1
|
Parker MT, Fica SM, Simpson GG. RNA splicing: a split consensus reveals two major 5' splice site classes. Open Biol 2025; 15:240293. [PMID: 39809319 PMCID: PMC11732430 DOI: 10.1098/rsob.240293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
The established consensus sequence for human 5' splice sites masks the presence of two major splice site classes defined by preferential base-pairing potentials with either U5 snRNA loop 1 or the U6 snRNA ACAGA box. The two 5' splice site classes are separable in genome sequences, sensitized by specific genotypes and associated with splicing complexity. The two classes reflect the commitment to 5' splice site usage occurring primarily during 5' splice site transfer to U6 snRNA. Separating the human 5' splice site consensus into its two major constituents can help us understand fundamental features of eukaryote genome architecture and splicing mechanisms and inform treatment design for diseases caused by genetic variation affecting splicing.
Collapse
|
2
|
Shen A, Hencel K, Parker M, Scott R, Skukan R, Adesina A, Metheringham C, Miska E, Nam Y, Haerty W, Simpson G, Akay A. U6 snRNA m6A modification is required for accurate and efficient splicing of C. elegans and human pre-mRNAs. Nucleic Acids Res 2024; 52:9139-9160. [PMID: 38808663 PMCID: PMC11347140 DOI: 10.1093/nar/gkae447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024] Open
Abstract
pre-mRNA splicing is a critical feature of eukaryotic gene expression. Both cis- and trans-splicing rely on accurately recognising splice site sequences by spliceosomal U snRNAs and associated proteins. Spliceosomal snRNAs carry multiple RNA modifications with the potential to affect different stages of pre-mRNA splicing. Here, we show that the conserved U6 snRNA m6A methyltransferase METT-10 is required for accurate and efficient cis- and trans-splicing of C. elegans pre-mRNAs. The absence of METT-10 in C. elegans and METTL16 in humans primarily leads to alternative splicing at 5' splice sites with an adenosine at +4 position. In addition, METT-10 is required for splicing of weak 3' cis- and trans-splice sites. We identified a significant overlap between METT-10 and the conserved splicing factor SNRNP27K in regulating 5' splice sites with +4A. Finally, we show that editing endogenous 5' splice site +4A positions to +4U restores splicing to wild-type positions in a mett-10 mutant background, supporting a direct role for U6 snRNA m6A modification in 5' splice site recognition. We conclude that the U6 snRNA m6A modification is important for accurate and efficient pre-mRNA splicing.
Collapse
Affiliation(s)
- Aykut Shen
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| | - Katarzyna Hencel
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| | - Matthew T Parker
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Robyn Scott
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roberta Skukan
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| | | | | | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK
| | - Yunsun Nam
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wilfried Haerty
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Gordon G Simpson
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
- Cell & Molecular Sciences, James Hutton Institute, Invergowrie, DD2 5DA, UK
| | - Alper Akay
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| |
Collapse
|
3
|
Chalivendra S, Shi S, Li X, Kuang Z, Giovinazzo J, Zhang L, Rossi J, Wang J, Saviola AJ, Welty R, Liu S, Vaeth KF, Zhou ZH, Hansen KC, Taliaferro JM, Zhao R. Selected humanization of yeast U1 snRNP leads to global suppression of pre-mRNA splicing and mitochondrial dysfunction in the budding yeast. RNA (NEW YORK, N.Y.) 2024; 30:1070-1088. [PMID: 38688558 PMCID: PMC11251525 DOI: 10.1261/rna.079917.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
The recognition of the 5' splice site (5' ss) is one of the earliest steps of pre-mRNA splicing. To better understand, the mechanism and regulation of 5' ss recognition, we selectively humanized components of the yeast U1 (yU1) snRNP to reveal the function of these components in 5' ss recognition and splicing. We targeted U1C and Luc7, two proteins that interact with and stabilize the yU1 snRNA and the 5' ss RNA duplex. We replaced the zinc-finger (ZnF) domain of yeast U1C (yU1C) with its human counterpart, which resulted in a cold-sensitive growth phenotype and moderate splicing defects. We next added an auxin-inducible degron to yeast Luc7 (yLuc7) protein (to mimic the lack of Luc7Ls in human U1 snRNP). We found that Luc7-depleted yU1 snRNP resulted in the concomitant loss of Prp40 and Snu71 (two other essential yU1 snRNP proteins), and further biochemical analyses suggest a model of how these three proteins interact with each other in the U1 snRNP. The loss of these proteins resulted in a significant growth retardation accompanied by a global suppression of pre-mRNA splicing. The splicing suppression led to mitochondrial dysfunction as revealed by a release of Fe2+ into the growth medium and an induction of mitochondrial reactive oxygen species. Together, these observations indicate that the human U1C ZnF can substitute that of yeast, Luc7 is essential for the incorporation of the Luc7-Prp40-Snu71 trimer into yU1 snRNP, and splicing plays a major role in the regulation of mitochondrial function in yeast.
Collapse
Affiliation(s)
- Subbaiah Chalivendra
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Shasha Shi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Zhiling Kuang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Joseph Giovinazzo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - John Rossi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Robb Welty
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Katherine F Vaeth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
4
|
Araki R, Suga T, Hoki Y, Imadome K, Sunayama M, Kamimura S, Fujita M, Abe M. iPS cell generation-associated point mutations include many C > T substitutions via different cytosine modification mechanisms. Nat Commun 2024; 15:4946. [PMID: 38862540 PMCID: PMC11166658 DOI: 10.1038/s41467-024-49335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
Genomic aberrations are a critical impediment for the safe medical use of iPSCs and their origin and developmental mechanisms remain unknown. Here we find through WGS analysis of human and mouse iPSC lines that genomic mutations are de novo events and that, in addition to unmodified cytosine base prone to deamination, the DNA methylation sequence CpG represents a significant mutation-prone site. CGI and TSS regions show increased mutations in iPSCs and elevated mutations are observed in retrotransposons, especially in the AluY subfamily. Furthermore, increased cytosine to thymine mutations are observed in differentially methylated regions. These results indicate that in addition to deamination of cytosine, demethylation of methylated cytosine, which plays a central role in genome reprogramming, may act mutagenically during iPSC generation.
Collapse
Affiliation(s)
- Ryoko Araki
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
| | - Tomo Suga
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuko Hoki
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kaori Imadome
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Misato Sunayama
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Satoshi Kamimura
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mayumi Fujita
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masumi Abe
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
| |
Collapse
|
5
|
Sarka K, Katzman S, Zahler AM. A role for SNU66 in maintaining 5' splice site identity during spliceosome assembly. RNA (NEW YORK, N.Y.) 2024; 30:695-709. [PMID: 38443114 PMCID: PMC11098459 DOI: 10.1261/rna.079971.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
In spliceosome assembly, the 5' splice site is initially recognized by U1 snRNA. U1 leaves the spliceosome during the assembly process, therefore other factors contribute to the maintenance of 5' splice site identity as it is loaded into the catalytic site. Recent structural data suggest that human tri-snRNP 27K (SNRP27) M141 and SNU66 H734 interact to stabilize the U4/U6 quasi-pseudo knot at the base of the U6 snRNA ACAGAGA box in pre-B complex. Previously, we found that mutations in Caenorhabditis elegans at SNRP-27 M141 promote changes in alternative 5'ss usage. We tested whether the potential interaction between SNRP-27 M141 and SNU-66 H765 (the C. elegans equivalent position to human SNU66 H734) contributes to maintaining 5' splice site identity during spliceosome assembly. We find that SNU-66 H765 mutants promote alternative 5' splice site usage. Many of the alternative 5' splicing events affected by SNU-66(H765G) overlap with those affected SNRP-27(M141T). Double mutants of snrp-27(M141T) and snu-66(H765G) are homozygous lethal. We hypothesize that mutations at either SNRP-27 M141 or SNU-66 H765 allow the spliceosome to load alternative 5' splice sites into the active site. Tests with mutant U1 snRNA and swapped 5' splice sites indicate that the ability of SNRP-27 M141 and SNU-66 H765 mutants to affect a particular 5' splice alternative splicing event is dependent on both the presence of a weaker consensus 5'ss nearby and potentially nearby splicing factor binding sites. Our findings confirm a new role for the C terminus of SNU-66 in maintenance of 5' splice site identity during spliceosome assembly.
Collapse
Affiliation(s)
- Kenna Sarka
- Center for Molecular Biology of RNA and Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Sol Katzman
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Alan M Zahler
- Center for Molecular Biology of RNA and Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
6
|
Malard F, Wolter AC, Marquevielle J, Morvan E, Ecoutin A, Rüdisser S, Allain FT, Campagne S. The diversity of splicing modifiers acting on A-1 bulged 5'-splice sites reveals rules for rational drug design. Nucleic Acids Res 2024; 52:4124-4136. [PMID: 38554107 PMCID: PMC11077090 DOI: 10.1093/nar/gkae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Pharmacological modulation of RNA splicing by small molecules is an emerging facet of drug discovery. In this context, the SMN2 splicing modifier SMN-C5 was used as a prototype to understand the mode of action of small molecule splicing modifiers and propose the concept of 5'-splice site bulge repair. In this study, we combined in vitro binding assays and structure determination by NMR spectroscopy to identify the binding modes of four other small molecule splicing modifiers that switch the splicing of either the SMN2 or the HTT gene. Here, we determined the solution structures of risdiplam, branaplam, SMN-CX and SMN-CY bound to the intermolecular RNA helix epitope containing an unpaired adenine within the G-2A-1G+1U+2 motif of the 5'-splice site. Despite notable differences in their scaffolds, risdiplam, SMN-CX, SMN-CY and branaplam contact the RNA epitope similarly to SMN-C5, suggesting that the 5'-splice site bulge repair mechanism can be generalised. These findings not only deepen our understanding of the chemical diversity of splicing modifiers that target A-1 bulged 5'-splice sites, but also identify common pharmacophores required for modulating 5'-splice site selection with small molecules.
Collapse
Affiliation(s)
- Florian Malard
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
| | - Antje C Wolter
- ETH Zürich, Department of Biology, Institute of Biochemistry, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Julien Marquevielle
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
| | - Estelle Morvan
- Institut Européen de Chimie et Biologie, UAR3033 CNRS, Université de Bordeaux, INSERM US01, Pessac 33600, France
| | - Agathe Ecoutin
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
| | - Simon H Rüdisser
- ETH Zürich, Department of Biology, BioNMR platform, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Frédéric H T Allain
- ETH Zürich, Department of Biology, Institute of Biochemistry, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Sebastien Campagne
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
- ETH Zürich, Department of Biology, Institute of Biochemistry, Hönggerbergring 64, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Kwon YS, Jin SW, Song H. Global analysis of binding sites of U2AF1 and ZRSR2 reveals RNA elements required for mutually exclusive splicing by the U2- and U12-type spliceosome. Nucleic Acids Res 2024; 52:1420-1434. [PMID: 38088204 PMCID: PMC10853781 DOI: 10.1093/nar/gkad1180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 02/10/2024] Open
Abstract
Recurring mutations in genes encoding 3' splice-site recognition proteins, U2AF1 and ZRSR2 are associated with human cancers. Here, we determined binding sites of the proteins to reveal that U2-type and U12-type splice sites are recognized by U2AF1 and ZRSR2, respectively. However, some sites are spliced by both the U2-type and U12-type spliceosomes, indicating that well-conserved consensus motifs in some U12-type introns could be recognized by the U2-type spliceosome. Nucleotides flanking splice sites of U12-type introns are different from those flanking U2-type introns. Remarkably, the AG dinucleotide at the positions -1 and -2 of 5' splice sites of U12-type introns with GT-AG termini is not present. AG next to 5' splice site introduced by a single nucleotide substitution at the -2 position could convert a U12-type splice site to a U2-type site. The class switch of introns by a single mutation and the bias against G at the -1 position of U12-type 5' splice site support the notion that the identities of nucleotides in exonic regions adjacent to splice sites are fine-tuned to avoid recognition by the U2-type spliceosome. These findings may shed light on the mechanism of selectivity in U12-type intron splicing and the mutations that affect splicing.
Collapse
Affiliation(s)
- Young-Soo Kwon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Korea
| | - Sang Woo Jin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| | - Hoseok Song
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| |
Collapse
|
8
|
Zhu Y, Vvedenskaya IO, Sze SH, Nickels BE, Kaplan CD. Quantitative analysis of transcription start site selection reveals control by DNA sequence, RNA polymerase II activity and NTP levels. Nat Struct Mol Biol 2024; 31:190-202. [PMID: 38177677 PMCID: PMC10928753 DOI: 10.1038/s41594-023-01171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/03/2023] [Indexed: 01/06/2024]
Abstract
Transcription start site (TSS) selection is a key step in gene expression and occurs at many promoter positions over a wide range of efficiencies. Here we develop a massively parallel reporter assay to quantitatively dissect contributions of promoter sequence, nucleoside triphosphate substrate levels and RNA polymerase II (Pol II) activity to TSS selection by 'promoter scanning' in Saccharomyces cerevisiae (Pol II MAssively Systematic Transcript End Readout, 'Pol II MASTER'). Using Pol II MASTER, we measure the efficiency of Pol II initiation at 1,000,000 individual TSS sequences in a defined promoter context. Pol II MASTER confirms proposed critical qualities of S. cerevisiae TSS -8, -1 and +1 positions, quantitatively, in a controlled promoter context. Pol II MASTER extends quantitative analysis to surrounding sequences and determines that they tune initiation over a wide range of efficiencies. These results enabled the development of a predictive model for initiation efficiency based on sequence. We show that genetic perturbation of Pol II catalytic activity alters initiation efficiency mostly independently of TSS sequence, but selectively modulates preference for the initiating nucleotide. Intriguingly, we find that Pol II initiation efficiency is directly sensitive to guanosine-5'-triphosphate levels at the first five transcript positions and to cytosine-5'-triphosphate and uridine-5'-triphosphate levels at the second position genome wide. These results suggest individual nucleoside triphosphate levels can have transcript-specific effects on initiation, representing a cryptic layer of potential regulation at the level of Pol II biochemical properties. The results establish Pol II MASTER as a method for quantitative dissection of transcription initiation in eukaryotes.
Collapse
Affiliation(s)
- Yunye Zhu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Irina O Vvedenskaya
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ, USA
| | - Sing-Hoi Sze
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Bryce E Nickels
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Chalivendra S, Shi S, Li X, Kuang Z, Giovinazzo J, Zhang L, Rossi J, Saviola AJ, Wang J, Welty R, Liu S, Vaeth K, Zhou ZH, Hansen KC, Taliaferro JM, Zhao R. Selected humanization of yeast U1 snRNP leads to global suppression of pre-mRNA splicing and mitochondrial dysfunction in the budding yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571893. [PMID: 38168357 PMCID: PMC10760170 DOI: 10.1101/2023.12.15.571893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The recognition of 5' splice site (5' ss) is one of the earliest steps of pre-mRNA splicing. To better understand the mechanism and regulation of 5' ss recognition, we selectively humanized components of the yeast U1 snRNP to reveal the function of these components in 5' ss recognition and splicing. We targeted U1C and Luc7, two proteins that interact with and stabilize the yeast U1 (yU1) snRNA and the 5' ss RNA duplex. We replaced the Zinc-Finger (ZnF) domain of yU1C with its human counterpart, which resulted in cold-sensitive growth phenotype and moderate splicing defects. Next, we added an auxin-inducible degron to yLuc7 protein and found that Luc7-depleted yU1 snRNP resulted in the concomitant loss of PRP40 and Snu71 (two other essential yeast U1 snRNP proteins), and further biochemical analyses suggest a model of how these three proteins interact with each other in the U1 snRNP. The loss of these proteins resulted in a significant growth retardation accompanied by a global suppression of pre-mRNA splicing. The splicing suppression led to mitochondrial dysfunction as revealed by a release of Fe 2+ into the growth medium and an induction of mitochondrial reactive oxygen species. Together, these observations indicate that the human U1C ZnF can substitute that of yeast, Luc7 is essential for the incorporation of the Luc7-Prp40-Snu71 trimer into yeast U1 snRNP, and splicing plays a major role in the regulation of mitochondria function in yeast.
Collapse
|
10
|
Pino MG, Rich KA, Hall NJ, Jones ML, Fox A, Musier-Forsyth K, Kolb SJ. Heterogeneous splicing patterns resulting from KIF5A variants associated with amyotrophic lateral sclerosis. Hum Mol Genet 2023; 32:3166-3180. [PMID: 37593923 DOI: 10.1093/hmg/ddad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Single-nucleotide variants (SNVs) in the gene encoding Kinesin Family Member 5A (KIF5A), a neuronal motor protein involved in anterograde transport along microtubules, have been associated with amyotrophic lateral sclerosis (ALS). ALS is a rapidly progressive and fatal neurodegenerative disease that primarily affects the motor neurons. Numerous ALS-associated KIF5A SNVs are clustered near the splice-site junctions of the penultimate exon 27 and are predicted to alter the carboxy-terminal (C-term) cargo-binding domain of KIF5A. Mis-splicing of exon 27, resulting in exon exclusion, is proposed to be the mechanism by which these SNVs cause ALS. Whether all SNVs proximal to exon 27 result in exon exclusion is unclear. To address this question, we designed an in vitro minigene splicing assay in human embryonic kidney 293 cells, which revealed heterogeneous site-specific effects on splicing: only 5' splice-site (5'ss) SNVs resulted in exon skipping. We also quantified splicing in select clustered, regularly interspaced, short palindromic repeats-edited human stem cells, differentiated to motor neurons, and in neuronal tissues from a 5'ss SNV knock-in mouse, which showed the same result. Moreover, the survival of representative 3' splice site, 5'ss, and truncated C-term variant KIF5A (v-KIF5A) motor neurons was severely reduced compared with wild-type motor neurons, and overt morphological changes were apparent. While the total KIF5A mRNA levels were comparable across the cell lines, the total KIF5A protein levels were decreased for v-KIF5A lines, suggesting an impairment of protein synthesis or stability. Thus, despite the heterogeneous effect on ribonucleic acid splicing, KIF5A SNVs similarly reduce the availability of the KIF5A protein, leading to axonal transport defects and motor neuron pathology.
Collapse
Affiliation(s)
- Megan G Pino
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Kelly A Rich
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Nicholas J Hall
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Meredith L Jones
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Ashley Fox
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Karin Musier-Forsyth
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| |
Collapse
|
11
|
Kiener S, Troyer H, Ruvolo D, Grest P, Soto S, Letko A, Jagannathan V, Leeb T, Mauldin EA, Yang C, Rostaher A. Independent COL17A1 Variants in Cats with Junctional Epidermolysis Bullosa. Genes (Basel) 2023; 14:1835. [PMID: 37895184 PMCID: PMC10606533 DOI: 10.3390/genes14101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Epidermolysis bullosa (EB), characterized by defective adhesion of the epidermis to the dermis, is a heterogeneous disease with many subtypes in human patients and domestic animals. We investigated two unrelated cats with recurring erosions and ulcers on ear pinnae, oral mucosa, and paw pads that were suggestive of EB. Histopathology confirmed the diagnosis of EB in both cats. Case 1 was severe and had to be euthanized at 5 months of age. Case 2 had a milder course and was alive at 11 years of age at the time of writing. Whole genome sequencing of both affected cats revealed independent homozygous variants in COL17A1 encoding the collagen type XVII alpha 1 chain. Loss of function variants in COL17A1 lead to junctional epidermolysis bullosa (JEB) in human patients. The identified splice site variant in case 1, c.3019+1del, was predicted to lead to a complete deficiency in collagen type XVII. Case 2 had a splice region variant, c.769+5G>A. Assessment of the functional impact of this variant on the transcript level demonstrated partial aberrant splicing with residual expression of wildtype transcript. Thus, the molecular analyses provided a plausible explanation of the difference in clinical severity between the two cases and allowed the refinement of the diagnosis in the affected cats to JEB. This study highlights the complexity of EB in animals and contributes to a better understanding of the genotype-phenotype correlation in COL17A1-related JEB.
Collapse
Affiliation(s)
- Sarah Kiener
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (S.K.); (A.L.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland;
| | - Heather Troyer
- Oradell Animal Hospital, Paramus, NJ 07652, USA; (H.T.); (D.R.)
| | - Daniel Ruvolo
- Oradell Animal Hospital, Paramus, NJ 07652, USA; (H.T.); (D.R.)
| | - Paula Grest
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Sara Soto
- Dermfocus, University of Bern, 3001 Bern, Switzerland;
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (S.K.); (A.L.); (V.J.)
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (S.K.); (A.L.); (V.J.)
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (S.K.); (A.L.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland;
| | - Elizabeth A. Mauldin
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.A.M.); (C.Y.)
| | - Ching Yang
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.A.M.); (C.Y.)
- College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - Ana Rostaher
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
12
|
Lin BC, Katneni U, Jankowska KI, Meyer D, Kimchi-Sarfaty C. In silico methods for predicting functional synonymous variants. Genome Biol 2023; 24:126. [PMID: 37217943 PMCID: PMC10204308 DOI: 10.1186/s13059-023-02966-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Single nucleotide variants (SNVs) contribute to human genomic diversity. Synonymous SNVs are previously considered to be "silent," but mounting evidence has revealed that these variants can cause RNA and protein changes and are implicated in over 85 human diseases and cancers. Recent improvements in computational platforms have led to the development of numerous machine-learning tools, which can be used to advance synonymous SNV research. In this review, we discuss tools that should be used to investigate synonymous variants. We provide supportive examples from seminal studies that demonstrate how these tools have driven new discoveries of functional synonymous SNVs.
Collapse
Affiliation(s)
- Brian C Lin
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Upendra Katneni
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Katarzyna I Jankowska
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Douglas Meyer
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA.
| |
Collapse
|
13
|
Huang W, Zhang L, Zhu Y, Chen J, Zhu Y, Lin F, Chen X, Huang J. A genetic screen in Arabidopsis reveals the identical roles for RBP45d and PRP39a in 5' cryptic splice site selection. FRONTIERS IN PLANT SCIENCE 2022; 13:1086506. [PMID: 36618610 PMCID: PMC9813592 DOI: 10.3389/fpls.2022.1086506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Cryptic splice sites in eukaryotic genome are generally dormant unless activated by mutation of authentic splice sites or related splicing factors. How cryptic splice sites are used remains unclear in plants. Here, we identified two cryptic splicing regulators, RBP45d and PRP39a that are homologs of yeast U1 auxiliary protein Nam8 and Prp39, respectively, via genetic screening for suppressors of the virescent sot5 mutant, which results from a point mutation at the 5' splice site (5' ss) of SOT5 intron 7. Loss-of-function mutations in RBP45d and PRP39a significantly increase the level of a cryptically spliced variant that encodes a mutated but functional sot5 protein, rescuing sot5 to the WT phenotype. We furtherly demonstrated that RBP45d and PRP39a interact with each other and also with the U1C, a core subunit of U1 snRNP. We found that RBP45d directly binds to the uridine (U)-rich RNA sequence downstream the 5' ss of SOT5 intron 7. However, other RBP45/47 members do not function redundantly with RBP45d, at least in regulation of cryptic splicing. Taken together, RBP45d promotes U1 snRNP to recognize the specific 5' ss via binding to intronic U-rich elements in plants.
Collapse
Affiliation(s)
- Weihua Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liqun Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yajuan Zhu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingli Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yawen Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Fengru Lin
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaomei Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
14
|
Abstract
One core goal of genetics is to systematically understand the mapping between the DNA sequence of an organism (genotype) and its measurable characteristics (phenotype). Understanding this mapping is often challenging because of interactions between mutations, where the result of combining several different mutations can be very different than the sum of their individual effects. Here we provide a statistical framework for modeling complex genetic interactions of this type. The key idea is to ask how fast the effects of mutations change when introducing the same mutation in increasingly distant genetic backgrounds. We then propose a model for phenotypic prediction that takes into account this tendency for the effects of mutations to be more similar in nearby genetic backgrounds. Contemporary high-throughput mutagenesis experiments are providing an increasingly detailed view of the complex patterns of genetic interaction that occur between multiple mutations within a single protein or regulatory element. By simultaneously measuring the effects of thousands of combinations of mutations, these experiments have revealed that the genotype–phenotype relationship typically reflects not only genetic interactions between pairs of sites but also higher-order interactions among larger numbers of sites. However, modeling and understanding these higher-order interactions remains challenging. Here we present a method for reconstructing sequence-to-function mappings from partially observed data that can accommodate all orders of genetic interaction. The main idea is to make predictions for unobserved genotypes that match the type and extent of epistasis found in the observed data. This information on the type and extent of epistasis can be extracted by considering how phenotypic correlations change as a function of mutational distance, which is equivalent to estimating the fraction of phenotypic variance due to each order of genetic interaction (additive, pairwise, three-way, etc.). Using these estimated variance components, we then define an empirical Bayes prior that in expectation matches the observed pattern of epistasis and reconstruct the genotype–phenotype mapping by conducting Gaussian process regression under this prior. To demonstrate the power of this approach, we present an application to the antibody-binding domain GB1 and also provide a detailed exploration of a dataset consisting of high-throughput measurements for the splicing efficiency of human pre-mRNA 5′ splice sites, for which we also validate our model predictions via additional low-throughput experiments.
Collapse
|
15
|
Minigene Splicing Assays Identify 20 Spliceogenic Variants of the Breast/Ovarian Cancer Susceptibility Gene RAD51C. Cancers (Basel) 2022; 14:cancers14122960. [PMID: 35740625 PMCID: PMC9221245 DOI: 10.3390/cancers14122960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
RAD51C loss-of-function variants are associated with an increased risk of breast and ovarian cancers. Likewise, splicing disruptions are a frequent mechanism of gene inactivation. Taking advantage of a previous splicing-reporter minigene with exons 2-8 (mgR51C_ex2-8), we proceeded to check its impact on the splicing of candidate ClinVar variants. A total of 141 RAD51C variants at the intron/exon boundaries were analyzed with MaxEntScan. Twenty variants were selected and genetically engineered into the wild-type minigene. All the variants disrupted splicing, and 18 induced major splicing anomalies without any trace or minimal amounts (<2.4%) of the minigene full-length (FL) transcript. Twenty-seven transcripts (including the wild-type and r.904A FL transcripts) were identified by fluorescent fragment electrophoresis; of these, 14 were predicted to truncate the RAD51C protein, 3 kept the reading frame, and 8 minor isoforms (1.1−4.7% of the overall expression) could not be characterized. Finally, we performed a tentative interpretation of the variants according to an ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme, classifying 16 variants as likely pathogenic. Minigene assays have been proven as valuable tools for the initial characterization of potential spliceogenic variants. Hence, minigene mgR51C_ex2-8 provided useful splicing data for 40 RAD51C variants.
Collapse
|
16
|
Jüschke C, Klopstock T, Catarino CB, Owczarek-Lipska M, Wissinger B, Neidhardt J. Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1186-1197. [PMID: 34853716 PMCID: PMC8604756 DOI: 10.1016/j.omtn.2021.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/03/2021] [Accepted: 10/19/2021] [Indexed: 11/15/2022]
Abstract
Autosomal dominant optic atrophy (ADOA) is frequently caused by mutations in the optic atrophy 1 (OPA1) gene, with haploinsufficiency being the major genetic pathomechanism. Almost 30% of the OPA1-associated cases suffer from splice defects. We identified a novel OPA1 mutation, c.1065+5G>A, in patients with ADOA. In patient-derived fibroblasts, the mutation led to skipping of OPA1 exon 10, reducing the OPA1 protein expression by approximately 50%. We developed a molecular treatment to correct the splice defect in OPA1 using engineered U1 splice factors retargeted to different locations in OPA1 exon 10 or intron 10. The strongest therapeutic effect was detected when U1 binding was engineered to bind to intron 10 at position +18, a position predicted by bioinformatics to be a promising binding site. We were able to significantly silence the effect of the mutation (skipping of exon 10) and simultaneously increase the expression level of normal transcripts. Retargeting U1 to the canonical splice donor site did not lead to a detectable splice correction. This proof-of-concept study indicates for the first time the feasibility of splice mutation correction as a treatment option for ADOA. Increasing the amount of correctly spliced OPA1 transcripts may suffice to overcome the haploinsufficiency.
Collapse
Affiliation(s)
- Christoph Jüschke
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - Thomas Klopstock
- Friedrich-Baur Institute, Department of Neurology, University Hospital, LMU Munich, University of Munich, 80336 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Claudia B. Catarino
- Friedrich-Baur Institute, Department of Neurology, University Hospital, LMU Munich, University of Munich, 80336 Munich, Germany
| | - Marta Owczarek-Lipska
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - John Neidhardt
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
- Joint Research Training Group of the Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany and University Medical Center Groningen, 9700 RB Groningen, the Netherlands
- Correspondence: John Neidhardt, Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Ammerländer Heerstrasse 114-118, 26129 Oldenburg, Germany.
| |
Collapse
|
17
|
Field-theoretic density estimation for biological sequence space with applications to 5' splice site diversity and aneuploidy in cancer. Proc Natl Acad Sci U S A 2021; 118:2025782118. [PMID: 34599093 DOI: 10.1073/pnas.2025782118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Density estimation in sequence space is a fundamental problem in machine learning that is also of great importance in computational biology. Due to the discrete nature and large dimensionality of sequence space, how best to estimate such probability distributions from a sample of observed sequences remains unclear. One common strategy for addressing this problem is to estimate the probability distribution using maximum entropy (i.e., calculating point estimates for some set of correlations based on the observed sequences and predicting the probability distribution that is as uniform as possible while still matching these point estimates). Building on recent advances in Bayesian field-theoretic density estimation, we present a generalization of this maximum entropy approach that provides greater expressivity in regions of sequence space where data are plentiful while still maintaining a conservative maximum entropy character in regions of sequence space where data are sparse or absent. In particular, we define a family of priors for probability distributions over sequence space with a single hyperparameter that controls the expected magnitude of higher-order correlations. This family of priors then results in a corresponding one-dimensional family of maximum a posteriori estimates that interpolate smoothly between the maximum entropy estimate and the observed sample frequencies. To demonstrate the power of this method, we use it to explore the high-dimensional geometry of the distribution of 5' splice sites found in the human genome and to understand patterns of chromosomal abnormalities across human cancers.
Collapse
|
18
|
Enriched Alternative Splicing in Islets of Diabetes-Susceptible Mice. Int J Mol Sci 2021; 22:ijms22168597. [PMID: 34445304 PMCID: PMC8395343 DOI: 10.3390/ijms22168597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022] Open
Abstract
Dysfunctional islets of Langerhans are a hallmark of type 2 diabetes (T2D). We hypothesize that differences in islet gene expression alternative splicing which can contribute to altered protein function also participate in islet dysfunction. RNA sequencing (RNAseq) data from islets of obese diabetes-resistant and diabetes-susceptible mice were analyzed for alternative splicing and its putative genetic and epigenetic modulators. We focused on the expression levels of chromatin modifiers and SNPs in regulatory sequences. We identified alternative splicing events in islets of diabetes-susceptible mice amongst others in genes linked to insulin secretion, endocytosis or ubiquitin-mediated proteolysis pathways. The expression pattern of 54 histones and chromatin modifiers, which may modulate splicing, were markedly downregulated in islets of diabetic animals. Furthermore, diabetes-susceptible mice carry SNPs in RNA-binding protein motifs and in splice sites potentially responsible for alternative splicing events. They also exhibit a larger exon skipping rate, e.g., in the diabetes gene Abcc8, which might affect protein function. Expression of the neuronal splicing factor Srrm4 which mediates inclusion of microexons in mRNA transcripts was markedly lower in islets of diabetes-prone compared to diabetes-resistant mice, correlating with a preferential skipping of SRRM4 target exons. The repression of Srrm4 expression is presumably mediated via a higher expression of miR-326-3p and miR-3547-3p in islets of diabetic mice. Thus, our study suggests that an altered splicing pattern in islets of diabetes-susceptible mice may contribute to an elevated T2D risk.
Collapse
|
19
|
Coutinho MF, Matos L, Santos JI, Alves S. RNA Therapeutics: How Far Have We Gone? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:133-177. [PMID: 31342441 DOI: 10.1007/978-3-030-19966-1_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In recent years, the RNA molecule became one of the most promising targets for therapeutic intervention. Currently, a large number of RNA-based therapeutics are being investigated both at the basic research level and in late-stage clinical trials. Some of them are even already approved for treatment. RNA-based approaches can act at pre-mRNA level (by splicing modulation/correction using antisense oligonucleotides or U1snRNA vectors), at mRNA level (inhibiting gene expression by siRNAs and antisense oligonucleotides) or at DNA level (by editing mutated sequences through the use of CRISPR/Cas). Other RNA approaches include the delivery of in vitro transcribed (IVT) mRNA or the use of oligonucleotides aptamers. Here we review these approaches and their translation into clinics trying to give a brief overview also on the difficulties to its application as well as the research that is being done to overcome them.
Collapse
Affiliation(s)
- Maria Francisca Coutinho
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Liliana Matos
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Juliana Inês Santos
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Sandra Alves
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal.
| |
Collapse
|
20
|
Bruun GH, Bang JMV, Christensen LL, Brøner S, Petersen USS, Guerra B, Grønning AGB, Doktor TK, Andresen BS. Blocking of an intronic splicing silencer completely rescues IKBKAP exon 20 splicing in familial dysautonomia patient cells. Nucleic Acids Res 2019; 46:7938-7952. [PMID: 29762696 PMCID: PMC6125618 DOI: 10.1093/nar/gky395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Familial dysautonomia (FD) is a severe genetic disorder causing sensory and autonomic dysfunction. It is predominantly caused by a c.2204+6T>C mutation in the IKBKAP gene. This mutation decreases the 5′ splice site strength of IKBKAP exon 20 leading to exon 20 skipping and decreased amounts of full-length IKAP protein. We identified a binding site for the splicing regulatory protein hnRNP A1 downstream of the IKBKAP exon 20 5′-splice site. We show that hnRNP A1 binds to this splicing regulatory element (SRE) and that two previously described inhibitory SREs inside IKBKAP exon 20 are also bound by hnRNP A1. Knockdown of hnRNP A1 in FD patient fibroblasts increases IKBKAP exon 20 inclusion demonstrating that hnRNP A1 is a negative regulator of IKBKAP exon 20 splicing. Furthermore, by mutating the SREs in an IKBKAP minigene we show that all three SREs cause hnRNP A1-mediated exon repression. We designed splice switching oligonucleotides (SSO) that blocks the intronic hnRNP A1 binding site, and demonstrate that this completely rescues splicing of IKBKAP exon 20 in FD patient fibroblasts and increases the amounts of IKAP protein. We propose that this may be developed into a potential new specific treatment of FD.
Collapse
Affiliation(s)
- Gitte H Bruun
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jeanne M V Bang
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Lise L Christensen
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Sabrina Brøner
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ulrika S S Petersen
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Barbara Guerra
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Alexander G B Grønning
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology and The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
21
|
Ptok J, Müller L, Theiss S, Schaal H. Context matters: Regulation of splice donor usage. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194391. [PMID: 31202784 DOI: 10.1016/j.bbagrm.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 11/16/2022]
Abstract
Elaborate research on splicing, starting in the late seventies, evolved from the discovery that 5' splice sites are recognized by their complementarity to U1 snRNA towards the realization that RNA duplex formation cannot be the sole basis for 5'ss selection. Rather, their recognition is highly influenced by a number of context factors including transcript architecture as well as splicing regulatory elements (SREs) in the splice site neighborhood. In particular, proximal binding of splicing regulatory proteins highly influences splicing outcome. The importance of SRE integrity especially becomes evident in the light of human pathogenic mutations where single nucleotide changes in SREs can severely affect the resulting transcripts. Bioinformatics tools nowadays greatly assist in the computational evaluation of 5'ss, their neighborhood and the impact of pathogenic mutations. Although predictions are already quite robust, computational evaluation of the splicing regulatory landscape still faces challenges to increase future reliability. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany.
| |
Collapse
|
22
|
Jourdy Y, Fretigny M, Nougier C, Négrier C, Bozon D, Vinciguerra C. Splicing analysis of 26 F8 nucleotide variations using a minigene assay. Haemophilia 2019; 25:306-315. [PMID: 30690819 DOI: 10.1111/hae.13687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/05/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Classically, the study of splicing impact of variation located near the splice site is performed by both in silico and mRNA analysis. However, RNA sample was rarely available. OBJECTIVE To characterize a panel of putative haemophilia A splicing variations. MATERIALS AND METHODS Twenty-six F8 variations identified from a cohort of 2075 haemophilia A families were studied using both bioinformatic tools and in vitro minigene assays in HeLa and Huh7 cells. RESULTS An aberrant splicing was demonstrated for 21/26 tested sequence variations. A good correlation between in silico and in vitro analysis was obtained for variations affecting donor splice site (12/14) and for the synonymous variations located inside an exon (6/6). Conversely, no concordant results were observed for the six variations affecting acceptor splice sites. The variations resulted more frequently in exon skipping (n = 13) than in activation of nearby cryptic splice sites (n = 5), in use of a de novo splice site (n = 2) or in insertion of large intronic sequences (n = 1). This study allowed to reclassify 5 synonymous substitutions c.1167A>G (p.Gln389Gln), c.1569G>T (p.Leu523Leu), c.1752G>A (p.Gln584Gln), c.5586G>A (p.Leu1862Leu) and c.6066C>T (p.Gly2022Gly) as splicing variations. The pathological significance of five variations remained unclear (c.222G>A [p.Thr74Thr], c.237C>T [p.Asn79Asn], c.240C>T [p.Ile80Ile], c.2113+5_2113+8del and c.2113+5G>A). DISCUSSION The minigene assay herein gave additional evidences for the clinical significance of 21/26 F8 putative splice site mutations. Such investigation should be performed for each F8 putative splice site variation for which no mRNA sample is available, notably to greatly improve the genetic counselling given to female carriers.
Collapse
Affiliation(s)
- Yohann Jourdy
- Service d'Hématologie Biologique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France.,EA 4609 Hémostase et Cancer, Université Claude Bernard Lyon 1, University Lyon, Lyon, France
| | - Mathilde Fretigny
- Service d'Hématologie Biologique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Christophe Nougier
- Service d'Hématologie Biologique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Claude Négrier
- Service d'Hématologie Biologique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France.,EA 4609 Hémostase et Cancer, Université Claude Bernard Lyon 1, University Lyon, Lyon, France
| | - Dominique Bozon
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Christine Vinciguerra
- Service d'Hématologie Biologique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France.,EA 4609 Hémostase et Cancer, Université Claude Bernard Lyon 1, University Lyon, Lyon, France
| |
Collapse
|
23
|
Jonsson F, Westin IM, Österman L, Sandgren O, Burstedt M, Holmberg M, Golovleva I. ATP-binding cassette subfamily A, member 4 intronic variants c.4773+3A>G and c.5461-10T>C cause Stargardt disease due to defective splicing. Acta Ophthalmol 2018; 96:737-743. [PMID: 29461686 DOI: 10.1111/aos.13676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Inherited retinal dystrophies (IRDs) represent a group of progressive conditions affecting the retina. There is a great genetic heterogeneity causing IRDs, and to date, more than 260 genes are associated with IRDs. Stargardt disease, type 1 (STGD1) or macular degeneration with flecks, STGD1 represents a disease with early onset, central visual impairment, frequent appearance of yellowish flecks and mutations in the ATP-binding cassette subfamily A, member 4 (ABCA4) gene. A large number of intronic sequence variants in ABCA4 have been considered pathogenic although their functional effect was seldom demonstrated. In this study, we aimed to reveal how intronic variants present in patients with Stargardt from the same Swedish family affect splicing. METHODS The splicing of the ABCA4 gene was studied in human embryonic kidney cells, HEK293T, and in human retinal pigment epithelium cells, ARPE-19, using a minigene system containing variants c.4773+3A>G and c.5461-10T>C. RESULTS We showed that both ABCA4 variants, c.4773+3A>G and c.5461-10T>C, cause aberrant splicing of the ABCA4 minigene resulting in exon skipping. We also demonstrated that splicing of ABCA4 has different outcomes depending on transfected cell type. CONCLUSION Two intronic variants c.4773+3A>G and c.5461-10T>C, both predicted to affect splicing, are indeed disease-causing mutations due to skipping of exons 33, 34, 39 and 40 of ABCA4 gene. The experimental proof that ABCA4 mutations in STGD patients affect protein function is crucial for their inclusion to future clinical trials; therefore, functional testing of all ABCA4 intronic variants associated with Stargardt disease by minigene technology is desirable.
Collapse
Affiliation(s)
- Frida Jonsson
- Medical Biosciences/Medical and Clinical Genetics; University of Umeå; Umeå Sweden
| | - Ida Maria Westin
- Medical Biosciences/Medical and Clinical Genetics; University of Umeå; Umeå Sweden
| | - Lennart Österman
- Medical Biosciences/Medical and Clinical Genetics; University of Umeå; Umeå Sweden
| | - Ola Sandgren
- Clinical Sciences/Ophthalmology; University of Umeå; Umeå Sweden
| | - Marie Burstedt
- Clinical Sciences/Ophthalmology; University of Umeå; Umeå Sweden
| | - Monica Holmberg
- Medical Biosciences/Medical and Clinical Genetics; University of Umeå; Umeå Sweden
| | - Irina Golovleva
- Medical Biosciences/Medical and Clinical Genetics; University of Umeå; Umeå Sweden
| |
Collapse
|
24
|
Wong MS, Kinney JB, Krainer AR. Quantitative Activity Profile and Context Dependence of All Human 5' Splice Sites. Mol Cell 2018; 71:1012-1026.e3. [PMID: 30174293 DOI: 10.1016/j.molcel.2018.07.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/18/2018] [Accepted: 07/23/2018] [Indexed: 02/02/2023]
Abstract
Pre-mRNA splicing is an essential step in the expression of most human genes. Mutations at the 5' splice site (5'ss) frequently cause defective splicing and disease due to interference with the initial recognition of the exon-intron boundary by U1 small nuclear ribonucleoprotein (snRNP), a component of the spliceosome. Here, we use a massively parallel splicing assay (MPSA) in human cells to quantify the activity of all 32,768 unique 5'ss sequences (NNN/GYNNNN) in three different gene contexts. Our results reveal that although splicing efficiency is mostly governed by the 5'ss sequence, there are substantial differences in this efficiency across gene contexts. Among other uses, these MPSA measurements facilitate the prediction of 5'ss sequence variants that are likely to cause aberrant splicing. This approach provides a framework to assess potential pathogenic variants in the human genome and streamline the development of splicing-corrective therapies.
Collapse
Affiliation(s)
- Mandy S Wong
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Justin B Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
25
|
Martínez-Pizarro A, Dembic M, Pérez B, Andresen BS, Desviat LR. Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5' splice site. PLoS Genet 2018; 14:e1007360. [PMID: 29684050 PMCID: PMC5933811 DOI: 10.1371/journal.pgen.1007360] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/03/2018] [Accepted: 04/11/2018] [Indexed: 11/18/2022] Open
Abstract
Phenylketonuria (PKU), one of the most common inherited diseases of amino acid metabolism, is caused by mutations in the phenylalanine hydroxylase (PAH) gene. Recently, PAH exon 11 was identified as a vulnerable exon due to a weak 3’ splice site, with different exonic mutations affecting exon 11 splicing through disruption of exonic splicing regulatory elements. In this study, we report a novel intron 11 regulatory element, which is involved in exon 11 splicing, as revealed by the investigated pathogenic effect of variants c.1199+17G>A and c.1199+20G>C, identified in PKU patients. Both mutations cause exon 11 skipping in a minigene system. RNA binding assays indicate that binding of U1snRNP70 to this intronic region is disrupted, concomitant with a slightly increased binding of inhibitors hnRNPA1/2. We have investigated the effect of deletions and point mutations, as well as overexpression of adapted U1snRNA to show that this splicing regulatory motif is important for regulation of correct splicing at the natural 5’ splice site. The results indicate that U1snRNP binding downstream of the natural 5’ splice site determines efficient exon 11 splicing, thus providing a basis for development of therapeutic strategies to correct PAH exon 11 splicing mutations. In this work, we expand the functional effects of non-canonical intronic U1 snRNP binding by showing that it may enhance exon definition and that, consequently, intronic mutations may cause exon skipping by a novel mechanism, where they disrupt stimulatory U1 snRNP binding close to the 5’ splice site. Notably, our results provide further understanding of the reported therapeutic effect of exon specific U1 snRNA for splicing mutations in disease. Splicing defects constitute a major cause of human disease. Mutations affecting conserved splicing sequences at exon-intron junctions are easily recognized as possibly pathogenic, whereas variants in exonic or intronic regions are difficult to classify without functional evidence provided by transcript analysis or in vitro analysis using minigenes. In this work, we sought out to study the pathogenicity of two novel intronic PAH variants identified in phenylketonuria patients. Both mutations resulted in exon skipping in minigenes. We demonstrate that U1snRNP70 binds to the intronic region and that this binding is abolished in the mutant sequences. Correction of the splicing defect was achieved using modified U1 snRNA perfectly complementary to each of the mutant sequences. The results extend the repertoire of natural U1 snRNP cellular functions by including its role as splicing enhancer via binding downstream of the natural 5’ splice site. In addition, our results correlate with the described therapeutic effect of modified U1snRNP for splicing mutations in different genes, thus having a significant impact in the development of specific therapies for splicing defects.
Collapse
Affiliation(s)
- Ainhoa Martínez-Pizarro
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain
| | - Brage S. Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- * E-mail: (BSA); (LRD)
| | - Lourdes R. Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain
- * E-mail: (BSA); (LRD)
| |
Collapse
|
26
|
Nguyen H, Das U, Wang B, Xie J. The matrices and constraints of GT/AG splice sites of more than 1000 species/lineages. Gene 2018; 660:92-101. [PMID: 29588184 DOI: 10.1016/j.gene.2018.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
To provide a resource for the splice sites (SS) of different species, we calculated the matrices of nucleotide compositions of about 38 million splice sites from >1000 species/lineages. The matrices are enriched of aGGTAAGT (5'SS) or (Y)6N(C/t)AG(g/a)t (3'SS) overall; however, they are quite diverse among hundreds of species. The diverse matrices remain prominent even under sequence selection pressures, suggesting the existence of diverse constraints as well as U snRNAs and other spliceosomal factors and/or their interactions with the splice sites. Using an algorithm to measure and compare the splice site constraints across all species, we demonstrate their distinct differences quantitatively. As an example of the resource's application to answering specific questions, we confirm that high constraints of particular positions are significantly associated with transcriptome-wide, increased occurrences of alternative splicing when uncommon nucleotides are present. More interestingly, the abundance of alternative splicing in 16 species correlates with the average constraint index of splice sites in a bell curve. This resource will allow users to assess specific sequences/splice sites against the consensus of every Ensembl-annotated species, and to explore the evolutionary changes or relationship to alternative splicing and transcriptome diversity. Web-search or update features are also included.
Collapse
Affiliation(s)
- Hai Nguyen
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Urmi Das
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Benjamin Wang
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; University of Illinois Urbana-Champaign, IL, USA
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
27
|
Pashaei E, Aydin N. Markovian encoding models in human splice site recognition using SVM. Comput Biol Chem 2018; 73:159-170. [PMID: 29486390 DOI: 10.1016/j.compbiolchem.2018.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 11/26/2022]
Abstract
Splice site recognition is among the most significant and challenging tasks in bioinformatics due to its key role in gene annotation. Effective prediction of splice site requires nucleotide encoding methods that reveal the characteristics of DNA sequences to provide appropriate features to serve as input of machine learning classifiers. Markovian models are the most influential encoding methods that highly used for pattern recognition in biological data. However, a direct performance comparison of these methods in splice site domain has not been assessed yet. This study compares various Markovian encoding models for splice site prediction utilizing support vector machine, as the most outstanding learning method in the domain, and conducts a new precise evaluation of Markovian approaches that corrects this limitation. Moreover, a novel sequence encoding approach based on third order Markov model (MM3) is proposed. The experimental results show that the proposed method, namely MM3-SVM, performs significantly better than thirteen best known state-of-the-art algorithms, while tested on HS3D dataset considering several performance criteria. Further, it achieved higher prediction accuracy than several well-known tools like NNsplice, MEM, MM1, WMM, and GeneID, using an independent test set of 50 genes. We also developed MMSVM, a web tool to predict splice sites in any human sequence using the proposed approach. The MMSVM web server can be assessed at https://pashaei.shinyapps.io/mmsvm.
Collapse
Affiliation(s)
- Elham Pashaei
- Department of Computer Engineering, Yildiz Technical University, Istanbul, Turkey.
| | - Nizamettin Aydin
- Department of Computer Engineering, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|
28
|
Liu J, Bhadra M, Sinnakannu JR, Yue WL, Tan CW, Rigo F, Ong ST, Roca X. Overcoming imatinib resistance conferred by the BIM deletion polymorphism in chronic myeloid leukemia with splice-switching antisense oligonucleotides. Oncotarget 2017; 8:77567-77585. [PMID: 29100409 PMCID: PMC5652800 DOI: 10.18632/oncotarget.20658] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Many tyrosine kinase-driven cancers, including chronic myeloid leukemia (CML), are characterized by high response rates to specific tyrosine kinase inhibitors (TKIs) like imatinib. In East Asians, primary imatinib resistance is caused by a deletion polymorphism in Intron 2 of the BIM gene, whose product is required for TKI-induced apoptosis. The deletion biases BIM splicing from exon 4 to exon 3, generating splice isoforms lacking the exon 4-encoded pro-apoptotic BH3 domain, which impairs the ability of TKIs to induce apoptosis. We sought to identify splice-switching antisense oligonucleotides (ASOs) that block exon 3 but enhance exon 4 splicing, and thereby resensitize BIM deletion-containing cancers to imatinib. First, we mapped multiple cis-acting splicing elements around BIM exon 3 by minigene mutations, and found an exonic splicing enhancer acting via SRSF1. Second, by a systematic ASO walk, we isolated ASOs that corrected the aberrant BIM splicing. Eight of 67 ASOs increased exon 4 levels in BIM deletion-containing cells, and restored imatinib-induced apoptosis and TKI sensitivity. This proof-of-principle study proves that resistant CML cells by BIM deletion polymorphism can be resensitized to imatinib via splice-switching BIM ASOs. Future optimizations might yield a therapeutic ASO as precision-medicine adjuvant treatment for BIM-polymorphism-associated TKI-resistant CML and other cancers.
Collapse
Affiliation(s)
- Jun Liu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Malini Bhadra
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Wan Lin Yue
- School of Biological Sciences, Nanyang Technological University, Singapore.,CN Yang Scholars Programme, Nanyang Technological University, Singapore
| | - Cheryl Weiqi Tan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - S Tiong Ong
- Cancer and Stem Cell Biology Signature Research Programme, Duke-NUS Medical School, Singapore.,Department of Haematology, Singapore General Hospital, Singapore.,Department of Medical Oncology, National Cancer Centre Singapore, Singapore.,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
29
|
Liu W, Li X, Liao S, Dou K, Zhang Y. Activation of the intronic cryptic 5' splice site depends on its distance to the upstream cassette exon. Gene 2017; 619:30-36. [PMID: 28322992 DOI: 10.1016/j.gene.2017.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 11/30/2022]
Abstract
Splice site selection is a key step that determines the mRNA isoforms generated from a single transcript. The large diversity in splice site sequences emphasizes the plasticity of splice site recognition and selection. In this report, a cell-based reporter system using a SMN1/2 cassette exon was applied to study the roles governing the activation of a cryptic 5'SS from the intron 4 of the CT/CGRP gene. We found that the cryptic site was activated when placed within 124nt downstream the cassette exon, and the level of activation was negatively correlated with its distance from the exon. In addition, activation was not affected by PTB but was eliminated by an insertion extending the exon length. Activated cryptic 5'SSs in intron or exon could override the original alternative 5'SS, obeying the U1 base-pairing rule. These results suggest that the exon length itself could represent a factor in determining the splice site selection.
Collapse
Affiliation(s)
- Wei Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xia Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shengjie Liao
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, Hubei 430075, China; Laboratory for Genome Regulation and Human Heath, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, Hubei 430075, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, Hubei 430075, China; Laboratory for Genome Regulation and Human Heath, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, Hubei 430075, China.
| |
Collapse
|
30
|
Tan J, Roca X. Informational Suppression to Probe RNA:RNA Interactions in the Context of Ribonucleoproteins: U1 and 5' Splice-Site Base-Pairing. Methods Mol Biol 2016; 1421:243-68. [PMID: 26965270 DOI: 10.1007/978-1-4939-3591-8_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Informational suppression is a method to map specific RNA:RNA interactions by taking advantage of the rules of base complementarity. First, a predicted Watson-Crick base pair is broken by single-nucleotide substitution which disrupts the RNA's structure and/or function. Second, the base pair is restored by mutating the opposing nucleotide, thereby rescuing structure and/or function. This method applies to RNP:RNA interactions such as 5' splice-site (5'ss) base-pairing to the 5' end of U1 small nuclear RNA as part of a small nuclear RNP. Our protocol aims to determine the 5'ss:U1 base-pairing register for natural 5'ss, because for distinct 5'ss sequences the nucleotides on each strand can be aligned differently. This methodology includes cloning of a wild-type splicing minigene and introduction of 5'ss variants by PCR mutagenesis. A U1-expression plasmid is mutated to construct "suppressor U1" snRNAs with restored base-pairing to mutant 5'ss in different registers. Cells are transfected with combinations of minigenes and suppressor U1s, and the splicing patterns are analyzed by reverse transcription and semiquantitative PCR, followed by gel electrophoresis. The identity of suppressor U1s that rescue splicing for specific mutations indicates the register used in that 5'ss. We also provide tips to adapt this protocol to other minigenes or registers.
Collapse
Affiliation(s)
- Jiazi Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
31
|
Palhais B, Dembic M, Sabaratnam R, Nielsen KS, Doktor TK, Bruun GH, Andresen BS. The prevalent deep intronic c. 639+919 G>A GLA mutation causes pseudoexon activation and Fabry disease by abolishing the binding of hnRNPA1 and hnRNP A2/B1 to a splicing silencer. Mol Genet Metab 2016; 119:258-269. [PMID: 27595546 DOI: 10.1016/j.ymgme.2016.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 11/21/2022]
Abstract
Fabry disease is an X-linked recessive inborn disorder of the glycosphingolipid metabolism, caused by total or partial deficiency of the lysosomal α-galactosidase A enzyme due to mutations in the GLA gene. The prevalent c.639+919 G>A mutation in GLA leads to pathogenic insertion of a 57bp pseudoexon sequence from intron 4, which is responsible for the cardiac variant phenotype. In this study we investigate the splicing regulatory mechanism leading to GLA pseudoexon activation. Splicing analysis of GLA minigenes revealed that pseudoexon activation is influenced by cell-type. We demonstrate that the wild-type sequence harbors an hnRNP A1 and hnRNP A2/B1-binding exonic splicing silencer (ESS) overlapping the 5'splice site (5'ss) that prevents pseudoexon inclusion. The c.639+919 G>A mutation disrupts this ESS allowing U1 snRNP recognition of the 5'ss. We show that the wild-type GLA 5'ss motif with the ESS is also able to inhibit inclusion of an unrelated pseudoexon in the FGB gene, and that also in the FGB context inactivation of the ESS by the c.639+919 G>A mutation causes pseudoexon activation, underscoring the universal nature of the ESS. Finally, we demonstrate that splice switching oligonucleotide (SSO) mediated blocking of the pseudoexon 3'ss and 5'ss effectively restores normal GLA splicing. This indicates that SSO based splicing correction may be a therapeutic alternative in the treatment of Fabry disease.
Collapse
Affiliation(s)
- Bruno Palhais
- Department of Biochemistry and Molecular Biology, the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology, the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Rugivan Sabaratnam
- Department of Biochemistry and Molecular Biology, the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Kira S Nielsen
- Department of Biochemistry and Molecular Biology, the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Gitte Hoffmann Bruun
- Department of Biochemistry and Molecular Biology, the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology, the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
32
|
Yadegari H, Biswas A, Akhter MS, Driesen J, Ivaskevicius V, Marquardt N, Oldenburg J. Intron retention resulting from a silent mutation in the VWF gene that structurally influences the 5' splice site. Blood 2016; 128:2144-2152. [PMID: 27543438 PMCID: PMC5161009 DOI: 10.1182/blood-2016-02-699686] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/08/2016] [Indexed: 12/26/2022] Open
Abstract
Disease-associated silent mutations are considered to affect the accurate pre-messenger RNA (mRNA) splicing either by influencing regulatory elements, leading to exon skipping, or by creating a new cryptic splice site. This study describes a new molecular pathological mechanism by which a silent mutation inhibits splicing and leads to intron retention. We identified a heterozygous silent mutation, c.7464C>T, in exon 44 of the von Willebrand factor (VWF) gene in a family with type 1 von Willebrand disease. In vivo and ex vivo transcript analysis revealed an aberrantly spliced transcript, with intron 44 retained in the mRNA, implying disruption of the first catalytic step of splicing at the 5' splice site (5'ss). The abnormal transcript with the retained intronic region coded a truncated protein that lacked the carboxy-terminal end of the VWF protein. Confocal immunofluorescence characterizations of blood outgrowth endothelial cells derived from the patient confirmed the presence of the truncated protein by demonstrating accumulation of VWF in the endoplasmic reticulum. In silico pre-mRNA secondary and tertiary structure analysis revealed that this substitution, despite its distal position from the 5'ss (85 bp downstream), induces cis alterations in pre-mRNA structure that result in the formation of a stable hairpin at the 5'ss. This hairpin sequesters the 5'ss residues involved in U1 small nuclear RNA interactions, thereby inhibiting excision of the pre-mRNA intronic region. This study is the first to show the allosteric-like/far-reaching effect of an exonic variation on pre-mRNA splicing that is mediated by structural changes in the pre-mRNA.
Collapse
Affiliation(s)
- Hamideh Yadegari
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Mohammad Suhail Akhter
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Julia Driesen
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Vytautas Ivaskevicius
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Natascha Marquardt
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| |
Collapse
|
33
|
Meher PK, Sahu TK, Rao AR, Wahi SD. A computational approach for prediction of donor splice sites with improved accuracy. J Theor Biol 2016; 404:285-294. [PMID: 27302911 DOI: 10.1016/j.jtbi.2016.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/18/2016] [Accepted: 06/09/2016] [Indexed: 11/24/2022]
Abstract
Identification of splice sites is important due to their key role in predicting the exon-intron structure of protein coding genes. Though several approaches have been developed for the prediction of splice sites, further improvement in the prediction accuracy will help predict gene structure more accurately. This paper presents a computational approach for prediction of donor splice sites with higher accuracy. In this approach, true and false splice sites were first encoded into numeric vectors and then used as input in artificial neural network (ANN), support vector machine (SVM) and random forest (RF) for prediction. ANN and SVM were found to perform equally and better than RF, while tested on HS3D and NN269 datasets. Further, the performance of ANN, SVM and RF were analyzed by using an independent test set of 50 genes and found that the prediction accuracy of ANN was higher than that of SVM and RF. All the predictors achieved higher accuracy while compared with the existing methods like NNsplice, MEM, MDD, WMM, MM1, FSPLICE, GeneID and ASSP, using the independent test set. We have also developed an online prediction server (PreDOSS) available at http://cabgrid.res.in:8080/predoss, for prediction of donor splice sites using the proposed approach.
Collapse
Affiliation(s)
- Prabina Kumar Meher
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India.
| | - Tanmaya Kumar Sahu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India.
| | - A R Rao
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India.
| | - S D Wahi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India.
| |
Collapse
|
34
|
Meher PK, Sahu TK, Rao AR. Prediction of donor splice sites using random forest with a new sequence encoding approach. BioData Min 2016; 9:4. [PMID: 26807151 PMCID: PMC4724119 DOI: 10.1186/s13040-016-0086-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 01/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Detection of splice sites plays a key role for predicting the gene structure and thus development of efficient analytical methods for splice site prediction is vital. This paper presents a novel sequence encoding approach based on the adjacent di-nucleotide dependencies in which the donor splice site motifs are encoded into numeric vectors. The encoded vectors are then used as input in Random Forest (RF), Support Vector Machines (SVM) and Artificial Neural Network (ANN), Bagging, Boosting, Logistic regression, kNN and Naïve Bayes classifiers for prediction of donor splice sites. RESULTS The performance of the proposed approach is evaluated on the donor splice site sequence data of Homo sapiens, collected from Homo Sapiens Splice Sites Dataset (HS3D). The results showed that RF outperformed all the considered classifiers. Besides, RF achieved higher prediction accuracy than the existing methods viz., MEM, MDD, WMM, MM1, NNSplice and SpliceView, while compared using an independent test dataset. CONCLUSION Based on the proposed approach, we have developed an online prediction server (MaLDoSS) to help the biological community in predicting the donor splice sites. The server is made freely available at http://cabgrid.res.in:8080/maldoss. Due to computational feasibility and high prediction accuracy, the proposed approach is believed to help in predicting the eukaryotic gene structure.
Collapse
Affiliation(s)
- Prabina Kumar Meher
- Division of Statistical Genetics, Indian Agricultural Statistics Research Institute, New Delhi, 110 012 India
| | - Tanmaya Kumar Sahu
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, 110 012 India
| | - Atmakuri Ramakrishna Rao
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, 110 012 India
| |
Collapse
|
35
|
Palhais B, Præstegaard VS, Sabaratnam R, Doktor TK, Lutz S, Burda P, Suormala T, Baumgartner M, Fowler B, Bruun GH, Andersen HS, Kožich V, Andresen BS. Splice-shifting oligonucleotide (SSO) mediated blocking of an exonic splicing enhancer (ESE) created by the prevalent c.903+469T>C MTRR mutation corrects splicing and restores enzyme activity in patient cells. Nucleic Acids Res 2015; 43:4627-39. [PMID: 25878036 PMCID: PMC4482064 DOI: 10.1093/nar/gkv275] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 03/19/2015] [Indexed: 11/15/2022] Open
Abstract
The prevalent c.903+469T>C mutation in MTRR causes the cblE type of homocystinuria by strengthening an SRSF1 binding site in an ESE leading to activation of a pseudoexon. We hypothesized that other splicing regulatory elements (SREs) are also critical for MTRR pseudoexon inclusion. We demonstrate that the MTRR pseudoexon is on the verge of being recognized and is therefore vulnerable to several point mutations that disrupt a fine-tuned balance between the different SREs. Normally, pseudoexon inclusion is suppressed by a hnRNP A1 binding exonic splicing silencer (ESS). When the c.903+469T>C mutation is present two ESEs abrogate the activity of the ESS and promote pseudoexon inclusion. Blocking the 3′splice site or the ESEs by SSOs is effective in restoring normal splicing of minigenes and endogenous MTRR transcripts in patient cells. By employing an SSO complementary to both ESEs, we were able to rescue MTRR enzymatic activity in patient cells to approximately 50% of that in controls. We show that several point mutations, individually, can activate a pseudoexon, illustrating that this mechanism can occur more frequently than previously expected. Moreover, we demonstrate that SSO blocking of critical ESEs is a promising strategy to treat the increasing number of activated pseudoexons.
Collapse
Affiliation(s)
- Bruno Palhais
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Veronica S Præstegaard
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Rugivan Sabaratnam
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Seraina Lutz
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland
| | - Patricie Burda
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland
| | - Terttu Suormala
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland
| | | | - Brian Fowler
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland
| | - Gitte Hoffmann Bruun
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Henriette Skovgaard Andersen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Viktor Kožich
- Institute of Inherited Metabolic Disorders, Charles University in Prague-First Faculty of Medicine and General University Hospital, Praha, Czech Republic
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
36
|
Functional characterization of the spf/ash splicing variation in OTC deficiency of mice and man. PLoS One 2015; 10:e0122966. [PMID: 25853564 PMCID: PMC4390381 DOI: 10.1371/journal.pone.0122966] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/16/2015] [Indexed: 12/27/2022] Open
Abstract
The spf/ash mouse model of ornithine transcarbamylase (OTC) deficiency, a severe urea cycle disorder, is caused by a mutation (c.386G>A; p.R129H) in the last nucleotide of exon 4 of the Otc gene, affecting the 5' splice site and resulting in partial use of a cryptic splice site 48 bp into the adjacent intron. The equivalent nucleotide change and predicted amino acid change is found in OTC deficient patients. Here we have used liver tissue and minigene assays to dissect the transcriptional profile resulting from the "spf/ash" mutation in mice and man. For the mutant mouse, we confirmed liver transcripts corresponding to partial intron 4 retention by the use of the c.386+48 cryptic site and to normally spliced transcripts, with exon 4 always containing the c.386G>A (p.R129H) variant. In contrast, the OTC patient exhibited exon 4 skipping or c.386G>A (p.R129H)-variant exon 4 retention by using the natural or a cryptic splice site at nucleotide position c.386+4. The corresponding OTC tissue enzyme activities were between 3-6% of normal control in mouse and human liver. The use of the cryptic splice sites was reproduced in minigenes carrying murine or human mutant sequences. Some normally spliced transcripts could be detected in minigenes in both cases. Antisense oligonucleotides designed to block the murine cryptic +48 site were used in minigenes in an attempt to redirect splicing to the natural site. The results highlight the relevance of in depth investigations of the molecular mechanisms of splicing mutations and potential therapeutic approaches. Notably, they emphasize the fact that findings in animal models may not be applicable for human patients due to the different genomic context of the mutations.
Collapse
|
37
|
Li L, Hamel N, Baker K, McGuffin MJ, Couillard M, Gologan A, Marcus VA, Chodirker B, Chudley A, Stefanovici C, Durandy A, Hegele RA, Feng BJ, Goldgar DE, Zhu J, De Rosa M, Gruber SB, Wimmer K, Young B, Chong G, Tischkowitz MD, Foulkes WD. A homozygous PMS2 founder mutation with an attenuated constitutional mismatch repair deficiency phenotype. J Med Genet 2015; 52:348-52. [PMID: 25691505 DOI: 10.1136/jmedgenet-2014-102934] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/27/2015] [Indexed: 11/04/2022]
Abstract
BACKGROUND Inherited mutations in DNA mismatch repair genes predispose to different cancer syndromes depending on whether they are mono-allelic or bi-allelic. This supports a causal relationship between expression level in the germline and phenotype variation. As a model to study this relationship, our study aimed to define the pathogenic characteristics of a recurrent homozygous coding variant in PMS2 displaying an attenuated phenotype identified by clinical genetic testing in seven Inuit families from Northern Quebec. METHODS Pathogenic characteristics of the PMS2 mutation NM_000535.5:c.2002A>G were studied using genotype-phenotype correlation, single-molecule expression detection and single genome microsatellite instability analysis. RESULTS This PMS2 mutation generates a de novo splice site that competes with the authentic site. In homozygotes, expression of the full-length protein is reduced to a level barely detectable by conventional diagnostics. Median age at primary cancer diagnosis is 22 years among 13 NM_000535.5:c.2002A>G homozygotes, versus 8 years in individuals carrying bi-allelic truncating mutations. Residual expression of full-length PMS2 transcript was detected in normal tissues from homozygotes with cancers in their 20s. CONCLUSIONS Our genotype-phenotype study of c.2002A>G illustrates that an extremely low level of PMS2 expression likely delays cancer onset, a feature that could be exploited in cancer preventive intervention.
Collapse
Affiliation(s)
- Lili Li
- Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Nancy Hamel
- Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada Department of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Kristi Baker
- Department of Pathology, McGill University, Montreal, Quebec, Canada Gastroenterology Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michael J McGuffin
- Department of Software and Information Technology Engineering, École de technologie supérieure, Montreal, Quebec, Canada
| | - Martin Couillard
- Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Adrian Gologan
- Department of Pathology, Jewish General Hospital, Montreal, Quebec, Canada
| | - Victoria A Marcus
- Department of Pathology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bernard Chodirker
- Department of Pediatrics and Child Health and Department of Biochemistry and Medical Genetics, Winnipeg, Manitoba, Canada
| | - Albert Chudley
- Department of Pediatrics and Child Health and Department of Biochemistry and Medical Genetics, Winnipeg, Manitoba, Canada
| | - Camelia Stefanovici
- Department of Pathology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Robert A Hegele
- Robarts Research Institute and Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Bing-Jian Feng
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - David E Goldgar
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnology and CEINGE Biotechnologie Avanzate, University of Naples-Federico II, Naples, Italy
| | - Stephen B Gruber
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Katharina Wimmer
- Division Human Genetics, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Barbara Young
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada First Nations and Inuit Health Branch, Health Canada (Quebec Region), Montreal, Quebec, Canada
| | - George Chong
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada Department of Pathology, Jewish General Hospital, Montreal, Quebec, Canada
| | - Marc D Tischkowitz
- Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada Department of Human Genetics, McGill University, Montreal, Quebec, Canada Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - William D Foulkes
- Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada Department of Human Genetics, McGill University, Montreal, Quebec, Canada Department of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Kondo Y, Oubridge C, van Roon AMM, Nagai K. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5' splice site recognition. eLife 2015; 4. [PMID: 25555158 PMCID: PMC4383343 DOI: 10.7554/elife.04986] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/06/2014] [Indexed: 12/12/2022] Open
Abstract
U1 snRNP binds to the 5′ exon-intron junction of pre-mRNA and thus plays a
crucial role at an early stage of pre-mRNA splicing. We present two crystal
structures of engineered U1 sub-structures, which together reveal at atomic
resolution an almost complete network of protein–protein and RNA-protein
interactions within U1 snRNP, and show how the 5′ splice site of pre-mRNA is
recognised by U1 snRNP. The zinc-finger of U1-C interacts with the duplex between
pre-mRNA and the 5′-end of U1 snRNA. The binding of the RNA duplex is
stabilized by hydrogen bonds and electrostatic interactions between U1-C and the RNA
backbone around the splice junction but U1-C makes no base-specific contacts with
pre-mRNA. The structure, together with RNA binding assays, shows that the selection
of 5′-splice site nucleotides by U1 snRNP is achieved predominantly through
basepairing with U1 snRNA whilst U1-C fine-tunes relative affinities of mismatched
5′-splice sites. DOI:http://dx.doi.org/10.7554/eLife.04986.001 Genes are made up of long stretches of DNA. The regions of a gene that code for
proteins (known as exons) are interrupted by stretches of non-coding DNA called
introns. To produce proteins from a gene, the DNA is ‘transcribed’ to
form pre-mRNA molecules, from which the introns must be removed in a process called
splicing. The remaining exons are then joined together to form a mature mRNA molecule
that contains the instructions to build a protein. Errors in the splicing process can
lead to numerous diseases, such as cancer. A molecular machine known as a spliceosome is responsible for splicing the pre-mRNA
molecules. This consists of five different complexes called small nuclear
ribonucleoprotein particles (snRNPs), which are in turn made up from numerous
proteins and RNA molecules. The spliceosome assembles anew every time it splices, and
an early step in this assembly process involves the interaction of an snRNP called U1
with the start of an intron in the pre-mRNA. This interaction then stimulates the
assembly of the rest of the spliceosome. In 2009, researchers reported the structure
of the U1 snRNP, but the structure did not contain enough detail to reveal how the
snRNP recognizes the start of an intron. Kondo, Oubridge et al., including some of the researchers involved in the 2009 work,
now present the crystal structure of the human version of the U1 snRNP in more
detail. High-quality crystal structures of the complete U1 snRNP molecule could not
be obtained because the arrangement of the RNA molecules in the snRNP prevented a
regular crystal from forming. Kondo, Oubridge et al. instead engineered two
subcomponents of U1 snRNP that each crystallized well, and determined their
structures. This revealed that the interactions between the various parts of the U1
snRNP form a complex network. A protein present in the U1 snRNP, known as U1-C, had previously been reported to be
able to recognize introns on its own—without requiring the complete U1 snRNP.
Kondo, Oubridge et al. reveal that this is not the case and that U1-C does not read
the intron RNA sequence directly. Instead, U1 snRNP is able to find the start of the
intron because the U1 RNA can stably bind to this site. The U1-C protein can however
adjust the strength of this binding to ensure that the spliceosome can operate with a
variety of intron start sequences (or signals). DOI:http://dx.doi.org/10.7554/eLife.04986.002
Collapse
Affiliation(s)
- Yasushi Kondo
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Chris Oubridge
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Anne-Marie M van Roon
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Kiyoshi Nagai
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
39
|
Zou M, Buluş D, Al-Rijjal RA, Andıran N, BinEssa H, Kattan WE, Meyer B, Shi Y. Hypophosphatemic rickets caused by a novel splice donor site mutation and activation of two cryptic splice donor sites in the PHEX gene. J Pediatr Endocrinol Metab 2015; 28:211-6. [PMID: 25153221 DOI: 10.1515/jpem-2014-0103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/19/2014] [Indexed: 11/15/2022]
Abstract
X-linked hypophosphatemic rickets (XLH) is the most common inherited form of rickets. XLH is caused by inactivating mutations in the PHEX gene and is transmitted as an X-linked dominant disorder. We investigated PHEX mutation in a sporadic Turkish girl with hypophosphatemic rickets. The patient was 2 years of age with a complaint of inability to walk. She had bowing of legs and growth retardation. Laboratory data showed normal calcium, low phosphate with markedly elevated ALP, and low phosphate renal tubular reabsorption. She was treated with Calcitriol 0.5 mg/kg/day and oral phosphate supplement with good response. The entire coding region of PHEX gene was sequenced from patient's peripheral leukocyte DNA and a novel 13 bp deletion at the donor splice site of exon5 was found (c.663+12del). Instead of using the donor splice site of intron 4 to splice out exon 5 and intron 5, the spliceosome utilized two nearby cryptic donor splice sites (5' splice site) to splice out intron 4, resulting in two smaller transcripts. Both of them could not translate into functional proteins due to frameshift. Her parents did not carry the mutation, indicating that this is a de novo PHEX mutation likely resulting from mutagenesis of X chromosome in paternal germ cells. We conclude that c.663+12del is a novel mutation that can activate nearby cryptic 5' splice sites. The selection of cryptic 5' splice sites adds the complexity of cell's splicing mechanisms. The current study extends the database of PHEX mutation and cryptic 5' splice sites.
Collapse
|
40
|
Meher PK, Sahu TK, Rao AR, Wahi SD. A statistical approach for 5' splice site prediction using short sequence motifs and without encoding sequence data. BMC Bioinformatics 2014; 15:362. [PMID: 25420551 PMCID: PMC4702320 DOI: 10.1186/s12859-014-0362-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 10/24/2014] [Indexed: 11/17/2022] Open
Abstract
Background Most of the approaches for splice site prediction are based on machine learning techniques. Though, these approaches provide high prediction accuracy, the window lengths used are longer in size. Hence, these approaches may not be suitable to predict the novel splice variants using the short sequence reads generated from next generation sequencing technologies. Further, machine learning techniques require numerically encoded data and produce different accuracy with different encoding procedures. Therefore, splice site prediction with short sequence motifs and without encoding sequence data became a motivation for the present study. Results An approach for finding association among nucleotide bases in the splice site motifs is developed and used further to determine the appropriate window size. Besides, an approach for prediction of donor splice sites using sum of absolute error criterion has also been proposed. The proposed approach has been compared with commonly used approaches i.e., Maximum Entropy Modeling (MEM), Maximal Dependency Decomposition (MDD), Weighted Matrix Method (WMM) and Markov Model of first order (MM1) and was found to perform equally with MEM and MDD and better than WMM and MM1 in terms of prediction accuracy. Conclusions The proposed prediction approach can be used in the prediction of donor splice sites with higher accuracy using short sequence motifs and hence can be used as a complementary method to the existing approaches. Based on the proposed methodology, a web server was also developed for easy prediction of donor splice sites by users and is available at http://cabgrid.res.in:8080/sspred. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0362-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Prabina Kumar Meher
- Division of Statistical Genetics, Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Tanmaya Kumar Sahu
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Atmakuri Ramakrishna Rao
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Sant Dass Wahi
- Division of Statistical Genetics, Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| |
Collapse
|
41
|
Korir PK, Roberts L, Ramesar R, Seoighe C. A mutation in a splicing factor that causes retinitis pigmentosa has a transcriptome-wide effect on mRNA splicing. BMC Res Notes 2014; 7:401. [PMID: 24969741 PMCID: PMC4084799 DOI: 10.1186/1756-0500-7-401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 06/13/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Substantial progress has been made in the identification of sequence elements that control mRNA splicing and the genetic variants in these elements that alter mRNA splicing (referred to as splicing quantitative trait loci - sQTLs). Genetic variants that affect mRNA splicing in trans are harder to identify because their effects can be more subtle and diffuse, and the variants are not co-located with their targets. We carried out a transcriptome-wide analysis of the effects of a mutation in a ubiquitous splicing factor that causes retinitis pigmentosa (RP) on mRNA splicing, using exon microarrays. RESULTS Exon microarray data was generated from whole blood samples obtained from four individuals with a mutation in the splicing factor PRPF8 and four sibling controls. Although the mutation has no known phenotype in blood, there was evidence of widespread differences in splicing between cases and controls (affecting approximately 20% of exons). Most probesets with significantly different inclusion (defined as the expression intensity of the exon divided by the expression of the corresponding transcript) between cases and controls had higher inclusion in cases and corresponded to exons that were shorter than average, AT rich, located towards the 5' end of the gene and flanked by long introns. Introns flanking affected probesets were particularly depleted for the shortest category of introns, associated with splicing via intron definition. CONCLUSIONS Our results show that a mutation in a splicing factor, with a phenotype that is restricted to retinal tissue, acts as a trans-sQTL cluster in whole blood samples. Characteristics of the affected exons suggest that they are spliced co-transcriptionally and via exon definition. However, due to the small sample size available for this study, further studies are required to confirm the widespread impact of this PRPF8 mutation on mRNA splicing outside the retina.
Collapse
Affiliation(s)
- Paul K Korir
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Republic of Ireland
| | - Lisa Roberts
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Raj Ramesar
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Republic of Ireland
| |
Collapse
|
42
|
Juan WC, Roca X, Ong ST. Identification of cis-acting elements and splicing factors involved in the regulation of BIM Pre-mRNA splicing. PLoS One 2014; 9:e95210. [PMID: 24743263 PMCID: PMC3990581 DOI: 10.1371/journal.pone.0095210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/25/2014] [Indexed: 11/25/2022] Open
Abstract
Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3′ end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes.
Collapse
Affiliation(s)
- Wen Chun Juan
- Cancer and Stem Cell Biology Signature Research Programme, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (XR); (STO)
| | - S. Tiong Ong
- Cancer and Stem Cell Biology Signature Research Programme, Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
- Department of Medical Oncology, National Cancer Centre, Singapore, Singapore
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Chapel Hill, North Carolina, United States of America
- * E-mail: (XR); (STO)
| |
Collapse
|
43
|
Andrews TD, Whittle B, Field MA, Balakishnan B, Zhang Y, Shao Y, Cho V, Kirk M, Singh M, Xia Y, Hager J, Winslade S, Sjollema G, Beutler B, Enders A, Goodnow CC. Massively parallel sequencing of the mouse exome to accurately identify rare, induced mutations: an immediate source for thousands of new mouse models. Open Biol 2013; 2:120061. [PMID: 22724066 PMCID: PMC3376740 DOI: 10.1098/rsob.120061] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/16/2012] [Indexed: 01/17/2023] Open
Abstract
Accurate identification of sparse heterozygous single-nucleotide variants (SNVs) is a critical challenge for identifying the causative mutations in mouse genetic screens, human genetic diseases and cancer. When seeking to identify causal DNA variants that occur at such low rates, they are overwhelmed by false-positive calls that arise from a range of technical and biological sources. We describe a strategy using whole-exome capture, massively parallel DNA sequencing and computational analysis, which identifies with a low false-positive rate the majority of heterozygous and homozygous SNVs arising de novo with a frequency of one nucleotide substitution per megabase in progeny of N-ethyl-N-nitrosourea (ENU)-mutated C57BL/6j mice. We found that by applying a strategy of filtering raw SNV calls against known and platform-specific variants we could call true SNVs with a false-positive rate of 19.4 per cent and an estimated false-negative rate of 21.3 per cent. These error rates are small enough to enable calling a causative mutation from both homozygous and heterozygous candidate mutation lists with little or no further experimental validation. The efficacy of this approach is demonstrated by identifying the causative mutation in the Ptprc gene in a lymphocyte-deficient strain and in 11 other strains with immune disorders or obesity, without the need for meiotic mapping. Exome sequencing of first-generation mutant mice revealed hundreds of unphenotyped protein-changing mutations, 52 per cent of which are predicted to be deleterious, which now become available for breeding and experimental analysis. We show that exome sequencing data alone are sufficient to identify induced mutations. This approach transforms genetic screens in mice, establishes a general strategy for analysing rare DNA variants and opens up a large new source for experimental models of human disease.
Collapse
Affiliation(s)
- T D Andrews
- Immunogenomics Laboratory, Australian National University, GPO Box 334, Canberra City, Australian Capital Territory, 2601 , Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Raynal C, Baux D, Theze C, Bareil C, Taulan M, Roux AF, Claustres M, Tuffery-Giraud S, des Georges M. A classification model relative to splicing for variants of unknown clinical significance: application to the CFTR gene. Hum Mutat 2013; 34:774-84. [PMID: 23381846 DOI: 10.1002/humu.22291] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/29/2013] [Indexed: 12/24/2022]
Abstract
Molecular diagnosis of cystic fibrosis and cystic fibrosis transmembrane regulator (CFTR)-related disorders led to the worldwide identification of nearly 1,900 sequence variations in the CFTR gene that consist mainly of private point mutations and small insertions/deletions. Establishing their effect on the function of the encoded protein and therefore their involvement in the disease is still challenging and directly impacts genetic counseling. In this context, we built a decision tree following the international guidelines for the classification of variants of unknown clinical significance (VUCS) in the CFTR gene specifically focused on their consequences on splicing. We applied general and specific criteria, including comprehensive review of literature and databases, familial genetics data, and thorough in silico studies. This model was tested on 15 intronic and exonic VUCS identified in our cohort. Six variants were classified as probably nonpathogenic considering their impact on splicing and eight as probably pathogenic, which include two apparent missense mutations. We assessed the validity of our method by performing minigenes studies and confirmed that 93% (14/15) were correctly classified. We provide in this study a high-performance method that can play a full role in interpreting the results of molecular diagnosis in emergency context, when functional studies are not achievable.
Collapse
Affiliation(s)
- Caroline Raynal
- CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, Montpellier, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cagliani R, Guerini FR, Rubio-Acero R, Baglio F, Forni D, Agliardi C, Griffanti L, Fumagalli M, Pozzoli U, Riva S, Calabrese E, Sikora M, Casals F, Comi GP, Bresolin N, Cáceres M, Clerici M, Sironi M. Long-standing balancing selection in the THBS4 gene: influence on sex-specific brain expression and gray matter volumes in Alzheimer disease. Hum Mutat 2013; 34:743-53. [PMID: 23420636 DOI: 10.1002/humu.22301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/01/2013] [Indexed: 01/08/2023]
Abstract
The THBS4 gene encodes a glycoprotein involved in inflammatory responses and synaptogenesis. THBS4 is expressed at higher levels in the brain of humans compared with nonhuman primates, and the protein accumulates in β-amyloid plaques. We analyzed THBS4 genetic variability in humans and show that two haplotypes (hap1 and hap2) are maintained by balancing selection and modulate THBS4 expression in lymphocytes. Indeed, the balancing selection region covers a predicted transcriptional enhancer. In humans, but not in macaques and chimpanzees, THBS4 brain expression increases with age, and variants in the balancing selection region interact with sex in influencing THBS4 expression (pinteraction = 0.038), with hap1 homozygous females showing lowest expression. In Alzheimer disease (AD) patients, significant interactions between sex and THBS4 genotype were detected for peripheral gray matter (pinteraction = 0.014) and total gray matter (pinteraction = 0.012) volumes. Similarly to the gene expression results, the interaction is mainly mediated by hap1 homozygous AD females, who show reduced volumes. Thus, the balancing selection target in THBS4 is likely represented by one or more variants that regulate tissue-specific and sex-specific gene expression. The selection signature associated with THBS4 might not be related to AD pathogenesis, but rather to inflammatory responses.
Collapse
|
46
|
Roca X, Krainer AR, Eperon IC. Pick one, but be quick: 5' splice sites and the problems of too many choices. Genes Dev 2013; 27:129-44. [PMID: 23348838 DOI: 10.1101/gad.209759.112] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Splice site selection is fundamental to pre-mRNA splicing and the expansion of genomic coding potential. 5' Splice sites (5'ss) are the critical elements at the 5' end of introns and are extremely diverse, as thousands of different sequences act as bona fide 5'ss in the human transcriptome. Most 5'ss are recognized by base-pairing with the 5' end of the U1 small nuclear RNA (snRNA). Here we review the history of research on 5'ss selection, highlighting the difficulties of establishing how base-pairing strength determines splicing outcomes. We also discuss recent work demonstrating that U1 snRNA:5'ss helices can accommodate noncanonical registers such as bulged duplexes. In addition, we describe the mechanisms by which other snRNAs, regulatory proteins, splicing enhancers, and the relative positions of alternative 5'ss contribute to selection. Moreover, we discuss mechanisms by which the recognition of numerous candidate 5'ss might lead to selection of a single 5'ss and propose that protein complexes propagate along the exon, thereby changing its physical behavior so as to affect 5'ss selection.
Collapse
Affiliation(s)
- Xavier Roca
- School of Biological Sciences, Division of Molecular Genetics and Cell Biology, Nanyang Technological University, Singapore.
| | | | | |
Collapse
|
47
|
A spontaneous Fatp4/Scl27a4 splice site mutation in a new murine model for congenital ichthyosis. PLoS One 2012; 7:e50634. [PMID: 23226340 PMCID: PMC3511458 DOI: 10.1371/journal.pone.0050634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/23/2012] [Indexed: 11/19/2022] Open
Abstract
Congenital ichthyoses are life-threatening conditions in humans. We describe here the identification and molecular characterization of a novel recessive mutation in mice that results in newborn lethality with severe congenital lamellar ichthyosis. Mutant newborns have a taut, shiny, non-expandable epidermis that resembles cornified manifestations of autosomal-recessive congenital ichthyosis in humans. The skin is stretched so tightly that the newborn mice are immobilized. The genetic defect was mapped to a region near the proximal end of chromosome 2 by SNP analysis, suggesting Fatp4/Slc27a4 as a candidate gene. FATP4 mutations in humans cause ichthyosis prematurity syndrome (IPS), and mutations of Fatp4 in mice have previously been found to cause a phenotype that resembles human congenital ichthyoses. Characterization of the Fatp4 cDNA revealed a fusion of exon 8 to exon 10, with deletion of exon 9. Genomic sequencing identified an A to T mutation in the splice donor sequence at the 3'-end of exon 9. Loss of exon 9 results in a frame shift mutation upstream from the conserved very long-chain acyl-CoA synthase (VLACS) domain. Histological studies revealed that the mutant mice have defects in keratinocyte differentiation, along with hyperproliferation of the stratum basale of the epidermis, a hyperkeratotic stratum corneum, and reduced numbers of secondary hair follicles. Since Fatp4 protein is present primarily at the stratum granulosum and the stratum spinosum, the hyperproliferation and the alterations in hair follicle induction suggest that very long chain fatty acids, in addition to being required for normal cornification, may influence signals from the stratum corneum to the basal cells that help to orchestrate normal skin differentiation.
Collapse
|
48
|
Roca X, Akerman M, Gaus H, Berdeja A, Bennett CF, Krainer AR. Widespread recognition of 5' splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides. Genes Dev 2012; 26:1098-109. [PMID: 22588721 DOI: 10.1101/gad.190173.112] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An established paradigm in pre-mRNA splicing is the recognition of the 5' splice site (5'ss) by canonical base-pairing to the 5' end of U1 small nuclear RNA (snRNA). We recently reported that a small subset of 5'ss base-pair to U1 in an alternate register that is shifted by 1 nucleotide. Using genetic suppression experiments in human cells, we now demonstrate that many other 5'ss are recognized via noncanonical base-pairing registers involving bulged nucleotides on either the 5'ss or U1 RNA strand, which we term "bulge registers." By combining experimental evidence with transcriptome-wide free-energy calculations of 5'ss/U1 base-pairing, we estimate that 10,248 5'ss (∼5% of human 5'ss) in 6577 genes use bulge registers. Several of these 5'ss occur in genes with mutations causing genetic diseases and are often associated with alternative splicing. These results call for a redefinition of an essential element for gene expression that incorporates these registers, with important implications for the molecular classification of splicing mutations and for alternative splicing.
Collapse
Affiliation(s)
- Xavier Roca
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | |
Collapse
|
49
|
Benign hereditary chorea: dopaminergic brain imaging in patients with a novel intronic NKX2.1 gene mutation. J Neurol 2012; 260:207-13. [PMID: 22825795 DOI: 10.1007/s00415-012-6618-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 11/27/2022]
Abstract
Mutations in the NKX2.1 gene, which is essential for the development, differentiation and organization of the basal ganglia, cause benign hereditary chorea (BHC) characterized by childhood-onset non-progressive chorea. We herein report the clinical features of six patients from a single family with a novel intronic mutation and present the dopaminergic neuronal imaging by using positron emission tomography (PET) imaging to assess the integrity of the striatal dopaminergic system using [(11)C]-CFT for the presynaptic dopamine transporter function and [(11)C]-raclopride for the postsynaptic D2 receptor function. The patients showed mild generalized chorea without either congenital hypothyroidism or a history of pulmonary infection and some of the patients had goiter. Genetic analyses of NKX2.1 gene showed a novel heterozygous c.464-9C>A mutation that created a new acceptor splice site resulting in the production of an aberrant transcript with a 7-bp insertion identical to a intronic sequence of genomic DNA. Oral levodopa failed to improve the involuntary movement, while haloperidol, a dopamine D2 receptor blocking agent, exacerbated the choric movement in a single patient. The dopaminergic PET studies in the two patients revealed decreased raclopride binding in the striatum, while the CFT binding was not altered. The impairment of D2 receptor function in the basal ganglia may result in exacerbation of the chorea induced by haloperidol. The molecular brain imaging and therapeutic response may help elucidate the pathophysiological mechanism of the motor control in the BHC-associated NKX2.1 mutation.
Collapse
|
50
|
Kim HJ, Triplett BA, Zhang HB, Lee MK, Hinchliffe DJ, Li P, Fang DD. Cloning and characterization of homeologous cellulose synthase catalytic subunit 2 genes from allotetraploid cotton (Gossypium hirsutum L.). Gene 2011; 494:181-9. [PMID: 22200568 DOI: 10.1016/j.gene.2011.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 12/25/2022]
Abstract
Cellulose synthase catalytic subunits (CesAs) are the catalytic sites within a multisubunit complex for cellulose biosynthesis in plants. CesAs have been extensively studied in diploid plants, but are not well characterized in polyploid plants. Gossypium hirsutum is an allotetraploid cotton species producing over 90% of the world's cotton fibers. Although G. hirsutum CesAs (GhCesAs) are responsible for cellulose production in cotton fiber, very limited numbers of GhCesA genes have been identified. Here, we report isolating and characterizing a pair of homeologous CesA2 genes and their full-length cDNAs from allotetraploid cotton. The GhCesA2-A(T) gene from the A-subgenome and GhCesA2-D(T) gene from the D-subgenome were screened from a G. hirsutum BAC library. These genes shared 92% sequence similarity throughout the entire sequence. The coding sequences were nearly identical, and the deduced amino acid sequences from GhCesA2-A(T) (1,039 amino acids) and GhCesA2-D(T) (1,040 amino acids) were identical except four amino acids, whereas the noncoding sequences showed divergence. Sequence analyses showed that all exons of GhCesA2-A(T) contained consensus splice donor dinucleotides, but one exon in GhCesA2-D(T) contained nonconsensus splice donor dinucleotides. Although the nonconsensus splice donor dinucleotides were previously suggested to be involved in alternative splice or pseudogenization, our results showed that a majority of GhCesA2-A(T) and GhCesA2-D(T) transcripts consisted of functional and full-length transcripts with little evidence for alternative mRNA isoforms in developing cotton fibers. Expression analyses showed that GhCesA2-A(T) and GhCesA2-D(T) shared common temporal and spatial expression patterns, and they were highly and preferentially expressed during the cellulose biosynthesis stage in developing cotton fibers. The observations of higher expression levels of both GhCesA2-A(T) and GhCesA2-D(T) in developing fibers of one near-isogenic line (NIL) with higher fiber bundle strength over the other NIL with lower fiber bundle strength suggested that the differential expression of genes associated with secondary cell wall cellulose biosynthesis in developing fiber might affect cotton fiber properties.
Collapse
Affiliation(s)
- Hee Jin Kim
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience, 1100 Robert E. Lee Blvd, New Orleans, LA 70124 USA.
| | | | | | | | | | | | | |
Collapse
|