor expression, consistent with a focused Th1 response, as well as a significant upregulation in genes associated with cellular adhesion, homing, and apoptosis. Importantly, the temporal pattern of expression of key verified genes suggested that T1DM develops in a relapsing/remitting as opposed to a continuous fashion, with insulitis linked to hypoxia-regulated gene control and diabetes with C/EBP and Nkx2 gene control.
Collapse
Affiliation(s)
- Sankaranand S Vukkadapu
- Diabetes Research Center, Division of Endocrinology, Cincinnati Children's Hospital Research Foundation and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Sardiello M, Tripoli G, Romito A, Minervini C, Viggiano L, Caggese C, Pesole G. Energy biogenesis: one key for coordinating two genomes. Trends Genet 2005; 21:12-6. [PMID: 15680507 DOI: 10.1016/j.tig.2004.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In metazoan organisms, energy production is the only example of a process that is under dual genetic control: nuclear and mitochondrial. We used a genomic approach to examine how energy genes of both the nuclear and mitochondrial genomes are coordinated, and discovered a novel genetic regulatory circuit in Drosophila melanogaster that is surprisingly simple and parsimonious. This circuit is based on a single DNA regulatory element and can explain both intra- and inter-genomic coordinated expression of genes involved in energy production, including the full complement of mitochondrial and nuclear oxidative phosphorylation genes, and the genes involved in the Krebs cycle.
Collapse
Affiliation(s)
- Marco Sardiello
- Dipartimento di Anatomia Patologica e di Genetica, Sezione di Genetica, Università di Bari, via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Fried C, Hordijk W, Prohaska SJ, Stadler CR, Stadler PF. The footprint sorting problem. ACTA ACUST UNITED AC 2004; 44:332-8. [PMID: 15032508 DOI: 10.1021/ci030411+] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phylogenetic footprints are short pieces of noncoding DNA sequence in the vicinity of a gene that are conserved between evolutionary distant species. A seemingly simple problem is to sort footprints in their order along the genomes. It is complicated by the fact that not all footprints are collinear: they may cross each other. The problem thus becomes the identification of the crossing footprints, the sorting of the remaining collinear cliques, and finally the insertion of the noncollinear ones at "reasonable" positions. We show that solving the footprint sorting problem requires the solution of the "Minimum Weight Vertex Feedback Set Problem", which is known to be NP-complete and APX-hard. Nevertheless good approximations can be obtained for data sets of interest. The remaining steps of the sorting process are straightforward: computation of the transitive closure of an acyclic graph, linear extension of the resulting partial order, and finally sorting w.r.t. the linear extension. Alternatively, the footprint sorting problem can be rephrased as a combinatorial optimization problem for which approximate solutions can be obtained by means of general purpose heuristics. Footprint sortings obtained with different methods can be compared using a version of multiple sequence alignment that allows the identification of unambiguously ordered sublists. As an application we show that the rat has a slightly increased insertion/deletion rate in comparison to the mouse genome.
Collapse
Affiliation(s)
- Claudia Fried
- Bioinformatics, Department of Computer Science, University of Leipzig, Germany
| | | | | | | | | |
Collapse
|
47
|
Microarray and comparative genomics-based identification of genes and gene regulatory regions of the mouse immune system. BMC Genomics 2004; 5:82. [PMID: 15504237 PMCID: PMC534115 DOI: 10.1186/1471-2164-5-82] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 10/25/2004] [Indexed: 12/30/2022] Open
Abstract
Background In this study we have built and mined a gene expression database composed of 65 diverse mouse tissues for genes preferentially expressed in immune tissues and cell types. Using expression pattern criteria, we identified 360 genes with preferential expression in thymus, spleen, peripheral blood mononuclear cells, lymph nodes (unstimulated or stimulated), or in vitro activated T-cells. Results Gene clusters, formed based on similarity of expression-pattern across either all tissues or the immune tissues only, had highly significant associations both with immunological processes such as chemokine-mediated response, antigen processing, receptor-related signal transduction, and transcriptional regulation, and also with more general processes such as replication and cell cycle control. Within-cluster gene correlations implicated known associations of known genes, as well as immune process-related roles for poorly described genes. To characterize regulatory mechanisms and cis-elements of genes with similar patterns of expression, we used a new version of a comparative genomics-based cis-element analysis tool to identify clusters of cis-elements with compositional similarity among multiple genes. Several clusters contained genes that shared 5–6 cis-elements that included ETS and zinc-finger binding sites. cis-Elements AP2 EGRF ETSF MAZF SP1F ZF5F and AREB ETSF MZF1 PAX5 STAT were shared in a thymus-expressed set; AP4R E2FF EBOX ETSF MAZF SP1F ZF5F and CREB E2FF MAZF PCAT SP1F STAT cis-clusters occurred in activated T-cells; CEBP CREB NFKB SORY and GATA NKXH OCT1 RBIT occurred in stimulated lymph nodes. Conclusion This study demonstrates a series of analytic approaches that have allowed the implication of genes and regulatory elements that participate in the differentiation, maintenance, and function of the immune system. Polymorphism or mutation of these could adversely impact immune system functions.
Collapse
|
48
|
Bonizzi G, Bebien M, Otero DC, Johnson-Vroom KE, Cao Y, Vu D, Jegga AG, Aronow BJ, Ghosh G, Rickert RC, Karin M. Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB:p52 dimers. EMBO J 2004; 23:4202-10. [PMID: 15470505 PMCID: PMC524385 DOI: 10.1038/sj.emboj.7600391] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 08/10/2004] [Indexed: 12/18/2022] Open
Abstract
IkappaB Kinase (IKK)alpha is required for activation of an alternative NF-kappaB signaling pathway based on processing of the NF-kappaB2/p100 precursor protein, which associates with RelB in the cytoplasm. This pathway, which activates RelB:p52 dimers, is required for induction of several chemokine genes needed for organization of secondary lymphoid organs. We investigated the basis for the IKKalpha dependence of the induction of these genes in response to engagement of the lymphotoxin beta receptor (LTbetaR). Using chromatin immunoprecipitation, we found that the promoters of organogenic chemokine genes are recognized by RelB:p52 dimers and not by RelA:p50 dimers, the ubiquitous target for the classical NF-kappaB signaling pathway. We identified in the IKKalpha-dependent promoters a novel type of NF-kappaB-binding site that is preferentially recognized by RelB:p52 dimers. This site links induction of organogenic chemokines and other important regulatory molecules to activation of the alternative pathway.
Collapse
Affiliation(s)
- Giuseppina Bonizzi
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Magali Bebien
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dennis C Otero
- Division of Biological Sciences and UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Kirsten E Johnson-Vroom
- Division of Biological Sciences and UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Yixue Cao
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Don Vu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Anil G Jegga
- Department of Biomedical Informatics, Children's Hospital Research, Foundation and University of Cincinnati, Cincinnati, OH, USA
| | - Bruce J Aronow
- Department of Biomedical Informatics, Children's Hospital Research, Foundation and University of Cincinnati, Cincinnati, OH, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Robert C Rickert
- Division of Biological Sciences and UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La, Jolla, CA 92093-0636, USA. Tel.: +1 858 534 1361; Fax: +1 858 534 8158; E-mail:
| |
Collapse
|
49
|
Zhao T, Chang LW, McLeod HL, Stormo GD. PromoLign: a database for upstream region analysis and SNPs. Hum Mutat 2004; 23:534-9. [PMID: 15146456 DOI: 10.1002/humu.20049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The study of transcriptional regulation at the genomic level has been hindered by the lack of functional annotation in the putative regulatory regions. Phylogenetic footprinting, in which cross-species sequence alignment among orthologous genes is applied to locate conserved sequence blocks, is an effective strategy to attack this problem. Single nucleotide polymorphisms (SNPs) in transcription factor (TF) binding sites contribute to the heterogeneity of TF binding sites and might disrupt or enhance their regulatory activity. The correlation of SNPs with the TF sites will not only help in functional evaluation of SNPs, but will also help in the study of transcription regulation by focusing attention on specific TF sites. PromoLign (http://polly.wustl.edu/promolign/main.html) is an online database application that presents SNPs and TF binding profiles in the context of human-mouse orthologous sequence alignment with a hyperlinked graphical interface. PromoLign could be applied to a variety of SNPs and transcription related studies, including association genetics, population genetics, and pharmacogenetics.
Collapse
Affiliation(s)
- Tao Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
50
|
Livingston RJ, von Niederhausern A, Jegga AG, Crawford DC, Carlson CS, Rieder MJ, Gowrisankar S, Aronow BJ, Weiss RB, Nickerson DA. Pattern of sequence variation across 213 environmental response genes. Genome Res 2004; 14:1821-31. [PMID: 15364900 PMCID: PMC524406 DOI: 10.1101/gr.2730004] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To promote the clinical and epidemiological studies that improve our understanding of human genetic susceptibility to environmental exposure, the Environmental Genome Project (EGP) has scanned 213 environmental response genes involved in DNA repair, cell cycle regulation, apoptosis, and metabolism for single nucleotide polymorphisms (SNPs). Many of these genes have been implicated by loss-of-function mutations associated with severe diseases attributable to decreased protection of genomic integrity. Therefore, the hypothesis for these studies is that individuals with functionally significant polymorphisms within these genes may be particularly susceptible to genotoxic environmental agents. On average, 20.4 kb of baseline genomic sequence or 86% of each gene, including a substantial amount of introns, all exons, and 1.3 kb upstream and downstream, were scanned for variations in the 90 samples of the Polymorphism Discovery Resource panel. The average nucleotide diversity across the 4.2 MB of these 213 genes is 6.7 x 10(-4), or one SNP every 1500 bp, when two random chromosomes are compared. The average candidate environmental response gene contains 26 PHASE inferred haplotypes, 34 common SNPs, 6.2 coding SNPs (cSNPs), and 2.5 nonsynonymous cSNPs. SIFT and Polyphen analysis of 541 nonsynonymous cSNPs identified 57 potentially deleterious SNPs. An additional eight polymorphisms predict altered protein translation. Because these genes represent 1% of all known human genes, extrapolation from these data predicts the total genomic set of cSNPs, nonsynonymous cSNPs, and potentially deleterious nonsynonymous cSNPs. The implications for the use of these data in direct and indirect association studies of environmentally induced diseases are discussed.
Collapse
Affiliation(s)
- Robert J Livingston
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7730, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|