1
|
Behrens KA, Jailwala S, Clark FE, Meyer AC, Kumar NM, Konings AF, Roberts RB, Conte MA, Streelman JT, McGrath PT, Kocher TD. A Chromosome Inversion Creates a Supergene for Sex and Colour in Lake Malawi Cichlids. Mol Ecol 2025:e17821. [PMID: 40491275 DOI: 10.1111/mec.17821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/15/2025] [Accepted: 05/25/2025] [Indexed: 06/11/2025]
Abstract
Cichlid fishes have the highest rates of evolutionary turnover of sex chromosomes among vertebrates. Many large structural polymorphisms in the radiation of cichlids in Lake Malawi are associated with sex chromosomes and may also carry adaptive variation. Here, we investigate the structure and evolutionary history of an inversion polymorphism that includes both a ZW sex locus and an orange-blotch colour polymorphism in the rock-dwelling cichlid fishes of Lake Malawi. We use long-read sequencing to characterise the sequence and breakpoints of the inversion. We quantify allele frequency differences across the inversion in population samples of the genera Metriaclima and Labeotropheus. We also examine expression differences of genes in the inversion. The simple inversion spans 7 Mb and is flanked by CACTA transposons that may have catalysed the rearrangement. The region includes ~600 genes, several of which show large differences in expression. Some of these genes are candidates for the sex and colour phenotypes. This inversion is an accessible model system for studying the role of structural polymorphisms and sex chromosome turnover in the adaptive radiation of cichlids in the lakes of East Africa.
Collapse
Affiliation(s)
- Kristen A Behrens
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Soumya Jailwala
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Frances E Clark
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Anne C Meyer
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Nikesh M Kumar
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Reade B Roberts
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Najera P, Dratler OA, Mai AB, Elizarraras M, Vanchinathan R, Gonzales CA, Meisel RP. Testis- and ovary-expressed polo-like kinase transcripts and gene duplications affect male fertility when expressed in the Drosophila melanogaster germline. G3 (BETHESDA, MD.) 2025; 15:jkae273. [PMID: 39566185 PMCID: PMC11708218 DOI: 10.1093/g3journal/jkae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
Polo-like kinases (Plks) are essential for spindle attachment to the kinetochore during prophase and the subsequent dissociation after anaphase in both mitosis and meiosis. There are structural differences in the spindle apparatus among mitosis, male meiosis, and female meiosis. It is therefore possible that alleles of Plk genes could improve kinetochore attachment or dissociation in spermatogenesis or oogenesis, but not both. These opposing effects could result in sexually antagonistic selection at Plk loci. In addition, Plk genes have been independently duplicated in many different evolutionary lineages within animals. This raises the possibility that Plk gene duplication may resolve sexual conflicts over mitotic and meiotic functions. We investigated this hypothesis by comparing the evolution, gene expression, and functional effects of the single Plk gene in Drosophila melanogaster (polo) and the duplicated Plks in D. pseudoobscura (Dpse-polo and Dpse-polo-dup1). Dpse-polo-dup1 is expressed primarily in testis, while other Drosophila Plk genes have broader expression profiles. We found that the protein-coding sequence of Dpse-polo-dup1 is evolving significantly faster than a canonical polo gene across all functional domains, yet the essential structure of the encoded protein has been retained. We present additional evidence that the faster evolution of Dpse-polo-dup1 is driven by the adaptive fixation of amino acid substitutions. We also found that over or ectopic expression of polo or Dpse-polo in the D. melanogaster male germline resulted in greater male infertility than expression of Dpse-polo-dup1. Last, expression of Dpse-polo or an ovary-derived transcript of polo in the male germline caused males to sire female-biased broods, suggesting that some Plk transcripts can affect the meiotic transmission of the sex chromosomes in the male germline. However, there was no sex bias in the progeny when Dpse-polo-dup1 was ectopically expressed, or a testis-derived transcript of polo was overexpressed in the D. melanogaster male germline. Our results therefore suggest that Dpse-polo-dup1 may have experienced positive selection to improve its regulation of the male meiotic spindle, resolving sexual conflict over meiotic Plk functions. Alternatively, Dpse-polo-dup1 may encode a hypomorphic Plk that has reduced deleterious effects when overexpressed in the male germline. Similarly, testis transcripts of D. melanogaster polo may be optimized for regulating the male meiotic spindle, and we provide evidence that the untranslated regions of the polo transcript may be involved in sex-specific germline functions.
Collapse
Affiliation(s)
- Paola Najera
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Olivia A Dratler
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alexander B Mai
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Miguel Elizarraras
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Rahul Vanchinathan
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | | | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Novak TE, Billings K, Ellis SG, Smith MF, Wills BD, Stevison LS. Response of fruit fly ( Drosophila pseudoobscura) to diet manipulation of nutrient density. PHYSIOLOGICAL ENTOMOLOGY 2024; 49:412-421. [PMID: 39583217 PMCID: PMC11584062 DOI: 10.1111/phen.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 11/26/2024]
Abstract
Caloric intake can greatly affect many aspects of an organism's life. A deficiency of calories can lead to stress resulting in decreased fecundity, insufficient calories to maintain tissues and increased lifespan. Conversely, increasing caloric density increases fecundity and decreases lifespan. Despite decades of work exploring food quality and quantity on physiology in the model species Drosophila melanogaster Meigan 1830 (Diptera: Drosophilidae) and the melanogaster group in general, relatively little work explores the physiological responses to diet manipulation in other Drosophila species, like the obscura species group. Here, we looked at the effects of five different caloric densities (0.5×, 0.75×, 1.0×, 1.5× and 3.0×) on food intake, body weight, body fat, fecundity and longevity in D. pseudoobscura Frolova & Astaurov, 1929 (Diptera: Drosophilidae). Comparing longevity and fecundity across diets, we found that heavy caloric concentration (3.0×) decreases lifespan and that calorie restriction (0.5× and 0.75×) led to significant decreases in fecundity and body weight. However, calorie concentration did not significantly increase D. pseudoobscura body fat. By expanding our understanding of the physiological responses to diet stress to D. pseudoobscura, we establish the framework for comparative work across Drosophila species. With this information, we can then identify which physiological responses to diet manipulation might be most conserved and comparable across species.
Collapse
Affiliation(s)
- Taylor E Novak
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Kristin Billings
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Sara Grace Ellis
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Makenly F Smith
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Bill D Wills
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Laurie S Stevison
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
4
|
Ali M, Younas L, Liu J, He H, Zhang X, Zhou Q. Development and evolution of Drosophila chromatin landscape in a 3D genome context. Nat Commun 2024; 15:9452. [PMID: 39487148 PMCID: PMC11530545 DOI: 10.1038/s41467-024-53892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Little is known about how the epigenomic states change during development and evolution in a 3D genome context. Here we use Drosophila pseudoobscura with complex turnover of sex chromosomes as a model to address this, by collecting massive epigenomic and Hi-C data from five developmental stages and three adult tissues. We reveal that over 60% of the genes and transposable elements (TE) exhibit at least one developmental transition of chromatin state. Transitions on specific but not housekeeping enhancers are associated with specific chromatin loops and topologically associated domain borders (TABs). While evolutionarily young TEs are generally silenced, old TEs more often have been domesticated as interacting TABs or specific enhancers. But on the recently evolved X chromosome, young TEs are instead often active and recruited as TABs, due to acquisition of dosage compensation. Overall we characterize how Drosophila epigenomic landscapes change during development and in response to chromosome evolution, and highlight the important roles of TEs in genome organization and regulation.
Collapse
Affiliation(s)
- Mujahid Ali
- Center for Reproductive Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- Institute of Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Lubna Younas
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Jing Liu
- Center for Evolutionary & Organismal Biology & Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huangyi He
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xinpei Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qi Zhou
- Center for Reproductive Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
- Center for Evolutionary & Organismal Biology & Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China.
| |
Collapse
|
5
|
Jamsandekar M, Ferreira MS, Pettersson ME, Farrell ED, Davis BW, Andersson L. The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herring. Nat Commun 2024; 15:9136. [PMID: 39443489 PMCID: PMC11499932 DOI: 10.1038/s41467-024-53079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Chromosomal inversions are associated with local adaptation in many species. However, questions regarding how they are formed, maintained and impact various other evolutionary processes remain elusive. Here, using a large genomic dataset of long-read and short-read sequencing, we ask these questions in one of the most abundant vertebrates on Earth, the Atlantic herring. This species has four megabase-sized inversions associated with ecological adaptation that correlate with water temperature. The S and N inversion alleles at these four loci dominate in the southern and northern parts, respectively, of the species distribution in the North Atlantic Ocean. By determining breakpoint coordinates of the four inversions and the structural variations surrounding them, we hypothesize that these inversions are formed by ectopic recombination between duplicated sequences immediately outside of the inversions. We show that these are old inversions (>1 MY), albeit formed after the split between the Atlantic herring and its sister species, the Pacific herring. There is evidence for extensive gene flux between inversion alleles at all four loci. The large Ne of herring combined with the common occurrence of opposite homozygotes across the species distribution has allowed effective purifying selection to prevent the accumulation of genetic load and repeats within the inversions.
Collapse
Affiliation(s)
- Minal Jamsandekar
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
| | - Mafalda S Ferreira
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mats E Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
| | - Leif Andersson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA.
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Schaeffer SW, Richards S, Fuller ZL. Genomics of natural populations: gene conversion events reveal selected genes within the inversions of Drosophila pseudoobscura. G3 (BETHESDA, MD.) 2024; 14:jkae176. [PMID: 39073776 PMCID: PMC11457094 DOI: 10.1093/g3journal/jkae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/12/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
When adaptive phenotypic variation or quantitative trait loci map within an inverted segment of a chromosome, researchers often despair because the suppression of crossing over will prevent the discovery of selective target genes that established the rearrangement. If an inversion polymorphism is old enough, then the accumulation of gene conversion tracts offers the promise that quantitative trait loci or selected loci within inversions can be mapped. The inversion polymorphism of Drosophila pseudoobscura is a model system to show that gene conversion analysis is a useful tool for mapping selected loci within inversions. D. pseudoobscura has over 30 different chromosomal arrangements on the third chromosome (Muller C) in natural populations and their frequencies vary with changes in environmental habitats. Statistical tests of five D. pseudoobscura gene arrangements identified outlier genes within inverted regions that had potentially heritable variation, either fixed amino acid differences or differential expression patterns. We use genome sequences of the inverted third chromosome (Muller C) to infer 98,443 gene conversion tracts for a total coverage of 142 Mb or 7.2× coverage of the 19.7 Mb chromosome. We estimated gene conversion tract coverage in the 2,668 genes on Muller C and tested whether gene conversion coverage was similar among arrangements for outlier vs non-outlier loci. Outlier genes had lower gene conversion tract coverage among arrangements than the non-outlier genes suggesting that selection removes exchanged DNA in the outlier genes. These data support the hypothesis that the third chromosome in D. pseudoobscura captured locally adapted combinations of alleles prior to inversion mutation events.
Collapse
Affiliation(s)
- Stephen W Schaeffer
- Department of Biology, The Pennsylvania State University, 208 Erwin W. Mueller Laboratory, University Park, PA 16802-5301, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
7
|
Petrosky SJ, Williams TM, Rebeiz M. A genetic screen of transcription factors in the Drosophila melanogaster abdomen identifies novel pigmentation genes. G3 (BETHESDA, MD.) 2024; 14:jkae097. [PMID: 38820091 PMCID: PMC11373662 DOI: 10.1093/g3journal/jkae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 06/02/2024]
Abstract
Gene regulatory networks specify the gene expression patterns needed for traits to develop. Differences in these networks can result in phenotypic differences between organisms. Although loss-of-function genetic screens can identify genes necessary for trait formation, gain-of-function screens can overcome genetic redundancy and identify loci whose expression is sufficient to alter trait formation. Here, we leveraged transgenic lines from the Transgenic RNAi Project at Harvard Medical School to perform both gain- and loss-of-function CRISPR/Cas9 screens for abdominal pigmentation phenotypes. We identified measurable effects on pigmentation patterns in the Drosophila melanogaster abdomen for 21 of 55 transcription factors in gain-of-function experiments and 7 of 16 tested by loss-of-function experiments. These included well-characterized pigmentation genes, such as bab1 and dsx, and transcription factors that had no known role in pigmentation, such as slp2. Finally, this screen was partially conducted by undergraduate students in a Genetics Laboratory course during the spring semesters of 2021 and 2022. We found this screen to be a successful model for student engagement in research in an undergraduate laboratory course that can be readily adapted to evaluate the effect of hundreds of genes on many different Drosophila traits, with minimal resources.
Collapse
Affiliation(s)
- Sarah J Petrosky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
8
|
Nyberg KG, Navales FG, Keles E, Nguyen JQ, Hertz LM, Carthew RW. Robust and heritable knockdown of gene expression using a self-cleaving ribozyme in Drosophila. Genetics 2024; 227:iyae067. [PMID: 38701221 PMCID: PMC11304983 DOI: 10.1093/genetics/iyae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
The current toolkit for genetic manipulation in the model animal Drosophila melanogaster is extensive and versatile but not without its limitations. Here, we report a powerful and heritable method to knockdown gene expression in D. melanogaster using the self-cleaving N79 hammerhead ribozyme, a modification of a naturally occurring ribozyme found in the parasite Schistosoma mansoni. A 111-bp ribozyme cassette, consisting of the N79 ribozyme surrounded by insulating spacer sequences, was inserted into 4 independent long noncoding RNA genes as well as the male-specific splice variant of doublesex using scarless CRISPR/Cas9-mediated genome editing. Ribozyme-induced RNA cleavage resulted in robust destruction of 3' fragments typically exceeding 90%. Single molecule RNA fluorescence in situ hybridization results suggest that cleavage and destruction can even occur for nascent transcribing RNAs. Knockdown was highly specific to the targeted RNA, with no adverse effects observed in neighboring genes or the other splice variants. To control for potential effects produced by the simple insertion of 111 nucleotides into genes, we tested multiple catalytically inactive ribozyme variants and found that a variant with scrambled N79 sequence best recapitulated natural RNA levels. Thus, self-cleaving ribozymes offer a novel approach for powerful gene knockdown in Drosophila, with potential applications for the study of noncoding RNAs, nuclear-localized RNAs, and specific splice variants of protein-coding genes.
Collapse
Affiliation(s)
- Kevin G Nyberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Fritz Gerald Navales
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Eren Keles
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Joseph Q Nguyen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Laura M Hertz
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons National Institute for Theory and Mathematics in Biology, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Evanston, IL 60208, USA
| |
Collapse
|
9
|
Kim BY, Gellert HR, Church SH, Suvorov A, Anderson SS, Barmina O, Beskid SG, Comeault AA, Crown KN, Diamond SE, Dorus S, Fujichika T, Hemker JA, Hrcek J, Kankare M, Katoh T, Magnacca KN, Martin RA, Matsunaga T, Medeiros MJ, Miller DE, Pitnick S, Schiffer M, Simoni S, Steenwinkel TE, Syed ZA, Takahashi A, Wei KHC, Yokoyama T, Eisen MB, Kopp A, Matute D, Obbard DJ, O’Grady PM, Price DK, Toda MJ, Werner T, Petrov DA. Single-fly genome assemblies fill major phylogenomic gaps across the Drosophilidae Tree of Life. PLoS Biol 2024; 22:e3002697. [PMID: 39024225 PMCID: PMC11257246 DOI: 10.1371/journal.pbio.3002697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Long-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab. Here, we build upon our previous methods to perform amplification-free ONT sequencing of single wild flies obtained either directly from the field or from ethanol-preserved specimens in museum collections, greatly improving the representation of lesser studied drosophilid taxa in whole-genome data. Using Illumina Novaseq X Plus and ONT P2 sequencers with R10.4.1 chemistry, we set a new benchmark for inexpensive hybrid genome assembly at US $150 per genome while assembling genomes from as little as 35 ng of genomic DNA from a single fly. We present 183 new genome assemblies for 179 species as a resource for drosophilid systematics, phylogenetics, and comparative genomics. Of these genomes, 62 are from pooled lab strains and 121 from single adult flies. Despite the sample limitations of working with small insects, most single-fly diploid assemblies are comparable in contiguity (>1 Mb contig N50), completeness (>98% complete dipteran BUSCOs), and accuracy (>QV40 genome-wide with ONT R10.4.1) to assemblies from inbred lines. We present a well-resolved multi-locus phylogeny for 360 drosophilid and 4 outgroup species encompassing all publicly available (as of August 2023) genomes for this group. Finally, we present a Progressive Cactus whole-genome, reference-free alignment built from a subset of 298 suitably high-quality drosophilid genomes. The new assemblies and alignment, along with updated laboratory protocols and computational pipelines, are released as an open resource and as a tool for studying evolution at the scale of an entire insect family.
Collapse
Affiliation(s)
- Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Hannah R. Gellert
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Samuel H. Church
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut United States of America
| | - Anton Suvorov
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Sean S. Anderson
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Olga Barmina
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
| | - Sofia G. Beskid
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Aaron A. Comeault
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - K. Nicole Crown
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sarah E. Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Takako Fujichika
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - James A. Hemker
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Jan Hrcek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Toru Katoh
- Department of Biological Sciences, Hokkaido University, Sapporo, Japan
| | - Karl N. Magnacca
- Hawaii Invertebrate Program, Division of Forestry & Wildlife, Honolulu, Hawaii, United States of America
| | - Ryan A. Martin
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Teruyuki Matsunaga
- Department of Complexity Science and Engineering, The University of Tokyo, Tokyo, Japan
| | - Matthew J. Medeiros
- Pacific Biosciences Research Center, University of Hawaiʻi, Mānoa, Hawaii, United States of America
| | - Danny E. Miller
- Division of Genetic Medicine, Department of Pediatrics; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Scott Pitnick
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Michele Schiffer
- Daintree Rainforest Observatory, James Cook University, Townsville, Australia
| | - Sara Simoni
- Department of Biology, Stanford University, Stanford, California, United States of America
| | | | - Zeeshan A. Syed
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Kevin H-C. Wei
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Tsuya Yokoyama
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Michael B. Eisen
- Department of Cell and Molecular Biology, University of California Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
| | - Daniel Matute
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Darren J. Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick M. O’Grady
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Donald K. Price
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | | | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, California, United States of America
- CZ Biohub, Investigator, San Francisco, California, United States of America
| |
Collapse
|
10
|
Carpinteyro-Ponce J, Machado CA. The Complex Landscape of Structural Divergence Between the Drosophila pseudoobscura and D. persimilis Genomes. Genome Biol Evol 2024; 16:evae047. [PMID: 38482945 PMCID: PMC10980976 DOI: 10.1093/gbe/evae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Structural genomic variants are key drivers of phenotypic evolution. They can span hundreds to millions of base pairs and can thus affect large numbers of genetic elements. Although structural variation is quite common within and between species, its characterization depends upon the quality of genome assemblies and the proportion of repetitive elements. Using new high-quality genome assemblies, we report a complex and previously hidden landscape of structural divergence between the genomes of Drosophila persimilis and D. pseudoobscura, two classic species in speciation research, and study the relationships among structural variants, transposable elements, and gene expression divergence. The new assemblies confirm the already known fixed inversion differences between these species. Consistent with previous studies showing higher levels of nucleotide divergence between fixed inversions relative to collinear regions of the genome, we also find a significant overrepresentation of INDELs inside the inversions. We find that transposable elements accumulate in regions with low levels of recombination, and spatial correlation analyses reveal a strong association between transposable elements and structural variants. We also report a strong association between differentially expressed (DE) genes and structural variants and an overrepresentation of DE genes inside the fixed chromosomal inversions that separate this species pair. Interestingly, species-specific structural variants are overrepresented in DE genes involved in neural development, spermatogenesis, and oocyte-to-embryo transition. Overall, our results highlight the association of transposable elements with structural variants and their importance in driving evolutionary divergence.
Collapse
Affiliation(s)
| | - Carlos A Machado
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
11
|
Nachtweide S, Romoth L, Stanke M. Comparative Genome Annotation. Methods Mol Biol 2024; 2802:165-187. [PMID: 38819560 DOI: 10.1007/978-1-0716-3838-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Newly sequenced genomes are being added to the tree of life at an unprecedented fast pace. A large proportion of such new genomes are phylogenetically close to previously sequenced and annotated genomes. In other cases, whole clades of closely related species or strains ought to be annotated simultaneously. Often, in subsequent studies, differences between the closely related species or strains are in the focus of research when the shared gene structures prevail. We here review methods for comparative structural genome annotation. The reviewed methods include classical approaches such as the alignment of protein sequences or protein profiles against the genome and comparative gene prediction methods that exploit a genome alignment to annotate either a single target genome or all input genomes simultaneously. We discuss how the methods depend on the phylogenetic placement of genomes, give advice on the choice of methods, and examine the consistency between gene structure annotations in an example. Furthermore, we provide practical advice on genome annotation in general.
Collapse
Affiliation(s)
| | | | - Mario Stanke
- Institute for Mathematics and Computer Science, Greifswald, Germany.
| |
Collapse
|
12
|
Garza AB, Garcia R, Solis LM, Halfon MS, Girgis HZ. EnhancerTracker: Comparing cell-type-specific enhancer activity of DNA sequence triplets via an ensemble of deep convolutional neural networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573198. [PMID: 38187673 PMCID: PMC10769370 DOI: 10.1101/2023.12.23.573198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Motivation Transcriptional enhancers - unlike promoters - are unrestrained by distance or strand orientation with respect to their target genes, making their computational identification a challenge. Further, there are insufficient numbers of confirmed enhancers for many cell types, preventing robust training of machine-learning-based models for enhancer prediction for such cell types. Results We present EnhancerTracker , a novel tool that leverages an ensemble of deep separable convolutional neural networks to identify cell-type-specific enhancers with the need of only two confirmed enhancers. EnhancerTracker is trained, validated, and tested on 52,789 putative enhancers obtained from the FANTOM5 Project and control sequences derived from the human genome. Unlike available tools, which accept one sequence at a time, the input to our tool is three sequences; the first two are enhancers active in the same cell type. EnhancerTracker outputs 1 if the third sequence is an enhancer active in the same cell type(s) where the first two enhancers are active. It outputs 0 otherwise. On a held-out set (15%), EnhancerTracker achieved an accuracy of 64%, a specificity of 93%, a recall of 35%, a precision of 84%, and an F1 score of 49%. Availability and implementation https://github.com/BioinformaticsToolsmith/EnhancerTracker. Contact hani.girgis@tamuk.edu.
Collapse
|
13
|
Berdan EL, Barton NH, Butlin R, Charlesworth B, Faria R, Fragata I, Gilbert KJ, Jay P, Kapun M, Lotterhos KE, Mérot C, Durmaz Mitchell E, Pascual M, Peichel CL, Rafajlović M, Westram AM, Schaeffer SW, Johannesson K, Flatt T. How chromosomal inversions reorient the evolutionary process. J Evol Biol 2023; 36:1761-1782. [PMID: 37942504 DOI: 10.1111/jeb.14242] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.
Collapse
Affiliation(s)
- Emma L Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas H Barton
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Roger Butlin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Ecology and Evolutionary Biology, School of Bioscience, The University of Sheffield, Sheffield, UK
| | - Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rui Faria
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Inês Fragata
- CHANGE - Global Change and Sustainability Institute/Animal Biology Department, cE3c - Center for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Central Research Laboratories, Natural History Museum of Vienna, Vienna, Austria
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Claire Mérot
- UMR 6553 Ecobio, Université de Rennes, OSUR, CNRS, Rennes, France
| | - Esra Durmaz Mitchell
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anja M Westram
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Stephen W Schaeffer
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kerstin Johannesson
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
14
|
Kim BY, Gellert HR, Church SH, Suvorov A, Anderson SS, Barmina O, Beskid SG, Comeault AA, Crown KN, Diamond SE, Dorus S, Fujichika T, Hemker JA, Hrcek J, Kankare M, Katoh T, Magnacca KN, Martin RA, Matsunaga T, Medeiros MJ, Miller DE, Pitnick S, Simoni S, Steenwinkel TE, Schiffer M, Syed ZA, Takahashi A, Wei KHC, Yokoyama T, Eisen MB, Kopp A, Matute D, Obbard DJ, O'Grady PM, Price DK, Toda MJ, Werner T, Petrov DA. Single-fly assemblies fill major phylogenomic gaps across the Drosophilidae Tree of Life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560517. [PMID: 37873137 PMCID: PMC10592941 DOI: 10.1101/2023.10.02.560517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Long-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab. Here, we build upon our previous methods to perform amplification-free ONT sequencing of single wild flies obtained either directly from the field or from ethanol-preserved specimens in museum collections, greatly improving the representation of lesser studied drosophilid taxa in whole-genome data. Using Illumina Novaseq X Plus and ONT P2 sequencers with R10.4.1 chemistry, we set a new benchmark for inexpensive hybrid genome assembly at US $150 per genome while assembling genomes from as little as 35 ng of genomic DNA from a single fly. We present 183 new genome assemblies for 179 species as a resource for drosophilid systematics, phylogenetics, and comparative genomics. Of these genomes, 62 are from pooled lab strains and 121 from single adult flies. Despite the sample limitations of working with small insects, most single-fly diploid assemblies are comparable in contiguity (>1Mb contig N50), completeness (>98% complete dipteran BUSCOs), and accuracy (>QV40 genome-wide with ONT R10.4.1) to assemblies from inbred lines. We present a well-resolved multi-locus phylogeny for 360 drosophilid and 4 outgroup species encompassing all publicly available (as of August 2023) genomes for this group. Finally, we present a Progressive Cactus whole-genome, reference-free alignment built from a subset of 298 suitably high-quality drosophilid genomes. The new assemblies and alignment, along with updated laboratory protocols and computational pipelines, are released as an open resource and as a tool for studying evolution at the scale of an entire insect family.
Collapse
Affiliation(s)
| | | | - Samuel H Church
- Department of Ecology and Evolutionary Biology, Yale University, USA
| | - Anton Suvorov
- Department of Biological Sciences, Virginia Tech, USA
| | - Sean S Anderson
- Department of Biology, University of North Carolina Chapel Hill, USA
| | - Olga Barmina
- Department of Evolution and Ecology, University of California Davis, USA
| | | | - Aaron A Comeault
- School of Environmental and Natural Sciences, Bangor University, UK
| | - K Nicole Crown
- Department of Biology, Case Western Reserve University, USA
| | | | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, USA
| | - Takako Fujichika
- Department of Biological Sciences, Tokyo Metropolitan University, Japan
| | - James A Hemker
- Department of Developmental Biology, Stanford University, USA
| | - Jan Hrcek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Czechia
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Toru Katoh
- Department of Biological Sciences, Hokkaido University, Japan
| | - Karl N Magnacca
- Hawaii Invertebrate Program, Division of Forestry & Wildlife, State of Hawaii, USA
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, USA
| | - Teruyuki Matsunaga
- Department of Complexity Science and Engineering, The University of Tokyo, Japan
| | | | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics; Department of Laboratory Medicine and Pathology, University of Washington, USA
| | - Scott Pitnick
- Center for Reproductive Evolution, Department of Biology, Syracuse University, USA
| | - Sara Simoni
- Department of Biology, Stanford University, USA
| | | | - Michele Schiffer
- Daintree Rainforest Observatory, James Cook University, Australia
| | - Zeeshan A Syed
- Center for Reproductive Evolution, Department of Biology, Syracuse University, USA
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, Japan
| | - Kevin H-C Wei
- Department of Zoology, The University of British Columbia
| | | | - Michael B Eisen
- Department of Cell and Molecular Biology, University of California Berkeley, United States
- Howard Hughes Medical Institute,University of California Berkeley, United States
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California Davis, USA
| | - Daniel Matute
- Department of Biology, University of North Carolina Chapel Hill, USA
| | - Darren J Obbard
- Institute of Ecology and Evolution, University of Edinburgh, UK
| | | | - Donald K Price
- School of Life Sciences, University of Nevada Las Vegas, USA
| | | | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, USA
- CZ Biohub, Investigator
| |
Collapse
|
15
|
Rondón JJ, Moreyra NN, Pisarenco VA, Rozas J, Hurtado J, Hasson E. Evolution of the odorant-binding protein gene family in Drosophila. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.957247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Odorant-binding proteins (OBPs) are encoded by a gene family involved in the perception of olfactory signals in insects. This chemosensory gene family has been advocated as a candidate to mediate host preference and host shifts in insects, although it also participates in other physiological processes. Remarkable differences in the OBP gene repertoire have been described across insect groups, suggesting an accelerated gene turnover rate. The genus Drosophila, is a valuable resource for ecological genomics studies since it comprises groups of ecologically diverse species and there are genome data for many of them. Here, we investigate the molecular evolution of this chemosensory gene family across 19 Drosophila genomes, including the melanogaster and repleta species groups, which are mostly associated with rotting fruit and cacti, respectively. We also compared the OBP repertoire among the closely related species of the repleta group, associated with different subfamilies of Cactaceae that represent disparate chemical challenges for the flies. We found that the gene family size varies widely between species, ranging from 39 to 54 candidate OBPs. Indeed, more than 54% of these genes are organized in clusters and located on chromosomes X, 2, and 5, with a distribution conserved throughout the genus. The family sizes in the repleta group and D. virilis (virilis-repleta radiation) were smaller than in the melanogaster group. We tested alternative evolutionary models for OBP family size and turnover rates based on different ecological scenarios. We found heterogeneous gene turnover rates (GR) in comparisons involving columnar cactus specialists, prickly pear specialists, and fruit dwellers lineages, and signals of rapid molecular evolution compatible with positive selection in specific OBP genes. Taking ours and previous results together, we propose that this chemosensory gene family is involved in host adaptation and hypothesize that the adoption of the cactophilic lifestyle in the repleta group accelerated the evolution of members of the family.
Collapse
|
16
|
Wright D, Schaeffer SW. The relevance of chromatin architecture to genome rearrangements in Drosophila. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210206. [PMID: 35694744 PMCID: PMC9189500 DOI: 10.1098/rstb.2021.0206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
DNA within chromosomes in the nucleus is non-randomly organized into chromosome territories, compartments and topologically associated domains (TADs). Chromosomal rearrangements have the potential to alter chromatin organization and modify gene expression leading to selection against these structural variants. Drosophila pseudoobscura has a wealth of naturally occurring gene arrangements that were generated by overlapping inversion mutations caused by two chromosomal breaks that rejoin the central region in reverse order. Unlike humans, Drosophila inversion heterozygotes do not have negative effects associated with crossing over during meiosis because males use achiasmate mechanisms for proper segregation, and aberrant recombinant meiotic products generated in females are lost in polar bodies. As a result, Drosophila populations are found to harbour extensive inversion polymorphisms. It is not clear, however, whether chromatin architecture constrains which inversions breakpoints persist in populations. We mapped the breakpoints of seven inversions in D. pseudoobscura to the TAD map to determine if persisting inversion breakpoints are more likely to occur at boundaries between TADs. Our results show that breakpoints occur at TAD boundaries more than expected by chance. Some breakpoints may alter gene expression within TADs supporting the hypothesis that position effects contribute to inversion establishment. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Dynisty Wright
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stephen W. Schaeffer
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Altindag UH, Taylor HN, Shoben C, Pownall KA, Stevison LS. Putative Condition-Dependent Viability Selection in Wild-Type Stocks of <b><i>Drosophila pseudoobscura</i></b>. Cytogenet Genome Res 2022; 162:76-93. [DOI: 10.1159/000522585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/04/2022] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination rates vary in response to intrinsic and extrinsic factors. Recently, heat stress has been shown to reveal plasticity in recombination rates in <i>Drosophila pseudoobscura.</i> Here, a combination of molecular genotyping and X-linked recessive phenotypic markers were used to investigate differences in recombination rates due to heat stress. In addition, haplotypes from the genetic crosses were compared to test if they deviated from equal proportions, which would indicate viability selection. To avoid this potential bias, SNP genotyping markers overlapping the regions assayed with mutant markers were used to further investigate recombination rate. Interestingly, skews in haplotype frequency were consistent with the fixation of alleles in the wild-type stocks used that are unfit at high temperature. Evidence of viability selection due to heat stress in the wild-type haplotypes was most apparent on days 7–9 when more mutant non-crossover haplotypes were recovered in comparison to wild type (<i>p</i> < 0.0001). Recombination analysis using SNP markers showed days 9–10 as significantly different due to heat stress in 2 pairs of consecutive SNP markers (<i>p</i> = 0.018; <i>p</i> = 0.015), suggesting that during this time period the recombination rate is most sensitive to heat stress. This peak timing for recombination plasticity is consistent with <i>Drosophila melanogaster</i> based on a comparison of similarly timed key meiotic events, enabling future mechanistic work of temperature stress on recombination rate.
Collapse
|
18
|
Li F, Rane RV, Luria V, Xiong Z, Chen J, Li Z, Catullo RA, Griffin PC, Schiffer M, Pearce S, Lee SF, McElroy K, Stocker A, Shirriffs J, Cockerell F, Coppin C, Sgrò CM, Karger A, Cain JW, Weber JA, Santpere G, Kirschner MW, Hoffmann AA, Oakeshott JG, Zhang G. Phylogenomic analyses of the genus Drosophila reveals genomic signals of climate adaptation. Mol Ecol Resour 2022; 22:1559-1581. [PMID: 34839580 PMCID: PMC9299920 DOI: 10.1111/1755-0998.13561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/10/2021] [Indexed: 01/13/2023]
Abstract
Many Drosophila species differ widely in their distributions and climate niches, making them excellent subjects for evolutionary genomic studies. Here, we have developed a database of high-quality assemblies for 46 Drosophila species and one closely related Zaprionus. Fifteen of the genomes were newly sequenced, and 20 were improved with additional sequencing. New or improved annotations were generated for all 47 species, assisted by new transcriptomes for 19. Phylogenomic analyses of these data resolved several previously ambiguous relationships, especially in the melanogaster species group. However, it also revealed significant phylogenetic incongruence among genes, mainly in the form of incomplete lineage sorting in the subgenus Sophophora but also including asymmetric introgression in the subgenus Drosophila. Using the phylogeny as a framework and taking into account these incongruences, we then screened the data for genome-wide signals of adaptation to different climatic niches. First, phylostratigraphy revealed relatively high rates of recent novel gene gain in three temperate pseudoobscura and five desert-adapted cactophilic mulleri subgroup species. Second, we found differing ratios of nonsynonymous to synonymous substitutions in several hundred orthologues between climate generalists and specialists, with trends for significantly higher ratios for those in tropical and lower ratios for those in temperate-continental specialists respectively than those in the climate generalists. Finally, resequencing natural populations of 13 species revealed tropics-restricted species generally had smaller population sizes, lower genome diversity and more deleterious mutations than the more widespread species. We conclude that adaptation to different climates in the genus Drosophila has been associated with large-scale and multifaceted genomic changes.
Collapse
Affiliation(s)
- Fang Li
- BGI‐ShenzhenShenzhenChina
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Rahul V. Rane
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Victor Luria
- Department of Systems BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Zijun Xiong
- BGI‐ShenzhenShenzhenChina
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of Sciences (CAS)KunmingYunnanChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | | | - Renee A. Catullo
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Division of Ecology and EvolutionCentre for Biodiversity AnalysisThe Australian National UniversityActonACTAustralia
| | - Philippa C. Griffin
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Michele Schiffer
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
- Daintree Rainforest ObservatoryJames Cook UniversityCape TribulationQldAustralia
| | - Stephen Pearce
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
| | - Siu Fai Lee
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Applied BioSciencesMacquarie UniversityNorth RydeNSWAustralia
| | - Kerensa McElroy
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
| | - Ann Stocker
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Jennifer Shirriffs
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Fiona Cockerell
- School of Biological SciencesMonash UniversityClaytonVic.Australia
| | - Chris Coppin
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
| | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityClaytonVic.Australia
| | - Amir Karger
- IT ‐ Research ComputingHarvard Medical SchoolBostonMassachusettsUSA
| | - John W. Cain
- Department of MathematicsHarvard UniversityCambridgeMassachusettsUSA
| | - Jessica A. Weber
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB)Department of Experimental and Health Sciences (DCEXS)Hospital del Mar Medical Research Institute (IMIM)Universitat Pompeu FabraBarcelonaCataloniaSpain
| | - Marc W. Kirschner
- Department of Systems BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Ary A. Hoffmann
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - John G. Oakeshott
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Applied BioSciencesMacquarie UniversityNorth RydeNSWAustralia
| | - Guojie Zhang
- BGI‐ShenzhenShenzhenChina
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of Sciences (CAS)KunmingYunnanChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| |
Collapse
|
19
|
Foe VE. Does the Pachytene Checkpoint, a Feature of Meiosis, Filter Out Mistakes in Double-Strand DNA Break Repair and as a side-Effect Strongly Promote Adaptive Speciation? Integr Org Biol 2022; 4:obac008. [PMID: 36827645 PMCID: PMC8998493 DOI: 10.1093/iob/obac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This essay aims to explain two biological puzzles: why eukaryotic transcription units are composed of short segments of coding DNA interspersed with long stretches of non-coding (intron) DNA, and the near ubiquity of sexual reproduction. As is well known, alternative splicing of its coding sequences enables one transcription unit to produce multiple variants of each encoded protein. Additionally, padding transcription units with non-coding DNA (often many thousands of base pairs long) provides a readily evolvable way to set how soon in a cell cycle the various mRNAs will begin being expressed and the total amount of mRNA that each transcription unit can make during a cell cycle. This regulation complements control via the transcriptional promoter and facilitates the creation of complex eukaryotic cell types, tissues, and organisms. However, it also makes eukaryotes exceedingly vulnerable to double-strand DNA breaks, which end-joining break repair pathways can repair incorrectly. Transcription units cover such a large fraction of the genome that any mis-repair producing a reorganized chromosome has a high probability of destroying a gene. During meiosis, the synaptonemal complex aligns homologous chromosome pairs and the pachytene checkpoint detects, selectively arrests, and in many organisms actively destroys gamete-producing cells with chromosomes that cannot adequately synapse; this creates a filter favoring transmission to the next generation of chromosomes that retain the parental organization, while selectively culling those with interrupted transcription units. This same meiotic checkpoint, reacting to accidental chromosomal reorganizations inflicted by error-prone break repair, can, as a side effect, provide a mechanism for the formation of new species in sympatry. It has been a long-standing puzzle how something as seemingly maladaptive as hybrid sterility between such new species can arise. I suggest that this paradox is resolved by understanding the adaptive importance of the pachytene checkpoint, as outlined above.
Collapse
|
20
|
MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression. PLoS Genet 2022; 18:e1010037. [PMID: 35113858 PMCID: PMC8846524 DOI: 10.1371/journal.pgen.1010037] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/15/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have demonstrated that the down-regulation of PxmALP in a strain of Plutella xylostella (L.) highly resistant to the Bt Cry1Ac toxin was due to a hormone-activated MAPK signaling pathway and contributed to the resistance phenotype. However, the underlying transcriptional regulatory mechanism remains enigmatic. Here, we report that the PxGATAd transcription factor (TF) is responsible for the differential expression of PxmALP observed between the Cry1Ac susceptible and resistant strains. We identified that PxGATAd directly activates PxmALP expression via interacting with a non-canonical but specific GATA-like cis-response element (CRE) located in the PxmALP promoter region. A six-nucleotide insertion mutation in this cis-acting element of the PxmALP promoter from the resistant strain resulted in repression of transcriptional activity, affecting the regulatory performance of PxGATAd. Furthermore, silencing of PxGATAd in susceptible larvae reduced the expression of PxmALP and susceptibility to Cry1Ac toxin. Suppressing PxMAP4K4 expression in the resistant larvae transiently recovered both the expression of PxGATAd and PxmALP, indicating that the PxGATAd is a positive responsive factor involved in the activation of PxmALP promoter and negatively regulated by the MAPK signaling pathway. Overall, this study deciphers an intricate regulatory mechanism of PxmALP gene expression and highlights the concurrent involvement of both trans-regulatory factors and cis-acting elements in Cry1Ac resistance development in lepidopteran insects. Gene expression and regulation are associated with adaptive evolution in living organisms. The rapid evolution of insect resistance to Bt insecticidal Cry toxins is frequently associated with reduced expression of diverse midgut genes that code for Cry-toxin receptors. Nonetheless, our current knowledge about the regulation of gene expression of these pivotal receptor genes in insects is limited. Membrane-bound alkaline phosphatase (mALP) is a known receptor for Cry1Ac toxin in diverse insects and here, we report the transcriptional regulatory mechanism of the PxmALP gene related to Cry1Ac resistance in P. xylostella. We identified a MAPK signaling pathway that negatively regulates the PxGATAd transcriptional factor which is involved in the differential expression of PxmALP via interacting with the PxmALP promoter. Furthermore, a cis-acting element mutation repressing the regulatory activity of PxGATAd for PxmALP expression in the Cry1Ac resistant strain was identified. Our study provides an insight into the precise transcriptional regulatory mechanism that regulates PxmALP expression and is involved in the evolution of Bt Cry1Ac resistance in P. xylostella, which provides a paradigm for decoding the regulation landscape of midgut Cry-toxin receptor genes in insects.
Collapse
|
21
|
Korunes KL, Myers RB, Hardy R, Noor MAF. PseudoBase: a genomic visualization and exploration resource for the Drosophila pseudoobscura subgroup. Fly (Austin) 2021; 15:38-44. [PMID: 33319644 PMCID: PMC7808432 DOI: 10.1080/19336934.2020.1864201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022] Open
Abstract
Drosophila pseudoobscura is a classic model system for the study of evolutionary genetics and genomics. Given this long-standing interest, many genome sequences have accumulated for D. pseudoobscura and closely related species D. persimilis, D. miranda, and D. lowei. To facilitate the exploration of genetic variation within species and comparative genomics across species, we present PseudoBase, a database that couples extensive publicly available genomic data with simple visualization and query tools via an intuitive graphical interface, amenable for use in both research and educational settings. All genetic variation (SNPs and indels) within the database is derived from the same workflow, so variants are easily comparable across data sets. Features include an embedded JBrowse interface, ability to pull out alignments of individual genes/regions, and batch access for gene lists. Here, we introduce PseudoBase, and we demonstrate how this resource facilitates use of extensive genomic data from flies of the Drosophila pseudoobscura subgroup.
Collapse
Affiliation(s)
| | | | - Ryan Hardy
- Biology Department, Duke University, Durham, NC, USA
| | | |
Collapse
|
22
|
Craig RJ, Hasan AR, Ness RW, Keightley PD. Comparative genomics of Chlamydomonas. THE PLANT CELL 2021; 33:1016-1041. [PMID: 33793842 PMCID: PMC8226300 DOI: 10.1093/plcell/koab026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/22/2021] [Indexed: 05/06/2023]
Abstract
Despite its role as a reference organism in the plant sciences, the green alga Chlamydomonas reinhardtii entirely lacks genomic resources from closely related species. We present highly contiguous and well-annotated genome assemblies for three unicellular C. reinhardtii relatives: Chlamydomonas incerta, Chlamydomonas schloesseri, and the more distantly related Edaphochlamys debaryana. The three Chlamydomonas genomes are highly syntenous with similar gene contents, although the 129.2 Mb C. incerta and 130.2 Mb C. schloesseri assemblies are more repeat-rich than the 111.1 Mb C. reinhardtii genome. We identify the major centromeric repeat in C. reinhardtii as a LINE transposable element homologous to Zepp (the centromeric repeat in Coccomyxa subellipsoidea) and infer that centromere locations and structure are likely conserved in C. incerta and C. schloesseri. We report extensive rearrangements, but limited gene turnover, between the minus mating type loci of these Chlamydomonas species. We produce an eight-species core-Reinhardtinia whole-genome alignment, which we use to identify several hundred false positive and missing genes in the C. reinhardtii annotation and >260,000 evolutionarily conserved elements in the C. reinhardtii genome. In summary, these resources will enable comparative genomics analyses for C. reinhardtii, significantly extending the analytical toolkit for this emerging model system.
Collapse
Affiliation(s)
| | - Ahmed R Hasan
- Department of Biology, University of Toronto Mississauga, Mississauga, Onatrio, Canada L5L 1C6
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, Onatrio, Canada L5L 1C6
| | - Peter D Keightley
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, UK
| |
Collapse
|
23
|
Rubert DP, Martinez FV, Braga MDV. Natural family-free genomic distance. Algorithms Mol Biol 2021; 16:4. [PMID: 33971908 PMCID: PMC8111734 DOI: 10.1186/s13015-021-00183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A classical problem in comparative genomics is to compute the rearrangement distance, that is the minimum number of large-scale rearrangements required to transform a given genome into another given genome. The traditional approaches in this area are family-based, i.e., require the classification of DNA fragments of both genomes into families. Furthermore, the most elementary family-based models, which are able to compute distances in polynomial time, restrict the families to occur at most once in each genome. In contrast, the distance computation in models that allow multifamilies (i.e., families with multiple occurrences) is NP-hard. Very recently, Bohnenkämper et al. (J Comput Biol 28:410-431, 2021) proposed an ILP formulation for computing the genomic distance of genomes with multifamilies, allowing structural rearrangements, represented by the generic double cut and join (DCJ) operation, and content-modifying insertions and deletions of DNA segments. This ILP is very efficient, but must maximize a matching of the genes in each multifamily, in order to prevent the free lunch artifact that would otherwise let empty or almost empty matchings give smaller distances. RESULTS In this paper, we adopt the alternative family-free setting that, instead of family classification, simply uses the pairwise similarities between DNA fragments of both genomes to compute their rearrangement distance. We adapted the ILP mentioned above and developed a model in which pairwise similarities are used to assign weights to both matched and unmatched genes, so that an optimal solution does not necessarily maximize the matching. Our model then results in a natural family-free genomic distance, that takes into consideration all given genes, without prior classification into families, and has a search space composed of matchings of any size. In spite of its bigger search space, our ILP seems to be boosted by a reduction of the number of co-optimal solutions due to the weights. Indeed, it converged faster than the original one by Bohnenkämper et al. for instances with the same number of multiple connections. We can handle not only bacterial genomes, but also fungi and insects, or sets of chromosomes of mammals and plants. In a comparison study of six fruit fly genomes, we obtained accurate results.
Collapse
Affiliation(s)
- Diego P. Rubert
- Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Fábio V. Martinez
- Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Marília D. V. Braga
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
24
|
Liao Y, Zhang X, Chakraborty M, Emerson JJ. Topologically associating domains and their role in the evolution of genome structure and function in Drosophila. Genome Res 2021; 31:397-410. [PMID: 33563719 PMCID: PMC7919452 DOI: 10.1101/gr.266130.120] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022]
Abstract
Topologically associating domains (TADs) were recently identified as fundamental units of three-dimensional eukaryotic genomic organization, although our knowledge of the influence of TADs on genome evolution remains preliminary. To study the molecular evolution of TADs in Drosophila species, we constructed a new reference-grade genome assembly and accompanying high-resolution TAD map for D. pseudoobscura Comparison of D. pseudoobscura and D. melanogaster, which are separated by ∼49 million years of divergence, showed that ∼30%-40% of their genomes retain conserved TADs. Comparative genomic analysis of 17 Drosophila species revealed that chromosomal rearrangement breakpoints are enriched at TAD boundaries but depleted within TADs. Additionally, genes within conserved TADs show lower expression divergence than those located in nonconserved TADs. Furthermore, we found that a substantial proportion of long genes (>50 kbp) in D. melanogaster (42%) and D. pseudoobscura (26%) constitute their own TADs, implying transcript structure may be one of the deterministic factors for TAD formation. By using structural variants (SVs) identified from 14 D. melanogaster strains, its three closest sibling species from the D. simulans species complex, and two obscura clade species, we uncovered evidence of selection acting on SVs at TAD boundaries, but with the nature of selection differing between SV types. Deletions are depleted at TAD boundaries in both divergent and polymorphic SVs, suggesting purifying selection, whereas divergent tandem duplications are enriched at TAD boundaries relative to polymorphism, suggesting they are adaptive. Our findings highlight how important TADs are in shaping the acquisition and retention of structural mutations that fundamentally alter genome organization.
Collapse
Affiliation(s)
- Yi Liao
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - Xinwen Zhang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA.,Center for Complex Biological Systems, University of California, Irvine, California 92697, USA
| |
Collapse
|
25
|
Tindell SJ, Rouchka EC, Arkov AL. Glial granules contain germline proteins in the Drosophila brain, which regulate brain transcriptome. Commun Biol 2020; 3:699. [PMID: 33219296 PMCID: PMC7679405 DOI: 10.1038/s42003-020-01432-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/23/2020] [Indexed: 01/23/2023] Open
Abstract
Membraneless RNA-protein granules play important roles in many different cell types and organisms. In particular, granules found in germ cells have been used as a paradigm to study large and dynamic granules. These germ granules contain RNA and proteins required for germline development. Here, we unexpectedly identify large granules in specific subtypes of glial cells ("glial granules") of the adult Drosophila brain which contain polypeptides with previously characterized roles in germ cells including scaffold Tudor, Vasa, Polar granule component and Piwi family proteins. Interestingly, our super-resolution microscopy analysis shows that in the glial granules, these proteins form distinct partially overlapping clusters. Furthermore, we show that glial granule scaffold protein Tudor functions in silencing of transposable elements and in small regulatory piRNA biogenesis. Remarkably, our data indicate that the adult brain contains a small population of cells, which express both neuroblast and germ cell proteins. These distinct cells are evolutionarily conserved and expand during aging suggesting the existence of age-dependent signaling. Our work uncovers previously unknown glial granules and indicates the involvement of their components in the regulation of brain transcriptome.
Collapse
Affiliation(s)
- Samuel J Tindell
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA
| | - Eric C Rouchka
- Computer Science and Engineering Department, University of Louisville, Louisville, KY, 40292, USA
| | - Alexey L Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA.
| |
Collapse
|
26
|
Karageorgiou C, Tarrío R, Rodríguez-Trelles F. The Cyclically Seasonal Drosophila subobscura Inversion O 7 Originated From Fragile Genomic Sites and Relocated Immunity and Metabolic Genes. Front Genet 2020; 11:565836. [PMID: 33193649 PMCID: PMC7584159 DOI: 10.3389/fgene.2020.565836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022] Open
Abstract
Chromosome inversions are important contributors to standing genetic variation in Drosophila subobscura. Presently, the species is experiencing a rapid replacement of high-latitude by low-latitude inversions associated with global warming. Yet not all low-latitude inversions are correlated with the ongoing warming trend. This is particularly unexpected in the case of O7 because it shows a regular seasonal cycle that peaks in summer and rose with a heatwave. The inconsistent behavior of O7 across components of the ambient temperature suggests that is causally more complex than simply due to temperature alone. In order to understand the dynamics of O7, high-quality genomic data are needed to determine both the breakpoints and the genetic content. To fill this gap, here we generated a PacBio long read-based chromosome-scale genome assembly, from a highly homozygous line made isogenic for an O3 + 4 + 7 chromosome. Then we isolated the complete continuous sequence of O7 by conserved synteny analysis with the available reference genome. Main findings include the following: (i) the assembled O7 inversion stretches 9.936 Mb, containing > 1,000 annotated genes; (ii) O7 had a complex origin, involving multiple breaks associated with non-B DNA-forming motifs, formation of a microinversion, and ectopic repair in trans with the two homologous chromosomes; (iii) the O7 breakpoints carry a pre-inversion record of fragility, including a sequence insertion, and transposition with later inverted duplication of an Attacin immunity gene; and (iv) the O7 inversion relocated the major insulin signaling forkhead box subgroup O (foxo) gene in tight linkage with its antagonistic regulatory partner serine/threonine-protein kinase B (Akt1) and disrupted concerted evolution of the two inverted Attacin duplicates, reattaching them to dFOXO metabolic enhancers. Our findings suggest that O7 exerts antagonistic pleiotropic effects on reproduction and immunity, setting a framework to understand its relationship with climate change. Furthermore, they are relevant for fragility in genome rearrangement evolution and for current views on the contribution of breakage versus repair in shaping inversion-breakpoint junctions.
Collapse
Affiliation(s)
- Charikleia Karageorgiou
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Barcelona, Spain
| | - Rosa Tarrío
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Barcelona, Spain
| | - Francisco Rodríguez-Trelles
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Assis R. Out of the testis, into the ovary: biased outcomes of gene duplication and deletion in Drosophila. Evolution 2020; 73:1850-1862. [PMID: 31418820 DOI: 10.1111/evo.13820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/30/2022]
Abstract
Gene turnover is a key source of adaptive variation. Yet most evolutionary studies have focused on gene duplication, dismissing gene deletion as a mechanism that simply eradicates redundancy. Here, I use genome-scale sequence and multi-tissue expression data from Drosophila melanogaster and Drosophila pseudoobscura to simultaneously assess the evolutionary outcomes of gene duplication and deletion in Drosophila. I find that gene duplication is more frequent than gene deletion in both species, indicating that it may play a more important role in Drosophila evolution. However, examination of several genic properties reveals that genes likely possess distinct functions after duplication that diverge further before deletion, suggesting that loss of redundancy cannot explain a majority of gene deletion events in Drosophila. Moreover, in addition to providing support for the well-known "out of the testis" origin of young duplicate genes, analyses of gene expression profiles uncover a preferential bias against deletion of old ovary-expressed genes. Therefore, I propose a novel "into the ovary" hypothesis for gene deletion in Drosophila, in which gene deletion may promote adaptation by salvaging genes that contribute to the evolution of female reproductive phenotypes. Under this combined "out of the testis, into the ovary" evolutionary model, gene duplication and deletion work in concert to generate and maintain a balanced repertoire of genes that promote sex-specific adaptation in Drosophila.
Collapse
Affiliation(s)
- Raquel Assis
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, 16801
| |
Collapse
|
28
|
Diniz LCL, Alves FL, Miranda A, da Silva Junior PI. Two Tachykinin-Related Peptides with Antimicrobial Activity Isolated from Triatoma infestans Hemolymph. Microbiol Insights 2020; 13:1178636120933635. [PMID: 32843839 PMCID: PMC7416138 DOI: 10.1177/1178636120933635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides and proteins (AMPs) are molecules that can interact with
microbial cells and lead to membrane disruption or intracellular molecule
interactions and death. Several molecules with antimicrobial effects also
present other biological activities. One such protein group representing the
duplicity of activities is the tachykinin family. Tachykinins (TKs) form a
family of neuropeptides in vertebrates with a consensus C-terminal region
(F-X-G-Y-R-NH2). Invertebrate TKs and TK-related peptides (TKRPs) are
subfamilies found in invertebrates that present high homology with TKs and have
similar biological effects. Several of these molecules have already been
described but reports of TKRP in Hemiptera species are limited. By analyzing the
Triatoma infestans hemolymph by reversed-phase
high-performance liquid chromatography, biological assays, and mass
spectrometry, two antimicrobial molecules were isolated and identified as TKRPs,
which we named as TRP1-TINF and TRP2-TINF (tachykinin-related peptides I and II
from T. infestans). TRP1-TINF is a random secondary structure
peptide with 9 amino acid residues. It is susceptible to aminopeptidases
degradation and is active mainly against Micrococcus luteus (32
μM). TRP2-TINF is a 10-amino acid peptide with a 310 helix secondary structure
and is susceptible to carboxypeptidases degradation. It has major antimicrobial
activity against both Pseudomonas aeruginosa and
Escherichia coli (45 μM). Neither molecule is toxic to
human erythrocytes and both present minor toxicity toward Vero cells at a
concentration of 1000 μM. As the first description of TKRPs with antimicrobial
activity in T. infestans, this work contributes to the wider
comprehension of the insects’ physiology and describes pharmacological relevant
molecules.
Collapse
Affiliation(s)
- Laura Cristina Lima Diniz
- Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID, LAboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil.,Postgraduate Program Interunits in Biotechnology, Department of Biomedical Sciences, USP/IPT/IBU, São Paulo, Brazil
| | | | | | - Pedro Ismael da Silva Junior
- Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID, LAboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil.,Postgraduate Program Interunits in Biotechnology, Department of Biomedical Sciences, USP/IPT/IBU, São Paulo, Brazil
| |
Collapse
|
29
|
Delprat A, Guillén Y, Ruiz A. Computational Sequence Analysis of Inversion Breakpoint Regions in the Cactophilic Drosophila mojavensis Lineage. J Hered 2020; 110:102-117. [PMID: 30407542 DOI: 10.1093/jhered/esy057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/03/2018] [Indexed: 12/27/2022] Open
Abstract
We investigated rates of chromosomal evolution in Drosophila mojavensis using whole-genome sequence information from D. mojavensis, Drosophila buzzatii, and Drosophila virilis. Drosophila mojavensis is a cactophilic species of the repleta group living under extreme ecological conditions in the deserts of the Southwestern United States and Northwestern México. The genome of D. buzzatii, another member of the repleta group, was recently sequenced and the largest scaffolds anchored to all chromosomes using diverse procedures. Chromosome organization between D. mojavensis and D. buzzatii was compared using MUMmer and GRIMM software. Our results corroborate previous cytological analyses that indicated chromosome 2 differed between these 2 species by 10 inversions, chromosomes X and 5 differed by one inversion each, and chromosome 4 was homosequential. In contrast, we found that chromosome 3 differed by 5 inversions instead of the expected 2 that were previously inferred by cytological analyses. Thirteen of these inversions occurred in the D. mojavensis lineage: 12 are fixed and one of them is a polymorphic inversion previously described in populations from Sonora and Baja California, México. We previously investigated the breakpoints of chromosome 2 inversions fixed in D. mojavensis. Here we characterized the breakpoint regions of the 5 inversions found in chromosome 3 in order to infer the molecular mechanism that generated each inversion and its putative functional consequences. Overall, our results reveal a number of gene alterations at the inversion breakpoints with putative adaptive consequences that point to natural selection as the cause for fast chromosomal evolution in D. mojavensis.
Collapse
Affiliation(s)
- Alejandra Delprat
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Yolanda Guillén
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Alfredo Ruiz
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| |
Collapse
|
30
|
Tomoyasu Y, Halfon MS. How to study enhancers in non-traditional insect models. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb212241. [PMID: 32034049 DOI: 10.1242/jeb.212241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcriptional enhancers are central to the function and evolution of genes and gene regulation. At the organismal level, enhancers play a crucial role in coordinating tissue- and context-dependent gene expression. At the population level, changes in enhancers are thought to be a major driving force that facilitates evolution of diverse traits. An amazing array of diverse traits seen in insect morphology, physiology and behavior has been the subject of research for centuries. Although enhancer studies in insects outside of Drosophila have been limited, recent advances in functional genomic approaches have begun to make such studies possible in an increasing selection of insect species. Here, instead of comprehensively reviewing currently available technologies for enhancer studies in established model organisms such as Drosophila, we focus on a subset of computational and experimental approaches that are likely applicable to non-Drosophila insects, and discuss the pros and cons of each approach. We discuss the importance of validating enhancer function and evaluate several possible validation methods, such as reporter assays and genome editing. Key points and potential pitfalls when establishing a reporter assay system in non-traditional insect models are also discussed. We close with a discussion of how to advance enhancer studies in insects, both by improving computational approaches and by expanding the genetic toolbox in various insects. Through these discussions, this Review provides a conceptual framework for studying the function and evolution of enhancers in non-traditional insect models.
Collapse
Affiliation(s)
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
31
|
Fuller ZL, Koury SA, Phadnis N, Schaeffer SW. How chromosomal rearrangements shape adaptation and speciation: Case studies in Drosophila pseudoobscura and its sibling species Drosophila persimilis. Mol Ecol 2019; 28:1283-1301. [PMID: 30402909 PMCID: PMC6475473 DOI: 10.1111/mec.14923] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023]
Abstract
The gene arrangements of Drosophila have played a prominent role in the history of evolutionary biology from the original quantification of genetic diversity to current studies of the mechanisms for the origin and establishment of new inversion mutations within populations and their subsequent fixation between species supporting reproductive barriers. This review examines the genetic causes and consequences of inversions as recombination suppressors and the role that recombination suppression plays in establishing inversions in populations as they are involved in adaptation within heterogeneous environments. This often results in the formation of clines of gene arrangement frequencies among populations. Recombination suppression leads to the differentiation of the gene arrangements which may accelerate the accumulation of fixed genetic differences among populations. If these fixed mutations cause incompatibilities, then inversions pose important reproductive barriers between species. This review uses the evolution of inversions in Drosophila pseudoobscura and D. persimilis as a case study for how inversions originate, establish and contribute to the evolution of reproductive isolation.
Collapse
Affiliation(s)
- Zachary L. Fuller
- Department of Biology, The Pennsylvania State University, 208 Erwin W. Mueller Laboratory, University Park, PA 16802-5301
| | - Spencer A. Koury
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Nitin Phadnis
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Stephen W. Schaeffer
- Department of Biology, The Pennsylvania State University, 208 Erwin W. Mueller Laboratory, University Park, PA 16802-5301
| |
Collapse
|
32
|
Yang H, Jaime M, Polihronakis M, Kanegawa K, Markow T, Kaneshiro K, Oliver B. Re-annotation of eight Drosophila genomes. Life Sci Alliance 2018; 1:e201800156. [PMID: 30599046 PMCID: PMC6305970 DOI: 10.26508/lsa.201800156] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/15/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022] Open
Abstract
The sequenced genomes of the Drosophila phylogeny are a central resource for comparative work supporting the understanding of the Drosophila melanogaster non-mammalian model system. These have also facilitated evolutionary studies on the selected and random differences that distinguish the thousands of extant species of Drosophila. However, full utility has been hampered by uneven genome annotation. We have generated a large expression profile dataset for nine species of Drosophila and trained a transcriptome assembly approach on D. melanogaster that best matched the extensively curated annotation. We then applied this to the other species to add more than 10000 transcript models per species. We also developed new orthologs to facilitate cross-species comparisons. We validated the new annotation of the distantly related Drosophila grimshawi with an extensive collection of newly sequenced cDNAs. This re-annotation will facilitate understanding both the core commonalities and the species differences in this important group of model organisms, and suggests a strategy for annotating the many forthcoming genomes covering the tree of life.
Collapse
Affiliation(s)
- Haiwang Yang
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maria Jaime
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maxi Polihronakis
- Drosophila Species Stock Center, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kelvin Kanegawa
- Hawaiian Drosophila Research Stock Center, Pacific Biosciences Research Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Therese Markow
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Irapuato, Guanajuato, Mexico.,Drosophila Species Stock Center, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kenneth Kaneshiro
- Hawaiian Drosophila Research Stock Center, Pacific Biosciences Research Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Oti M, Pane A, Sammeth M. Comparative Genomics in Drosophila. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2018; 1704:433-450. [PMID: 29277877 DOI: 10.1007/978-1-4939-7463-4_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Since the pioneering studies of Thomas Hunt Morgan and coworkers at the dawn of the twentieth century, Drosophila melanogaster and its sister species have tremendously contributed to unveil the rules underlying animal genetics, development, behavior, evolution, and human disease. Recent advances in DNA sequencing technologies launched Drosophila into the post-genomic era and paved the way for unprecedented comparative genomics investigations. The complete sequencing and systematic comparison of the genomes from 12 Drosophila species represents a milestone achievement in modern biology, which allowed a plethora of different studies ranging from the annotation of known and novel genomic features to the evolution of chromosomes and, ultimately, of entire genomes. Despite the efforts of countless laboratories worldwide, the vast amount of data that were produced over the past 15 years is far from being fully explored.In this chapter, we will review some of the bioinformatic approaches that were developed to interrogate the genomes of the 12 Drosophila species. Setting off from alignments of the entire genomic sequences, the degree of conservation can be separately evaluated for every region of the genome, providing already first hints about elements that are under purifying selection and therefore likely functional. Furthermore, the careful analysis of repeated sequences sheds light on the evolutionary dynamics of transposons, an enigmatic and fascinating class of mobile elements housed in the genomes of animals and plants. Comparative genomics also aids in the computational identification of the transcriptionally active part of the genome, first and foremost of protein-coding loci, but also of transcribed nevertheless apparently noncoding regions, which were once considered "junk" DNA. Eventually, the synergy between functional and comparative genomics also facilitates in silico and in vivo studies on cis-acting regulatory elements, like transcription factor binding sites, that due to the high degree of sequence variability usually impose increased challenges for bioinformatics approaches.
Collapse
Affiliation(s)
- Martin Oti
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Attilio Pane
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro (UFRJ), 21941-902, Rio de Janeiro, RJ, Brazil
| | - Michael Sammeth
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
34
|
Reis M, Vieira CP, Lata R, Posnien N, Vieira J. Origin and Consequences of Chromosomal Inversions in the virilis Group of Drosophila. Genome Biol Evol 2018; 10:3152-3166. [PMID: 30376068 PMCID: PMC6278893 DOI: 10.1093/gbe/evy239] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2018] [Indexed: 02/05/2023] Open
Abstract
In Drosophila, large variations in rearrangement rate have been reported among different lineages and among Muller’s elements. Nevertheless, the mechanisms that are involved in the generation of inversions, their increase in frequency, as well as their impact on the genome are not completely understood. This is in part due to the lack of comparative studies on species distantly related to Drosophila melanogaster. Therefore, we sequenced and assembled the genomes of two species of the virilis phylad (Drosophila novamexicana [15010-1031.00] and Drosophila americana [SF12]), which are diverging from D. melanogaster for more than 40 Myr. Based on these data, we identified the precise location of six novel inversion breakpoints. A molecular characterization provided clear evidence that DAIBAM (a miniature inverted–repeat transposable element) was involved in the generation of eight out of the nine inversions identified. In contrast to what has been previously reported for D. melanogaster and close relatives, ectopic recombination is thus the prevalent mechanism of generating inversions in species of the virilis phylad. Using pool-sequencing data for three populations of D. americana, we also show that common polymorphic inversions create a high degree of genetic differentiation between populations for chromosomes X, 4, and 5 over large physical distances. We did not find statistically significant differences in expression levels between D. americana (SF12) and D. novamexicana (15010-1031.00) strains for the three genes surveyed (CG9588, Fig 4, and fab1) flanking three inversion breakpoints.
Collapse
Affiliation(s)
- Micael Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Universität Göttingen, Germany
| | - Cristina P Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Rodrigo Lata
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Nico Posnien
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Universität Göttingen, Germany
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| |
Collapse
|
35
|
Abstract
Newly sequenced genomes are being added to the tree of life at an unprecedented fast pace. Increasingly, such new genomes are phylogenetically close to previously sequenced and annotated genomes. In other cases, whole clades of closely related species or strains ought to be annotated simultaneously. Often, in subsequent studies differences between the closely related species or strains are in the focus of research when the shared gene structures prevail. We here review methods for comparative structural genome annotation. The reviewed methods include classical approaches such as the alignment of protein sequences or protein profiles against the genome and comparative gene prediction methods that exploit a genome alignment to annotate a target genome. Newer approaches such as the simultaneous annotation of multiple genomes are also reviewed. We discuss how the methods depend on the phylogenetic placement of genomes, give advice on the choice of methods, and examine the consistency between gene structure annotations in an example. Further, we provide practical advice on genome annotation in general.
Collapse
Affiliation(s)
- Stefanie König
- Institut für Mathematik und Informatik, Ernst Moritz Arndt Universität Greifswald, Greifswald, Germany
| | - Lars Romoth
- Institut für Mathematik und Informatik, Ernst Moritz Arndt Universität Greifswald, Greifswald, Germany
| | - Mario Stanke
- Institut für Mathematik und Informatik, Ernst Moritz Arndt Universität Greifswald, Greifswald, Germany.
| |
Collapse
|
36
|
Kapun M, Flatt T. The adaptive significance of chromosomal inversion polymorphisms inDrosophila melanogaster. Mol Ecol 2018; 28:1263-1282. [DOI: 10.1111/mec.14871] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Martin Kapun
- Department of BiologyUniversity of Fribourg Fribourg Switzerland
| | - Thomas Flatt
- Department of BiologyUniversity of Fribourg Fribourg Switzerland
| |
Collapse
|
37
|
Dupim EG, Goldstein G, Vanderlinde T, Vaz SC, Krsticevic F, Bastos A, Pinhão T, Torres M, David JR, Vilela CR, Carvalho AB. An investigation of Y chromosome incorporations in 400 species of Drosophila and related genera. PLoS Genet 2018; 14:e1007770. [PMID: 30388103 PMCID: PMC6235401 DOI: 10.1371/journal.pgen.1007770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/14/2018] [Accepted: 10/17/2018] [Indexed: 11/23/2022] Open
Abstract
Y chromosomes are widely believed to evolve from a normal autosome through a process of massive gene loss (with preservation of some male genes), shaped by sex-antagonistic selection and complemented by occasional gains of male-related genes. The net result of these processes is a male-specialized chromosome. This might be expected to be an irreversible process, but it was found in 2005 that the Drosophila pseudoobscura Y chromosome was incorporated into an autosome. Y chromosome incorporations have important consequences: a formerly male-restricted chromosome reverts to autosomal inheritance, and the species may shift from an XY/XX to X0/XX sex-chromosome system. In order to assess the frequency and causes of this phenomenon we searched for Y chromosome incorporations in 400 species from Drosophila and related genera. We found one additional large scale event of Y chromosome incorporation, affecting the whole montium subgroup (40 species in our sample); overall 13% of the sampled species (52/400) have Y incorporations. While previous data indicated that after the Y incorporation the ancestral Y disappeared as a free chromosome, the much larger data set analyzed here indicates that a copy of the Y survived as a free chromosome both in montium and pseudoobscura species, and that the current Y of the pseudoobscura lineage results from a fusion between this free Y and the neoY. The 400 species sample also showed that the previously suggested causal connection between X-autosome fusions and Y incorporations is, at best, weak: the new case of Y incorporation (montium) does not have X-autosome fusion, whereas nine independent cases of X-autosome fusions were not followed by Y incorporations. Y incorporation is an underappreciated mechanism affecting Y chromosome evolution; our results show that at least in Drosophila it plays a relevant role and highlight the need of similar studies in other groups. In contrast to other chromosomes (X and autosomes), which are present in males and females, Y chromosomes spend all time in males. Hence it is not surprising that along evolution they became male specialized, e.g., containing a disproportionate amount of male-fertility genes. Interestingly it was found in 2005 that in Drosophila pseudoobscura the Y chromosome reverted to "male-female existence", being incorporated into an autosome. These "Y chromosome incorporations" have important consequences on sex-chromosome evolution, and allow the study of the evolutionary forces that shaped Y chromosomes as they act backwards. As D. pseudoobscura was the second Drosophila species investigated in this respect, it is likely that other cases exist, and that perhaps it is a common phenomenon. In order to answer this question we studied 400 Drosophila species. We found one additional case of Y incorporation, which occurred in the ancestor of Drosophila montium, and currently affects a large number of species; overall 13% of the species we sampled (52/400) have Y incorporations. We also found that a previously suggested cause of Y incorporations (X-autosome fusions) is not a general explanation. Our results show that in Drosophila Y incorporations play a relevant role and highlight the need of similar studies in other groups.
Collapse
Affiliation(s)
- Eduardo G. Dupim
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel Goldstein
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thyago Vanderlinde
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suzana C. Vaz
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flávia Krsticevic
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- CIFASIS, CONICET, Rosario, Santa Fe, Argentina
| | - Aline Bastos
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thadeo Pinhão
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcos Torres
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jean R. David
- Laboratoire Evolution, Génomes et Spéciation (LEGS), CNRS, France
| | - Carlos R. Vilela
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Antonio Bernardo Carvalho
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail: ,
| |
Collapse
|
38
|
Abstract
Understanding phylogenetic relationships among taxa is key to designing and implementing comparative analyses. The genus Drosophila, which contains over 1600 species, is one of the most important model systems in the biological sciences. For over a century, one species in this group, Drosophila melanogaster, has been key to studies of animal development and genetics, genome organization and evolution, and human disease. As whole-genome sequencing becomes more cost-effective, there is increasing interest in other members of this morphologically, ecologically, and behaviorally diverse genus. Phylogenetic relationships within Drosophila are complicated, and the goal of this paper is to provide a review of the recent taxonomic changes and phylogenetic relationships in this genus to aid in further comparative studies.
Collapse
|
39
|
Assembly of Schizosaccharomyces cryophilus chromosomes and their comparative genomic analyses revealed principles of genome evolution of the haploid fission yeasts. Sci Rep 2018; 8:14629. [PMID: 30279451 PMCID: PMC6168568 DOI: 10.1038/s41598-018-32525-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/10/2018] [Indexed: 11/23/2022] Open
Abstract
The fission yeast clade, which has a distinct life history from other yeasts, can provide important clues about evolutionary changes. To reveal these changes the large S. cryophilus supercontigs were assembled into chromosomes using synteny relationships and the conserved pericentromeric, subtelomeric genes. Togetherness of the supercontigs was confirmed by PCR. Investigation of the gene order revealed localisation of the rDNA arrays, more than 300 new conserved orthologues and proved that S. cryophilus supercontigs were mosaics of collinear blocks. PFGE analysis showed that size of the S. cryophilus chromosomes differ from the S. pombe chromosomes. Comparative genomic analyses of the newly assembled chromosomes confirmed that the closest relative of S. cryophilus was S. octosporus not just in sequence similarity but also in a structural way, and revealed that preservation of the conserved regions did not arise from the lower number of chromosomal rearrangements. Translocations were more typical in the closely related species, while the number of inversions increased with the phylogenetic distances. Our data suggested that sites of the chromosomal rearrangements were not random and often associated with repetitive sequences, structural- and nucleotide evolution might correlate. Chromosomal rearrangements of the fission yeasts compared to other lineages were also discussed.
Collapse
|
40
|
Schaeffer SW. Muller "Elements" in Drosophila: How the Search for the Genetic Basis for Speciation Led to the Birth of Comparative Genomics. Genetics 2018; 210:3-13. [PMID: 30166445 PMCID: PMC6116959 DOI: 10.1534/genetics.118.301084] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
The concept of synteny, or conservation of genes on the same chromosome, traces its origins to the early days of Drosophila genetics. This discovery emerged from comparisons of linkage maps from different species of Drosophila with the goal of understanding the process of speciation. H. J. Muller published a landmark article entitled Bearings of the "Drosophila" work on systematics, where he synthesized genetic and physical map data and proposed a model of speciation and chromosomal gene content conservation. These models have withstood the test of time with the advent of molecular genetic analysis from protein to genome level variation. Muller's ideas provide a framework to begin to answer questions about the evolutionary forces that shape the structure of the genome.
Collapse
Affiliation(s)
- Stephen W Schaeffer
- Department of Biology, The Pennsylvania State University, State College, Pennsylvania 16802-5301
| |
Collapse
|
41
|
Hill T, Betancourt AJ. Extensive exchange of transposable elements in the Drosophila pseudoobscura group. Mob DNA 2018; 9:20. [PMID: 29946370 PMCID: PMC6006672 DOI: 10.1186/s13100-018-0123-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND As species diverge, so does their transposable element (TE) content. Within a genome, TE families may eventually become dormant due to host-silencing mechanisms, natural selection and the accumulation of inactive copies. The transmission of active copies from a TE families, both vertically and horizontally between species, can allow TEs to escape inactivation if it occurs often enough, as it may allow TEs to temporarily escape silencing in a new host. Thus, the contribution of horizontal exchange to TE persistence has been of increasing interest. RESULTS Here, we annotated TEs in five species with sequenced genomes from the D. pseudoobscura species group, and curated a set of TE families found in these species. We found that, compared to host genes, many TE families showed lower neutral divergence between species, consistent with recent transmission of TEs between species. Despite these transfers, there are differences in the TE content between species in the group. CONCLUSIONS The TE content is highly dynamic in the D. pseudoobscura species group, frequently transferring between species, keeping TEs active. This result highlights how frequently transposable elements are transmitted between sympatric species and, despite these transfers, how rapidly species TE content can diverge.
Collapse
Affiliation(s)
- Tom Hill
- The Department of Molecular Biosciences, University of Kansas, 4055 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS 66045 USA
| | - Andrea J. Betancourt
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| |
Collapse
|
42
|
Veltsos P, Cossard G, Beaudoing E, Beydon G, Savova Bianchi D, Roux C, C González-Martínez S, R Pannell J. Size and Content of the Sex-Determining Region of the Y Chromosome in Dioecious Mercurialis annua, a Plant with Homomorphic Sex Chromosomes. Genes (Basel) 2018; 9:E277. [PMID: 29844299 PMCID: PMC6027223 DOI: 10.3390/genes9060277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 01/01/2023] Open
Abstract
Dioecious plants vary in whether their sex chromosomes are heteromorphic or homomorphic, but even homomorphic sex chromosomes may show divergence between homologues in the non-recombining, sex-determining region (SDR). Very little is known about the SDR of these species, which might represent particularly early stages of sex-chromosome evolution. Here, we assess the size and content of the SDR of the diploid dioecious herb Mercurialis annua, a species with homomorphic sex chromosomes and mild Y-chromosome degeneration. We used RNA sequencing (RNAseq) to identify new Y-linked markers for M. annua. Twelve of 24 transcripts showing male-specific expression in a previous experiment could be amplified by polymerase chain reaction (PCR) only from males, and are thus likely to be Y-linked. Analysis of genome-capture data from multiple populations of M. annua pointed to an additional six male-limited (and thus Y-linked) sequences. We used these markers to identify and sequence 17 sex-linked bacterial artificial chromosomes (BACs), which form 11 groups of non-overlapping sequences, covering a total sequence length of about 1.5 Mb. Content analysis of this region suggests that it is enriched for repeats, has low gene density, and contains few candidate sex-determining genes. The BACs map to a subset of the sex-linked region of the genetic map, which we estimate to be at least 14.5 Mb. This is substantially larger than estimates for other dioecious plants with homomorphic sex chromosomes, both in absolute terms and relative to their genome sizes. Our data provide a rare, high-resolution view of the homomorphic Y chromosome of a dioecious plant.
Collapse
Affiliation(s)
- Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
- Department of Biology, Jordan Hall, 1001 East Third Street, Indiana University, Bloomington, IN 47405, USA.
| | - Guillaume Cossard
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Emmanuel Beaudoing
- Faculty of Biology and Medicine, University of Lausanne, Bâtiment Génopode, 1014 Lausanne, Switzerland.
| | - Genséric Beydon
- National Centre for Genomic Resources (CNRGV), 24 Chemin de Borde Rouge-Auzeville-CS52627, 31326 Castanet Tolosan Cedex, France.
| | | | - Camille Roux
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
- CNRS, University of Lille, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France.
| | - Santiago C González-Martínez
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
- BIOGECO, INRA, University of Bordeaux, 33610 Cestas, France.
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
43
|
Kolesnikova TD, Goncharov FP, Zhimulev IF. Similarity in replication timing between polytene and diploid cells is associated with the organization of the Drosophila genome. PLoS One 2018; 13:e0195207. [PMID: 29659604 PMCID: PMC5902040 DOI: 10.1371/journal.pone.0195207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Morphologically, polytene chromosomes of Drosophila melanogaster consist of compact “black” bands alternating with less compact “grey” bands and interbands. We developed a comprehensive approach that combines cytological mapping data of FlyBase-annotated genes and novel tools for predicting cytogenetic features of chromosomes on the basis of their protein composition and determined the genomic coordinates for all black bands of polytene chromosome 2R. By a PCNA immunostaining assay, we obtained the replication timetable for all the bands mapped. The results allowed us to compare replication timing between polytene chromosomes in salivary glands and chromosomes from cultured diploid cell lines and to observe a substantial similarity in the global replication patterns at the band resolution level. In both kinds of chromosomes, the intervals between black bands correspond to early replication initiation zones. Black bands are depleted of replication initiation events and are characterized by a gradient of replication timing; therefore, the time of replication completion correlates with the band length. The bands are characterized by low gene density, contain predominantly tissue-specific genes, and are represented by silent chromatin types in various tissues. The borders of black bands correspond well to the borders of topological domains as well as to the borders of the zones showing H3K27me3, SUUR, and LAMIN enrichment. In conclusion, the characteristic pattern of polytene chromosomes reflects partitioning of the Drosophila genome into two global types of domains with contrasting properties. This partitioning is conserved in different tissues and determines replication timing in Drosophila.
Collapse
Affiliation(s)
- Tatyana D. Kolesnikova
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Fedor P. Goncharov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
44
|
Wiegmann BM, Richards S. Genomes of Diptera. CURRENT OPINION IN INSECT SCIENCE 2018; 25:116-124. [PMID: 29602357 DOI: 10.1016/j.cois.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Diptera (true flies) are among the most diverse holometabolan insect orders and were the first eukaryotic order to have a representative genome fully sequenced. 110 fly species have publically available genome assemblies and many hundreds of population-level genomes have been generated in the model organisms Drosophila melanogaster and the malaria mosquito Anopheles gambiae. Comparative genomics carried out in a phylogenetic context is illuminating many aspects of fly biology, providing unprecedented insight into variability in genome structure, gene content, genetic mechanisms, and rates and patterns of evolution in genes, populations, and species. Despite the rich availability of genomic resources in flies, there remain many fly lineages to which new genome sequencing efforts should be directed. Such efforts would be most valuable in fly families or clades that exhibit multiple origins of key fly behaviors such as blood feeding, phytophagy, parasitism, pollination, and mycophagy.
Collapse
Affiliation(s)
- Brian M Wiegmann
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, United States.
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77006, United States
| |
Collapse
|
45
|
Roeske MJ, Camino EM, Grover S, Rebeiz M, Williams TM. Cis-regulatory evolution integrated the Bric-à-brac transcription factors into a novel fruit fly gene regulatory network. eLife 2018; 7. [PMID: 29297463 PMCID: PMC5752203 DOI: 10.7554/elife.32273] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
Gene expression evolution through gene regulatory network (GRN) changes has gained appreciation as a driver of morphological evolution. However, understanding how GRNs evolve is hampered by finding relevant cis-regulatory element (CRE) mutations, and interpreting the protein-DNA interactions they alter. We investigated evolutionary changes in the duplicated Bric-à-brac (Bab) transcription factors and a key Bab target gene in a GRN underlying the novel dimorphic pigmentation of D. melanogaster and its relatives. It has remained uncertain how Bab was integrated within the pigmentation GRN. Here, we show that the ancestral transcription factor activity of Bab gained a role in sculpting sex-specific pigmentation through the evolution of binding sites in a CRE of the pigment-promoting yellow gene. This work demonstrates how a new trait can evolve by incorporating existing transcription factors into a GRN through CRE evolution, an evolutionary path likely to predominate newly evolved functions of transcription factors.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Biology, University of Dayton, Dayton, United States
| | - Eric M Camino
- Department of Biology, University of Dayton, Dayton, United States
| | - Sumant Grover
- Department of Biology, University of Dayton, Dayton, United States
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Thomas Michael Williams
- Department of Biology, University of Dayton, Dayton, United States.,Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, United States
| |
Collapse
|
46
|
Veltsos P, Fang Y, Cossins AR, Snook RR, Ritchie MG. Mating system manipulation and the evolution of sex-biased gene expression in Drosophila. Nat Commun 2017; 8:2072. [PMID: 29233985 PMCID: PMC5727229 DOI: 10.1038/s41467-017-02232-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
Sex differences in dioecious animals are pervasive and result from gene expression differences. Elevated sexual selection has been predicted to increase the number and expression of male-biased genes, and experimentally imposing monogamy on Drosophila melanogaster has led to a relative feminisation of the transcriptome. Here, we test this hypothesis further by subjecting another polyandrous species, D. pseudoobscura, to 150 generations of experimental monogamy or elevated polyandry. We find that sex-biased genes do change in expression but, contrary to predictions, there is usually masculinisation of the transcriptome under monogamy, although this depends on tissue and sex. We also identify and describe gene expression changes following courtship experience. Courtship often influences gene expression, including patterns in sex-biased gene expression. Our results confirm that mating system manipulation disproportionately influences sex-biased gene expression but show that the direction of change is dynamic and unpredictable.
Collapse
Affiliation(s)
- Paris Veltsos
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, St Andrews, KY16 9TH, UK.,Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Yongxiang Fang
- Centre for Genomic Researc, Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7BX, UK
| | - Andrew R Cossins
- Centre for Genomic Researc, Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7BX, UK
| | - Rhonda R Snook
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK. .,Zoologiska Institutionen (Ekologi), Stockholm University, 106 91, Stockholm, Sweden.
| | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, St Andrews, KY16 9TH, UK.
| |
Collapse
|
47
|
Characterization of dFOXO binding sites upstream of the Insulin Receptor P2 promoter across the Drosophila phylogeny. PLoS One 2017; 12:e0188357. [PMID: 29200426 PMCID: PMC5714339 DOI: 10.1371/journal.pone.0188357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023] Open
Abstract
The insulin/TOR signal transduction pathway plays a critical role in determining such important traits as body and organ size, metabolic homeostasis and life span. Although this pathway is highly conserved across the animal kingdom, the affected traits can exhibit important differences even between closely related species. Evolutionary studies of regulatory regions require the reliable identification of transcription factor binding sites. Here we have focused on the Insulin Receptor (InR) expression from its P2 promoter in the Drosophila genus, which in D. melanogaster is up-regulated by hypophosphorylated Drosophila FOXO (dFOXO). We have finely characterized this transcription factor binding sites in vitro along the 1.3 kb region upstream of the InR P2 promoter in five Drosophila species. Moreover, we have tested the effect of mutations in the characterized dFOXO sites of D. melanogaster in transgenic flies. The number of experimentally established binding sites varies across the 1.3 kb region of any particular species, and their distribution also differs among species. In D. melanogaster, InR expression from P2 is differentially affected by dFOXO binding sites at the proximal and distal halves of the species 1.3 kb fragment. The observed uneven distribution of binding sites across this fragment might underlie their differential contribution to regulate InR transcription.
Collapse
|
48
|
Fuller ZL, Haynes GD, Richards S, Schaeffer SW. Genomics of natural populations: Evolutionary forces that establish and maintain gene arrangements inDrosophila pseudoobscura. Mol Ecol 2017; 26:6539-6562. [DOI: 10.1111/mec.14381] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/04/2017] [Accepted: 10/07/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Zachary L. Fuller
- Department of Biology; 208 Erwin W. Mueller Laboratory; The Pennsylvania State University; University Park PA USA
| | - Gwilym D. Haynes
- Department of Biology; 208 Erwin W. Mueller Laboratory; The Pennsylvania State University; University Park PA USA
| | - Stephen Richards
- Human Genome Sequencing Center; Baylor College of Medicine; Houston TX USA
| | - Stephen W. Schaeffer
- Department of Biology; 208 Erwin W. Mueller Laboratory; The Pennsylvania State University; University Park PA USA
| |
Collapse
|
49
|
Mandrioli M, Zambonini G, Manicardi GC. Comparative Gene Mapping as a Tool to Understand the Evolution of Pest Crop Insect Chromosomes. Int J Mol Sci 2017; 18:ijms18091919. [PMID: 28880213 PMCID: PMC5618568 DOI: 10.3390/ijms18091919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022] Open
Abstract
The extent of the conservation of synteny and gene order in aphids has been previously investigated only by comparing a small subset of linkage groups between the pea aphid Acyrthosiphon pisum and a few other aphid species. Here we compared the localization of eight A. pisum scaffolds (covering more than 5 Mb and 83 genes) in respect to the Drosophila melanogaster Muller elements identifying orthologous loci spanning all the four A. pisum chromosomes. Comparison of the genetic maps revealed a conserved synteny across different loci suggesting that the study of the fruit fly Muller elements could favour the identification of chromosomal markers useful for the study of chromosomal rearrangements in aphids. A. pisum is the first aphid species to have its genome sequenced and the finding that there are several chromosomal regions in synteny between Diptera and Hemiptera indicates that the genomic tools developed in A. pisum will be broadly useful not only for the study of other aphids but also for other insect species.
Collapse
Affiliation(s)
- Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Giada Zambonini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Gian Carlo Manicardi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy.
| |
Collapse
|
50
|
Anstead CA, Perry T, Richards S, Korhonen PK, Young ND, Bowles VM, Batterham P, Gasser RB. The Battle Against Flystrike - Past Research and New Prospects Through Genomics. ADVANCES IN PARASITOLOGY 2017; 98:227-281. [PMID: 28942770 DOI: 10.1016/bs.apar.2017.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Flystrike, or cutaneous myiasis, is caused by blow fly larvae of the genus Lucilia. This disease is a major problem in countries with large sheep populations. In Australia, Lucilia cuprina (Wiedemann, 1830) is the principal fly involved in flystrike. While much research has been conducted on L. cuprina, including physical, chemical, immunological, genetic and biological investigations, the molecular biology of this fly is still poorly understood. The recent sequencing, assembly and annotation of the draft genome and analyses of selected transcriptomes of L. cuprina have given a first global glimpse of its molecular biology and insights into host-fly interactions, insecticide resistance genes and intervention targets. The present article introduces L. cuprina, flystrike and associated issues, details past control efforts and research foci, reviews salient aspects of the L. cuprina genome project and discusses how the new genomic and transcriptomic resources for this fly might accelerate fundamental molecular research of L. cuprina towards developing new methods for the treatment and control of flystrike.
Collapse
Affiliation(s)
| | - Trent Perry
- The University of Melbourne, Parkville, VIC, Australia
| | | | | | - Neil D Young
- The University of Melbourne, Parkville, VIC, Australia
| | | | | | | |
Collapse
|