1
|
Bambil D, Costa M, Alencar Figueiredo LFD. PmiR-Select ® - a computational approach to plant pre-miRNA identification in genomes. Mol Genet Genomics 2025; 300:12. [PMID: 39751956 DOI: 10.1007/s00438-024-02221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Precursors of microRNAs (pre-miRNAs) are less used in silico to mine miRNAs. This study developed PmiR-Select® based on covariance models (CMs) to identify new pre-miRNAs, detecting conserved secondary structural features across RNA sequences and eliminating the redundancy. The pipeline preceded PmiR-Select® filtered 20% plant pre-miRNAs (from 38589 to 8677) from miRBase. The second filter reduced pre-miRNAs by 7% (from 8677 to 8045) through length limit to pre-miRNAs (70-300 nt) and miRNAs (20-24 nt). The 80% redundancy threshold was statistically the best, eliminating 55% pre-miRNAs (from 8045 to 3608). Angiosperms retained the highest number of pre-miRNAs and their families (2981 and 2202), followed by gymnosperms (362 and 271), bryophytes (183 and 119), and algae (82 and 78). Thirty-seven conserved pre-miRNA families happened among plant land clades, but none with algae. The PmiR-Select® was applied to the rice genome, producing 8536 pre-miRNAs from 36 families. The 80% redundancy threshold retained 3% pre-miRNAs (n = 264) from 36 families, valuable experimental and computational research resources. 14% (n = 1216) of 8536 were new pre-miRNAs from 19 new families in rice. Only 16 new sequences from six families overlapped (39 to 54% identities) with rice pre-miRNAs and five species on miRBase. The validation against mature miRNAs identified 8086 pre-miRNAs from 13 families. Eleven ones have already been recorded, but two new and abundant pre-miRNAs [miR437 (n = 296) and miR1435 (n = 725)] scattered in all 12-rice chromosomes. PmiR-Select® identified pre-miRNAs, decreased the redundancy, and discovered new miRNAs. These findings pave the way to delineating benchtop and computational experiments.
Collapse
Affiliation(s)
- Deborah Bambil
- Department of Cell Biology, Biology Institute, University of Brasília (UnB), Brasília, DF, 70910-900, Brazil.
- Federal Institute of Brasília (IFB), Brasília, DF, 70830-450, Brazil.
- Department of Botany, Biology Institute, UnB, Brasília, DF, 70910-900, Brazil.
| | - Mirele Costa
- Department of Computation, UnB, Brasília, DF, 70910-900, Brazil
| | | |
Collapse
|
2
|
Fang J, Doyle PS. Quantitative and spatially resolved detection of multiplexed microRNA from plant tissue via hybridization to hydrogel-bound DNA probes in nanoliter well arrays. MICROSYSTEMS & NANOENGINEERING 2024; 10:142. [PMID: 39375353 PMCID: PMC11458878 DOI: 10.1038/s41378-024-00785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024]
Abstract
Understanding complex regulatory networks in plant systems requires elucidating the roles of various gene regulators under a spatial landscape. MicroRNA are key regulators that impart high information value through their tissue specificity and stability when using expression patterns for evaluating network outcomes. However, current techniques that utilize spatial multiplexing and quantitation of microRNA are limited to primarily mammalian systems. Here, we present a method to spatially resolve and quantify multiple endogenous microRNA in situ using ethanol fixed, paraffin embedded model plant species. This method utilizes target-specific microRNA capture along with universal ligating and labelling, all within functionalized hydrogel posts containing DNA probes in nanoliter well arrays. We demonstrate the platform's multiplexing capabilities through analyzing three endogenous microRNA in Arabidopsis thaliana rosettes which provide useful answers to fundamental plant growth and development from the unique expression patterns. The spatial tissue technique is also validated using non-spatial small RNA assays to demonstrate the versatility of the well array platform. Our new platform expands the toolkit of spatial omics technologies for plants.
Collapse
Affiliation(s)
- Jennifer Fang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Scacchi E, Paszkiewicz G, Thi Nguyen K, Meda S, Burian A, de Back W, Timmermans MCP. A diffusible small-RNA-based Turing system dynamically coordinates organ polarity. NATURE PLANTS 2024; 10:412-422. [PMID: 38409292 DOI: 10.1038/s41477-024-01634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
The formation of a flat and thin leaf presents a developmentally challenging problem, requiring intricate regulation of adaxial-abaxial (top-bottom) polarity. The patterning principles controlling the spatial arrangement of these domains during organ growth have remained unclear. Here we show that this regulation in Arabidopsis thaliana is achieved by an organ-autonomous Turing reaction-diffusion system centred on mobile small RNAs. The data illustrate how Turing dynamics transiently instructed by prepatterned information is sufficient to self-sustain properly oriented polarity in a dynamic, growing organ, presenting intriguing parallels to left-right patterning in the vertebrate embryo. Computational modelling demonstrates that this self-organizing system continuously adapts to coordinate the robust planar polarity of a flat leaf while affording flexibility to generate the tissue patterns of evolutionarily diverse organ shapes. Our findings identify a small-RNA-based Turing network as a dynamic regulator of organ polarity that accounts for leaf shape diversity at the level of the individual organ, plant or species.
Collapse
Affiliation(s)
- Emanuele Scacchi
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany.
| | - Gael Paszkiewicz
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Khoa Thi Nguyen
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Shreyas Meda
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Agata Burian
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Walter de Back
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | | |
Collapse
|
4
|
Scholthof HB, Scholthof KBG. Plant virology: an RNA treasure trove. TRENDS IN PLANT SCIENCE 2023; 28:1277-1289. [PMID: 37495453 DOI: 10.1016/j.tplants.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Key principles pertaining to RNA biology not infrequently have their origins in plant virology. Examples have arisen from studies on viral RNA-intrinsic properties and the infection process from gene expression, replication, movement, and defense evasion to biotechnological applications. Since RNA is at the core of the central dogma in molecular biology, how plant virology assisted in the reinforcement or adaptations of this concept, while at other instances shook up elements of the doctrine, is discussed. Moreover, despite the negative effects of viral diseases in agriculture worldwide, plant viruses can be considered a scientific treasure trove. Today they remain tools of discovery for biotechnology, studying evolution, cell biology, and host-microbe interactions.
Collapse
Affiliation(s)
- Herman B Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station TX 77843, USA.
| | - Karen-Beth G Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station TX 77843, USA
| |
Collapse
|
5
|
Balyan S, Kansal S, Jajo R, Behere PR, Chatterjee R, Raghuvanshi S. Delineating the tissue-mediated drought stress governed tuning of conserved miR408 and its targets in rice. Funct Integr Genomics 2023; 23:187. [PMID: 37243818 DOI: 10.1007/s10142-023-01111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Engineering drought tolerance in rice needs to focus on regulators that enhance tolerance while boosting plant growth and vigor. The present study delineated the concealed function and tissue-mediated interplay of the miR408/target module in imparting drought stress tolerance in rice. The plant miR408 family comprises three dominant mature forms (21 nt), including a distinct monocot variant (F-7 with 5' C) and is divided into six groups. miR408 majorly cleaves genes belonging to the blue copper protein in addition to several other species-specific targets in plants. Comparative sequence analysis in 4726 rice accessions identified 22 sequence variants (SNP and InDELs) in its promoter (15) and pre-miR408 region. Haplotype analysis of the sequence variants indicated eight haplotypes (three: Japonica-specific and five: Indica-specific) of the miR408 promoter. In drought-tolerant Nagina 22, miR408 follows flag leaf preferential expression. Under drought conditions, its levels are upregulated in flag leaf and roots which seems to be regulated by a differential fraction of methylated cytosines (mCs) in the precursor region. The active pool of miR408 regulated targets under control and drought conditions is impacted by the tissue type. Comparative expression analysis of the miR408/target module under different sets of conditions features 83 targets exhibiting antagonistic expression in rice, out of which 12 genes, including four PLANTACYANINS (OsUCL6, 7, 9 and 30), PIRIN, OsLPR1, OsCHUP1, OsDOF12, OsBGLU1, glycine-rich cell wall gene, OsDUT, and OsERF7, are among the high confidence targets. Further, overexpression of MIR408 in drought-sensitive rice cultivar (PB1) leads to the massive enhancement of vegetative growth in rice with improved ETR and Y(II) and enhanced dehydration stress tolerance. The above results suggest that miR408 is likely to act as a positive regulator of growth and vigor, as well as dehydration stress, making it a potential candidate for engineering drought tolerance in rice.
Collapse
Affiliation(s)
- Sonia Balyan
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Shivani Kansal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Ringyao Jajo
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Pratyush Rajiv Behere
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rishika Chatterjee
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
6
|
Satterlee JW, Evans LJ, Conlon BR, Conklin P, Martinez-Gomez J, Yen JR, Wu H, Sylvester AW, Specht CD, Cheng J, Johnston R, Coen E, Scanlon MJ. A Wox3-patterning module organizes planar growth in grass leaves and ligules. NATURE PLANTS 2023; 9:720-732. [PMID: 37142751 DOI: 10.1038/s41477-023-01405-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/28/2023] [Indexed: 05/06/2023]
Abstract
Grass leaves develop from a ring of primordial initial cells within the periphery of the shoot apical meristem, a pool of organogenic stem cells that generates all of the organs of the plant shoot. At maturity, the grass leaf is a flattened, strap-like organ comprising a proximal supportive sheath surrounding the stem and a distal photosynthetic blade. The sheath and blade are partitioned by a hinge-like auricle and the ligule, a fringe of epidermally derived tissue that grows from the adaxial (top) leaf surface. Together, the ligule and auricle comprise morphological novelties that are specific to grass leaves. Understanding how the planar outgrowth of grass leaves and their adjoining ligules is genetically controlled can yield insight into their evolutionary origins. Here we use single-cell RNA-sequencing analyses to identify a 'rim' cell type present at the margins of maize leaf primordia. Cells in the leaf rim have a distinctive identity and share transcriptional signatures with proliferating ligule cells, suggesting that a shared developmental genetic programme patterns both leaves and ligules. Moreover, we show that rim function is regulated by genetically redundant Wuschel-like homeobox3 (WOX3) transcription factors. Higher-order mutations in maize Wox3 genes greatly reduce leaf width and disrupt ligule outgrowth and patterning. Together, these findings illustrate the generalizable use of a rim domain during planar growth of maize leaves and ligules, and suggest a parsimonious model for the homology of the grass ligule as a distal extension of the leaf sheath margin.
Collapse
Affiliation(s)
- James W Satterlee
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lukas J Evans
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Brianne R Conlon
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Phillip Conklin
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Jeffery R Yen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Hao Wu
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Anne W Sylvester
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Chelsea D Specht
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Jie Cheng
- John Innes Centre, Norwich Research Park, Norwich, UK
- State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, Beijing, China
| | - Robyn Johnston
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- The Elshire Group Ltd., Palmerston North, New Zealand
| | - Enrico Coen
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Michael J Scanlon
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
7
|
Kirchhelle C, Hamant O. Discretizing the cellular bases of plant morphogenesis: Emerging properties from subcellular and noisy patterning. Curr Opin Cell Biol 2023; 81:102159. [PMID: 36966612 DOI: 10.1016/j.ceb.2023.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 06/12/2023]
Abstract
A fundamental question in biology is how multicellular organisms robustly shape their organs. In the past decade, much progress has been made not just in identifying biochemical and biophysical factors underpinning morphogenesis, but also in analyzing their spatio-temporal dynamics. A remarkable outcome of such analyses is that morphogenesis involves high levels of heterogeneity and fluctuations at local scales. Although this could be considered as white noise to be averaged over time, there is increasing evidence that these heterogeneities and fluctuations are instructive cues for development. In this review, we highlight some of the new questions that such heterogeneities raise for plant morphogenesis. We also investigate their effects across scales, focusing on how subcellular heterogeneities contribute to organ shape robustness and evolvability.
Collapse
Affiliation(s)
- Charlotte Kirchhelle
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
8
|
Sun X, Zheng HX, Li S, Gao Y, Dang Y, Chen Z, Wu F, Wang X, Xie Q, Sui N. MicroRNAs balance growth and salt stress responses in sweet sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:677-697. [PMID: 36534087 DOI: 10.1111/tpj.16065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is one of the major causes of reduced crop production, limiting agricultural development globally. Plants have evolved with complex systems to maintain the balance between growth and stress responses, where signaling pathways such as hormone signaling play key roles. Recent studies revealed that hormones are modulated by microRNAs (miRNAs). Previously, two sweet sorghum (Sorghum bicolor) inbred lines with different salt tolerance were identified: the salt-tolerant M-81E and the salt-sensitive Roma. The levels of endogenous hormones in M-81E and Roma varied differently under salt stress, showing a different balance between growth and stress responses. miRNA and degradome sequencing showed that the expression of many upstream transcription factors regulating signal transduction and hormone-responsive genes was directly induced by differentially expressed miRNAs, whose levels were very different between the two sweet sorghum lines. Furthermore, the effects of representative miRNAs on salt tolerance in sorghum were verified through a transformation system mediated by Agrobacterium rhizogenes. Also, miR-6225-5p reduced the level of Ca2+ in the miR-6225-5p-overexpressing line by inhibiting the expression of the Ca2+ uptake gene SbGLR3.1 in the root epidermis and affected salt tolerance in sorghum. This study provides evidence for miRNA-mediated growth and stress responses in sweet sorghum.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
9
|
Li Y, Cen CQ, Liu B, Zhou L, Huang XM, Liu GY. Overexpression of circ PTK2 suppresses the progression of nonalcoholic fatty liver disease via the miR-200c/SIK2/PI3K/Akt axis. Kaohsiung J Med Sci 2022; 38:869-878. [PMID: 35791807 DOI: 10.1002/kjm2.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/01/2022] [Accepted: 05/25/2022] [Indexed: 11/11/2022] Open
Abstract
Excessive hepatic lipid accumulation is involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). A previous study showed that the circular RNA (circRNA) PTK2 was significantly downregulated in NAFLD mice. However, the detailed function of circ PTK2 in NAFLD remains unclear. A high-fat diet (HFD) was used to establish a mouse model of NAFLD, and free fatty acid (FFA) treatment was used to establish an in vitro model of NAFLD. Oil red O staining was used to evaluate lipid accumulation. The pathological changes in mice were observed by HE staining. Western blotting and RT-qPCR were applied to assess protein and mRNA levels, respectively. A dual luciferase reporter assay and RIP were used to explore the relationship among circ PTK2, miR-200c and SIK2. Circ PTK2 and SIK2 were downregulated and miR-200c was upregulated in NAFLD. Upregulation of circ PTK2 reversed lipid accumulation in FFA-treated HepG2 cells. Moreover, circ PTK2 bound to miR-200c, and SIK2 was identified as the direct target of miR-200c. Moreover, the miR-200c inhibitor-induced decrease in lipid accumulation was reversed by SIK2 knockdown. Furthermore, the impact of circ PTK2 overexpression on PI3K/Akt signaling was partially reversed by SIK2 silencing. Circ PTK2 overexpression alleviates NAFLD development via the miR-200c/SIK2/PI3K/Akt axis. Thus, our work might provide new methods for NAFLD treatment.
Collapse
Affiliation(s)
- Yong Li
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao-Qun Cen
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Liu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Zhou
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang-Miao Huang
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Geng-Yan Liu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
pH-activated DNA nanomachine for miRNA-21 imaging to accurately identify cancer cell. Mikrochim Acta 2022; 189:266. [PMID: 35776208 DOI: 10.1007/s00604-022-05340-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/14/2022] [Indexed: 10/17/2022]
Abstract
MicroRNA (miRNA) imaging has been employed to distinguish cancer cells from normal cells by exploiting the overexpression of miRNA in cancer. Inspired by the acidic extracellular tumor microenvironment, we designed a pH-activated DNA nanomachine to enable the specific detection of cancer cells using miRNA imaging. The DNA nanomachine was engineered by assembling two hairpins (Y1 and Y2) onto the surface of a ZIF-8 metal-organic framework (MOF), which decomposed under acidic conditions to release the adsorbed DNA hairpin molecules in situ. The released hairpins were captured by the target miRNA-21 and underwent catalytic hairpin assembly amplification between Y1 and Y2. The detection limit for miRNA assays using the DNA nanomachine was determined to be 27 pM, which is low enough for sensitive detection in living cells. Living cell imaging of miRNA-21 further corroborated the application of the DNA nanomachine in the identification of cancer cell.
Collapse
|
11
|
Zhong J, Kong F. The control of compound inflorescences: insights from grasses and legumes. TRENDS IN PLANT SCIENCE 2022; 27:564-576. [PMID: 34973922 DOI: 10.1016/j.tplants.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
A major challenge in biology is to understand how organisms have increased developmental complexity during evolution. Inflorescences, with remarkable variation in branching systems, are a fitting model to understand architectural complexity. Inflorescences bear flowers that may become fruits and/or seeds, impacting crop productivity and species fitness. Great advances have been achieved in understanding the regulation of complex inflorescences, particularly in economically and ecologically important grasses and legumes. Surprisingly, a synthesis is still lacking regarding the common or distinct principles underlying the regulation of inflorescence complexity. Here, we synthesize the similarities and differences in the regulation of compound inflorescences in grasses and legumes, and propose that the emergence of novel higher-order repetitive modules is key to the evolution of inflorescence complexity.
Collapse
Affiliation(s)
- Jinshun Zhong
- School of Life Sciences, South China Agricultural University, Wushan Street 483, Guangzhou 510642, China; Institute for Plant Genetics, Heinrich-Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany; Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany; Cluster of Excellence on Plant Sciences, 'SMART Plants for Tomorrow's Needs', Heinrich-Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Joshi S, Paul P, Hartman JM, Perry SE. AGL15 Promotion of Somatic Embryogenesis: Role and Molecular Mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:861556. [PMID: 35419012 PMCID: PMC8996056 DOI: 10.3389/fpls.2022.861556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Plants have amazing regenerative properties with single somatic cells, or groups of cells able to give rise to fully formed plants. One means of regeneration is somatic embryogenesis, by which an embryonic structure is formed that "converts" into a plantlet. Somatic embryogenesis has been used as a model for zygotic processes that are buried within layers of maternal tissues. Understanding mechanisms of somatic embryo induction and development are important as a more accessible model for seed development. We rely on seed development not only for most of our caloric intake, but also as a delivery system for engineered crops to meet agricultural challenges. Regeneration of transformed cells is needed for this applied work as well as basic research to understand gene function. Here we focus on a MADS-domain transcription factor, AGAMOUS-Like15 (AGL15) that shows a positive correlation between accumulation levels and capacity for somatic embryogenesis. We relate AGL15 function to other transcription factors, hormones, and epigenetic modifiers involved in somatic embryo development.
Collapse
Affiliation(s)
- Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Priyanka Paul
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Jeanne M. Hartman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
13
|
Chen J, Han X, Ye S, Liu L, Yang B, Cao Y, Zhuo R, Yao X. Integration of small RNA, degradome, and transcriptome sequencing data illustrates the mechanism of low phosphorus adaptation in Camellia oleifera. FRONTIERS IN PLANT SCIENCE 2022; 13:932926. [PMID: 35979079 PMCID: PMC9377520 DOI: 10.3389/fpls.2022.932926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/11/2022] [Indexed: 05/02/2023]
Abstract
Phosphorus (P) is an indispensable macronutrient for plant growth and development, and it is involved in various cellular biological activities in plants. Camellia oleifera is a unique high-quality woody oil plant that grows in the hills and mountains of southern China. However, the available P content is deficient in southern woodland soil. Until now, few studies focused on the regulatory functions of microRNAs (miRNAs) and their target genes under low inorganic phosphate (Pi) stress. In this study, we integrated small RNA, degradome, and transcriptome sequencing data to investigate the mechanism of low Pi adaptation in C. oleifera. We identified 40,689 unigenes and 386 miRNAs by the deep sequencing technology and divided the miRNAs into four different groups. We found 32 miRNAs which were differentially expressed under low Pi treatment. A total of 414 target genes of 108 miRNAs were verified by degradome sequencing. Gene ontology (GO) functional analysis of target genes found that they were related to the signal response to the stimulus and transporter activity, indicating that they may respond to low Pi stress. The integrated analysis revealed that 31 miRNA-target pairs had negatively correlated expression patterns. A co-expression regulatory network was established based on the profiles of differentially expressed genes. In total, three hub genes (ARF22, WRKY53, and SCL6), which were the targets of differentially expressed miRNAs, were discovered. Our results showed that integrated analyses of the small RNA, degradome, and transcriptome sequencing data provided a valuable basis for investigating low Pi in C. oleifera and offer new perspectives on the mechanism of low Pi tolerance in woody oil plants.
Collapse
Affiliation(s)
- Juanjuan Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Forestry Faculty, Nanjing Forestry University, Nanjing, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Sicheng Ye
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Linxiu Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Bingbing Yang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yongqing Cao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- *Correspondence: Renying Zhuo,
| | - Xiaohua Yao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Xiaohua Yao,
| |
Collapse
|