1
|
Tang W, Liang P. The identification of retro-DNAs in primate genomes as DNA transposons mobilizing via retrotransposition. F1000Res 2024; 12:255. [PMID: 38915770 PMCID: PMC11195612 DOI: 10.12688/f1000research.130043.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Background Mobile elements (MEs) constitute a major portion of the genome in primates and other higher eukaryotes, and they play important role in genome evolution and gene function. MEs can be divided into two fundamentally different classes: DNA transposons which transpose in the genome in a "cut-and-paste" style, and retrotransposons which propagate in a "copy-and-paste" fashion via a process involving transcription and reverse-transcription. In primate genomes, DNA transposons are mostly dead, while many retrotransposons are still highly active. We report here the identification of a unique group of MEs, which we call "retro-DNAs", for their combined characteristics of these two fundamentally different ME classes. Methods A comparative computational genomic approach was used to analyze the reference genome sequences of 10 primate species consisting of five apes, four monkeys, and marmoset. Results From our analysis, we identified a total of 1,750 retro-DNAs, representing 748 unique insertion events in the genomes of ten primate species including human. These retro-DNAs contain sequences of DNA transposons but lack the terminal inverted repeats (TIRs), the hallmark of DNA transposons. Instead, they show characteristics of retrotransposons, such as polyA tails, longer target-site duplications (TSDs), and the "TT/AAAA" insertion site motif, suggesting the use of the L1-based target- primed reverse transcription (TPRT) mechanism. At least 40% of these retro-DNAs locate into genic regions, presenting potentials for impacting gene function. More interestingly, some retro-DNAs, as well as their parent sites, show certain levels of expression, suggesting that they have the potential to create more retro-DNA copies in the present primate genomes. Conclusions Although small in number, the identification of these retro-DNAs reveals a new mean for propagating DNA transposons in primate genomes without active canonical DNA transposon activity. Our data also suggest that the TPRT machinery may transpose a wider variety of DNA sequences in the genomes.
Collapse
Affiliation(s)
- Wangxiangfu Tang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
- Centre of Biotechnology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
2
|
Macke EL, Miller AR, Stonerock E, Olshefski R, Zajo K, Bedrosian TA, Mardis ER, Akkari YMN, Cottrell CE, Schieffer KM. A LINE-1 mediated deletion resulting in germline retinoblastoma predisposition. Neurooncol Adv 2024; 6:vdad163. [PMID: 38213835 PMCID: PMC10783486 DOI: 10.1093/noajnl/vdad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Retinoblastoma is an ocular cancer associated with genomic variation in the RB1 gene. In individuals with bilateral retinoblastoma, a germline variant in RB1 is identified in virtually all cases. We describe herein an individual with bilateral retinoblastoma for whom multiple clinical lab assays performed by outside commercial laboratories failed to identify a germline RB1 variant. Paired tumor/normal exome sequencing, long-read whole genome sequencing, and long-read isoform sequencing was performed on a translational research basis ultimately identified a germline likely de novo Long Interspersed Nuclear Element (LINE)-1 mediated deletion resulting in a premature stop of translation of RB1 as the underlying genetic cause of retinoblastoma in this individual. Based on these research findings, the LINE-1 mediated deletion was confirmed via Sanger sequencing in our clinical laboratory, and results were reported in the patient's medical record to allow for appropriate genetic counseling.
Collapse
Affiliation(s)
- Erica L Macke
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Eileen Stonerock
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Randal Olshefski
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Kristin Zajo
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Yassmine M N Akkari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Khan M, Shah S, Lv B, Lv Z, Ji N, Song Z, Wu P, Wang X, Mehmood A. Molecular Mechanisms of Alu and LINE-1 Interspersed Repetitive Sequences Reveal Diseases of Visual System Dysfunction. Ocul Immunol Inflamm 2023; 31:1848-1858. [PMID: 36040959 DOI: 10.1080/09273948.2022.2112238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/05/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Short interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINE-1s) are the abundant and well-characterized repetitive elements in the human genome. METHODS For this review, all relevant original research studies were assessed by searching electronic databases, including PubMed, Google Scholar, and Web of Science, by using relevant keywords. Accumulating evidence indicates that the disorder of gene expression regulated by these repetitive sequences is one of the causes of the diseases of visual system dysfunction, including retinal degenerations, glaucoma, retinitis punctata albescens, retinitis pigmentosa, geographic atrophy, and age-related macular degeneration, suggesting that SINEs and LINE-1s may have great potential implications in ophthalmology. RESULTS Alu elements belonging to the SINEs are present in more than one million copies, comprising 10% of the human genome. CONCLUSION This study offers recent advances in Alu and LINE-1 mechanisms in the development of eye diseases. The current study could advance our knowledge of the roles of SINEs and LINE-1s in the developing process of eye diseases, suggesting new diagnostic biomarkers, therapeutic strategies, and significant points for future studies.
Collapse
Affiliation(s)
- Murad Khan
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Suleman Shah
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Baixue Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China
| | - Zhanjun Lv
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Ning Ji
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Zhixue Song
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Peiyuan Wu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Arshad Mehmood
- Department of Neurology, the Second Hospital of Hebei Medical University, City Shijiazhuang, P.R. China
| |
Collapse
|
4
|
Xu B, Li X, Zhang S, Lian M, Huang W, Zhang Y, Wang Y, Huang Z. Pan cancer characterization of genes whose expression has been associated with LINE-1 antisense promoter activity. Mob DNA 2023; 14:13. [PMID: 37723560 PMCID: PMC10506190 DOI: 10.1186/s13100-023-00300-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Long interspersed nuclear element-1 (LINE-1 or L1) comprises 17% of the human genome. As the only autonomous and active retrotransposons, L1 may take part in cancer initiation and progression in some ways. The studies of L1 in cancer mainly focus on the impact of L1 insertion into the new genome locus. The L1 5´ untranslated region (UTR) also contains antisense promoter (ASP) activity, generating L1-gene chimeric transcripts to a neighbor exon. Some of these ASP-associated genes have been reported to be overexpressed in cancer and promote cancer cell growth. However, little is known about overall expression patterns and the roles of L1 ASP-associated genes in human cancers. RESULTS L1 ASP-associated genes were frequently dysregulated in cancer and associated with the cell cycle, the PI3K/AKT pathway, and the GTPase signaling pathway. The expression of L1 ASP-associated genes was correlated with tumor patient prognosis. Hub L1 ASP-associated genes CENPU and MCM2 showed a correlation with immune infiltration, clinical T stage, and cancer stemness in pan-cancer. Knockdown of L1 ASP-associated gene LINC00491 resulted in a significant decrease in tumor growth and migration ability. CONCLUSIONS The expression of L1 ASP-associated genes is significantly dysregulated at the pan-cancer level, which is closely related to the tumor microenvironment, progression, and patient prognosis. Hub genes CENPU and MCM2 are expected to be new tumor diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Baohong Xu
- First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xueer Li
- First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shaoqi Zhang
- First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Meina Lian
- First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Wenbin Huang
- First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Yudong Wang
- First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| | - Zhiquan Huang
- First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Chakrabarty P, Sen R, Sengupta S. From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution. Funct Integr Genomics 2023; 23:278. [PMID: 37610667 DOI: 10.1007/s10142-023-01206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Prayas Chakrabarty
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
| | - Raneet Sen
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Poznan, Poland
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
6
|
Moeckel C, Zaravinos A, Georgakopoulos-Soares I. Strand Asymmetries Across Genomic Processes. Comput Struct Biotechnol J 2023; 21:2036-2047. [PMID: 36968020 PMCID: PMC10030826 DOI: 10.1016/j.csbj.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Across biological systems, a number of genomic processes, including transcription, replication, DNA repair, and transcription factor binding, display intrinsic directionalities. These directionalities are reflected in the asymmetric distribution of nucleotides, motifs, genes, transposon integration sites, and other functional elements across the two complementary strands. Strand asymmetries, including GC skews and mutational biases, have shaped the nucleotide composition of diverse organisms. The investigation of strand asymmetries often serves as a method to understand underlying biological mechanisms, including protein binding preferences, transcription factor interactions, retrotransposition, DNA damage and repair preferences, transcription-replication collisions, and mutagenesis mechanisms. Research into this subject also enables the identification of functional genomic sites, such as replication origins and transcription start sites. Improvements in our ability to detect and quantify DNA strand asymmetries will provide insights into diverse functionalities of the genome, the contribution of different mutational mechanisms in germline and somatic mutagenesis, and our knowledge of genome instability and evolution, which all have significant clinical implications in human disease, including cancer. In this review, we describe key developments that have been made across the field of genomic strand asymmetries, as well as the discovery of associated mechanisms.
Collapse
Affiliation(s)
- Camille Moeckel
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
- Corresponding author at: Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus.
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Corresponding author.
| |
Collapse
|
7
|
Stow EC, Baddoo M, LaRosa AJ, LaCoste D, Deininger P, Belancio V. SCIFER: approach for analysis of LINE-1 mRNA expression in single cells at a single locus resolution. Mob DNA 2022; 13:21. [PMID: 36028901 PMCID: PMC9413895 DOI: 10.1186/s13100-022-00276-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Endogenous expression of L1 mRNA is the first step in an L1-initiated mutagenesis event. However, the contribution of individual cell types to patterns of organ-specific L1 mRNA expression remains poorly understood, especially at single-locus resolution. We introduce a method to quantify expression of mobile elements at the single-locus resolution in scRNA-Seq datasets called Single Cell Implementation to Find Expressed Retrotransposons (SCIFER). SCIFER aligns scRNA-Seq reads uniquely to the genome and extracts alignments from single cells by cell-specific barcodes. In contrast to the alignment performed using default parameters, this alignment strategy increases accuracy of L1 locus identification by retaining only reads that are uniquely mapped to individual L1 loci. L1 loci expressed in single cells are unambiguously identified using a list of L1 loci manually validated to be expressed in bulk RNA-Seq datasets generated from the same cell line or organ. RESULTS Validation of SCIFER using MCF7 cells determined technical parameters needed for optimal detection of L1 expression in single cells. We show that unsupervised analysis of L1 expression in single cells exponentially inflates both the levels of L1 expression and the number of expressed L1 loci. Application of SCIFER to analysis of scRNA-Seq datasets generated from mouse and human testes identified that mouse Round Spermatids and human Spermatogonia, Spermatocytes, and Round Spermatids express the highest levels of L1 mRNA. Our analysis also determined that similar to mice, human testes from unrelated individuals share as much as 80% of expressed L1 loci. Additionally, SCIFER determined that individual mouse cells co-express different L1 sub-families and different families of transposable elements, experimentally validating their co-existence in the same cell. CONCLUSIONS SCIFER detects mRNA expression of individual L1 loci in single cells. It is compatible with scRNA-Seq datasets prepared using traditional sequencing methods. Validated using a human cancer cell line, SCIFER analysis of mouse and human testes identified key cell types supporting L1 expression in these species. This will further our understanding of differences and similarities in endogenous L1 mRNA expression patterns in mice and humans.
Collapse
Affiliation(s)
- Emily C Stow
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Alexis J LaRosa
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Dawn LaCoste
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Victoria Belancio
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA.
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
8
|
Symer DE, Akagi K, Geiger HM, Song Y, Li G, Emde AK, Xiao W, Jiang B, Corvelo A, Toussaint NC, Li J, Agrawal A, Ozer E, El-Naggar AK, Du Z, Shewale JB, Stache-Crain B, Zucker M, Robine N, Coombes KR, Gillison ML. Diverse tumorigenic consequences of human papillomavirus integration in primary oropharyngeal cancers. Genome Res 2021; 32:55-70. [PMID: 34903527 PMCID: PMC8744672 DOI: 10.1101/gr.275911.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022]
Abstract
Human papillomavirus (HPV) causes 5% of all cancers and frequently integrates into host chromosomes. The HPV oncoproteins E6 and E7 are necessary but insufficient for cancer formation, indicating that additional secondary genetic events are required. Here, we investigate potential oncogenic impacts of virus integration. Analysis of 105 HPV-positive oropharyngeal cancers by whole-genome sequencing detects virus integration in 77%, revealing five statistically significant sites of recurrent integration near genes that regulate epithelial stem cell maintenance (i.e., SOX2, TP63, FGFR, MYC) and immune evasion (i.e., CD274). Genomic copy number hyperamplification is enriched 16-fold near HPV integrants, and the extent of focal host genomic instability increases with their local density. The frequency of genes expressed at extreme outlier levels is increased 86-fold within ±150 kb of integrants. Across 95% of tumors with integration, host gene transcription is disrupted via intragenic integrants, chimeric transcription, outlier expression, gene breaking, and/or de novo expression of noncoding or imprinted genes. We conclude that virus integration can contribute to carcinogenesis in a large majority of HPV-positive oropharyngeal cancers by inducing extensive disruption of host genome structure and gene expression.
Collapse
Affiliation(s)
- David E Symer
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Keiko Akagi
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - Yang Song
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gaiyun Li
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - Weihong Xiao
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Bo Jiang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - André Corvelo
- New York Genome Center, New York, New York 10013, USA
| | | | - Jingfeng Li
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | - Amit Agrawal
- Department of Otolaryngology - Head and Neck Surgery, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Enver Ozer
- Department of Otolaryngology - Head and Neck Surgery, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Adel K El-Naggar
- Division of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zoe Du
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jitesh B Shewale
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - Mark Zucker
- Department of Biomedical Informatics, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | - Kevin R Coombes
- Department of Biomedical Informatics, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Maura L Gillison
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
9
|
Ramos KS, Bojang P, Bowers E. Role of long interspersed nuclear element-1 in the regulation of chromatin landscapes and genome dynamics. Exp Biol Med (Maywood) 2021; 246:2082-2097. [PMID: 34304633 PMCID: PMC8524765 DOI: 10.1177/15353702211031247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
LINE-1 retrotransposon, the most active mobile element of the human genome, is subject to tight regulatory control. Stressful environments and disease modify the recruitment of regulatory proteins leading to unregulated activation of LINE-1. The activation of LINE-1 influences genome dynamics through altered chromatin landscapes, insertion mutations, deletions, and modulation of cellular plasticity. To date, LINE-1 retrotransposition has been linked to various cancer types and may in fact underwrite the genetic basis of various other forms of chronic human illness. The occurrence of LINE-1 polymorphisms in the human population may define inter-individual differences in susceptibility to disease. This review is written in honor of Dr Peter Stambrook, a friend and colleague who carried out highly impactful cancer research over many years of professional practice. Dr Stambrook devoted considerable energy to helping others live up to their full potential and to navigate the complexities of professional life. He was an inspirational leader, a strong advocate, a kind mentor, a vocal supporter and cheerleader, and yes, a hard critic and tough friend when needed. His passionate stand on issues, his witty sense of humor, and his love for humanity have left a huge mark in our lives. We hope that that the knowledge summarized here will advance our understanding of the role of LINE-1 in cancer biology and expedite the development of innovative cancer diagnostics and treatments in the ways that Dr Stambrook himself had so passionately envisioned.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX 77030, USA
| | - Pasano Bojang
- University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Emma Bowers
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
10
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|
11
|
Stow EC, Kaul T, deHaro DL, Dem MR, Beletsky AG, Morales ME, Du Q, LaRosa AJ, Yang H, Smither E, Baddoo M, Ungerleider N, Deininger P, Belancio VP. Organ-, sex- and age-dependent patterns of endogenous L1 mRNA expression at a single locus resolution. Nucleic Acids Res 2021; 49:5813-5831. [PMID: 34023901 PMCID: PMC8191783 DOI: 10.1093/nar/gkab369] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Expression of L1 mRNA, the first step in the L1 copy-and-paste amplification cycle, is a prerequisite for L1-associated genomic instability. We used a reported stringent bioinformatics method to parse L1 mRNA transcripts and measure the level of L1 mRNA expressed in mouse and rat organs at a locus-specific resolution. This analysis determined that mRNA expression of L1 loci in rodents exhibits striking organ specificity with less than 0.8% of loci shared between organs of the same organism. This organ specificity in L1 mRNA expression is preserved in male and female mice and across age groups. We discovered notable differences in L1 mRNA expression between sexes with only 5% of expressed L1 loci shared between male and female mice. Moreover, we report that the levels of total L1 mRNA expression and the number and spectrum of expressed L1 loci fluctuate with age as independent variables, demonstrating different patterns in different organs and sexes. Overall, our comparisons between organs and sexes and across ages ranging from 2 to 22 months establish previously unforeseen dynamic changes in L1 mRNA expression in vivo. These findings establish the beginning of an atlas of endogenous L1 mRNA expression across a broad range of biological variables that will guide future studies.
Collapse
Affiliation(s)
- Emily C Stow
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Tiffany Kaul
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| | - Dawn L deHaro
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Madeleine R Dem
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Anna G Beletsky
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Maria E Morales
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| | - Qianhui Du
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Alexis J LaRosa
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Hanlin Yang
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Emily Smither
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Nathan Ungerleider
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| | - Victoria P Belancio
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| |
Collapse
|
12
|
Ewing AD, Smits N, Sanchez-Luque FJ, Faivre J, Brennan PM, Richardson SR, Cheetham SW, Faulkner GJ. Nanopore Sequencing Enables Comprehensive Transposable Element Epigenomic Profiling. Mol Cell 2020; 80:915-928.e5. [PMID: 33186547 DOI: 10.1016/j.molcel.2020.10.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) drive genome evolution and are a notable source of pathogenesis, including cancer. While CpG methylation regulates TE activity, the locus-specific methylation landscape of mobile human TEs has to date proven largely inaccessible. Here, we apply new computational tools and long-read nanopore sequencing to directly infer CpG methylation of novel and extant TE insertions in hippocampus, heart, and liver, as well as paired tumor and non-tumor liver. As opposed to an indiscriminate stochastic process, we find pronounced demethylation of young long interspersed element 1 (LINE-1) retrotransposons in cancer, often distinct to the adjacent genome and other TEs. SINE-VNTR-Alu (SVA) retrotransposons, including their internal tandem repeat-associated CpG island, are near-universally methylated. We encounter allele-specific TE methylation and demethylation of aberrantly expressed young LINE-1s in normal tissues. Finally, we recover the complete sequences of tumor-specific LINE-1 insertions and their retrotransposition hallmarks, demonstrating how long-read sequencing can simultaneously survey the epigenome and detect somatic TE mobilization.
Collapse
Affiliation(s)
- Adam D Ewing
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Nathan Smits
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Francisco J Sanchez-Luque
- GENYO, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, Edinburgh EH16 4SB, UK
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4067, Australia.
| |
Collapse
|
13
|
Lanciano S, Cristofari G. Measuring and interpreting transposable element expression. Nat Rev Genet 2020; 21:721-736. [PMID: 32576954 DOI: 10.1038/s41576-020-0251-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) are insertional mutagens that contribute greatly to the plasticity of eukaryotic genomes, influencing the evolution and adaptation of species as well as physiology or disease in individuals. Measuring TE expression helps to understand not only when and where TE mobilization can occur but also how this process alters gene expression, chromatin accessibility or cellular signalling pathways. Although genome-wide gene expression assays such as RNA sequencing include transposon-derived transcripts, most computational analytical tools discard or misinterpret TE-derived reads. Emerging approaches are improving the identification of expressed TE loci and helping to discriminate TE transcripts that permit TE mobilization from chimeric gene-TE transcripts or pervasive transcription. Here we review the main challenges associated with the detection of TE expression, including mappability, insertional and internal sequence polymorphisms, and the diversity of the TE transcriptional landscape, as well as the different experimental and computational strategies to solve them.
Collapse
|
14
|
Zhou D, Qi S, Zhang W, Wu L, Xu A, Li X, Zhang B, Li Y, Jia S, Wang H, Jia J, Ou X, Huang J, You H. Insertion of LINE-1 Retrotransposon Inducing Exon Inversion Causes a Rotor Syndrome Phenotype. Front Genet 2020; 10:1399. [PMID: 32082363 PMCID: PMC7005217 DOI: 10.3389/fgene.2019.01399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022] Open
Abstract
Rotor syndrome, a rare autosomal-recessive genetic disorder characterized by conjugated hyperbilirubinemia, is caused by biallelic pathogenic variants in both SLCO1B1 and SLCO1B3 genes. Long interspersed nuclear elements (LINEs) make up about 17% of the human genome and insertion of LINE-1 in genes can result in genetic diseases. In the current study, we examined SLCO1B1 and SLCO1B3 genes in two Chinese patients diagnosed with Rotor syndrome based on laboratory tests. In one patient, a novel exon 4 inversion variant was identified. This variant may have been induced by LINE-1 retrotransposon insertion into SLCO1B3 intron 3, and was identified using genome walking. Splicing assay results indicated that the exon inversion, resulting in SLCO1B3 exon 4 (122 bp) exclusion in the mature mRNA, might generate a premature termination codon. Here, we describe an exon inversion contributing to the molecular etiology of Rotor syndrome. Our results may inform future diagnoses and guide drug prescriptions and genetic counseling.
Collapse
Affiliation(s)
- Donghu Zhou
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China
| | - Saiping Qi
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China
| | - Wei Zhang
- Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Beijing, China
| | - Lina Wu
- Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Beijing, China
| | - Anjian Xu
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China
| | - Xiaojin Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China
| | - Yanmeng Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China
| | - Siyu Jia
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China
| | - Hejing Wang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China
| | - Jidong Jia
- Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Beijing, China
| | - Xiaojuan Ou
- Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Beijing, China
| | - Jian Huang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Beijing, China
| | - Hong You
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Beijing, China
| |
Collapse
|
15
|
Tang W, Liang P. Comparative Genomics Analysis Reveals High Levels of Differential Retrotransposition among Primates from the Hominidae and the Cercopithecidae Families. Genome Biol Evol 2019; 11:3309-3325. [PMID: 31651947 PMCID: PMC6934888 DOI: 10.1093/gbe/evz234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Mobile elements (MEs), making ∼50% of primate genomes, are known to be responsible for generating inter- and intra-species genomic variations and play important roles in genome evolution and gene function. Using a bioinformatics comparative genomics approach, we performed analyses of species-specific MEs (SS-MEs) in eight primate genomes from the families of Hominidae and Cercopithecidae, focusing on retrotransposons. We identified a total of 230,855 SS-MEs, with which we performed normalization based on evolutionary distances, and we also analyzed the most recent SS-MEs in these genomes. Comparative analysis of SS-MEs reveals striking differences in ME transposition among these primate genomes. Interesting highlights of our results include: 1) the baboon genome has the highest number of SS-MEs with a strong bias for SINEs, while the crab-eating macaque genome has a sustained extremely low transposition for all ME classes, suggesting the existence of a genome-wide mechanism suppressing ME transposition; 2) while SS-SINEs represent the dominant class in general, the orangutan genome stands out by having SS-LINEs as the dominant class; 3) the human genome stands out among the eight genomes by having the largest number of recent highly active ME subfamilies, suggesting a greater impact of ME transposition on its recent evolution; and 4) at least 33% of the SS-MEs locate to genic regions, including protein coding regions, presenting significant potentials for impacting gene function. Our study, as the first of its kind, demonstrates that mobile elements evolve quite differently among these primates, suggesting differential ME transposition as an important mechanism in primate evolution.
Collapse
Affiliation(s)
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
16
|
Rubenstein DR, Ågren JA, Carbone L, Elde NC, Hoekstra HE, Kapheim KM, Keller L, Moreau CS, Toth AL, Yeaman S, Hofmann HA. Coevolution of Genome Architecture and Social Behavior. Trends Ecol Evol 2019; 34:844-855. [PMID: 31130318 DOI: 10.1016/j.tree.2019.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023]
Abstract
Although social behavior can have a strong genetic component, it can also result in selection on genome structure and function, thereby influencing the evolution of the genome itself. Here we explore the bidirectional links between social behavior and genome architecture by considering variation in social and/or mating behavior among populations (social polymorphisms) and across closely related species. We propose that social behavior can influence genome architecture via associated demographic changes due to social living. We establish guidelines to exploit emerging whole-genome sequences using analytical approaches that examine genome structure and function at different levels (regulatory vs structural variation) from the perspective of both molecular biology and population genetics in an ecological context.
Collapse
Affiliation(s)
- Dustin R Rubenstein
- Columbia University, Department of Ecology, Evolution, and Environmental Biology and Center for Integrative Animal Behavior, New York, NY 10027, USA.
| | - J Arvid Ågren
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138, USA
| | - Lucia Carbone
- Oregon Health & Science University, Department of Medicine, KCVI, Portland, OR 97239, USA; Oregon National Primate Research Center, Division of Genetics, Beaverton, OR 97006, USA
| | - Nels C Elde
- University of Utah School of Medicine, Department of Human Genetics, Salt Lake City, UT 84112, USA
| | - Hopi E Hoekstra
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138, USA; Harvard University, Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Cambridge, MA 02138, USA
| | - Karen M Kapheim
- Utah State University, Department of Biology, Logan, UT 84322, USA
| | - Laurent Keller
- University of Lausanne, Department of Ecology and Evolution, Biophore, UNIL, 1015 Lausanne, Switzerland
| | - Corrie S Moreau
- Cornell University, Departments of Entomology and Ecology and Evolutionary Biology, Ithaca, NY 14850, USA
| | - Amy L Toth
- Iowa State University, Department of Ecology, Evolution, and Organismal Biology and Department of Entomology, Ames, IA 50011, USA
| | - Sam Yeaman
- University of Calgary, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| | - Hans A Hofmann
- The University of Texas at Austin, Department of Integrative Biology and Institute for Cellular and Molecular Biology, 2415 Speedway C-0990, Austin, TX 78712, USA.
| |
Collapse
|
17
|
Gagnier L, Belancio VP, Mager DL. Mouse germ line mutations due to retrotransposon insertions. Mob DNA 2019; 10:15. [PMID: 31011371 PMCID: PMC6466679 DOI: 10.1186/s13100-019-0157-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
Transposable element (TE) insertions are responsible for a significant fraction of spontaneous germ line mutations reported in inbred mouse strains. This major contribution of TEs to the mutational landscape in mouse contrasts with the situation in human, where their relative contribution as germ line insertional mutagens is much lower. In this focussed review, we provide comprehensive lists of TE-induced mouse mutations, discuss the different TE types involved in these insertional mutations and elaborate on particularly interesting cases. We also discuss differences and similarities between the mutational role of TEs in mice and humans.
Collapse
Affiliation(s)
- Liane Gagnier
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Dixie L. Mager
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| |
Collapse
|
18
|
Tang W, Mun S, Joshi A, Han K, Liang P. Mobile elements contribute to the uniqueness of human genome with 15,000 human-specific insertions and 14 Mbp sequence increase. DNA Res 2019; 25:521-533. [PMID: 30052927 PMCID: PMC6191304 DOI: 10.1093/dnares/dsy022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/20/2018] [Indexed: 02/02/2023] Open
Abstract
Mobile elements (MEs) collectively contribute to at least 50% of the human genome. Due to their past incremental accumulation and ongoing DNA transposition, MEs serve as a significant source for both inter- and intra-species genetic and phenotypic diversity during primate and human evolution. By making use of the most recent genome sequences for human and many other closely related primates and robust multi-way comparative genomic approach, we identified a total of 14,870 human-specific MEs (HS-MEs) with more than 8,000 being newly identified. Collectively, these HS-MEs contribute to a total of 14.2 Mbp net genome sequence increase. Several new observations were made based on these HS-MEs, including the finding of Y chromosome as a strikingly hot target for HS-MEs and a strong mutual preference for SINE-R/VNTR/Alu (SVAs). Furthermore, ∼8,000 of these HS-MEs were found to locate in the vicinity of ∼4,900 genes, and collectively they contribute to ∼84 kb sequences in the human reference transcriptome in association with over 300 genes, including protein-coding sequences for 40 genes. In conclusion, our results demonstrate that MEs made a significant contribution to the evolution of human genome by participating in gene function in a human-specific fashion.
Collapse
Affiliation(s)
- Wanxiangfu Tang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Seyoung Mun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research, Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Aditya Joshi
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research, Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
19
|
Ishiguro K, Higashino S, Hirakawa H, Sato S, Aizawa Y. Establishment of a genome-wide and quantitative protocol for assessment of transcriptional activity at human retrotransposon L1 antisense promoters. Genes Genet Syst 2018; 92:243-249. [PMID: 28381655 DOI: 10.1266/ggs.16-00053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Long interspersed element 1 (L1) retrotransposon sequences are widespread in the human genome, occupying ~500,000 locations. The majority of L1s have lost their retrotransposition capability, although a significant population of human L1s maintains bidirectional transcriptional activity from the internal promoter. While the sense promoter drives transcription of the entire L1 mRNA and leads to L1 retrotransposition, the antisense promoter (ASP) transcribes L1-gene chimeric RNAs that include neighboring exon sequences. Activation mechanisms and functional impacts of L1ASP transcription are thought to vary at every L1ASP location. To explore the locus-specific regulation and function of L1ASP transcription, quantitative methodology is necessary for identifying the genomic positions of highly active L1ASPs on a genome-wide scale. Here, we employed deep-sequencing techniques and built a 3' RACE-based experimental and bioinformatics protocol, named the L1 antisense transcriptome protocol (LATRAP). In LATRAP, the PCR primer and the read mapping scheme were designed to reduce false positives and negatives, which may have been included as hits in previous cloning studies. LATRAP was here applied to the A549 human lung cancer cell line, and 313 L1ASP loci were detected to have transcriptional activity but differed in the number of mapped reads by four orders of magnitude. This indicates that transcriptional activities of the individual L1ASPs can vary greatly and that only a small population of L1ASP loci is active within individual nuclei. LATRAP is the first experimental method for ranking L1ASPs according to their transcriptional activity and will thus open a new avenue to unveiling the locus-specific biology of L1ASPs.
Collapse
Affiliation(s)
- Koichi Ishiguro
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology
| | - Saneyuki Higashino
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology
| | | | | | - Yasunori Aizawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology.,Center for Biological Resources and Informatics, Tokyo Institute of Technology
| |
Collapse
|
20
|
Jung J, Lee S, Cho HS, Park K, Ryu JW, Jung M, Kim J, Kim H, Kim DS. Bioinformatic analysis of regulation of natural antisense transcripts by transposable elements in human mRNA. Genomics 2018; 111:159-166. [PMID: 29366860 DOI: 10.1016/j.ygeno.2018.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
Non-coding RNA is no longer considered to be "junk" DNA, based on evidence uncovered in recent decades. In particular, the important role played by natural antisense transcripts (NATs) in regulating the expression of genes is receiving increasing attention. However, the regulatory mechanisms of NATs remain incompletely understood. It is well-known that the insertion of transposable elements (TEs) can affect gene transcription. Using a bioinformatics approach, we identified NATs using human mRNA sequences from the UCSC Genome Browser Database. Our in silico analysis identified 1079 NATs and 700 sense-antisense gene pairs. We identified 179 NATs that showed evidence of having been affected by TEs during cellular gene expression. These findings may provide an understanding of the complex regulation mechanisms of NATs. If our understanding of NATs as modulators of gene expression is further enhanced, we can develop ways to control gene expression.
Collapse
Affiliation(s)
- Jaeeun Jung
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sugi Lee
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyun-Soo Cho
- Department of Stem Cell Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kunhyang Park
- Department of Core Facility Management Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jea-Woon Ryu
- Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Minah Jung
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jeongkil Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - HyeRan Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Plant Systems Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Dae-Soo Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
21
|
Stefaniuk-Szmukier M, Ropka-Molik K, Zagrajczuk A, Piórkowska K, Szmatoła T, Łuszczyński J, Bugno-Poniewierska M. Genetic variability in equine GDF9 and BMP15 genes in Arabian and Thoroughbred mares. ANNALS OF ANIMAL SCIENCE 2018. [DOI: 10.1515/aoas-2017-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In horses, multiple ovulation resulting in implantation of multiple embryos is adverse. However, understanding the mechanisms underlying initiation of multiple ovulation (MO) is advantageous and is related to an increase in efficiency of embryo transfer techniques. It has been postulated that MO may have a genetic background. Two major genes: bone morphogenetic protein 15 (BMP15) and growth and differentiation factor 9 (GDF9) are considered to play a crucial role in folliculogenesis and controlling the ovulation rate. Thus, the aim of the presented study was to identify the variation within equine BMP15 and GDF9 genes to verify their potential role on spontaneous, repetitive multiple ovulations in mares. In addition, variation screening of investigated genes in population of Thoroughbred and Arabian breeds was performed together with establishment of transcript abundance of BMP15 and GDF9 genes in equine ovarian tissue. Sanger sequencing of Arabian and Thoroughbred mares divided according to ovulation rate, revealed occurrence of 3 SNPs in BMP15 and STS in GDF9 genes. The PCR-RLFP and statistical analysis indicated that none of the genotype frequencies were significant in any breeds and none of them were claimed as functional according to ovulation rate. Furthermore, evaluation of transcript abundance by RT -PCR of both genes in ovarian tissues showed that expression of both genes was similar but GDF9 was significantly expressed in growing follicles with 21-30 mm diameter and in ovarian parenchyma, which suggest their potential role in folliculogenesis.
Collapse
Affiliation(s)
- Monika Stefaniuk-Szmukier
- Department of Horse Breeding, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków , Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Balice n. Kraków , Poland
| | - Agata Zagrajczuk
- University Center of Veterinary Medicine, Jagiellonian University – University of Agriculture, 31-120 Kraków , Poland
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Balice n. Kraków , Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Balice n. Kraków , Poland
| | - Jarosław Łuszczyński
- Department of Horse Breeding, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków , Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Balice n. Kraków , Poland
| |
Collapse
|
22
|
Servant G, Streva VA, Deininger PL. Transcription coupled repair and biased insertion of human retrotransposon L1 in transcribed genes. Mob DNA 2017; 8:18. [PMID: 29225704 PMCID: PMC5717806 DOI: 10.1186/s13100-017-0100-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/06/2017] [Indexed: 11/26/2022] Open
Abstract
Background L1 retrotransposons inserted within genes in the human genome show a strong bias against sense orientation with respect to the gene. One suggested explanation for this observation was the possibility that L1 inserted randomly, but that there was negative selection against sense-oriented insertions. However, multiple studies have now found that de novo and polymorphic L1 insertions, which have little opportunity for selection to act, also show the same bias. Results Here we show that the transcription-coupled sub-pathway of nucleotide excision repair does not affect the overall rate of insertion of L1 elements, which is in contrast with the regulation by the global sub-pathway of nucleotide excision repair. The transcription-coupled subpathway does cause a strong bias against insertion in the sense orientation relative to genes. Conclusions This suggests that a major portion of the L1 orientation bias might be generated during the process of insertion through the action of transcription-coupled nucleotide excision repair. Electronic supplementary material The online version of this article (10.1186/s13100-017-0100-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geraldine Servant
- Tulane University, Tulane Cancer Center and the Department of Epidemiology, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Vincent A Streva
- Tulane University, Tulane Cancer Center and the Department of Epidemiology, 1430 Tulane Ave, New Orleans, LA 70112 USA.,Present Address: Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 USA
| | - Prescott L Deininger
- Tulane University, Tulane Cancer Center and the Department of Epidemiology, 1430 Tulane Ave, New Orleans, LA 70112 USA.,Tulane Cancer Center, SL66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112 USA
| |
Collapse
|
23
|
L1 Mosaicism in Mammals: Extent, Effects, and Evolution. Trends Genet 2017; 33:802-816. [PMID: 28797643 DOI: 10.1016/j.tig.2017.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/30/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
The retrotransposon LINE-1 (long interspersed element 1, L1) is a transposable element that has extensively colonized the mammalian germline. L1 retrotransposition can also occur in somatic cells, causing genomic mosaicism, as well as in cancer. However, the extent of L1-driven mosaicism arising during ontogenesis is unclear. We discuss here recent experimental data which, at a minimum, fully substantiate L1 mosaicism in early embryonic development and neural cells, including post-mitotic neurons. We also consider the possible biological impact of somatic L1 insertions in neurons, the existence of donor L1s that are highly active ('hot') in specific spatiotemporal niches, and the evolutionary selection of donor L1s driving neuronal mosaicism.
Collapse
|
24
|
Abstract
Transposable elements give rise to interspersed repeats, sequences that comprise most of our genomes. These mobile DNAs have been historically underappreciated - both because they have been presumed to be unimportant, and because their high copy number and variability pose unique technical challenges. Neither impediment now seems steadfast. Interest in the human mobilome has never been greater, and methods enabling its study are maturing at a fast pace. This Review describes the activity of transposable elements in human cancers, particularly long interspersed element-1 (LINE-1). LINE-1 sequences are self-propagating, protein-coding retrotransposons, and their activity results in somatically acquired insertions in cancer genomes. Altered expression of transposable elements and animation of genomic LINE-1 sequences appear to be hallmarks of cancer, and can be responsible for driving mutations in tumorigenesis.
Collapse
Affiliation(s)
- Kathleen H Burns
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
25
|
Transposable elements in cancer. NATURE REVIEWS. CANCER 2017. [PMID: 28642606 DOI: 10.1038/nrc.2017.35+[doi]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transposable elements give rise to interspersed repeats, sequences that comprise most of our genomes. These mobile DNAs have been historically underappreciated - both because they have been presumed to be unimportant, and because their high copy number and variability pose unique technical challenges. Neither impediment now seems steadfast. Interest in the human mobilome has never been greater, and methods enabling its study are maturing at a fast pace. This Review describes the activity of transposable elements in human cancers, particularly long interspersed element-1 (LINE-1). LINE-1 sequences are self-propagating, protein-coding retrotransposons, and their activity results in somatically acquired insertions in cancer genomes. Altered expression of transposable elements and animation of genomic LINE-1 sequences appear to be hallmarks of cancer, and can be responsible for driving mutations in tumorigenesis.
Collapse
|
26
|
Meyer TJ, Held U, Nevonen KA, Klawitter S, Pirzer T, Carbone L, Schumann GG. The Flow of the Gibbon LAVA Element Is Facilitated by the LINE-1 Retrotransposition Machinery. Genome Biol Evol 2016; 8:3209-3225. [PMID: 27635049 PMCID: PMC5174737 DOI: 10.1093/gbe/evw224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
LINE-Alu-VNTR-Alu-like (LAVA) elements comprise a family of non-autonomous, composite, non-LTR retrotransposons specific to gibbons and may have played a role in the evolution of this lineage. A full-length LAVA element consists of portions of repeats found in most primate genomes: CT-rich, Alu-like, and VNTR regions from the SVA retrotransposon, and portions of the AluSz and L1ME5 elements. To evaluate whether the gibbon genome currently harbors functional LAVA elements capable of mobilization by the endogenous LINE-1 (L1) protein machinery and which LAVA components are important for retrotransposition, we established a trans-mobilization assay in HeLa cells. Specifically, we tested if a full-length member of the older LAVA subfamily C that was isolated from the gibbon genome and named LAVAC, or its components, can be mobilized in the presence of the human L1 protein machinery. We show that L1 proteins mobilize the LAVAC element at frequencies exceeding processed pseudogene formation and human SVAE retrotransposition by > 100-fold and ≥3-fold, respectively. We find that only the SVA-derived portions confer activity, and truncation of the 3′ L1ME5 portion increases retrotransposition rates by at least 100%. Tagged de novo insertions integrated into intronic regions in cell culture, recapitulating findings in the gibbon genome. Finally, we present alternative models for the rise of the LAVA retrotransposon in the gibbon lineage.
Collapse
Affiliation(s)
- Thomas J Meyer
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon
| | - Ulrike Held
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Kimberly A Nevonen
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
| | - Sabine Klawitter
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
- Present address: Division of Inborn Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Thomas Pirzer
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Lucia Carbone
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon
- Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
27
|
Criscione SW, Theodosakis N, Micevic G, Cornish TC, Burns KH, Neretti N, Rodić N. Genome-wide characterization of human L1 antisense promoter-driven transcripts. BMC Genomics 2016; 17:463. [PMID: 27301971 PMCID: PMC4908685 DOI: 10.1186/s12864-016-2800-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/26/2016] [Indexed: 11/23/2022] Open
Abstract
Background Long INterspersed Element-1 (LINE-1 or L1) is the only autonomously active, transposable element in the human genome. L1 sequences comprise approximately 17 % of the human genome, but only the evolutionarily recent, human-specific subfamily is retrotransposition competent. The L1 promoter has a bidirectional orientation containing a sense promoter that drives the transcription of two proteins required for retrotransposition and an antisense promoter. The L1 antisense promoter can drive transcription of chimeric transcripts: 5’ L1 antisense sequences spliced to the exons of neighboring genes. Results The impact of L1 antisense promoter activity on cellular transcriptomes is poorly understood. To investigate this, we analyzed GenBank ESTs for messenger RNAs that initiate in the L1 antisense promoter. We identified 988 putative L1 antisense chimeric transcripts, 911 of which have not been previously reported. These appear to be alternative genic transcripts, sense-oriented with respect to gene and initiating near, but typically downstream of, the gene transcriptional start site. In multiple cell lines, L1 antisense promoters display enrichment for YY1 transcription factor and histone modifications associated with active promoters. Global run-on sequencing data support the activity of the L1 antisense promoter. We independently detected 124 L1 antisense chimeric transcripts using long read Pacific Biosciences RNA-seq data. Furthermore, we validated four chimeric transcripts by quantitative RT-PCR and Sanger sequencing and demonstrated that they are readily detectable in many normal human tissues. Conclusions We present a comprehensive characterization of human L1 antisense promoter-driven transcripts and provide substantial evidence that they are transcribed in a variety of human cell-types. Our findings reveal a new wide-reaching aspect of L1 biology by identifying antisense transcripts affecting as many as 4 % of all human genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2800-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven W Criscione
- Department of Molecular Biology, Cell Biology, and Biochemistry, Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA
| | - Nicholas Theodosakis
- Department of Pathology, Yale University, New Haven, CT, 06510, USA.,Department of Dermatology, Division of Dermatopathology, Yale University, New Haven, CT, 06510, USA
| | - Goran Micevic
- Department of Pathology, Yale University, New Haven, CT, 06510, USA.,Department of Dermatology, Division of Dermatopathology, Yale University, New Haven, CT, 06510, USA
| | - Toby C Cornish
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,High Throughput (HiT) Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA.
| | - Nemanja Rodić
- Department of Pathology, Yale University, New Haven, CT, 06510, USA. .,Department of Dermatology, Division of Dermatopathology, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
28
|
Bailey J. Monkey-based research on human disease: the implications of genetic differences. Altern Lab Anim 2016; 42:287-317. [PMID: 25413291 DOI: 10.1177/026119291404200504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Assertions that the use of monkeys to investigate human diseases is valid scientifically are frequently based on a reported 90-93% genetic similarity between the species. Critical analyses of the relevance of monkey studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for monkeys to constitute good models for research, and that monkey data do not translate well to progress in clinical practice for humans. Salient examples include the failure of new drugs in clinical trials, the highly different infectivity and pathology of SIV/HIV, and poor extrapolation of research on Alzheimer's disease, Parkinson's disease and stroke. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology - there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and monkey genetic sequences is of little benefit for biomedical research. The extrapolation of biomedical data from monkeys to humans is therefore highly unreliable, and the use of monkeys must be considered of questionable value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to scientists.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society (NEAVS), Boston, MA, USA
| |
Collapse
|
29
|
Gerdes P, Richardson SR, Mager DL, Faulkner GJ. Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biol 2016; 17:100. [PMID: 27161170 PMCID: PMC4862087 DOI: 10.1186/s13059-016-0965-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Transposable elements (TEs) are notable drivers of genetic innovation. Over evolutionary time, TE insertions can supply new promoter, enhancer, and insulator elements to protein-coding genes and establish novel, species-specific gene regulatory networks. Conversely, ongoing TE-driven insertional mutagenesis, nonhomologous recombination, and other potentially deleterious processes can cause sporadic disease by disrupting genome integrity or inducing abrupt gene expression changes. Here, we discuss recent evidence suggesting that TEs may contribute regulatory innovation to mammalian embryonic and pluripotent states as a means to ward off complete repression by their host genome.
Collapse
Affiliation(s)
- Patricia Gerdes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Dixie L Mager
- Department of Medical Genetics, Terry Fox Laboratory, British Columbia Cancer Agency, University of British Columbia, Vancouver, BC, V5Z 1L3, Canada.
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia. .,School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
30
|
Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA 2016; 7:9. [PMID: 27158268 PMCID: PMC4859970 DOI: 10.1186/s13100-016-0065-9] [Citation(s) in RCA: 429] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022] Open
Abstract
Over evolutionary time, the dynamic nature of a genome is driven, in part, by the activity of transposable elements (TE) such as retrotransposons. On a shorter time scale it has been established that new TE insertions can result in single-gene disease in an individual. In humans, the non-LTR retrotransposon Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous TE. In addition to mobilizing its own RNA to new genomic locations via a "copy-and-paste" mechanism, LINE-1 is able to retrotranspose other RNAs including Alu, SVA, and occasionally cellular RNAs. To date in humans, 124 LINE-1-mediated insertions which result in genetic diseases have been reported. Disease causing LINE-1 insertions have provided a wealth of insight and the foundation for valuable tools to study these genomic parasites. In this review, we provide an overview of LINE-1 biology followed by highlights from new reports of LINE-1-mediated genetic disease in humans.
Collapse
Affiliation(s)
- Dustin C. Hancks
- />Eccles Institute of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Haig H. Kazazian
- />McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins School of Medicine, Baltimore, MD USA
| |
Collapse
|
31
|
Kines KJ, Sokolowski M, deHaro DL, Christian CM, Baddoo M, Smither ME, Belancio VP. The endonuclease domain of the LINE-1 ORF2 protein can tolerate multiple mutations. Mob DNA 2016; 7:8. [PMID: 27099633 PMCID: PMC4837594 DOI: 10.1186/s13100-016-0064-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/07/2016] [Indexed: 11/26/2022] Open
Abstract
Background Approximately 17 % of the human genome is comprised of the Long INterspersed Element-1 (LINE-1 or L1) retrotransposon, the only currently active autonomous family of retroelements. Though L1 elements have helped to shape mammalian genome evolution over millions of years, L1 activity can also be mutagenic and result in human disease. L1 expression has the potential to contribute to genomic instability via retrotransposition and DNA double-strand breaks (DSBs). Additionally, L1 is responsible for structural genomic variations induced by other transposable elements such as Alu and SVA, which rely on the L1 ORF2 protein for their propagation. Most of the genomic damage associated with L1 activity originates with the endonuclease domain of the ORF2 protein, which nicks the DNA in preparation for target-primed reverse transcription. Results Bioinformatic analysis of full-length L1 loci residing in the human genome identified numerous mutations in the amino acid sequence of the ORF2 endonuclease domain. Some of these mutations were found in residues which were predicted to be phosphorylation sites for cellular kinases. We mutated several of these putative phosphorylation sites in the ORF2 endonuclease domain and investigated the effect of these mutations on the function of the full-length ORF2 protein and the endonuclease domain (ENp) alone. Most of the single and multiple point mutations that were tested did not significantly impact expression of the full-length ORF2p, or alter its ability to drive Alu retrotransposition. Similarly, most of those same mutations did not significantly alter expression of ENp, or impair its ability to induce DNA damage and cause toxicity. Conclusions Overall, our data demonstrate that the full-length ORF2p or the ENp alone can tolerate several specific single and multiple point mutations in the endonuclease domain without significant impairment of their ability to support Alu mobilization or induce DNA damage, respectively. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0064-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristine J Kines
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Mark Sokolowski
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Dawn L deHaro
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Claiborne M Christian
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Melody Baddoo
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Madison E Smither
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Victoria P Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| |
Collapse
|
32
|
Kagawa T, Oka A, Kobayashi Y, Hiasa Y, Kitamura T, Sakugawa H, Adachi Y, Anzai K, Tsuruya K, Arase Y, Hirose S, Shiraishi K, Shiina T, Sato T, Wang T, Tanaka M, Hayashi H, Kawabe N, Robinson PN, Zemojtel T, Mine T. Recessive inheritance of population-specific intronic LINE-1 insertion causes a rotor syndrome phenotype. Hum Mutat 2015; 36:327-32. [PMID: 25546334 DOI: 10.1002/humu.22745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/15/2014] [Indexed: 11/06/2022]
Abstract
Sequences of long-interspersed elements (LINE-1, L1) make up ∼17% of the human genome. De novo insertions of retrotransposition-active L1s can result in genetic diseases. It has been recently shown that the homozygous inactivation of two adjacent genes SLCO1B1 and SLCO1B3 encoding organic anion transporting polypeptides OATP1B1 and OATP1B3 causes a benign recessive disease presenting with conjugated hyperbilirubinemia, Rotor syndrome. Here, we examined SLCO1B1 and SLCO1B3 genes in six Japanese diagnosed with Rotor syndrome on the basis of laboratory data and laparoscopy. All six Japanese patients were homozygous for the c.1738C>T nonsense mutation in SLCO1B1 and homozygous for the insertion of a ∼6.1-kbp L1 retrotransposon in intron 5 of SLCO1B3, which altogether make up a Japanese-specific haplotype. RNA analysis revealed that the L1 insertion induced deleterious splicing resulting in SLCO1B3 transcripts lacking exon 5 or exons 5-7 and containing premature stop codons. The expression of OATP1B1 and OATP1B3 proteins was not detected in liver tissues. This is the first documented case of a population-specific polymorphic intronic L1 transposon insertion contributing to molecular etiology of recessive genetic disease. Since L1 activity in human genomes is currently seen as a major source of individual genetic variation, further investigations are warranted to determine whether this phenomenon results in other autosomal-recessive diseases.
Collapse
Affiliation(s)
- Tatehiro Kagawa
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Santagostino M, Khoriauli L, Gamba R, Bonuglia M, Klipstein O, Piras FM, Vella F, Russo A, Badiale C, Mazzagatti A, Raimondi E, Nergadze SG, Giulotto E. Genome-wide evolutionary and functional analysis of the Equine Repetitive Element 1: an insertion in the myostatin promoter affects gene expression. BMC Genet 2015; 16:126. [PMID: 26503543 PMCID: PMC4623272 DOI: 10.1186/s12863-015-0281-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In mammals, an important source of genomic variation is insertion polymorphism of retrotransposons. These may acquire a functional role when inserted inside genes or in their proximity. The aim of this work was to carry out a genome wide analysis of ERE1 retrotransposons in the horse and to analyze insertion polymorphism in relation to evolution and function. The effect of an ERE1 insertion in the promoter of the myostatin gene, which is involved in muscle development, was also investigated. RESULTS In the horse population, the fraction of ERE1 polymorphic loci is related to the degree of similarity to their consensus sequence. Through the analysis of ERE1 conservation in seven equid species, we established that the level of identity to their consensus is indicative of evolutionary age of insertion. The position of ERE1s relative to genes suggests that some elements have acquired a functional role. Reporter gene assays showed that the ERE1 insertion within the horse myostatin promoter affects gene expression. The frequency of this variant promoter correlates with sport aptitude and racing performance. CONCLUSIONS Sequence conservation and insertion polymorphism of ERE1 elements are related to the time of their appearance in the horse lineage, therefore, ERE1s are a useful tool for evolutionary and population studies. Our results suggest that the ERE1 insertion at the myostatin locus has been unwittingly selected by breeders to obtain horses with specific racing abilities. Although a complex combination of environmental and genetic factors contributes to athletic performance, breeding schemes may take into account ERE1 insertion polymorphism at the myostatin promoter.
Collapse
Affiliation(s)
- Marco Santagostino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Lela Khoriauli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Riccardo Gamba
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Margherita Bonuglia
- Laboratorio di Genetica Forense Veterinaria, UNIRELAB srl, Via A. Gramsci 70, 20019, Settimo Milanese (MI), Italy.
| | - Ori Klipstein
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Francesca M Piras
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Francesco Vella
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Alessandra Russo
- Laboratorio di Genetica Forense Veterinaria, UNIRELAB srl, Via A. Gramsci 70, 20019, Settimo Milanese (MI), Italy.
| | - Claudia Badiale
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Alice Mazzagatti
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Elena Raimondi
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Solomon G Nergadze
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Elena Giulotto
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| |
Collapse
|
34
|
Denli AM, Narvaiza I, Kerman BE, Pena M, Benner C, Marchetto MCN, Diedrich JK, Aslanian A, Ma J, Moresco JJ, Moore L, Hunter T, Saghatelian A, Gage FH. Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell 2015; 163:583-93. [PMID: 26496605 DOI: 10.1016/j.cell.2015.09.025] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 07/07/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022]
Abstract
LINE-1 retrotransposons are fast-evolving mobile genetic entities that play roles in gene regulation, pathological conditions, and evolution. Here, we show that the primate LINE-1 5'UTR contains a primate-specific open reading frame (ORF) in the antisense orientation that we named ORF0. The gene product of this ORF localizes to promyelocytic leukemia-adjacent nuclear bodies. ORF0 is present in more than 3,000 loci across human and chimpanzee genomes and has a promoter and a conserved strong Kozak sequence that supports translation. By virtue of containing two splice donor sites, ORF0 can also form fusion proteins with proximal exons. ORF0 transcripts are readily detected in induced pluripotent stem (iPS) cells from both primate species. Capped and polyadenylated ORF0 mRNAs are present in the cytoplasm, and endogenous ORF0 peptides are identified upon proteomic analysis. Finally, ORF0 enhances LINE-1 mobility. Taken together, these results suggest a role for ORF0 in retrotransposon-mediated diversity.
Collapse
Affiliation(s)
- Ahmet M Denli
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Iñigo Narvaiza
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bilal E Kerman
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Monique Pena
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Christopher Benner
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria C N Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jolene K Diedrich
- Mass Spectrometry Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Aaron Aslanian
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jiao Ma
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - James J Moresco
- Mass Spectrometry Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lynne Moore
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Cancer Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind (KIBM), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
35
|
Belancio VP. LINE-1 activity as molecular basis for genomic instability associated with light exposure at night. Mob Genet Elements 2015; 5:1-5. [PMID: 26442182 DOI: 10.1080/2159256x.2015.1037416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/29/2022] Open
Abstract
The original hypothesis that exposure to light at night increases risk of breast cancer via suppression of nocturnal melatonin production was proposed over 2 decades ago. In 2007, shift work that involves circadian disruption has been recognized by the World Health Organization as a probable human carcinogen. Our discovery of melatonin-dependent regulation of LINE-1 retrotransposon expression and mobilization is the latest addition to the list of cellular genes and processes that are affected by light exposure at night. This finding establishes an unexpected health relevant connection between this endogenous DNA damaging agent and environmental light exposure. It also offers an appealing hypothesis pertaining to the origin of genomic instability in the genomes of individuals with light at night- or age-associated disruption of melatonin signaling.
Collapse
Affiliation(s)
- Victoria P Belancio
- Department of Structural and Cellular Biology; Tulane Cancer Center; Tulane Cancer for Aging; Tulane Center for Circadian Biology; Tulane University ; New Orleans, LA USA
| |
Collapse
|
36
|
Brečević L, Rinčić M, Krsnik Ž, Sedmak G, Hamid AB, Kosyakova N, Galić I, Liehr T, Borovečki F. Association of new deletion/duplication region at chromosome 1p21 with intellectual disability, severe speech deficit and autism spectrum disorder-like behavior: an all-in approach to solving the DPYD enigma. Transl Neurosci 2015; 6:59-86. [PMID: 28123791 PMCID: PMC4936614 DOI: 10.1515/tnsci-2015-0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022] Open
Abstract
We describe an as yet unreported neocentric small supernumerary marker chromosome (sSMC) derived from chromosome 1p21.3p21.2. It was present in 80% of the lymphocytes in a male patient with intellectual disability, severe speech deficit, mild dysmorphic features, and hyperactivity with elements of autism spectrum disorder (ASD). Several important neurodevelopmental genes are affected by the 3.56 Mb copy number gain of 1p21.3p21.2, which may be considered reciprocal in gene content to the recently recognized 1p21.3 microdeletion syndrome. Both 1p21.3 deletions and the presented duplication display overlapping symptoms, fitting the same disorder category. Contribution of coding and non-coding genes to the phenotype is discussed in the light of cellular and intercellular homeostasis disequilibrium. In line with this the presented 1p21.3p21.2 copy number gain correlated to 1p21.3 microdeletion syndrome verifies the hypothesis of a cumulative effect of the number of deregulated genes - homeostasis disequilibrium leading to overlapping phenotypes between microdeletion and microduplication syndromes. Although miR-137 appears to be the major player in the 1p21.3p21.2 region, deregulation of the DPYD (dihydropyrimidine dehydrogenase) gene may potentially affect neighboring genes underlying the overlapping symptoms present in both the copy number loss and copy number gain of 1p21. Namely, the all-in approach revealed that DPYD is a complex gene whose expression is epigenetically regulated by long non-coding RNAs (lncRNAs) within the locus. Furthermore, the long interspersed nuclear element-1 (LINE-1) L1MC1 transposon inserted in DPYD intronic transcript 1 (DPYD-IT1) lncRNA with its parasites, TcMAR-Tigger5b and pair of Alu repeats appears to be the “weakest link” within the DPYD gene liable to break. Identification of the precise mechanism through which DPYD is epigenetically regulated, and underlying reasons why exactly the break (FRA1E) happens, will consequently pave the way toward preventing severe toxicity to the antineoplastic drug 5-fluorouracil (5-FU) and development of the causative therapy for the dihydropyrimidine dehydrogenase deficiency.
Collapse
Affiliation(s)
- Lukrecija Brečević
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- E-mail: ;
| | - Martina Rinčić
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Željka Krsnik
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Ahmed B. Hamid
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Ivan Galić
- Center for Rehabilitation Stančić, Stančić bb, 10370 Stančić, Croatia
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
| |
Collapse
|
37
|
Ayarpadikannan S, Lee HE, Han K, Kim HS. Transposable element-driven transcript diversification and its relevance to genetic disorders. Gene 2015; 558:187-94. [PMID: 25617522 DOI: 10.1016/j.gene.2015.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 12/14/2022]
Abstract
The human genome project and subsequent gene annotation projects have shown that the human genome contains 22,000-25,000 functional genes. Therefore, it is believed that the diversity of protein repertoire is achieved by the alternative splicing (AS) mechanism. Transposable elements (TEs) are mobile in nature and can therefore alter their position in the genome. The insertion of TEs into a new gene region can result in AS of a particular transcript through various mechanisms, including intron retention, and alternative donor or acceptor splice sites. TE-derived AS is thought to have played a part in primate evolution and in hominid radiation. However, TE-derived AS or genetic instability may sometimes result in genetic disorders. For the past two decades, numerous studies have been performed on TEs and their role in genomes. Accumulating evidence shows that the term 'junk DNA', previously used for TEs is a misnomer. Recent research has indicated that TEs may have clinical potential. However, to explore the feasibility of using TEs in clinical practice, additional studies are required. This review summarizes the available literature on TE-derived AS, alternative promoter, and alternative polyadenylation. The review covers the effects of TEs on coding genes and their clinical implications, and provides our perspectives and directions for future research.
Collapse
Affiliation(s)
- Selvam Ayarpadikannan
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science, WCU Research Center, Dankook University, Cheonan 330-714, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
38
|
Pitkänen E, Cajuso T, Katainen R, Kaasinen E, Välimäki N, Palin K, Taipale J, Aaltonen LA, Kilpivaara O. Frequent L1 retrotranspositions originating from TTC28 in colorectal cancer. Oncotarget 2015; 5:853-9. [PMID: 24553397 PMCID: PMC3996660 DOI: 10.18632/oncotarget.1781] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
L1 element retrotranspositions have been found to alter expression of genes neighboring the insertion sites, potentially involving them in tumorigenesis and tumor progression. In colorectal cancer (CRC), L1 insertions have been found to target genes with a role in tumorigenesis. Structural changes such as L1 insertions are identifiable by whole genome sequencing (WGS). In this study, we observed frequent somatic L1 retrotranspositions originating from TTC28 using deep coverage WGS data from 92 CRC tumor-normal sample pairs. In two cases the event had targeted NOVA1 gene (p=0.025). In addition, a germline retrotransposition event from TTC28 to GABRA4 was found to be a common polymorphism in the Finnish population. Thus while some events may be tumorigenic, others are likely to be neutral. Our data contradict a recent study where a similar signal in TTC28 was interpreted as a common inactivating translocation. While much work remains to be performed to understand the biological significance of retrotranspositions in cancer, accurate identification of these events is a prerequisite for success.
Collapse
Affiliation(s)
- Esa Pitkänen
- Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Sandra R. Richardson
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia;
| | - Santiago Morell
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia;
| | - Geoffrey J. Faulkner
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia;
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
40
|
Carbone L, Harris RA, Gnerre S, Veeramah KR, Lorente-Galdos B, Huddleston J, Meyer TJ, Herrero J, Roos C, Aken B, Anaclerio F, Archidiacono N, Baker C, Barrell D, Batzer MA, Beal K, Blancher A, Bohrson CL, Brameier M, Campbell MS, Capozzi O, Casola C, Chiatante G, Cree A, Damert A, de Jong PJ, Dumas L, Fernandez-Callejo M, Flicek P, Fuchs NV, Gut I, Gut M, Hahn MW, Hernandez-Rodriguez J, Hillier LW, Hubley R, Ianc B, Izsvák Z, Jablonski NG, Johnstone LM, Karimpour-Fard A, Konkel MK, Kostka D, Lazar NH, Lee SL, Lewis LR, Liu Y, Locke DP, Mallick S, Mendez FL, Muffato M, Nazareth LV, Nevonen KA, O'Bleness M, Ochis C, Odom DT, Pollard KS, Quilez J, Reich D, Rocchi M, Schumann GG, Searle S, Sikela JM, Skollar G, Smit A, Sonmez K, ten Hallers B, Terhune E, Thomas GWC, Ullmer B, Ventura M, Walker JA, Wall JD, Walter L, Ward MC, Wheelan SJ, Whelan CW, White S, Wilhelm LJ, Woerner AE, Yandell M, Zhu B, Hammer MF, Marques-Bonet T, Eichler EE, Fulton L, Fronick C, Muzny DM, Warren WC, Worley KC, Rogers J, Wilson RK, Gibbs RA. Gibbon genome and the fast karyotype evolution of small apes. Nature 2014; 513:195-201. [PMID: 25209798 PMCID: PMC4249732 DOI: 10.1038/nature13679] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022]
Abstract
Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat. The genome of the gibbon, a tree-dwelling ape from Asia positioned between Old World monkeys and the great apes, is presented, providing insights into the evolutionary history of gibbon species and their accelerated karyotypes, as well as evidence for selection of genes such as those for forelimb development and connective tissue that may be important for locomotion through trees. The many species of gibbons are small, tree-living apes from Southeast Asia, most of them listed as 'endangered' or 'critically endangered' on the IUCN list. In their presentation of the genome of the northern white-cheeked gibbon (Nomascus leucogenys) , Lucia Carbone and colleagues provide intriguing insights into the biology and evolutionary history of a group that straddles the divide between Old World monkeys and the great apes. The authors investigate how a novel gibbon-specific retrotransposon might be the source of gibbons' genome plasticity. Rapid karyotype evolution combined with multiple episodes of climate and environmental change might explain the almost instantaneous divergence of the four gibbon genera. Positive selection on genes involved in forelimb development and connective tissue might have been related to gibbons' unique mode of locomotion in the tropical canopy.
Collapse
Affiliation(s)
- Lucia Carbone
- 1] Oregon Health &Science University, Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road Portland, Oregon 97239, USA. [2] Oregon National Primate Research Center, Division of Neuroscience, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA. [3] Oregon Health &Science University, Department of Molecular &Medical Genetics, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. [4] Oregon Health &Science University, Bioinformatics and Computational Biology Division, Department of Medical Informatics &Clinical Epidemiology, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - R Alan Harris
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, Texas 77030, USA
| | - Sante Gnerre
- Nabsys, 60 Clifford Street, Providence, Rhode Island 02903, USA
| | - Krishna R Veeramah
- 1] University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA. [2] Stony Brook University, Department of Ecology and Evolution, Stony Brook, New York 11790, USA
| | - Belen Lorente-Galdos
- IBE, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - John Huddleston
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA. [2] Howard Hughes Medical Institute, 1705 NE Pacific Street, Seattle, Washington 98195, USA
| | - Thomas J Meyer
- Oregon Health &Science University, Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road Portland, Oregon 97239, USA
| | - Javier Herrero
- 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] The Genome Analysis Centre, Norwich Research Park, Norwich NR4 7UH, UK. [3] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.)
| | - Christian Roos
- Leibniz Institute for Primate Research, Gene Bank of Primates, German Primate Center, Göttingen 37077, Germany
| | - Bronwen Aken
- 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Fabio Anaclerio
- University of Bari, Department of Biology, Via Orabona 4, 70125, Bari, Italy
| | | | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Daniel Barrell
- 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mark A Batzer
- Louisiana State University, Department of Biological Sciences, Baton Rouge, Louisiana 70803, USA
| | - Kathryn Beal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Craig L Bohrson
- The Johns Hopkins University School of Medicine, Department of Oncology, Division of Biostatistics and Bioinformatics, Baltimore, Maryland 21205, USA
| | - Markus Brameier
- Leibniz Institute for Primate Research, Gene Bank of Primates, German Primate Center, Göttingen 37077, Germany
| | | | - Oronzo Capozzi
- University of Bari, Department of Biology, Via Orabona 4, 70125, Bari, Italy
| | - Claudio Casola
- Texas A&M University, Department of Ecosystem Science and Management, College Station, Texas 77843, USA
| | - Giorgia Chiatante
- University of Bari, Department of Biology, Via Orabona 4, 70125, Bari, Italy
| | - Andrew Cree
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Annette Damert
- Babes-Bolyai-University, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Cluj-Napoca 400084, Romania
| | - Pieter J de Jong
- Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, California 94609, USA
| | - Laura Dumas
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, Colorado 80045, USA
| | - Marcos Fernandez-Callejo
- IBE, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Nina V Fuchs
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Ivo Gut
- Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Matthew W Hahn
- Indiana University, School of Informatics and Computing, Bloomington, Indiana 47408, USA
| | - Jessica Hernandez-Rodriguez
- IBE, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - LaDeana W Hillier
- The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA
| | - Robert Hubley
- Institute for Systems Biology, Seattle, Washington 98109-5234, USA
| | - Bianca Ianc
- Babes-Bolyai-University, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Cluj-Napoca 400084, Romania
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Nina G Jablonski
- The Pennsylvania State University, Department of Anthropology, University Park, Pennsylvania 16802, USA
| | - Laurel M Johnstone
- University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA
| | - Anis Karimpour-Fard
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, Colorado 80045, USA
| | - Miriam K Konkel
- Louisiana State University, Department of Biological Sciences, Baton Rouge, Louisiana 70803, USA
| | - Dennis Kostka
- University of Pittsburgh School of Medicine, Department of Developmental Biology, Department of Computational and Systems Biology, Pittsburg, Pennsylvania 15261, USA
| | - Nathan H Lazar
- Oregon Health &Science University, Bioinformatics and Computational Biology Division, Department of Medical Informatics &Clinical Epidemiology, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Lora R Lewis
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Yue Liu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Devin P Locke
- 1] The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.)
| | - Swapan Mallick
- Harvard Medical School, Department of Genetics, Boston, Massachusetts 02115, USA
| | - Fernando L Mendez
- 1] University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.)
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Lynne V Nazareth
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Kimberly A Nevonen
- Oregon National Primate Research Center, Division of Neuroscience, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Majesta O'Bleness
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, Colorado 80045, USA
| | - Cornelia Ochis
- Babes-Bolyai-University, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Cluj-Napoca 400084, Romania
| | - Duncan T Odom
- 1] European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] University of Cambridge, Cancer Research UK-Cambridge Institute, Cambridge CB2 0RE, UK
| | - Katherine S Pollard
- 1] University of California, Gladstone Institutes, San Francisco, California 94158-226, USA. [2] Institute for Human Genetics, University of California, San Francisco, California 94143-0794, USA. [3] Division of Biostatistics, University of California, San Francisco, California 94143-0794, USA
| | - Javier Quilez
- IBE, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - David Reich
- Harvard Medical School, Department of Genetics, Boston, Massachusetts 02115, USA
| | - Mariano Rocchi
- University of Bari, Department of Biology, Via Orabona 4, 70125, Bari, Italy
| | - Gerald G Schumann
- Paul Ehrlich Institute, Division of Medical Biotechnology, 63225 Langen, Germany
| | - Stephen Searle
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - James M Sikela
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, Colorado 80045, USA
| | - Gabriella Skollar
- Gibbon Conservation Center, 19100 Esguerra Rd, Santa Clarita, California 91350, USA
| | - Arian Smit
- The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA
| | - Kemal Sonmez
- 1] Oregon Health &Science University, Bioinformatics and Computational Biology Division, Department of Medical Informatics &Clinical Epidemiology, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. [2] Oregon Health &Science University, Center for Spoken Language Understanding, Institute on Development and Disability, Portland, Oregon 97239, USA
| | - Boudewijn ten Hallers
- 1] Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, California 94609, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.)
| | - Elizabeth Terhune
- Oregon National Primate Research Center, Division of Neuroscience, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Gregg W C Thomas
- Indiana University, School of Informatics and Computing, Bloomington, Indiana 47408, USA
| | - Brygg Ullmer
- Louisiana State University, School of Electrical Engineering and Computer Science, Baton Rouge, Louisiana 70803, USA
| | - Mario Ventura
- University of Bari, Department of Biology, Via Orabona 4, 70125, Bari, Italy
| | - Jerilyn A Walker
- Louisiana State University, Department of Biological Sciences, Baton Rouge, Louisiana 70803, USA
| | - Jeffrey D Wall
- 1] Institute for Human Genetics, University of California, San Francisco, California 94143-0794, USA. [2] Division of Biostatistics, University of California, San Francisco, California 94143-0794, USA
| | - Lutz Walter
- Leibniz Institute for Primate Research, Gene Bank of Primates, German Primate Center, Göttingen 37077, Germany
| | - Michelle C Ward
- 1] University of Cambridge, Cancer Research UK-Cambridge Institute, Cambridge CB2 0RE, UK. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.)
| | - Sarah J Wheelan
- The Johns Hopkins University School of Medicine, Department of Oncology, Division of Biostatistics and Bioinformatics, Baltimore, Maryland 21205, USA
| | - Christopher W Whelan
- 1] Oregon Health &Science University, Center for Spoken Language Understanding, Institute on Development and Disability, Portland, Oregon 97239, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.)
| | - Simon White
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Larry J Wilhelm
- Oregon National Primate Research Center, Division of Neuroscience, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - August E Woerner
- University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA
| | - Mark Yandell
- University of Utah, Salt Lake City, Utah 84112, USA
| | - Baoli Zhu
- 1] Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, California 94609, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.)
| | - Michael F Hammer
- University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA
| | - Tomas Marques-Bonet
- 1] IBE, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain. [2] Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Evan E Eichler
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA. [2] Howard Hughes Medical Institute, 1705 NE Pacific Street, Seattle, Washington 98195, USA
| | - Lucinda Fulton
- The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA
| | - Catrina Fronick
- The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Wesley C Warren
- The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Richard K Wilson
- The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
41
|
Abstract
Discoveries in cytogenetics, molecular biology, and genomics have revealed that genome change is an active cell-mediated physiological process. This is distinctly at variance with the pre-DNA assumption that genetic changes arise accidentally and sporadically. The discovery that DNA changes arise as the result of regulated cell biochemistry means that the genome is best modelled as a read-write (RW) data storage system rather than a read-only memory (ROM). The evidence behind this change in thinking and a consideration of some of its implications are the subjects of this article. Specific points include the following: cells protect themselves from accidental genome change with proofreading and DNA damage repair systems; localized point mutations result from the action of specialized trans-lesion mutator DNA polymerases; cells can join broken chromosomes and generate genome rearrangements by non-homologous end-joining (NHEJ) processes in specialized subnuclear repair centres; cells have a broad variety of natural genetic engineering (NGE) functions for transporting, diversifying and reorganizing DNA sequences in ways that generate many classes of genomic novelties; natural genetic engineering functions are regulated and subject to activation by a range of challenging life history events; cells can target the action of natural genetic engineering functions to particular genome locations by a range of well-established molecular interactions, including protein binding with regulatory factors and linkage to transcription; and genome changes in cancer can usefully be considered as consequences of the loss of homeostatic control over natural genetic engineering functions.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
42
|
Guffanti G, Gaudi S, Fallon JH, Sobell J, Potkin SG, Pato C, Macciardi F. Transposable elements and psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:201-16. [PMID: 24585726 DOI: 10.1002/ajmg.b.32225] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/21/2014] [Indexed: 12/15/2022]
Abstract
Transposable Elements (TEs) or transposons are low-complexity elements (e.g., LINEs, SINEs, SVAs, and HERVs) that make up to two-thirds of the human genome. There is mounting evidence that TEs play an essential role in genomic architecture and regulation related to both normal function and disease states. Recently, the identification of active TEs in several different human brain regions suggests that TEs play a role in normal brain development and adult physiology and quite possibly in psychiatric disorders. TEs have been implicated in hemophilia, neurofibromatosis, and cancer. With the advent of next-generation whole-genome sequencing approaches, our understanding of the relationship between TEs and psychiatric disorders will greatly improve. We will review the biology of TEs and early evidence for TE involvement in psychiatric disorders.
Collapse
Affiliation(s)
- Guia Guffanti
- Department of Psychiatry, Columbia University, New York, New York
| | | | | | | | | | | | | |
Collapse
|
43
|
Akagi K, Li J, Broutian TR, Padilla-Nash H, Xiao W, Jiang B, Rocco JW, Teknos TN, Kumar B, Wangsa D, He D, Ried T, Symer DE, Gillison ML. Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res 2013; 24:185-99. [PMID: 24201445 PMCID: PMC3912410 DOI: 10.1101/gr.164806.113] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Genomic instability is a hallmark of human cancers, including the 5% caused by human papillomavirus (HPV). Here we report a striking association between HPV integration and adjacent host genomic structural variation in human cancer cell lines and primary tumors. Whole-genome sequencing revealed HPV integrants flanking and bridging extensive host genomic amplifications and rearrangements, including deletions, inversions, and chromosomal translocations. We present a model of “looping” by which HPV integrant-mediated DNA replication and recombination may result in viral–host DNA concatemers, frequently disrupting genes involved in oncogenesis and amplifying HPV oncogenes E6 and E7. Our high-resolution results shed new light on a catastrophic process, distinct from chromothripsis and other mutational processes, by which HPV directly promotes genomic instability.
Collapse
Affiliation(s)
- Keiko Akagi
- Human Cancer Genetics Program, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lanikova L, Kucerova J, Indrak K, Divoka M, Issa JP, Papayannopoulou T, Prchal JT, Divoky V. β-Thalassemia due to intronic LINE-1 insertion in the β-globin gene (HBB): molecular mechanisms underlying reduced transcript levels of the β-globin(L1) allele. Hum Mutat 2013; 34:1361-5. [PMID: 23878091 DOI: 10.1002/humu.22383] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/10/2013] [Indexed: 12/17/2022]
Abstract
We describe the molecular etiology of β(+)-thalassemia that is caused by the insertion of the full-length transposable element LINE-1 (L1) into the intron-2 of the β-globin gene (HBB). The transcript level of the affected β-globin gene was severely reduced. The remaining transcripts consisted of full-length, correctly processed β-globin mRNA and a minute amount of three aberrantly spliced transcripts with a decreased half-life due to activation of the nonsense-mediated decay pathway. The lower steady-state amount of mRNA produced by the β-globin(L1) allele also resulted from a reduced rate of transcription and decreased production of full-length β-globin primary transcripts. The promoter and enhancer sequences of the β-globin(L1) allele were hypermethylated; however, treatment with a demethylating agent did not restore the impaired transcription. A histone deacetylase inhibitor partially reactivated the β-globin(L1) transcription despite permanent β-globin(L1) promoter CpG methylation. This result indicates that the decreased rate of transcription from the β-globin(L1) allele is associated with an altered chromatin structure. Therefore, the molecular defect caused by intronic L1 insertion in the β-globin gene represents a novel etiology of β-thalassemia.
Collapse
Affiliation(s)
- Lucie Lanikova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Departments of Medicine, Pathology and Genetics, University of Utah and Medical Service, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Li CCY, Eaton SA, Young PE, Lee M, Shuttleworth R, Humphreys DT, Grau GE, Combes V, Bebawy M, Gong J, Brammah S, Buckland ME, Suter CM. Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol 2013; 10:1333-44. [PMID: 23807490 PMCID: PMC3817155 DOI: 10.4161/rna.25281] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interactions between glioma cells and their local environment are critical determinants of brain tumor growth, infiltration and neovascularisation. Communication with host cells and stroma via microvesicles represents one pathway by which tumors can modify their surroundings to achieve a tumor-permissive environment. Here we have taken an unbiased approach to identifying RNAs in glioma-derived microvesicles, and explored their potential to regulate gene expression in recipient cells. We find that glioma microvesicles are predominantly of exosomal origin and contain complex populations of coding and noncoding RNAs in proportions that are distinct from those in the cells from which they are derived. Microvesicles show a relative depletion in microRNA compared with their cells of origin, and are enriched in unusual or novel noncoding RNAs, most of which have no known function. Short-term exposure of brain microvascular endothelial cells to glioma microvesicles results in many gene expression changes in the endothelial cells, most of which cannot be explained by direct delivery of transcripts. Our data suggest that the scope of potential actions of tumor-derived microvesicles is much broader and more complex than previously supposed, and highlight a number of new classes of small RNA that remain to be characterized.
Collapse
Affiliation(s)
- Cheryl C Y Li
- Victor Chang Cardiac Research Institute; Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Babatz TD, Burns KH. Functional impact of the human mobilome. Curr Opin Genet Dev 2013; 23:264-70. [PMID: 23523050 DOI: 10.1016/j.gde.2013.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/07/2013] [Accepted: 02/14/2013] [Indexed: 02/02/2023]
Abstract
The human genome is replete with interspersed repetitive sequences derived from the propagation of mobile DNA elements. Three families of human retrotransposons remain active today: LINE1, Alu, and SVA elements. Since 1988, de novo insertions at previously recognized disease loci have been shown to generate highly penetrant alleles in Mendelian disorders. Only recently has the extent of germline-transmitted retrotransposon insertion polymorphism (RIP) in human populations been fully realized. Also exciting are recent studies of somatic retrotransposition in human tissues and reports of tumor-specific insertions, suggesting roles in tissue heterogeneity and tumorigenesis. Here we discuss mobile elements in human disease with an emphasis on exciting developments from the last several years.
Collapse
Affiliation(s)
- Timothy D Babatz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
47
|
Li J, Akagi K, Hu Y, Trivett AL, Hlynialuk CJ, Swing DA, Volfovsky N, Morgan TC, Golubeva Y, Stephens RM, Smith DE, Symer DE. Mouse endogenous retroviruses can trigger premature transcriptional termination at a distance. Genome Res 2012; 22:870-84. [PMID: 22367191 PMCID: PMC3337433 DOI: 10.1101/gr.130740.111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 02/09/2012] [Indexed: 01/15/2023]
Abstract
Endogenous retrotransposons have caused extensive genomic variation within mammalian species, but the functional implications of such mobilization are mostly unknown. We mapped thousands of endogenous retrovirus (ERV) germline integrants in highly divergent, previously unsequenced mouse lineages, facilitating a comparison of gene expression in the presence or absence of local insertions. Polymorphic ERVs occur relatively infrequently in gene introns and are particularly depleted from genes involved in embryogenesis or that are highly expressed in embryonic stem cells. Their genomic distribution implies ongoing negative selection due to deleterious effects on gene expression and function. A polymorphic, intronic ERV at Slc15a2 triggers up to 49-fold increases in premature transcriptional termination and up to 39-fold reductions in full-length transcripts in adult mouse tissues, thereby disrupting protein expression and functional activity. Prematurely truncated transcripts also occur at Polr1a, Spon1, and up to ∼5% of other genes when intronic ERV polymorphisms are present. Analysis of expression quantitative trait loci (eQTLs) in recombinant BxD mouse strains demonstrated very strong genetic associations between the polymorphic ERV in cis and disrupted transcript levels. Premature polyadenylation is triggered at genomic distances up to >12.5 kb upstream of the ERV, both in cis and between alleles. The parent of origin of the ERV is associated with variable expression of nonterminated transcripts and differential DNA methylation at its 5'-long terminal repeat. This study defines an unexpectedly strong functional impact of ERVs in disrupting gene transcription at a distance and demonstrates that ongoing retrotransposition can contribute significantly to natural phenotypic diversity.
Collapse
Affiliation(s)
- Jingfeng Li
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Keiko Akagi
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Yongjun Hu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Christopher J.W. Hlynialuk
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Deborah A. Swing
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Natalia Volfovsky
- Advanced Biomedical Computing Center, Information Systems Program and
| | - Tamara C. Morgan
- Histotechnology Laboratory, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702, USA
| | - Yelena Golubeva
- Histotechnology Laboratory, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702, USA
| | | | - David E. Smith
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David E. Symer
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
- Department of Internal Medicine and Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| |
Collapse
|
48
|
Hancks DC, Kazazian HH. Active human retrotransposons: variation and disease. Curr Opin Genet Dev 2012; 22:191-203. [PMID: 22406018 DOI: 10.1016/j.gde.2012.02.006] [Citation(s) in RCA: 445] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 12/12/2022]
Abstract
Mobile DNAs, also known as transposons or 'jumping genes', are widespread in nature and comprise an estimated 45% of the human genome. Transposons are divided into two general classes based on their transposition intermediate (DNA or RNA). Only one subclass, the non-LTR retrotransposons, which includes the Long INterspersed Element-1 (LINE-1 or L1), is currently active in humans as indicated by 96 disease-causing insertions. The autonomous LINE-1 is capable of retrotransposing not only a copy of its own RNA in cis but also other RNAs (Alu, SINE-VNTR-Alu (SVA), U6) in trans to new genomic locations through an element encoded reverse transcriptase. L1 can also retrotranspose cellular mRNAs, resulting in processed pseudogene formation. Here, we highlight recent reports that update our understanding of human L1 retrotransposition and their role in disease. Finally we discuss studies that provide insights into the past and current activity of these retrotransposons, and shed light on not just when, but where, retrotransposition occurs and its part in genetic variation.
Collapse
Affiliation(s)
- Dustin C Hancks
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, United States
| | | |
Collapse
|
49
|
Kines KJ, Belancio VP. Expressing genes do not forget their LINEs: transposable elements and gene expression. FRONT BIOSCI-LANDMRK 2012; 17:1329-44. [PMID: 22201807 DOI: 10.2741/3990] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically the accumulated mass of mammalian transposable elements (TEs), particularly those located within gene boundaries, was viewed as a genetic burden potentially detrimental to the genomic landscape. This notion has been strengthened by the discovery that transposable sequences can alter the architecture of the transcriptome, not only through insertion, but also long after the integration process is completed. Insertions previously considered harmless are now known to impact the expression of host genes via modification of the transcript quality or quantity, transcriptional interference, or by the control of pathways that affect the mRNA life-cycle. Conversely, several examples of the evolutionary advantageous impact of TEs on the host gene structure that diversified the cellular transcriptome are reported. TE-induced changes in gene expression can be tissue- or disease-specific, raising the possibility that the impact of TE sequences may vary during development, among normal cell types, and between normal and disease-affected tissues. The understanding of the rules and abundance of TE-interference with gene expression is in its infancy, and its contribution to human disease and/or evolution remains largely unexplored.
Collapse
Affiliation(s)
- Kristine J Kines
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane University Cancer Center and Tulane Center for Aging
| | | |
Collapse
|
50
|
Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 2011; 12:187-215. [PMID: 21801021 DOI: 10.1146/annurev-genom-082509-141802] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes.
Collapse
Affiliation(s)
- Christine R Beck
- Department of Human Genetics, University of MIchigan Medical School, Ann Arbor, Michigan 48109-5618, USA.
| | | | | | | |
Collapse
|