1
|
Wolff JO, Kennedy SR, Houghton M, Pascoe P, Gajski D, Derkarabetian S, Fraser C, Krehenwinkel H, Renault D. Infrequent Long-Range Dispersal and Evolution of a Top Terrestrial Arthropod Predator in the Sub-Antarctic. Am Nat 2024; 204:191-199. [PMID: 39008836 DOI: 10.1086/730827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
AbstractThe sub-Antarctic terrestrial ecosystems survive on isolated oceanic islands in the path of circumpolar currents and winds that have raged for more than 30 million years and are shaped by climatic cycles that surpass the tolerance limits of many species. Surprisingly little is known about how these ecosystems assembled their native terrestrial fauna and how such processes have changed over time. Here, we demonstrate the patterns and timing of colonization and speciation in the largest and dominant arthropod predators in the eastern sub-Antarctic: spiders of the genus Myro. Our results indicate that this lineage originated from Australia before the Plio-Pleistocenic glacial cycles and underwent an adaptive radiation on the Crozet archipelago, from where one native species colonized multiple remote archipelagos via the Antarctic circumpolar current across thousands of kilometers. The results indicate limited natural connectivity between terrestrial macroinvertebrate faunas in the eastern sub-Antarctic and partial survival of repeated glaciations in the Plio-Pleistocene. Furthermore, our findings highlight that by integrating arthropod taxa from multiple continents, the climatically more stable volcanic Crozet archipelago played a critical role in the evolution and distribution of arthropod life in the sub-Antarctic.
Collapse
|
2
|
Van Eldijk TJB, Sheridan EA, Martin G, Weissing FJ, Kuipers OP, Van Doorn GS. Temperature dependence of the mutation rate towards antibiotic resistance. JAC Antimicrob Resist 2024; 6:dlae085. [PMID: 38847007 PMCID: PMC11154133 DOI: 10.1093/jacamr/dlae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Objectives Environmental conditions can influence mutation rates in bacteria. Fever is a common response to infection that alters the growth conditions of infecting bacteria. Here we examine how a temperature change, such as is associated with fever, affects the mutation rate towards antibiotic resistance. Methods We used a fluctuation test to assess the mutation rate towards antibiotic resistance in Escherichia coli at two different temperatures: 37°C (normal temperature) and 40°C (fever temperature). We performed this measurement for three different antibiotics with different modes of action: ciprofloxacin, rifampicin and ampicillin. Results In all cases, the mutation rate towards antibiotic resistance turned out to be temperature dependent, but in different ways. Fever temperatures led to a reduced mutation rate towards ampicillin resistance and an elevated mutation rate towards ciprofloxacin and rifampicin resistance. Conclusions This study shows that the mutation rate towards antibiotic resistance is impacted by a small change in temperature, such as associated with fever. This opens a new avenue to mitigate the emergence of antibiotic resistance by coordinating the choice of an antibiotic with the decision of whether or not to suppress fever when treating a patient. Hence, optimized combinations of antibiotics and fever suppression strategies may be a new weapon in the battle against antibiotic resistance.
Collapse
Affiliation(s)
- Timo J B Van Eldijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Eleanor A Sheridan
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Guillaume Martin
- Institut des Sciences de l’Evolution de Montpellier UMR5554, Université de Montpellier, CNRS-IRD-EPHE-UM, Montpellier, France
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - G Sander Van Doorn
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Sandsdalen GD, Kumar A, Hjerde E. Exploring the Frozen Armory: Antiphage Defense Systems in Cold-Adapted Bacteria with a Focus on CRISPR-Cas Systems. Microorganisms 2024; 12:1028. [PMID: 38792857 PMCID: PMC11124354 DOI: 10.3390/microorganisms12051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Our understanding of the antiphage defense system arsenal in bacteria is rapidly expanding, but little is known about its occurrence in cold-adapted bacteria. In this study, we aim to shed light on the prevalence and distribution of antiphage defense systems in cold-adapted bacteria, with a focus on CRISPR-Cas systems. Using bioinformatics tools, Prokaryotic Antiviral Defense LOCator (PADLOC) and CRISPRCasTyper, we mapped the presence and diversity of antiphage defense systems in 938 available genomes of cold-adapted bacteria from diverse habitats. We confirmed that CRISPR-Cas systems are less frequent in cold-adapted bacteria, compared to mesophilic and thermophilic species. In contrast, several antiphage defense systems, such as dXTPases and DRTs, appear to be more frequently compared to temperate bacteria. Additionally, our study provides Cas endonuclease candidates with a potential for further development into cold-active CRISPR-Cas genome editing tools. These candidates could have broad applications in research on cold-adapted organisms. Our study provides a first-time map of antiphage defense systems in cold-adapted bacteria and a detailed overview of CRISPR-Cas diversity.
Collapse
Affiliation(s)
| | | | - Erik Hjerde
- Department of Chemistry, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (G.D.S.); (A.K.)
| |
Collapse
|
4
|
Bernatchez L, Ferchaud AL, Berger CS, Venney CJ, Xuereb A. Genomics for monitoring and understanding species responses to global climate change. Nat Rev Genet 2024; 25:165-183. [PMID: 37863940 DOI: 10.1038/s41576-023-00657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/22/2023]
Abstract
All life forms across the globe are experiencing drastic changes in environmental conditions as a result of global climate change. These environmental changes are happening rapidly, incur substantial socioeconomic costs, pose threats to biodiversity and diminish a species' potential to adapt to future environments. Understanding and monitoring how organisms respond to human-driven climate change is therefore a major priority for the conservation of biodiversity in a rapidly changing environment. Recent developments in genomic, transcriptomic and epigenomic technologies are enabling unprecedented insights into the evolutionary processes and molecular bases of adaptation. This Review summarizes methods that apply and integrate omics tools to experimentally investigate, monitor and predict how species and communities in the wild cope with global climate change, which is by genetically adapting to new environmental conditions, through range shifts or through phenotypic plasticity. We identify advantages and limitations of each method and discuss future research avenues that would improve our understanding of species' evolutionary responses to global climate change, highlighting the need for holistic, multi-omics approaches to ecosystem monitoring during global climate change.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
- Parks Canada, Office of the Chief Ecosystem Scientist, Protected Areas Establishment, Quebec City, Quebec, Canada.
| | - Chloé Suzanne Berger
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
5
|
Samir S. Human DNA Mutations and their Impact on Genetic Disorders. Recent Pat Biotechnol 2024; 18:288-315. [PMID: 37936448 DOI: 10.2174/0118722083255081231020055309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023]
Abstract
DNA is a remarkably precise medium for copying and storing biological information. It serves as a design for cellular machinery that permits cells, organs, and even whole organisms to work. The fidelity of DNA replication results from the action of hundreds of genes involved in proofreading and damage repair. All human cells can acquire genetic changes in their DNA all over life. Genetic mutations are changes to the DNA sequence that happen during cell division when the cells make copies of themselves. Mutations in the DNA can cause genetic illnesses such as cancer, or they could help humans better adapt to their environment over time. The endogenous reactive metabolites, therapeutic medicines, and an excess of environmental mutagens, such as UV rays all continuously damage DNA, compromising its integrity. One or more chromosomal alterations and point mutations at a single site (monogenic mutation) including deletions, duplications, and inversions illustrate such DNA mutations. Genetic conditions can occur when an altered gene is inherited from parents, which increases the risk of developing that particular condition, or some gene alterations can happen randomly. Moreover, symptoms of genetic conditions depend on which gene has a mutation. There are many different diseases and conditions caused by mutations. Some of the most common genetic conditions are Alzheimer's disease, some cancers, cystic fibrosis, Down syndrome, and sickle cell disease. Interestingly, scientists find that DNA mutations are more common than formerly thought. This review outlines the main DNA mutations that occur along the human genome and their influence on human health. The subject of patents pertaining to DNA mutations and genetic disorders has been brought up.
Collapse
Affiliation(s)
- Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
6
|
Segovia‐Ramírez MG, Ramírez‐Sánchez O, Decena Segarra LP, Rios‐Carlos H, Rovito SM. Determinants of genetic diversity in Neotropical salamanders (Plethodontidae: Bolitoglossini). Ecol Evol 2023; 13:e10707. [PMID: 38020701 PMCID: PMC10654480 DOI: 10.1002/ece3.10707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Genetic diversity is the raw material of evolution, yet the reasons why it varies among species remain poorly understood. While studies at deeper phylogenetic scales point to the influence of life history traits on genetic diversity, it appears to be more affected by population size but less predictable at shallower scales. We used proxies for population size, mutation rate, direct selection, and linked selection to test factors affecting genetic diversity within a diverse assemblage of Neotropical salamanders, which vary widely for these traits. We estimated genetic diversity of noncoding loci using ddRADseq and coding loci using RNAseq for an assemblage of Neotropical salamanders distributed from northern Mexico to Costa Rica. Using ddRADseq loci, we found no significant association with genetic diversity, while for RNAseq data we found that environmental heterogeneity and proxies of population size predict a substantial portion of the variance in genetic diversity across species. Our results indicate that diversity of coding loci may be more predictable than that of noncoding loci, which appears to be mostly unpredictable at shallower phylogenetic scales. Our results suggest that coding loci may be more appropriate for genetic diversity estimates used in conservation planning because of the lack of any association between the variables we used and genetic diversity of noncoding loci.
Collapse
Affiliation(s)
| | - Obed Ramírez‐Sánchez
- Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMexico
| | - Louis Paul Decena Segarra
- Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMexico
| | - Hairo Rios‐Carlos
- Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMexico
| | - Sean M. Rovito
- Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMexico
| |
Collapse
|
7
|
Liu H, Sun M, Zhang J. Genomic estimates of mutation and substitution rates contradict the evolutionary speed hypothesis of the latitudinal diversity gradient. Proc Biol Sci 2023; 290:20231787. [PMID: 37876195 PMCID: PMC10598419 DOI: 10.1098/rspb.2023.1787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
The latitudinal diversity gradient (LDG) refers to a decrease in biodiversity from the equator to the poles. The evolutionary speed hypothesis, backed by the metabolic theory of ecology, asserts that nucleotide mutation and substitution rates per site per year are higher and thereby speciation rates are higher at higher temperatures, generating the LDG. However, prior empirical investigations of the relationship between the temperature and mutation or substitution rate were based on a few genes and the results were mixed. We here revisit this relationship using genomic data. No significant correlation between the temperature and mutation rate is found in 13 prokaryotes or in 107 eukaryotes. An analysis of 234 diverse trios of bacterial taxa indicates that the synonymous substitution rate is not significantly associated with the growth temperature. The same data, however, reveal a significant negative association between the nonsynonymous substitution rate and temperature, which is explainable by a larger fraction of detrimental nonsynonymous mutations at higher temperatures due to a stronger demand for protein stability. We conclude that the evolutionary speed hypothesis of the LDG is unsupported by genomic data and advise that future mechanistic studies of the LDG should focus on other hypotheses.
Collapse
Affiliation(s)
- Haoxuan Liu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Evolutionary & Organismal Biology and the Fourth Affiliated Hospital of Zhejiang University, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China
| | - Mengyi Sun
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Wendering P, Nikoloski Z. Model-driven insights into the effects of temperature on metabolism. Biotechnol Adv 2023; 67:108203. [PMID: 37348662 DOI: 10.1016/j.biotechadv.2023.108203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Temperature affects cellular processes at different spatiotemporal scales, and identifying the genetic and molecular mechanisms underlying temperature responses paves the way to develop approaches for mitigating the effects of future climate scenarios. A systems view of the effects of temperature on cellular physiology can be obtained by focusing on metabolism since: (i) its functions depend on transcription and translation and (ii) its outcomes support organisms' development, growth, and reproduction. Here we provide a systematic review of modelling efforts directed at investigating temperature effects on properties of single biochemical reactions, system-level traits, metabolic subsystems, and whole-cell metabolism across different prokaryotes and eukaryotes. We compare and contrast computational approaches and theories that facilitate modelling of temperature effects on key properties of enzymes and their consideration in constraint-based as well as kinetic models of metabolism. In addition, we provide a summary of insights from computational approaches, facilitating integration of omics data from temperature-modulated experiments with models of metabolic networks, and review the resulting biotechnological applications. Lastly, we provide a perspective on how different types of metabolic modelling can profit from developments in machine learning and models of different cellular layers to improve model-driven insights into the effects of temperature relevant for biotechnological applications.
Collapse
Affiliation(s)
- Philipp Wendering
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany.
| |
Collapse
|
9
|
Fronhofer EA, Corenblit D, Deshpande JN, Govaert L, Huneman P, Viard F, Jarne P, Puijalon S. Eco-evolution from deep time to contemporary dynamics: The role of timescales and rate modulators. Ecol Lett 2023; 26 Suppl 1:S91-S108. [PMID: 37840024 DOI: 10.1111/ele.14222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 10/17/2023]
Abstract
Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the 'theatre' in which ecology and evolution are two interacting 'players'. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.
Collapse
Affiliation(s)
| | - Dov Corenblit
- GEOLAB, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
- Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | - Lynn Govaert
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Philippe Huneman
- Institut d'Histoire et de Philosophie des Sciences et des Techniques (CNRS/Université Paris I Sorbonne), Paris, France
| | - Frédérique Viard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Philippe Jarne
- CEFE, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - IRD - EPHE, Montpellier Cedex 5, France
| | - Sara Puijalon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| |
Collapse
|
10
|
Wang Y, Obbard DJ. Experimental estimates of germline mutation rate in eukaryotes: a phylogenetic meta-analysis. Evol Lett 2023; 7:216-226. [PMID: 37475753 PMCID: PMC10355183 DOI: 10.1093/evlett/qrad027] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Mutation is the ultimate source of all genetic variation, and over the last 10 years the ready availability of whole-genome sequencing has permitted direct estimation of mutation rate for many non-model species across the tree of life. In this meta-analysis, we make a comprehensive search of the literature for mutation rate estimates in eukaryotes, identifying 140 mutation accumulation (MA) and parent-offspring (PO) sequencing studies covering 134 species. Based on these data, we revisit differences in the single-nucleotide mutation (SNM) rate between different phylogenetic lineages and update the known relationships between mutation rate and generation time, genome size, and nucleotide diversity-while accounting for phylogenetic nonindependence. We do not find a significant difference between MA and PO in estimated mutation rates, but we confirm that mammal and plant lineages have higher mutation rates than arthropods and that unicellular eukaryotes have the lowest mutation rates. We find that mutation rates are higher in species with longer generation times and larger genome sizes, even when accounting for phylogenetic relationships. Moreover, although nucleotide diversity is positively correlated with mutation rate, the gradient of the relationship is significantly less than one (on a logarithmic scale), consistent with higher mutation rates in populations with smaller effective size. For the 29 species for which data are available, we find that indel mutation rates are positively correlated with nucleotide mutation rates and that short deletions are generally more common than short insertions. Nevertheless, despite recent progress, no estimates of either SNM or indel mutation rates are available for the majority of deeply branching eukaryotic lineages-or even for most animal phyla. Even among charismatic megafauna, experimental mutation rate estimates remain unknown for amphibia and scarce for reptiles and fish.
Collapse
Affiliation(s)
- Yiguan Wang
- Corresponding author: Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom.
| | - Darren J Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Bouhali A, Homrani A, Ferrand N, Lopes S, Emam AM. Assessment of genetic diversity among native Algerian rabbit populations using microsatellite markers. Arch Anim Breed 2023; 66:207-215. [PMID: 37560355 PMCID: PMC10407306 DOI: 10.5194/aab-66-207-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Having higher adaptability against abiotic stress, which is characterized in rural areas in developing countries, local farm animal genetic resources (FAGRs) are increasingly precarious for random and unsystematic crossing with exotic breeds. In this study, 85 microsatellite loci were utilized to assess genetic diversity among native Algerian rabbits (NARs) sampled from an area of 753 km (from north to south) and 919 km (from east to west). Those distances covered 25 significant geographical points in seven rural areas (El Taref, Mostaganem, Sidi Bel Abbès, M'Sila, Dar Chioukh, Faidh El Botma, and Laghouat). A total of 558 alleles were observed in this study. The highest genetic diversity was registered in the southern direction among NAR populations. The mean number of alleles per locus (MNa) and the inbreeding coefficient (F IS ) were highest in Laghouat (4.482 and 0.232), while they were lowest in El Taref (4.000 and 0.149). In the current study, the number of private alleles (Pa) ranged from 9 to 23. In addition, the average of observed heterozygosity (0.427) was lower than the expected value (0.524) due to high levels of inbreeding. The discriminant analysis of principal components (DAPC), the neighbor-joining tree (NJ), and the analysis of STRUCTURE software confirmed the classification of populations according to geographical zones into four main groups (east, west, south, and middle). The results of the current study are useful for breeding improvement and conservation plan research in relation to local animal genetic resources in Algeria.
Collapse
Affiliation(s)
- Abdelbaki Bouhali
- Laboratory of Sciences and Technics for Animal Production (LSTAP),
Department of Agronomic Sciences, Faculty of Nature Sciences and Life,
Abdelhamid Ibn Badis Mostaganem University, Mostaganem, Algeria
- École Normale Supérieur Taleb abderrahmane Laghouat, Laghouat,
4033, Algeria
| | - Abdelkader Homrani
- Laboratory of Sciences and Technics for Animal Production (LSTAP),
Department of Agronomic Sciences, Faculty of Nature Sciences and Life,
Abdelhamid Ibn Badis Mostaganem University, Mostaganem, Algeria
| | - Nuno Ferrand
- CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos
Geneticos, Campus Agrario de Vairao, Universidade do Porto, 4485-661,
Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciencias, Universidade do
Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Susana Lopes
- CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos
Geneticos, Campus Agrario de Vairao, Universidade do Porto, 4485-661,
Vairão, Portugal
| | - Ahmed Mostafa Emam
- Animal Production Research Institute, Agricultural Research Centre,
Ministry of Agriculture, Nadi El Saiid street, 12618, Dokkii, Giza, Egypt
| |
Collapse
|
12
|
Wang Y, McNeil P, Abdulazeez R, Pascual M, Johnston SE, Keightley PD, Obbard DJ. Variation in mutation, recombination, and transposition rates in Drosophila melanogaster and Drosophila simulans. Genome Res 2023; 33:587-598. [PMID: 37037625 PMCID: PMC10234296 DOI: 10.1101/gr.277383.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
The rates of mutation, recombination, and transposition are core parameters in models of evolution. They impact genetic diversity, responses to ongoing selection, and levels of genetic load. However, even for key evolutionary model species such as Drosophila melanogaster and Drosophila simulans, few estimates of these parameters are available, and we have little idea of how rates vary between individuals, sexes, or populations. Knowledge of this variation is fundamental for parameterizing models of genome evolution. Here, we provide direct estimates of mutation, recombination, and transposition rates and their variation in a West African and a European population of D. melanogaster and a European population of D. simulans Across 89 flies, we observe 58 single-nucleotide mutations, 286 crossovers, and 89 transposable element (TE) insertions. Compared to the European D. melanogaster, we find the West African population has a lower mutation rate (1.67 × 10-9 site-1 gen-1 vs. 4.86 × 10-9 site-1 gen-1) and a lower transposition rate (8.99 × 10-5 copy-1 gen-1 vs. 23.36 × 10-5 copy-1 gen-1), but a higher recombination rate (3.44 cM/Mb vs. 2.06 cM/Mb). The European D. simulans population has a similar mutation rate to European D. melanogaster, but a significantly higher recombination rate and a lower, but not significantly different, transposition rate. Overall, we find paternal-derived mutations are more frequent than maternal ones in both species. Our study quantifies the variation in rates of mutation, recombination, and transposition among different populations and sexes, and our direct estimates of these parameters in D. melanogaster and D. simulans will benefit future studies in population and evolutionary genetics.
Collapse
Affiliation(s)
- Yiguan Wang
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| | - Paul McNeil
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | | | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística and IRBio, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Susan E Johnston
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Darren J Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
13
|
Otte A, Winder JC, Deng L, Schmutz J, Jenkins J, Grigoriev IV, Hopes A, Mock T. The diatom Fragilariopsis cylindrus: A model alga to understand cold-adapted life. JOURNAL OF PHYCOLOGY 2023; 59:301-306. [PMID: 36856453 DOI: 10.1111/jpy.13325] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 05/28/2023]
Abstract
Diatoms are significant primary producers especially in cold, turbulent, and nutrient-rich surface oceans. Hence, they are abundant in polar oceans, but also underpin most of the polar food webs and related biogeochemical cycles. The cold-adapted pennate diatom Fragilariopsis cylindrus is considered a keystone species in polar oceans and sea ice because it can thrive under different environmental conditions if temperatures are low. In this perspective paper, we provide insights into the latest molecular work that has been done on F. cylindrus and discuss its role as a model alga to understand cold-adapted life.
Collapse
Affiliation(s)
- Antonia Otte
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Johanna C Winder
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Longji Deng
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Igor V Grigoriev
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Amanda Hopes
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
14
|
Ngugi DK, Acinas SG, Sánchez P, Gasol JM, Agusti S, Karl DM, Duarte CM. Abiotic selection of microbial genome size in the global ocean. Nat Commun 2023; 14:1384. [PMID: 36914646 PMCID: PMC10011403 DOI: 10.1038/s41467-023-36988-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Strong purifying selection is considered a major evolutionary force behind small microbial genomes in the resource-poor photic ocean. However, very little is currently known about how the size of prokaryotic genomes evolves in the global ocean and whether patterns reflect shifts in resource availability in the epipelagic and relatively stable deep-sea environmental conditions. Using 364 marine microbial metagenomes, we investigate how the average genome size of uncultured planktonic prokaryotes varies across the tropical and polar oceans to the hadal realm. We find that genome size is highest in the perennially cold polar ocean, reflecting elongation of coding genes and gene dosage effects due to duplications in the interior ocean microbiome. Moreover, the rate of change in genome size due to temperature is 16-fold higher than with depth up to 200 m. Our results demonstrate how environmental factors can influence marine microbial genome size selection and ecological strategies of the microbiome.
Collapse
Affiliation(s)
- David K Ngugi
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Susana Agusti
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, Saudi Arabia
| | - David M Karl
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaií at Mãnoa, Honolulu, USA
| | - Carlos M Duarte
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, Saudi Arabia
| |
Collapse
|
15
|
Ngugi DK, Salcher MM, Andrei AS, Ghai R, Klotz F, Chiriac MC, Ionescu D, Büsing P, Grossart HP, Xing P, Priscu JC, Alymkulov S, Pester M. Postglacial adaptations enabled colonization and quasi-clonal dispersal of ammonia-oxidizing archaea in modern European large lakes. SCIENCE ADVANCES 2023; 9:eadc9392. [PMID: 36724220 PMCID: PMC9891703 DOI: 10.1126/sciadv.adc9392] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ammonia-oxidizing archaea (AOA) play a key role in the aquatic nitrogen cycle. Their genetic diversity is viewed as the outcome of evolutionary processes that shaped ancestral transition from terrestrial to marine habitats. However, current genome-wide insights into AOA evolution rarely consider brackish and freshwater representatives or provide their divergence timeline in lacustrine systems. An unbiased global assessment of lacustrine AOA diversity is critical for understanding their origins, dispersal mechanisms, and ecosystem roles. Here, we leveraged continental-scale metagenomics to document that AOA species diversity in freshwater systems is remarkably low compared to marine environments. We show that the uncultured freshwater AOA, "Candidatus Nitrosopumilus limneticus," is ubiquitous and genotypically static in various large European lakes where it evolved 13 million years ago. We find that extensive proteome remodeling was a key innovation for freshwater colonization of AOA. These findings reveal the genetic diversity and adaptive mechanisms of a keystone species that has survived clonally in lakes for millennia.
Collapse
Affiliation(s)
- David Kamanda Ngugi
- Leibniz Institute DSMZ–German Collection of Cell Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig, Germany
- Corresponding author.
| | - Michaela M. Salcher
- Institute of Hydrobiology, Biology Center CAS, Na Sádkách 7, 37005 České Budejovice, Czech Republic
| | - Adrian-Stefan Andrei
- Microbial Evogenomics Lab, Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Rohit Ghai
- Institute of Hydrobiology, Biology Center CAS, Na Sádkách 7, 37005 České Budejovice, Czech Republic
| | - Franziska Klotz
- Department of Biology, University of Konstanz, D-78457 Constance, Germany
| | - Maria-Cecilia Chiriac
- Institute of Hydrobiology, Biology Center CAS, Na Sádkách 7, 37005 České Budejovice, Czech Republic
| | - Danny Ionescu
- Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, D-12587 Stechlin, Germany
| | - Petra Büsing
- Leibniz Institute DSMZ–German Collection of Cell Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig, Germany
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, D-12587 Stechlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, D-14469 Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Free University, D-14195 Berlin, Germany
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - John C. Priscu
- Department of Land Resources and Environmental Sciences, Montana State University, 334 Leon Johnson Hall, Bozeman, MT 59717, USA
| | - Salmor Alymkulov
- Institute of Physics, National Academy of Sciences of Kyrgyz Republic, Chui Avenue, 265-a, Bishkek 720071, Kyrgyzstan
| | - Michael Pester
- Leibniz Institute DSMZ–German Collection of Cell Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig, Germany
- Institute of Microbiology, Technical University of Braunschweig, D-38108 Braunschweig, Germany
| |
Collapse
|
16
|
Snead AA, Alda F. Time-Series Sequences for Evolutionary Inferences. Integr Comp Biol 2022; 62:1771-1783. [PMID: 36104153 DOI: 10.1093/icb/icac146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Anthony A Snead
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Fernando Alda
- Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| |
Collapse
|
17
|
Murray KO, Clanton TL, Horowitz M. Epigenetic responses to heat: From adaptation to maladaptation. Exp Physiol 2022; 107:1144-1158. [PMID: 35413138 PMCID: PMC9529784 DOI: 10.1113/ep090143] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review outlines the history of research on epigenetic adaptations to heat exposure. The perspective taken is that adaptations reflect properties of hormesis, whereby low, repeated doses of heat induce adaptation (acclimation/acclimatization); whereas brief, life-threatening exposures can induce maladaptive responses. What advances does it highlight? The epigenetic mechanisms underlying acclimation/acclimatization comprise specific molecular programmes on histones that regulate heat shock proteins transcriptionally and protect the organism from subsequent heat exposures, even after long delays. The epigenetic signalling underlying maladaptive responses might rely, in part, on extensive changes in DNA methylation that are sustained over time and might contribute to later health challenges. ABSTRACT Epigenetics plays a strong role in molecular adaptations to heat by producing a molecular memory of past environmental exposures. Moderate heat, over long periods of time, induces an 'adaptive' epigenetic memory, resulting in a condition of 'resilience' to future heat exposures or cross-tolerance to other forms of toxic stress. In contrast, intense, life-threatening heat exposures, such as severe heat stroke, can result in a 'maladaptive' epigenetic memory that can place an organism at risk of later health complications. These cellular memories are coded by post-translational modifications of histones on the nucleosomes and/or by changes in DNA methylation. They operate by inducing changes in the level of gene transcription and therefore phenotype. The adaptive response to heat acclimation functions, in part, by facilitating transcription of essential heat shock proteins and exhibits a biphasic short programme (maintaining DNA integrity, followed by a long-term consolidation). The latter accelerates acclimation responses after de-acclimation. Although less studied, the maladaptive responses to heat stroke appear to be coded in long-lasting changes in DNA methylation near the promoter region of genes involved with basic cell function. Whether these memories are also encoded in histone modifications is not yet known. There is considerable evidence that both adaptive and maladaptive epigenetic responses to heat can be inherited, although most evidence comes from lower organisms. Future challenges include understanding the signalling mechanisms responsible and discovering new ways to promote adaptive responses while suppressing maladaptive responses to heat, as all life forms adapt to life on a warming planet.
Collapse
Affiliation(s)
- Kevin O. Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas L. Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
18
|
Origins and diversity of spot-like aposematic and disruptive colorations among cockroaches. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Khosrovyan A, Doria HB, Kahru A, Pfenninger M. Polyamide microplastic exposure elicits rapid, strong and genome-wide evolutionary response in the freshwater non-biting midge Chironomus riparius. CHEMOSPHERE 2022; 299:134452. [PMID: 35367228 DOI: 10.1016/j.chemosphere.2022.134452] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Susceptibility to hazardous materials and contamination is largely determined by genetic make-up and evolutionary history of affected organisms. Yet evolutionary adaptation and microevolutionary processes triggered by contaminants are rarely considered in ecotoxicology. Using an evolve and resequencing approach, we investigated genome-wide responses of the midge C. riparius exposed to virgin polyamide microplastics (0-180 μm size range, at concentration 1 g kg-1) during seven consecutive generations. The results were integrated to a parallel life-cycle experiment ran under the same exposure conditions. Emergence, life-cycle trait, showed first a substantial reduction in larval survival, followed by a rapid recovery within three generations. On the genomic level, we observed substantial selectively driven allele frequency changes (mean 0.566 ± 0.0879) within seven generations, associated with a mean selection coefficient of 0.322, indicating very strong selection pressure. Putative selection targets were mainly connected to oxidative stress in the microplastics exposed C. riparius population. This is the first multigenerational study on chironomids to provide evidence that upon exposure to polyamide microplastic there are changes on the genomic level, providing basis to rapid adaptation of aquatic organisms to microplastics.
Collapse
Affiliation(s)
- Alla Khosrovyan
- National Institute of Chemical Physics and Biophysics, Laboratory of Environmental Toxicology, 23 Akadeemia Tee, 12618, Tallinn, Estonia.
| | - Halina Binde Doria
- Dept. Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| | - Anne Kahru
- National Institute of Chemical Physics and Biophysics, Laboratory of Environmental Toxicology, 23 Akadeemia Tee, 12618, Tallinn, Estonia; Estonian Academy of Sciences, 6 Kohtu, 10130, Tallinn, Estonia
| | - Markus Pfenninger
- Dept. Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany; Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| |
Collapse
|
20
|
Kohailan M, Aamer W, Syed N, Padmajeya S, Hussein S, Sayed A, Janardhanan J, Palaniswamy S, El Hajj N, Al-Shabeeb Akil A, Fakhro KA. Patterns and distribution of de novo mutations in multiplex Middle Eastern families. J Hum Genet 2022; 67:579-588. [PMID: 35718832 PMCID: PMC9510050 DOI: 10.1038/s10038-022-01054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
While de novo mutations (DNMs) are key to genetic diversity, they are also responsible for a high number of rare disorders. To date, no study has systematically examined the rate and distribution of DNMs in multiplex families in highly consanguineous populations. Leveraging WGS profiles of 645 individuals in 146 families, we implemented a combinatorial approach using 3 complementary tools for DNM discovery in 353 unique trio combinations. We found a total of 27,168 DNMs (median: 70 single-nucleotide and 6 insertion-deletions per individual). Phasing revealed around 80% of DNMs were paternal in origin. Notably, using whole-genome methylation data of spermatogonial stem cells, these DNMs were significantly more likely to occur at highly methylated CpGs (OR: 2.03; p value = 6.62 × 10−11). We then examined the effects of consanguinity and ethnicity on DNMs, and found that consanguinity does not seem to correlate with DNM rate, and special attention has to be considered while measuring such a correlation. Additionally, we found that Middle-Eastern families with Arab ancestry had fewer DNMs than African families, although not significant (p value = 0.16). Finally, for families with diseased probands, we examined the difference in DNM counts and putative impact across affected and unaffected siblings, but did not find significant differences between disease groups, likely owing to the enrichment for recessive disorders in this part of the world, or the small sample size per clinical condition. This study serves as a reference for DNM discovery in multiplex families from the globally under-represented populations of the Middle-East.
Collapse
Affiliation(s)
- Muhammad Kohailan
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Waleed Aamer
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Najeeb Syed
- Biomedical Informatics Division, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sujitha Padmajeya
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sura Hussein
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Amira Sayed
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Jyothi Janardhanan
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | | | - Nady El Hajj
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | | | - Khalid A Fakhro
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar. .,Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar. .,Department of Genetic Medicine, Weill-Cornell Medical College, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
21
|
Xiong T, Li X, Yago M, Mallet J. Admixture of evolutionary rates across a butterfly hybrid zone. eLife 2022; 11:e78135. [PMID: 35703474 PMCID: PMC9246367 DOI: 10.7554/elife.78135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/14/2022] [Indexed: 12/26/2022] Open
Abstract
Hybridization is a major evolutionary force that can erode genetic differentiation between species, whereas reproductive isolation maintains such differentiation. In studying a hybrid zone between the swallowtail butterflies Papilio syfanius and Papilio maackii (Lepidoptera: Papilionidae), we made the unexpected discovery that genomic substitution rates are unequal between the parental species. This phenomenon creates a novel process in hybridization, where genomic regions most affected by gene flow evolve at similar rates between species, while genomic regions with strong reproductive isolation evolve at species-specific rates. Thus, hybridization mixes evolutionary rates in a way similar to its effect on genetic ancestry. Using coalescent theory, we show that the rate-mixing process provides distinct information about levels of gene flow across different parts of genomes, and the degree of rate-mixing can be predicted quantitatively from relative sequence divergence ([Formula: see text]) between the hybridizing species at equilibrium. Overall, we demonstrate that reproductive isolation maintains not only genomic differentiation, but also the rate at which differentiation accumulates. Thus, asymmetric rates of evolution provide an additional signature of loci involved in reproductive isolation.
Collapse
Affiliation(s)
- Tianzhu Xiong
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Xueyan Li
- Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Masaya Yago
- The University Museum, The University of TokyoTokyoJapan
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
22
|
Roy SW. Digest: Study associates squamate rates, traits, and climates . Evolution 2022; 76:1094-1095. [PMID: 35266557 DOI: 10.1111/evo.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/04/2022] [Indexed: 01/21/2023]
Abstract
The large variation in evolutionary rates across species remains unexplained. A new many-species multivariate study of evolutionary rates in skinks found that environmental temperature explains 45% of rate variation. These results, together with previous studies highlighting different determinants in other organisms, urge a pluralistic understanding of the determinants of evolutionary rate, in contrast to reductive models.
Collapse
Affiliation(s)
- Scott William Roy
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132
| |
Collapse
|
23
|
Pfenninger M, Doria HB, Nickel J, Thielsch A, Schwenk K, Cordellier M. Spontaneous rate of clonal single nucleotide mutations in Daphnia galeata. PLoS One 2022; 17:e0265632. [PMID: 35363773 PMCID: PMC8975155 DOI: 10.1371/journal.pone.0265632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/05/2022] [Indexed: 11/30/2022] Open
Abstract
Mutations are the ultimate source of heritable variation and therefore the fuel for evolution, but direct estimates of mutation rates exist only for few species. We estimated the spontaneous single nucleotide mutation rate among clonal generations in the waterflea Daphnia galeata with a short-term mutation accumulation approach. Individuals from eighteen mutation accumulation lines over five generations were deep sequenced to count de novo mutations that were not present in a pool of F1 individuals, representing the parental genotype. We identified 12 new nucleotide mutations in 90 clonal generational passages. This resulted in an estimated single nucleotide mutation rate of 0.745 x 10-9 (95% c.f. 0.39 x 10-9-1.26 x 10-9), which is slightly lower than recent estimates for other Daphnia species. We discuss the implications for the population genetics of Cladocerans.
Collapse
Affiliation(s)
- Markus Pfenninger
- Department Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Mainz, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Halina Binde Doria
- Department Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Jana Nickel
- Institut für Zoologie, Fakultät für Mathematik, Informatik und Naturwissenschaften, Universität Hamburg, Hamburg, Germany
| | - Anne Thielsch
- Institute for Environmental Sciences, Universität Koblenz-Landau, Landau, Germany
| | - Klaus Schwenk
- Institute for Environmental Sciences, Universität Koblenz-Landau, Landau, Germany
| | - Mathilde Cordellier
- Institut für Zoologie, Fakultät für Mathematik, Informatik und Naturwissenschaften, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
24
|
Kurokawa S, Rahman H, Yamanaka N, Ishizaki C, Islam S, Aiso T, Hirata S, Yamamoto M, Kobayashi K, Kaya H. A Simple Heat Treatment Increases SpCas9-Mediated Mutation Efficiency in Arabidopsis. PLANT & CELL PHYSIOLOGY 2021; 62:1676-1686. [PMID: 34347875 DOI: 10.1093/pcp/pcab123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The CRISPR/Cas9 system is now commonly employed for genome editing in various plants such as Arabidopsis, rice and tobacco. In general, in genome editing of the Arabidopsis genome, the SpCas9 and guide RNA genes are introduced into the genome by the floral dip method. Mutations induced in the target sequence by SpCas9 are confirmed after selecting transformants by screening the T1 seed population. The advantage of this method is that genome-edited plants can be isolated easily. However, mutation efficiency in Arabidopsis using SpCas9 is not as high as that achieved in rice and tobacco, which are subjected to a tissue culture step. In this study, we compared four promoters and found that the parsley UBIQITIN promoter is highly active in Arabidopsis meristem tissue. Furthermore, we examined whether a simple heat treatment could improve mutation efficiency in Arabidopsis. Just one heat treatment at 37°C for 24 h increased the mutation efficiency at all four target sites from 3 to 42%, 43 to 62%, 54 to 75% and 89 to 91%, without detectable off-target mutations. We recommend heat treatment of plate-grown plants at 37°C for 24 h as a simple method to increase the efficiency of CRISPR/Cas9-mediated mutagenesis in Arabidopsis.
Collapse
Affiliation(s)
- Shuta Kurokawa
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566 Japan
| | - Hafizur Rahman
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime, 790-8566 Japan
| | - Naoshi Yamanaka
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566 Japan
| | - Chisato Ishizaki
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566 Japan
| | - Shaikhul Islam
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime, 790-8566 Japan
| | - Tsuyoshi Aiso
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566 Japan
| | - Shunya Hirata
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566 Japan
| | - Mayuka Yamamoto
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566 Japan
| | - Kappei Kobayashi
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566 Japan
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime, 790-8566 Japan
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566 Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime, 790-8566 Japan
| | - Hidetaka Kaya
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566 Japan
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime, 790-8566 Japan
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566 Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime, 790-8566 Japan
| |
Collapse
|
25
|
Doria HB, Caliendo C, Gerber S, Pfenninger M. Photoperiod is an important seasonal selection factor in Chironomus riparius (Diptera: Chironomidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Most organisms respond and can adapt to photoperiodic changes. This affects measurable end points like developmental time, survival and fertility. For ectotherms like Chironomus riparius, temperature is the most studied environmental cue regulating their life cycle, whereas photoperiodic influence is neglected. However, the developmental speed between summer and winter seasons of a field population could not be explained solely by temperature variations. Therefore, to have a comprehensive view on how photoperiods influence chironomid’s life cycle, we investigated if it plays a role in their development and if it acts as an important selective pressure on developmental time speed. To this end, first emerged C. riparius were artificially selected for seven generations. Pre-selected and unselected organisms could develop and breed independently under three light regimes: constant light (24:0 L:D), long days (16:8 L:D) and short days (8:16 L:D). Adult emergence, mean and median emergence time and fertility were integrated into the population growth rate to compare fitness. Our findings show that although developmental time is extended under short days, this same condition may exert a selective pressure towards a shorter development. Moreover, by also using photoperiodic clues to anticipate environmental changes, chironomids can potentially adapt to alterations in climate.
Collapse
Affiliation(s)
- Halina Binde Doria
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Straße, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage, Frankfurt am Main, Germany
| | - Cosima Caliendo
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Staudinger Weg, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Staudinger Weg, Mainz, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Straße, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage, Frankfurt am Main, Germany
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg, Mainz, Germany
| |
Collapse
|