1
|
Jeanjean S, Shen Y, Hardy L, Daunay A, Delépine M, Gerber Z, Alberdi A, Tubacher E, Deleuze JF, How-Kit A. A detailed analysis of second and third-generation sequencing approaches for accurate length determination of short tandem repeats and homopolymers. Nucleic Acids Res 2025; 53:gkaf131. [PMID: 40036507 PMCID: PMC11878640 DOI: 10.1093/nar/gkaf131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/13/2025] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
Microsatellites are short tandem repeats (STRs) of a motif of 1-6 nucleotides that are ubiquitous in almost all genomes and widely used in many biomedical applications. However, despite the development of next-generation sequencing (NGS) over the past two decades with new technologies coming to the market, accurately sequencing and genotyping STRs, particularly homopolymers, remain very challenging today due to several technical limitations. This leads in many cases to erroneous allele calls and difficulty in correctly identifying the genuine allele distribution in a sample. Here, we assessed several second and third-generation sequencing approaches in their capability to correctly determine the length of microsatellites using plasmids containing A/T homopolymers, AC/TG or AT/TA dinucleotide STRs of variable length. Standard polymerase chain reaction (PCR)-free and PCR-containing, single Unique Molecular Indentifier (UMI) and dual UMI 'duplex sequencing' protocols were evaluated using Illumina short-read sequencing, and two PCR-free protocols using PacBio and Oxford Nanopore Technologies long-read sequencing. Several bioinformatics algorithms were developed to correctly identify microsatellite alleles from sequencing data, including four and two modes for generating standard and combined consensus alleles, respectively. We provided a detailed analysis and comparison of these approaches and made several recommendations for the accurate determination of microsatellite allele length.
Collapse
Affiliation(s)
- Sophie I Jeanjean
- Laboratory for Genomics, Foundation Jean Dausset – CEPH, 75010 Paris, France
| | - Yimin Shen
- Laboratory for Bioinformatics, Foundation Jean Dausset – CEPH, 75010 Paris, France
| | - Lise M Hardy
- Laboratory for Genomics, Foundation Jean Dausset – CEPH, 75010 Paris, France
| | - Antoine Daunay
- Laboratory for Genomics, Foundation Jean Dausset – CEPH, 75010 Paris, France
| | - Marc Delépine
- Centre National de Recherche en Génomique Humaine (CNRGH), CEA, Institut François Jacob, 91000 Evry, France
| | - Zuzana Gerber
- Centre National de Recherche en Génomique Humaine (CNRGH), CEA, Institut François Jacob, 91000 Evry, France
| | - Antonio Alberdi
- Technological Platform of Saint-Louis Research Institute (IRSL), Saint-Louis Hospital, University of Paris, 75010 Paris, France
| | - Emmanuel Tubacher
- Laboratory for Bioinformatics, Foundation Jean Dausset – CEPH, 75010 Paris, France
| | - Jean-François Deleuze
- Laboratory for Genomics, Foundation Jean Dausset – CEPH, 75010 Paris, France
- Laboratory for Bioinformatics, Foundation Jean Dausset – CEPH, 75010 Paris, France
- Centre National de Recherche en Génomique Humaine (CNRGH), CEA, Institut François Jacob, 91000 Evry, France
| | - Alexandre How-Kit
- Laboratory for Genomics, Foundation Jean Dausset – CEPH, 75010 Paris, France
| |
Collapse
|
2
|
McGinty RJ, Balick DJ, Mirkin SM, Sunyaev SR. Inherent instability of simple DNA repeats shapes an evolutionarily stable distribution of repeat lengths. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631797. [PMID: 39829886 PMCID: PMC11741425 DOI: 10.1101/2025.01.09.631797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Using the Telomere-to-Telomere reference, we assembled the distribution of simple repeat lengths present in the human genome. Analyzing over two hundred mammalian genomes, we found remarkable consistency in the shape of the distribution across evolutionary epochs. All observed genomes harbor an excess of long repeats, which are prone to developing into repeat expansion disorders. We measured mutation rates for repeat length instability, quantitatively modeled the per-generation action of mutations, and observed the corresponding long-term behavior shaping the repeat length distribution. We found that short repetitive sequences appear to be a straightforward consequence of random substitution. Evolving largely independently, longer repeats (10+ nucleotides) emerge and persist in a rapidly mutating dynamic balance between expansion, contraction and interruption. These mutational processes, collectively, are sufficient to explain the abundance of long repeats, without invoking natural selection. Our analysis constrains properties of molecular mechanisms responsible for maintaining genome fidelity that underlie repeat instability.
Collapse
Affiliation(s)
- Ryan J. McGinty
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Daniel J. Balick
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Shamil R. Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Haasl RJ, Payseur BA. Fitness landscapes of human microsatellites. PLoS Genet 2024; 20:e1011524. [PMID: 39775235 PMCID: PMC11734926 DOI: 10.1371/journal.pgen.1011524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/15/2025] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate. Because these assumptions are violated by repetitive sequences, selection remains uncharacterized for an appreciable percentage of the genome. To meet this challenge, we focus on microsatellites, repetitive variants that mutate orders of magnitude faster than single nucleotide variants, can harbor substantial variation, and are known to influence biological function in some cases. We introduce four general models of natural selection that are each characterized by just two parameters, are easily simulated, and are specifically designed for microsatellites. Using a random forests approach to approximate Bayesian computation, we fit these models to carefully chosen microsatellites genotyped in 200 humans from a diverse collection of eight populations. Altogether, we reconstruct detailed fitness landscapes for 43 microsatellites we classify as targets of selection. Microsatellite fitness surfaces are diverse, including a range of selection strengths, contributions from dominance, and variation in the number and size of optimal alleles. Microsatellites that are subject to selection include loci known to cause trinucleotide expansion disorders and modulate gene expression, as well as intergenic loci with no obvious function. The heterogeneity in fitness landscapes we report suggests that genome-scale analyses like those used to assess selection targeting single nucleotide variants run the risk of oversimplifying the evolutionary dynamics of microsatellites. Moreover, our fitness landscapes provide a valuable visualization of the selective dynamics navigated by microsatellites.
Collapse
Affiliation(s)
- Ryan J. Haasl
- Department of Biology, University of Wisconsin-Platteville, Platteville, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Wang H, Zhang Y, Zhang L, Wang J, Guo H, Zong J, Chen J, Li D, Li L, Liu J, Li J. Molecular Characterization and Phylogenetic Analysis of Centipedegrass [ Eremochloa ophiuroides (Munro) Hack.] Based on the Complete Chloroplast Genome Sequence. Curr Issues Mol Biol 2024; 46:1635-1650. [PMID: 38392224 PMCID: PMC10888139 DOI: 10.3390/cimb46020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Centipedegrass (Eremochloa ophiuroides) is an important warm-season grass plant used as a turfgrass as well as pasture grass in tropical and subtropical regions, with wide application in land surface greening and soil conservation in South China and southern United States. In this study, the complete cp genome of E. ophiuroides was assembled using high-throughput Illumina sequencing technology. The circle pseudomolecule for E. ophiuroides cp genome is 139,107 bp in length, with a quadripartite structure consisting of a large single copyregion of 82,081 bp and a small single copy region of 12,566 bp separated by a pair of inverted repeat regions of 22,230 bp each. The overall A + T content of the whole genome is 61.60%, showing an asymmetric nucleotide composition. The genome encodes a total of 131 gene species, composed of 20 duplicated genes within the IR regions and 111 unique genes comprising 77 protein-coding genes, 30 transfer RNA genes, and 4 ribosome RNA genes. The complete cp genome sequence contains 51 long repeats and 197 simple sequence repeats, and a high degree of collinearity among E. ophiuroide and other Gramineae plants was disclosed. Phylogenetic analysis showed E. ophiuroides, together with the other two Eremochloa species, is closely related to Mnesithea helferi within the subtribe Rottboelliinae. These findings will be beneficial for the classification and identification of the Eremochloa taxa, phylogenetic resolution, novel gene discovery, and functional genomic studies for the genus Eremochloa.
Collapse
Affiliation(s)
- Haoran Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Yuan Zhang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Ling Zhang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Jingjing Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Junqin Zong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Jingbo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Dandan Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Ling Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Jianxiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Jianjian Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, China
| |
Collapse
|
5
|
Sharma M, Larow VM, Dobychina N, Kessler DS, Krasilnikova MM, Yaklichkin S. The evolutionary loss of the Eh1 motif in FoxE1 in the lineage of placental mammals. PLoS One 2023; 18:e0296176. [PMID: 38150428 PMCID: PMC10752562 DOI: 10.1371/journal.pone.0296176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Forkhead box E1 (FoxE1) protein is a transcriptional regulator known to play a major role in the development of the thyroid gland. By performing sequence alignments, we detected a deletion in FoxE1, which occurred in the evolution of mammals, near the point of divergence of placental mammals. This deletion led to the loss of the majority of the Eh1 motif, which was important for interactions with transcriptional corepressors. To investigate a potential mechanism for this deletion, we analyzed replication through the deletion area in mammalian cells with two-dimensional gel electrophoresis, and in vitro, using a primer extension reaction. We demonstrated that the area of the deletion presented an obstacle for replication in both assays. The exact position of polymerization arrest in primer extension indicated that it was most likely caused by a quadruplex DNA structure. The quadruplex structure hypothesis is also consistent with the exact borders of the deletion. The exact roles of these evolutionary changes in FoxE1 family proteins are still to be determined.
Collapse
Affiliation(s)
- Mahak Sharma
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Victoria M. Larow
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Nataliia Dobychina
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Daniel S. Kessler
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maria M. Krasilnikova
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Sergey Yaklichkin
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
6
|
Chung Y, Nam SK, Chang HE, Lee C, Kang GH, Lee HS, Park KU. Evaluation of an eight marker-panel including long mononucleotide repeat markers to detect microsatellite instability in colorectal, gastric, and endometrial cancers. BMC Cancer 2023; 23:1100. [PMID: 37953261 PMCID: PMC10641958 DOI: 10.1186/s12885-023-11607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Accurate determination of microsatellite instability (MSI) status is critical for optimal treatment in cancer patients. Conventional MSI markers can sometimes display subtle shifts that are difficult to interpret, especially in non-colorectal cases. We evaluated an experimental eight marker-panel including long mononucleotide repeat (LMR) markers for detection of MSI. METHODS The eight marker-panel was comprised of five conventional markers (BAT-25, BAT-26, NR-21, NR-24, and NR-27) and three LMR markers (BAT-52, BAT-59 and BAT-62). MSI testing was performed against 300 specimens of colorectal, gastric, and endometrial cancers through PCR followed by capillary electrophoresis length analysis. RESULTS The MSI testing with eight marker-panel showed 99.3% (295/297) concordance with IHC analysis excluding 3 MMR-focal deficient cases. The sensitivity of BAT-59 and BAT-62 was higher than or comparable to that of conventional markers in gastric and endometrial cancer. The mean shift size was larger in LMR markers compared to conventional markers for gastric and endometrial cancers. CONCLUSIONS The MSI testing with eight maker-panel showed comparable performance with IHC analysis. The LMR markers, especially BAT-59 and BAT-62, showed high sensitivity and large shifts which can contribute to increased confidence in MSI classification, especially in gastric and endometrial cancers. Further study is needed with large number of samples for the validation of these LMR markers.
Collapse
Affiliation(s)
- Yousun Chung
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Soo Kyung Nam
- Department of Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Eun Chang
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173, Bundang-gu, Seongnam, 13620, Republic of Korea.
| |
Collapse
|
7
|
Bacher JW, Udho EB, Strauss EE, Vyazunova I, Gallinger S, Buchanan DD, Pai RK, Templeton AS, Storts DR, Eshleman JR, Halberg RB. A Highly Sensitive Pan-Cancer Test for Microsatellite Instability. J Mol Diagn 2023; 25:806-826. [PMID: 37544360 PMCID: PMC10629437 DOI: 10.1016/j.jmoldx.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Microsatellite instability (MSI) is an evolving biomarker for cancer detection and treatment. MSI was first used to identify patients with Lynch syndrome, a hereditary form of colorectal cancer (CRC), but has recently become indispensable in predicting patient response to immunotherapy. To address the need for pan-cancer MSI detection, a new multiplex assay was developed that uses novel long mononucleotide repeat (LMR) markers to improve sensitivity. A total of 469 tumor samples from 20 different cancer types, including 319 from patients with Lynch syndrome, were tested for MSI using the new LMR MSI Analysis System. Results were validated by using deficient mismatch repair (dMMR) status according to immunohistochemistry as the reference standard and compared versus the Promega pentaplex MSI panel. The sensitivity of the LMR panel for detection of dMMR status by immunohistochemistry was 99% for CRC and 96% for non-CRC. The overall percent agreement between the LMR and Promega pentaplex panels was 99% for CRC and 89% for non-CRC tumors. An increased number of unstable markers and the larger size shifts observed in dMMR tumors using the LMR panel increased confidence in MSI determinations. The LMR MSI Analysis System expands the spectrum of cancer types in which MSI can be accurately detected.
Collapse
Affiliation(s)
- Jeffery W Bacher
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin; Department of Medicine, University of Wisconsin, Madison, Wisconsin.
| | - Eshwar B Udho
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin
| | | | - Irina Vyazunova
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin
| | - Steven Gallinger
- Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Rish K Pai
- Health Science Research, Mayo Clinic, Scottsdale, Arizona
| | | | - Douglas R Storts
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin
| | - James R Eshleman
- School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Richard B Halberg
- Department of Medicine, University of Wisconsin, Madison, Wisconsin; Department of Oncology, McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin.
| |
Collapse
|
8
|
Kristmundsdottir S, Jonsson H, Hardarson MT, Palsson G, Beyter D, Eggertsson HP, Gylfason A, Sveinbjornsson G, Holley G, Stefansson OA, Halldorsson GH, Olafsson S, Arnadottir GA, Olason PI, Eiriksson O, Masson G, Thorsteinsdottir U, Rafnar T, Sulem P, Helgason A, Gudbjartsson DF, Halldorsson BV, Stefansson K. Sequence variants affecting the genome-wide rate of germline microsatellite mutations. Nat Commun 2023; 14:3855. [PMID: 37386006 PMCID: PMC10310707 DOI: 10.1038/s41467-023-39547-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Microsatellites are polymorphic tracts of short tandem repeats with one to six base-pair (bp) motifs and are some of the most polymorphic variants in the genome. Using 6084 Icelandic parent-offspring trios we estimate 63.7 (95% CI: 61.9-65.4) microsatellite de novo mutations (mDNMs) per offspring per generation, excluding one bp repeats motifs (homopolymers) the estimate is 48.2 mDNMs (95% CI: 46.7-49.6). Paternal mDNMs occur at longer repeats than maternal ones, which are in turn larger with a mean size of 3.4 bp vs 3.1 bp for paternal ones. mDNMs increase by 0.97 (95% CI: 0.90-1.04) and 0.31 (95% CI: 0.25-0.37) per year of father's and mother's age at conception, respectively. Here, we find two independent coding variants that associate with the number of mDNMs transmitted to offspring; The minor allele of a missense variant (allele frequency (AF) = 1.9%) in MSH2, a mismatch repair gene, increases transmitted mDNMs from both parents (effect: 13.1 paternal and 7.8 maternal mDNMs). A synonymous variant (AF = 20.3%) in NEIL2, a DNA damage repair gene, increases paternally transmitted mDNMs (effect: 4.4 mDNMs). Thus, the microsatellite mutation rate in humans is in part under genetic control.
Collapse
Affiliation(s)
- Snaedis Kristmundsdottir
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | - Marteinn T Hardarson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | - Doruk Beyter
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
| | | | | | | | | | | | - Gisli H Halldorsson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Gudny A Arnadottir
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Gisli Masson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Agnar Helgason
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland.
- School of Technology, Reykjavik University, Reykjavik, Iceland.
| | | |
Collapse
|
9
|
Zhu Z, Liu Y, Zhang S, Wang S, Yang T. Genomic microsatellite characteristics analysis of Dysommaanguillare (Anguilliformes, Dysommidae), based on high-throughput sequencing technology. Biodivers Data J 2023; 11:e100068. [PMID: 38327339 PMCID: PMC10848815 DOI: 10.3897/bdj.11.e100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/31/2023] [Indexed: 02/09/2024] Open
Abstract
Microsatellite loci were screened from the genomic data of Dysommaanguillare and their composition and distribution were analysed by bioinformatics for the first time. The results showed that 4,060,742 scaffolds with a total length of 1,562 Mb were obtained by high-throughput sequencing and 1,160,104 microsatellite loci were obtained by MISA screening, which were distributed on 770,294 scaffolds. The occurrence frequency and relative abundance were 28.57% and 743/Mb, respectively. Amongst the six complete microsatellite types, dinucleotide repeats accounted for the largest proportion (592,234, 51.05%), the highest occurrence frequency (14.58%) and the largest relative abundance (379.27/Mb). A total of 1488 microsatellite repeats were detected in the genome of D.anguillare, amongst which the hexanucleotide repeat motifs were the most abundant (608), followed by pentanucleotide repeat motifs (574), tetranucleotide repeat motifs (232), trinucleotide repeat motifs (59), dinucleotide repeat motifs (11) and mononucleotide repeat motifs (4). The abundance of microsatellites of the same repeat type decreased with the increase of copy numbers. Amongst the six types of nucleotide repeats, the preponderance of repeated motifs are A (191,390, 43.77%), CA (150,240, 25.37%), AAT (13,168, 14.05%), CACG (2,649, 8.14%), TAATG (119, 19.16%) and CCCTAA (190, 19.16%, 7.65%), respectively. The data of the number, distribution and abundance of different types of microsatellites in the genome of D.anguillare were obtained in this study, which would lay a foundation for the development of high-quality microsatellite markers of D.anguillare in the future.
Collapse
Affiliation(s)
- Ziyan Zhu
- Zhejiang Ocean University, Zhoushan, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Yuping Liu
- Zhejiang Ocean University, Zhoushan, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Shufei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Guangzhou, ChinaGuangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research InstituteGuangzhouChina
| | - Sige Wang
- Zhejiang Ocean University, Zhoushan, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Tianyan Yang
- Zhejiang Ocean University, Zhoushan, ChinaZhejiang Ocean UniversityZhoushanChina
| |
Collapse
|
10
|
Honma H, Takahashi N, Arisue N, Sugishita T. Analysis of genome instability and implications for the consequent phenotype in Plasmodium falciparum containing mutated MSH2-1 (P513T). Microb Genom 2023; 9. [PMID: 37083479 DOI: 10.1099/mgen.0.001003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Malarial parasites exhibit extensive genomic plasticity, which induces the antigen diversification and the development of antimalarial drug resistance. Only a few studies have examined the genome maintenance mechanisms of parasites. The study aimed at elucidating the impact of a mutation in a DNA mismatch repair gene on genome stability by maintaining the mutant and wild-type parasites through serial in vitro cultures for approximately 400 days and analysing the subsequent spontaneous mutations. A P513T mutant of the DNA mismatch repair protein PfMSH2-1 from Plasmodium falciparum 3D7 was created. The mutation did not influence the base substitution rate but significantly increased the insertion/deletion (indel) mutation rate in short tandem repeats (STRs) and minisatellite loci. STR mutability was affected by allele size, genomic category and certain repeat motifs. In the mutants, significant telomere healing and homologous recombination at chromosomal ends caused extensive gene loss and generation of chimeric genes, resulting in large-scale chromosomal alteration. Additionally, the mutant showed increased tolerance to N-methyl-N'-nitro-N-nitrosoguanidine, suggesting that PfMSH2-1 was involved in recognizing DNA methylation damage. This work provides valuable insights into the role of PfMSH2-1 in genome stability and demonstrates that the genomic destabilization caused by its dysfunction may lead to antigen diversification.
Collapse
Affiliation(s)
- Hajime Honma
- Section of Global Health, Division of Public Health, Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Nobuyuki Takahashi
- Section of Global Health, Division of Public Health, Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Nobuko Arisue
- Section of Global Health, Division of Public Health, Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Tomohiko Sugishita
- Section of Global Health, Division of Public Health, Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| |
Collapse
|
11
|
Verbiest M, Maksimov M, Jin Y, Anisimova M, Gymrek M, Bilgin Sonay T. Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species. J Evol Biol 2023; 36:321-336. [PMID: 36289560 PMCID: PMC9990875 DOI: 10.1111/jeb.14106] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 02/03/2023]
Abstract
Short tandem repeats (STRs) are units of 1-6 bp that repeat in a tandem fashion in DNA. Along with single nucleotide polymorphisms and large structural variations, they are among the major genomic variants underlying genetic, and likely phenotypic, divergence. STRs experience mutation rates that are orders of magnitude higher than other well-studied genotypic variants. Frequent copy number changes result in a wide range of alleles, and provide unique opportunities for modulating complex phenotypes through variation in repeat length. While classical studies have identified key roles of individual STR loci, the advent of improved sequencing technology, high-quality genome assemblies for diverse species, and bioinformatics methods for genome-wide STR analysis now enable more systematic study of STR variation across wide evolutionary ranges. In this review, we explore mutation and selection processes that affect STR copy number evolution, and how these processes give rise to varying STR patterns both within and across species. Finally, we review recent examples of functional and adaptive changes linked to STRs.
Collapse
Affiliation(s)
- Max Verbiest
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Mikhail Maksimov
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ye Jin
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Maria Anisimova
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Melissa Gymrek
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Tugce Bilgin Sonay
- Institute of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
12
|
Characterization of the microsatellite landscape provides insights into the evolutionary dynamics of the mammals based on the chromosome-level genomes. Gene X 2023; 851:146965. [PMID: 36261090 DOI: 10.1016/j.gene.2022.146965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
|
13
|
Cohen O, Ram Y, Hadany L, Geffen E, Gafny S. The effect of habitat and climatic on microsatellite diversity and allele length variation. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.893856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microsatellite loci have been shown to vary according to environment. We studied allelic length variation and diversity in eight microsatellite loci along a sharp climatic and habitat gradient in Israel, using the eastern spadefoot toad (Pelobates syriacus) as our model system. We found a gradual increase in allele lengths from north to south. We used a distance-based redundancy analysis (dbRDA) to associate between allele length and habitat and climatic measures and found that geography and annual climate explained the significant variation in allele length. We also used additional measurements pertaining to demography, heterozygosity and allelic diversity to explore four different hypotheses that might explain the variations in allele length. Our results suggest that the changes we observed in allele lengths may not be purely random but could be influenced by the differential mutation rate and/or local environmental conditions operating at the different locations.
Collapse
|
14
|
Otagiri T, Sato N, Asamura H, Parvanova E, Kayser M, Ralf A. RMplex reveals population differences in RM Y-STR mutation rates and provides improved father-son differentiation in Japanese. Forensic Sci Int Genet 2022; 61:102766. [PMID: 36007266 DOI: 10.1016/j.fsigen.2022.102766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Rapidly mutating Y chromosomal short tandem repeat markers (RM Y-STRs) -characterized by at least one mutation per 100 generations- are suitable for differentiating both related and unrelated males. The recently introduced multiplex method RMplex allows for the efficient analysis of 30 Y-STRs with increased mutation rates, including all 26 currently known RM Y-STRs. While currently available RM Y-STR mutation rates were established mostly from European individuals, here we applied RMplex to DNA samples of 178 genetically confirmed father-son pairs from East Asia. For several Y-STRs, we found significantly higher mutation rates in Japanese compared to previous estimates. The consequent father-son differentiation rate based on RMplex was significantly higher (52%) in Japanese than previously reported for Europeans (42%), and much higher than with Yfiler Plus in both sample sets (14% and 13%, respectively). Further analysis suggests that the higher mutation and relative differentiation rates in Japanese can in part be explained by on average longer Y-STR alleles relative to Europeans. Moreover, we show that the most striking difference, which was found in DYS712, could be linked to a Y-SNP haplogroup (O1b2-P49) that is common in Japanese and rare in other populations. We encourage the forensic Y-STR community to generate more RMplex data from more population samples of sufficiently large sample size in combination with Y-SNP data to further investigate population effects on mutation and relative differentiation rates. Until more RMplex data from more populations become available, caution shall be placed when applying RM Y-STR mutation rate estimates established in one population, such as Europeans, to forensic casework involving male suspects of paternal origin from other populations, such as non-Europeans.
Collapse
Affiliation(s)
- Tomomi Otagiri
- Department of Legal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Noriko Sato
- Department of Legal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Hideki Asamura
- Department of Legal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Evelina Parvanova
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Arwin Ralf
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
15
|
Ranathunge C, Chimahusky ME, Welch ME. A comparative study of population genetic structure reveals patterns consistent with selection at functional microsatellites in common sunflower. Mol Genet Genomics 2022; 297:1329-1342. [PMID: 35786764 DOI: 10.1007/s00438-022-01920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Microsatellites, also known as short tandem repeats (STRs), have long been considered non-functional, neutrally evolving regions of the genome. Recent findings suggest that they can function as drivers of rapid adaptive evolution. Previous work on the common sunflower identified 479 transcribed microsatellites where allele length significantly correlates with gene expression (eSTRs) in a stepwise manner. Here, a population genetic approach is used to test whether eSTR allele length variation is under selection. Genotypic variation among and within populations at 13 eSTRs was compared with that at 19 anonymous microsatellites in 672 individuals from 17 natural populations of sunflower from across a cline running from Saskatchewan to Oklahoma (distance of approximately 1600 km). Expected heterozygosity, allelic richness, and allelic diversity were significantly lower at eSTRs, a pattern consistent with higher relative rates of purifying selection. Further, an analysis of variation in microsatellite allele lengths (lnRV), and heterozygosities (lnRH), indicate recent selective sweeps at the eSTRs. Mean microsatellite allele lengths at four eSTRs within populations are significantly correlated with latitude consistent with the predictions of the tuning-knob model which predicts stepwise relationships between microsatellite allele length and phenotypes. This finding suggests that shorter or longer alleles at eSTRs may be favored in climatic extremes. Collectively, our results imply that eSTRs are likely under selection and that they may be playing a role in facilitating local adaptation across a well-defined cline in the common sunflower.
Collapse
Affiliation(s)
- Chathurani Ranathunge
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39762, USA.
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| | - Melody E Chimahusky
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39762, USA
| | - Mark E Welch
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39762, USA
| |
Collapse
|
16
|
Dekker ML, van Son LM, Leon-Kloosterziel KM, Hagmayer A, Furness AI, van Leeuwen JL, Pollux BJA. Multiple paternity in superfetatious live-bearing fishes. J Evol Biol 2022; 35:948-961. [PMID: 35612319 DOI: 10.1111/jeb.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
Abstract
Superfetation, the ability to carry several overlapping broods at different developmental stages, has evolved independently multiple times within the live-bearing fish family Poeciliidae. Even though superfetation is widespread among poeciliids, its evolutionary advantages remain unclear. Theory predicts that superfetation should increase polyandry by increasing the probability that temporally overlapping broods are fertilized by different fathers. Here, we test this key prediction in two poeciliid species that each carry two temporally overlapping broods: Poeciliopsis retropinna and P. turrubarensis. We collected 25 females per species from freshwater streams in South-Eastern Costa Rica and assessed multiple paternity by genotyping all their embryos (420 embryos for P. retropinna; 788 embryos for P. turrubarensis) using existing and newly developed microsatellite markers. We observed a high frequency of unique sires in the simultaneous, temporally overlapping broods in P. retropinna (in 56% of the pregnant females) and P. turrubarensis (79%). We found that the mean number of sires within females was higher than the number of sires within the separate broods (2.92 sires within mothers vs. 2.36 within separate broods in P. retropinna; and 3.40 vs 2.56 in P. turrubarensis). We further observed that there were significant differences in the proportion of offspring sired by each male in 42% of pregnant female P. retropinna and 65% of female P. turrubarensis; however, this significance applied to only 9% and 46% of the individual broods in P. retropinna and P. turrubarensis, respectively, suggesting that the unequal reproductive success of sires (i.e. reproductive skew) mostly originated from differences in paternal contribution between, rather than within broods. Together, these findings tentatively suggest that superfetation may promote polyandry and reproductive skew in live-bearing fishes.
Collapse
Affiliation(s)
- Myrthe L Dekker
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Lisa M van Son
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Andres Hagmayer
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Andrew I Furness
- Department of Biological and Marine Sciences, University of Hull, Hull, UK
| | - Johan L van Leeuwen
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Bart J A Pollux
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
17
|
Lin JH, Chen S, Pallavajjala A, Guedes LB, Lotan TL, Bacher JW, Eshleman JR. Validation of Long Mononucleotide Repeat Markers for Detection of Microsatellite Instability. J Mol Diagn 2021; 24:144-157. [PMID: 34864149 DOI: 10.1016/j.jmoldx.2021.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
Mismatch repair deficiency (dMMR) predicts response to immune checkpoint inhibitor therapy in solid tumors. Long mononucleotide repeat (LMR) markers may improve the interpretation of microsatellite instability (MSI) assays. Our cohorts included mismatch repair (MMR) proficient and dMMR colorectal cancer (CRC) samples, MMR proficient and dMMR endometrial cancer (EC) samples, dMMR prostate cancer samples, MSI-high (MSI-H) samples of other cancer types, and MSI-low (MSI-L) samples of various cancer types. MMR status was determined by immunohistochemical staining and/or MSI Analysis System Version 1.2 (V1.2). The sensitivity and specificity of the LMR MSI panel for dMMR detection were both 100% in CRC. The sensitivity values of the MSI V1.2 and LMR MSI panels in EC were 88% and 98%, respectively, and the specificity values were both 100%. The sensitivity of the LMR panel was 75% in dMMR prostate cancer detected by immunohistochemistry. The 22 samples of other cancer types that were previously classified as MSI-H were also classified as MSI-H using the LMR MSI panel. For the 12 samples that were previously classified as MSI-L, 1 sample was classified as microsatellite stable using the LMR MSI panel, 8 as MSI-L, and 3 as MSI-H. The LMR MSI panel showed high concordance to the MSI V1.2 panel in CRC and greater sensitivity in EC. The LMR MSI panel improves dMMR detection in noncolorectal cancers.
Collapse
Affiliation(s)
- John H Lin
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Suping Chen
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aparna Pallavajjala
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Liana B Guedes
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tamara L Lotan
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sol Goldman Pancreatic Cancer Research Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - James R Eshleman
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sol Goldman Pancreatic Cancer Research Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
18
|
Mizuguchi T, Toyota T, Miyatake S, Mitsuhashi S, Doi H, Kudo Y, Kishida H, Hayashi N, Tsuburaya RS, Kinoshita M, Fukuyama T, Fukuda H, Koshimizu E, Tsuchida N, Uchiyama Y, Fujita A, Takata A, Miyake N, Kato M, Tanaka F, Adachi H, Matsumoto N. Complete sequencing of expanded SAMD12 repeats by long-read sequencing and Cas9-mediated enrichment. Brain 2021; 144:1103-1117. [PMID: 33791773 DOI: 10.1093/brain/awab021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 11/14/2022] Open
Abstract
A pentanucleotide TTTCA repeat insertion into a polymorphic TTTTA repeat element in SAMD12 causes benign adult familial myoclonic epilepsy. Although the precise determination of the entire SAMD12 repeat sequence is important for molecular diagnosis and research, obtaining this sequence remains challenging when using conventional genomic/genetic methods, and even short-read and long-read next-generation sequencing technologies have been insufficient. Incomplete information regarding expanded repeat sequences may hamper our understanding of the pathogenic roles played by varying numbers of repeat units, genotype-phenotype correlations, and mutational mechanisms. Here, we report a new approach for the precise determination of the entire expanded repeat sequence and present a workflow designed to improve the diagnostic rates in various repeat expansion diseases. We examined 34 clinically diagnosed benign adult familial myoclonic epilepsy patients, from 29 families using repeat-primed PCR, Southern blot, and long-read sequencing with Cas9-mediated enrichment. Two cases with questionable results from repeat-primed PCR and/or Southern blot were confirmed as pathogenic using long-read sequencing with Cas9-mediated enrichment, resulting in the identification of pathogenic SAMD12 repeat expansions in 76% of examined families (22/29). Importantly, long-read sequencing with Cas9-mediated enrichment was able to provide detailed information regarding the sizes, configurations, and compositions of the expanded repeats. The inserted TTTCA repeat size and the proportion of TTTCA sequences among the overall repeat sequences were highly variable, and a novel repeat configuration was identified. A genotype-phenotype correlation study suggested that the insertion of even short (TTTCA)14 repeats contributed to the development of benign adult familial myoclonic epilepsy. However, the sizes of the overall TTTTA and TTTCA repeat units are also likely to be involved in the pathology of benign adult familial myoclonic epilepsy. Seven unsolved SAMD12-negative cases were investigated using whole-genome long-read sequencing, and infrequent, disease-associated, repeat expansions were identified in two cases. The strategic workflow resolved two questionable SAMD12-positive cases and two previously SAMD12-negative cases, increasing the diagnostic yield from 69% (20/29 families) to 83% (24/29 families). This study indicates the significant utility of long-read sequencing technologies to explore the pathogenic contributions made by various repeat units in complex repeat expansions and to improve the overall diagnostic rate.
Collapse
Affiliation(s)
- Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tomoko Toyota
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama 236-0004, Japan
| | - Satomi Mitsuhashi
- Department of Genomic Function and Diversity, Medical Research Institute Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yosuke Kudo
- Department of Neurology, Yokohama Brain and Spine Center, Yokohama 235-0012, Japan
| | - Hitaru Kishida
- Department of Neurology, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Noriko Hayashi
- Department of Neurology, Yamato Municipal Hospital, Yamato 242-8602, Japan
| | - Rie S Tsuburaya
- Department of Pediatric Neurology, National Hospital Organization Utano National Hospital, Kyoto 616-8255, Japan
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto 616-8255, Japan
| | - Tetsuhiro Fukuyama
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Hiromi Fukuda
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.,Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
19
|
Characterization of C9orf72 haplotypes to evaluate the effects of normal and pathological variations on its expression and splicing. PLoS Genet 2021; 17:e1009445. [PMID: 33780440 PMCID: PMC8031855 DOI: 10.1371/journal.pgen.1009445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/08/2021] [Accepted: 02/25/2021] [Indexed: 11/19/2022] Open
Abstract
Expansion of the hexanucleotide repeat (HR) in the first intron of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in Caucasians. All C9orf72-ALS/FTD patients share a common risk (R) haplotype. To study C9orf72 expression and splicing from the mutant R allele compared to the complementary normal allele in ALS/FTD patients, we initially created a detailed molecular map of the single nucleotide polymorphism (SNP) signature and the HR length of the various C9orf72 haplotypes in Caucasians. We leveraged this map to determine the allelic origin of transcripts per patient, and decipher the effects of pathological and normal HR lengths on C9orf72 expression and splicing. In C9orf72 ALS patients’ cells, the HR expanded allele, compared to non-R allele, was associated with decreased levels of a downstream initiated transcript variant and increased levels of transcripts initiated upstream of the HR. HR expanded R alleles correlated with high levels of unspliced intron 1 and activation of cryptic donor splice sites along intron 1. Retention of intron 1 was associated with sequential intron 2 retention. The SNP signature of C9orf72 haplotypes described here enables allele-specific analysis of transcriptional products and may pave the way to allele-specific therapeutic strategies. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are progressive neurodegenerative diseases, whose most frequent genetic cause is hexanucleotide repeat (HR) expansion from normal 2 to 20 repeats to pathological hundreds of repeats within a non-coding region of the C9orf72 gene. Haplotype is a specific combination of multiple polymorphic sites along a chromosome that are inherited together in block. We characterized the single nucleotide polymorphism (SNP) signature and HR length of the major C9orf72 haplotypes in Caucasians to identify the allelic origin of C9orf72 transcripts per patient and determine the effects of expanded HR on C9orf72 gene expression and splicing. In C9orf72 ALS patients’ cells, the HR expanded allele, compared to non-R allele, was associated with decreased levels of downstream initiated transcript variant, increased levels of upstream initiated transcripts, accumulation of introns 1 and 2, and abnormal splicing at cryptic splice sites along intron 1. The C9orf72 haplotypes DNA signatures described here are valuable for studying C9-ALS/FTD pathogenesis and for developing allele-specific therapeutic strategies.
Collapse
|
20
|
Whole genome survey and microsatellite motif identification of Artemia franciscana. Biosci Rep 2021; 41:227936. [PMID: 33629105 PMCID: PMC7955100 DOI: 10.1042/bsr20203868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/17/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Artemia is an industrially important genus used in aquaculture as a nutritious diet for fish and as an aquatic model organism for toxicity tests. However, despite the significance of Artemia, genomic research remains incomplete and knowledge on its genomic characteristics is insufficient. In particular, Artemia franciscana of North America has been widely used in fisheries of other continents, resulting in invasion of native species. Therefore, studies on population genetics and molecular marker development as well as morphological analyses are required to investigate its population structure and to discriminate closely related species. Here, we used the Illumina Hi-Seq platform to estimate the genomic characteristics of A. franciscana through genome survey sequencing (GSS). Further, simple sequence repeat (SSR) loci were identified for microsatellite marker development. The predicted genome size was ∼867 Mb using K-mer (a sequence of k characters in a string) analysis (K = 17), and heterozygosity and duplication rates were 0.655 and 0.809%, respectively. A total of 421467 SSRs were identified from the genome survey assembly, most of which were dinucleotide motifs with a frequency of 77.22%. The present study will be a useful basis in genomic and genetic research for A. franciscana.
Collapse
|
21
|
Shia J. The diversity of tumours with microsatellite instability: molecular mechanisms and impact upon microsatellite instability testing and mismatch repair protein immunohistochemistry. Histopathology 2021; 78:485-497. [PMID: 33010064 DOI: 10.1111/his.14271] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
Microsatellite instability (MSI) as a distinct molecular phenotype in human neoplasms was first recognised in 1993. Since then there has been tremendous progress in our understanding of this phenotype, including its genomic drivers and functional consequences. Currently, the multiple lines of investigation on MSI seem to have converged upon one important facet: its diversity, both genotypically and phenotypically, and both within and across tumour types. This review article offers a pathologist's perspective on our current understanding of this diversity, and highlights its potentially significant impact on the effective use of our current MSI detection tools: PCR- or sequencing-based MSI testing and mismatch repair protein immunohistochemistry.
Collapse
Affiliation(s)
- Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
22
|
Song X, Yang T, Zhang X, Yuan Y, Yan X, Wei Y, Zhang J, Zhou C. Comparison of the Microsatellite Distribution Patterns in the Genomes of Euarchontoglires at the Taxonomic Level. Front Genet 2021; 12:622724. [PMID: 33719337 PMCID: PMC7953163 DOI: 10.3389/fgene.2021.622724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
Microsatellite or simple sequence repeat (SSR) instability within genes can induce genetic variation. The SSR signatures remain largely unknown in different clades within Euarchontoglires, one of the most successful mammalian radiations. Here, we conducted a genome-wide characterization of microsatellite distribution patterns at different taxonomic levels in 153 Euarchontoglires genomes. Our results showed that the abundance and density of the SSRs were significantly positively correlated with primate genome size, but no significant relationship with the genome size of rodents was found. Furthermore, a higher level of complexity for perfect SSR (P-SSR) attributes was observed in rodents than in primates. The most frequent type of P-SSR was the mononucleotide P-SSR in the genomes of primates, tree shrews, and colugos, while mononucleotide or dinucleotide motif types were dominant in the genomes of rodents and lagomorphs. Furthermore, (A)n was the most abundant motif in primate genomes, but (A)n, (AC)n, or (AG)n was the most abundant motif in rodent genomes which even varied within the same genus. The GC content and the repeat copy numbers of P-SSRs varied in different species when compared at different taxonomic levels, reflecting underlying differences in SSR mutation processes. Notably, the CDSs containing P-SSRs were categorized by functions and pathways using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations, highlighting their roles in transcription regulation. Generally, this work will aid future studies of the functional roles of the taxonomic features of microsatellites during the evolution of mammals in Euarchontoglires.
Collapse
Affiliation(s)
- Xuhao Song
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Institute of Ecology, China West Normal University, Nanchong, China
| | - Tingbang Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Institute of Ecology, China West Normal University, Nanchong, China
| | - Xinyi Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Ying Yuan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Xianghui Yan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Yi Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Institute of Ecology, China West Normal University, Nanchong, China
| | - Jun Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Institute of Ecology, China West Normal University, Nanchong, China
| | - Caiquan Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Institute of Ecology, China West Normal University, Nanchong, China
| |
Collapse
|
23
|
Ali A, Han K, Liang P. Role of Transposable Elements in Gene Regulation in the Human Genome. Life (Basel) 2021; 11:118. [PMID: 33557056 PMCID: PMC7913837 DOI: 10.3390/life11020118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs), also known as mobile elements (MEs), are interspersed repeats that constitute a major fraction of the genomes of higher organisms. As one of their important functional impacts on gene function and genome evolution, TEs participate in regulating the expression of genes nearby and even far away at transcriptional and post-transcriptional levels. There are two known principal ways by which TEs regulate the expression of genes. First, TEs provide cis-regulatory sequences in the genome with their intrinsic regulatory properties for their own expression, making them potential factors for regulating the expression of the host genes. TE-derived cis-regulatory sites are found in promoter and enhancer elements, providing binding sites for a wide range of trans-acting factors. Second, TEs encode for regulatory RNAs with their sequences showed to be present in a substantial fraction of miRNAs and long non-coding RNAs (lncRNAs), indicating the TE origin of these RNAs. Furthermore, TEs sequences were found to be critical for regulatory functions of these RNAs, including binding to the target mRNA. TEs thus provide crucial regulatory roles by being part of cis-regulatory and regulatory RNA sequences. Moreover, both TE-derived cis-regulatory sequences and TE-derived regulatory RNAs have been implicated in providing evolutionary novelty to gene regulation. These TE-derived regulatory mechanisms also tend to function in a tissue-specific fashion. In this review, we aim to comprehensively cover the studies regarding these two aspects of TE-mediated gene regulation, mainly focusing on the mechanisms, contribution of different types of TEs, differential roles among tissue types, and lineage-specificity, based on data mostly in humans.
Collapse
Affiliation(s)
- Arsala Ali
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Kyudong Han
- Department of Microbiology, Dankook University, Cheonan 31116, Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre of Biotechnologies, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
24
|
Genome-wide in silico identification and characterization of Simple Sequence Repeats in diverse completed SARS-CoV-2 genomes. GENE REPORTS 2021; 23:101020. [PMID: 33521382 PMCID: PMC7835092 DOI: 10.1016/j.genrep.2021.101020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/06/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Simple sequence repeats (SSRs) or, Microsatellites are short repeat sequences that have been extensively studied in eukaryotic (plants) and prokaryotic (bacteria) organisms. Compared to other organisms, the presence and incidence of SSR on viral genomes are less studied. With the emergence of novel infectious viruses over the past few decades, it is imperative to study the genetic diversity in such viruses to predict their evolutionary and functional changes over time. Following the emergence of SARS-CoV-2, we have assembled 121 complete genomes reported from 31 countries across the six continents for the identification and characterization of SSR repeats. Using two independent SSR identification tools, we have found remarkable consistency in the diversity of microsatellites pattern (38–42 per genome) found in the 121 analyzed SARS-CoV-2 genomes indication their important role for genome stability. Among the identified motifs, trinucleotide and hexanucleotide repeats were found to be the most abundant form followed by mono- and di-nucleotide. There were no tetra- or penta-nucleotide repeats in the analyzed SARS-CoV-2 genomes. The discovery of microsatellites in SARS-CoV-2 genomes may become useful for the population genetics, evolutionary analysis, strain identification and genetic variation.
Collapse
|
25
|
Krajka A, Panasiuk I, Misiura A, Wójcik GM. On the mutation model used in the fingerprinting DNA. BIO-ALGORITHMS AND MED-SYSTEMS 2020. [DOI: 10.1515/bams-2020-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractObjectivesThe most common technique of determining biological paternity or another relationship among people are the investigations of DNA polymorphism called Fingerprinting DNA. The key concept of these investigations is the statistical analysis, which leads to obtain the likelihood ratio (LR), sometimes called the paternity index.MethodsAmong the different assumptions stated in these computations is a mutation model (this model is used for all the computations).Results and conclusionsAlthough its influence on LR is usually negligible, there are some situations (when the mother–child mutation arises) when it is crucial.
Collapse
Affiliation(s)
- Andrzej Krajka
- Chair of Intelligent Systems , Maria Curie-Sklodowska University , Lublin , Poland
| | - Ireneusz Panasiuk
- Chair of Neuroinformatics and Biomedical Engineering , Maria Curie-Sklodowska University , Lublin , Poland
| | - Adam Misiura
- Chair of Neuroinformatics and Biomedical Engineering , Maria Curie-Sklodowska University , Lublin , Poland
| | - Grzegorz M. Wójcik
- Chair of Neuroinformatics and Biomedical Engineering , Maria Curie-Sklodowska University , Lublin , Poland
| |
Collapse
|
26
|
Lizardo DY, Kuang C, Hao S, Yu J, Huang Y, Zhang L. Immunotherapy efficacy on mismatch repair-deficient colorectal cancer: From bench to bedside. Biochim Biophys Acta Rev Cancer 2020; 1874:188447. [PMID: 33035640 PMCID: PMC7886024 DOI: 10.1016/j.bbcan.2020.188447] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancers (CRCs) with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) often have sustained responses to immune checkpoint inhibitors (ICIs) including selective monoclonal antibodies against Program Death 1 (PD-1), Programmed Death Ligand 1(PD-L1), and cytotoxic T lymphocyte associated antigen 4 (CTLA-4). However, a substantial fraction of dMMR CRCs do not respond or ultimately develop resistance to immunotherapy. The majority (~85%) of CRCs are MMR proficient (pMMR) or microsatellite stable (MSS) and lack response to ICIs. Understanding the biology and mechanisms underlying dMMR-associated immunogenicity is urgently needed for improving the therapeutic efficacy of immunotherapy on CRC. Compared to pMMR/MSS CRCs, dMMR/MSI CRCs typically have increased tumor mutational burden (TMB), lower response rate to 5-fluorouracil-based chemotherapy, distinctive immunological features such as high tumor-infiltrating lymphocytes (TILs), and better prognosis. Here, we review the current understanding of the clinical relevance of dMMR/MSI in CRCs, the molecular basis and rationales for targeting dMMR CRC with immunotherapy, and clinical approaches using ICIs as single agents or in combination with other therapies for MSI-H CRCs. Furthermore, we address the potential strategies to sensitize pMMR/MSS CRC to immunotherapy by converting an immunologically "cold" microenvironment into a "hot" one.
Collapse
Affiliation(s)
- Darleny Y Lizardo
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chaoyuan Kuang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Suisui Hao
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yi Huang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
27
|
Deshpande M, Romanski PA, Rosenwaks Z, Gerhardt J. Gynecological Cancers Caused by Deficient Mismatch Repair and Microsatellite Instability. Cancers (Basel) 2020; 12:E3319. [PMID: 33182707 PMCID: PMC7697596 DOI: 10.3390/cancers12113319] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 01/05/2023] Open
Abstract
Mutations in mismatch repair genes leading to mismatch repair (MMR) deficiency (dMMR) and microsatellite instability (MSI) have been implicated in multiple types of gynecologic malignancies. Endometrial carcinoma represents the largest group, with approximately 30% of these cancers caused by dMMR/MSI. Thus, testing for dMMR is now routine for endometrial cancer. Somatic mutations leading to dMMR account for approximately 90% of these cancers. However, in 5-10% of cases, MMR protein deficiency is due to a germline mutation in the mismatch repair genes MLH1, MSH2, MSH6, PMS2, or EPCAM. These germline mutations, known as Lynch syndrome, are associated with an increased risk of both endometrial and ovarian cancer, in addition to colorectal, gastric, urinary tract, and brain malignancies. So far, gynecological cancers with dMMR/MSI are not well characterized and markers for detection of MSI in gynecological cancers are not well defined. In addition, currently advanced endometrial cancers have a poor prognosis and are treated without regard to MSI status. Elucidation of the mechanism causing dMMR/MSI gynecological cancers would aid in diagnosis and therapeutic intervention. Recently, a new immunotherapy was approved for the treatment of solid tumors with MSI that have recurred or progressed after failing traditional treatment strategies. In this review, we summarize the MMR defects and MSI observed in gynecological cancers, their prognostic value, and advances in therapeutic strategies to treat these cancers.
Collapse
Affiliation(s)
- Madhura Deshpande
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
| | - Phillip A. Romanski
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
28
|
Jeong CW, Herlemann A, Cowan JE, Broering JM, Ten Ham RMT, Wilson LS, Carroll PR, Cooperberg MR. The Relative Impact of Urinary and Sexual Function vs Bother on Health Utility for Men With Prostate Cancer. JNCI Cancer Spectr 2020; 4:pkaa044. [PMID: 33134826 PMCID: PMC7583149 DOI: 10.1093/jncics/pkaa044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/28/2020] [Accepted: 05/20/2020] [Indexed: 11/24/2022] Open
Abstract
Function and bother are related but distinct aspects of health-related quality of life. The objective of this study was to compare quantitatively the relative impacts of function and bother in urinary, sexual, and bowel outcomes on health utility as a reflection of health-related quality of life in men with prostate cancer. Our analysis included participants in the Cancer of the Prostate Strategic Urologic Research Endeavor utility supplementary study, with a final cohort of 1617 men. Linear regression on the patients’ function and bother summary scores (0-100) from the University of California, Los Angeles Prostate Cancer Index was performed to predict bias-corrected health utilities. Urinary and sexual bother were associated with each health utility, and their coefficients were 3.7 and 20.8 times greater, respectively, than those of the corresponding function. To our knowledge, our study provides the first quantitative and direct comparison of the impacts of function vs bother on health utility.
Collapse
Affiliation(s)
- Chang Wook Jeong
- Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, CA, USA.,Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Annika Herlemann
- Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, CA, USA.,Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Janet E Cowan
- Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, CA, USA
| | - Jeanette M Broering
- Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, CA, USA
| | - Renske M T Ten Ham
- Health Policy and Economics, Department of Clinical Pharmacy, University of California, San Francisco, CA, USA.,Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Leslie S Wilson
- Health Policy and Economics, Department of Clinical Pharmacy, University of California, San Francisco, CA, USA
| | - Peter R Carroll
- Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, CA, USA
| | - Matthew R Cooperberg
- Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, CA, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| |
Collapse
|
29
|
Yamazaki H, Sekiya T, Nagayama S, Hirasawa K, Tokura K, Sasaki A, Ichiyanagi H, Tojo K. Development of microsatellite markers for a soricid water shrew, Chimarrogale platycephalus, and their successful use for individual identification. Genes Genet Syst 2020; 95:201-210. [PMID: 33012772 DOI: 10.1266/ggs.20-00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The soricid water shrew Chimarrogale platycephalus is a mammalian species endemic to the Japanese Islands. The animals inhabit the islands of Honshu and Kyushu, and are considered to be extinct in Shikoku. Information on this water shrew from Honshu and Kyushu is scarce, and C. platycephalus is registered on many local governments' red lists as an endangered species. There are very few studies on their ethology, ecology or phylogenetics, due to difficulties related to the shrews being both nocturnal and aquatic: to study C. platycephalus, field research must be conducted in mountain streams at night. To overcome these challenges, we previously established a genetic analysis method using the feces of C. platycephalus, as a result of which the amount of phylogenetic and phylogeographic data has increased and our understanding of the species has improved. In this study, microsatellite markers were developed, and analyses using markers for 21 loci were performed. Moreover, to confirm the ability of these 21 microsatellite markers to differentiate individuals, all markers were tested using fecal and tissue specimens from 12 individuals reared separately in an aquarium. Using as few as 12 of these loci, individual differentiation with 100% accuracy should be achievable. The development of microsatellite markers in this study and the establishment of individual identification methods should greatly contribute to future ecological, ethological, population genetics and biogeographical research on C. platycephalus.
Collapse
Affiliation(s)
- Haruka Yamazaki
- Division of Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University
| | - Tomohiro Sekiya
- Division of Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University
| | | | | | | | | | | | - Koji Tojo
- Division of Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University.,Department of Biology, Faculty of Science, Shinshu University.,Institute of Mountain Science, Shinshu University
| |
Collapse
|
30
|
Ralf A, Lubach D, Kousouri N, Winkler C, Schulz I, Roewer L, Purps J, Lessig R, Krajewski P, Ploski R, Dobosz T, Henke L, Henke J, Larmuseau MHD, Kayser M. Identification and characterization of novel rapidly mutating Y‐chromosomal short tandem repeat markers. Hum Mutat 2020; 41:1680-1696. [DOI: 10.1002/humu.24068] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Arwin Ralf
- Department of Genetic Identification Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Delano Lubach
- Department of Genetic Identification Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Nefeli Kousouri
- Department of Genetic Identification Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | | | - Iris Schulz
- Institut für Blutgruppenforschung LGC GmbH Cologne Germany
| | - Lutz Roewer
- Abteilung für Forensische Genetik, Institut für Rechtsmedizin und Forensische Wissenschaften Charite ́‐Universitätsmedizin Berlin Berlin Germany
| | - Josephine Purps
- Abteilung für Forensische Genetik, Institut für Rechtsmedizin und Forensische Wissenschaften Charite ́‐Universitätsmedizin Berlin Berlin Germany
| | - Rüdiger Lessig
- Institut für Rechtsmedizin Universitätsklinikum Halle Halle/Saale Germany
| | - Pawel Krajewski
- Department of Medical Genetics and Department of Forensic Medicine Medical University Warsaw Warsaw Poland
| | - Rafal Ploski
- Department of Medical Genetics and Department of Forensic Medicine Medical University Warsaw Warsaw Poland
| | - Tadeusz Dobosz
- Department of Forensic Medicine Wroclaw Medical University Wroclaw Poland
| | - Lotte Henke
- Institut für Blutgruppenforschung LGC GmbH Cologne Germany
| | - Jürgen Henke
- Institut für Blutgruppenforschung LGC GmbH Cologne Germany
| | | | - Manfred Kayser
- Department of Genetic Identification Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| |
Collapse
|
31
|
Shortt JA, Ruggiero RP, Cox C, Wacholder AC, Pollock DD. Finding and extending ancient simple sequence repeat-derived regions in the human genome. Mob DNA 2020; 11:11. [PMID: 32095164 PMCID: PMC7027126 DOI: 10.1186/s13100-020-00206-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Background Previously, 3% of the human genome has been annotated as simple sequence repeats (SSRs), similar to the proportion annotated as protein coding. The origin of much of the genome is not well annotated, however, and some of the unidentified regions are likely to be ancient SSR-derived regions not identified by current methods. The identification of these regions is complicated because SSRs appear to evolve through complex cycles of expansion and contraction, often interrupted by mutations that alter both the repeated motif and mutation rate. We applied an empirical, kmer-based, approach to identify genome regions that are likely derived from SSRs. Results The sequences flanking annotated SSRs are enriched for similar sequences and for SSRs with similar motifs, suggesting that the evolutionary remains of SSR activity abound in regions near obvious SSRs. Using our previously described P-clouds approach, we identified ‘SSR-clouds’, groups of similar kmers (or ‘oligos’) that are enriched near a training set of unbroken SSR loci, and then used the SSR-clouds to detect likely SSR-derived regions throughout the genome. Conclusions Our analysis indicates that the amount of likely SSR-derived sequence in the human genome is 6.77%, over twice as much as previous estimates, including millions of newly identified ancient SSR-derived loci. SSR-clouds identified poly-A sequences adjacent to transposable element termini in over 74% of the oldest class of Alu (roughly, AluJ), validating the sensitivity of the approach. Poly-A’s annotated by SSR-clouds also had a length distribution that was more consistent with their poly-A origins, with mean about 35 bp even in older Alus. This work demonstrates that the high sensitivity provided by SSR-Clouds improves the detection of SSR-derived regions and will enable deeper analysis of how decaying repeats contribute to genome structure.
Collapse
Affiliation(s)
- Jonathan A Shortt
- 1Colorado Center for Personalized Medicine, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Robert P Ruggiero
- 2Department of Biology, Southeast Missouri State University, Cape Girardeau, MO 63701 USA
| | - Corey Cox
- 1Colorado Center for Personalized Medicine, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Aaron C Wacholder
- 3Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - David D Pollock
- 4Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045 USA
| |
Collapse
|
32
|
Louzada S, Lopes M, Ferreira D, Adega F, Escudeiro A, Gama-Carvalho M, Chaves R. Decoding the Role of Satellite DNA in Genome Architecture and Plasticity-An Evolutionary and Clinical Affair. Genes (Basel) 2020; 11:E72. [PMID: 31936645 PMCID: PMC7017282 DOI: 10.3390/genes11010072] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Repetitive DNA is a major organizational component of eukaryotic genomes, being intrinsically related with their architecture and evolution. Tandemly repeated satellite DNAs (satDNAs) can be found clustered in specific heterochromatin-rich chromosomal regions, building vital structures like functional centromeres and also dispersed within euchromatin. Interestingly, despite their association to critical chromosomal structures, satDNAs are widely variable among species due to their high turnover rates. This dynamic behavior has been associated with genome plasticity and chromosome rearrangements, leading to the reshaping of genomes. Here we present the current knowledge regarding satDNAs in the light of new genomic technologies, and the challenges in the study of these sequences. Furthermore, we discuss how these sequences, together with other repeats, influence genome architecture, impacting its evolution and association with disease.
Collapse
Affiliation(s)
- Sandra Louzada
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Mariana Lopes
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Daniela Ferreira
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Ana Escudeiro
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Margarida Gama-Carvalho
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| |
Collapse
|
33
|
Du L, Liu Q, Zhao K, Tang J, Zhang X, Yue B, Fan Z. PSMD: An extensive database for pan-species microsatellite investigation and marker development. Mol Ecol Resour 2019; 20:283-291. [PMID: 31599098 DOI: 10.1111/1755-0998.13098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022]
Abstract
Microsatellites are widely distributed throughout nearly all genomes which have been extensively exploited as powerful genetic markers for diverse applications due to their high polymorphisms. Their length variations are involved in gene regulation and implicated in numerous genetic diseases even in cancers. Although much effort has been devoted in microsatellite database construction, the existing microsatellite databases still had some drawbacks, such as limited number of species, unfriendly export format, missing marker development, lack of compound microsatellites and absence of gene annotation, which seriously restricted researchers to perform downstream analysis. In order to overcome the above limitations, we developed PSMD (Pan-Species Microsatellite Database, http://big.cdu.edu.cn/psmd/) as a web-based database to facilitate researchers to easily identify microsatellites, exploit reliable molecular markers and compare microsatellite distribution pattern on genome-wide scale. In current release, PSMD comprises 678,106,741 perfect microsatellites and 43,848,943 compound microsatellites from 18,408 organisms, which covered almost all species with available genomic data. In addition to interactive browse interface, PSMD also offers a flexible filter function for users to quickly gain desired microsatellites from large data sets. PSMD allows users to export GFF3 formatted file and CSV formatted statistical file for downstream analysis. We also implemented an online tool for analysing occurrence of microsatellites with user-defined parameters. Furthermore, Primer3 was embedded to help users to design high-quality primers with customizable settings. To our knowledge, PSMD is the most extensive resource which is likely to be adopted by scientists engaged in biological, medical, environmental and agricultural research.
Collapse
Affiliation(s)
- Lianming Du
- Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Qin Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China.,College of Life Sciences and Food Engineering, Yibin University, Yibin, China
| | - Kelei Zhao
- Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Zhenxin Fan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Du XH, Wang H, Sun J, Xiong L, Yu J. Hybridization, characterization and transferability of SSRs in the genus Morchella. Fungal Biol 2019; 123:528-538. [PMID: 31196522 DOI: 10.1016/j.funbio.2019.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/18/2019] [Accepted: 05/03/2019] [Indexed: 11/25/2022]
Abstract
Recently, Morchella importuna, M. sextelata, M. eximia, M. exuberans, Mel-13, and Mel-21 have been successfully cultivated in China and planting areas rapidly expanded because of their economic importance. Effective molecular markers are urgently needed for accurately identifying morel cultivars. Microsatellites are widely utilized for strain authentication in many fungal groups. To our knowledge, for the first time we characterized the distribution of microsatellites (simple sequence repeats, SSRs) in the M. importuna genome with 12902 SSRs and reported the first set of SSRs developed for Morchella species. Mono-nucleotides (66.2 %) were the most frequent motifs, followed by tri- (15.4 %), di- (12.1 %), tetra- (3.7 %), penta- (1.3 %) and hexa-nucleotides (1.3 %). We tested the cross-species amplification of 180 SSRs on 24 samples from the six species and high cross-species transferability of SSRs (87.7 %) was found. Among twenty-two microsatellites selected for genetic diversity analysis on 127 samples from the six species, fifteen to twenty polymorphic loci were identified in M. importuna, M. sextelata, M. eximia, M. exuberans, Mel-13 and Mel-21. Interspecific hybridization events were detected among morel species, indicating the potential application of morel crossbreeding. Ninety-one cultivated samples were characterized as new cultivars with different genotypes, but cultivar names used for these by farmers was confusing, with misnaming, synonyms and homonyms. Our results are not only helpful for cultivar identification and morel breeding programs in China, but also provide molecular tools for genetic studies in morels.
Collapse
Affiliation(s)
- Xi-Hui Du
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| | - Hanchen Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jingjing Sun
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Lunyi Xiong
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jingjing Yu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
35
|
Alam CM, Iqbal A, Sharma A, Schulman AH, Ali S. Microsatellite Diversity, Complexity, and Host Range of Mycobacteriophage Genomes of the Siphoviridae Family. Front Genet 2019; 10:207. [PMID: 30923537 PMCID: PMC6426759 DOI: 10.3389/fgene.2019.00207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 02/26/2019] [Indexed: 01/21/2023] Open
Abstract
The incidence, distribution, and variation of simple sequence repeats (SSRs) in viruses is instrumental in understanding the functional and evolutionary aspects of repeat sequences. Full-length genome sequences retrieved from NCBI were used for extraction and analysis of repeat sequences using IMEx software. We have also developed two MATLAB-based tools for extraction of gene locations from GenBank in tabular format and simulation of this data with SSR incidence data. Present study encompassing 147 Mycobacteriophage genomes revealed 25,284 SSRs and 1,127 compound SSRs (cSSRs) through IMEx. Mono- to hexa-nucleotide motifs were present. The SSR count per genome ranged from 78 (M100) to 342 (M58) while cSSRs incidence ranged from 1 (M138) to 17 (M28, M73). Though cSSRs were present in all the genomes, their frequency and SSR to cSSR conversion percentage varied from 1.08 (M138 with 93 SSRs) to 8.33 (M116 with 96 SSRs). In terms of localization, the SSRs were predominantly localized to coding regions (∼78%). Interestingly, genomes of around 50 kb contained a similar number of SSRs/cSSRs to that in a 110 kb genome, suggesting functional relevance for SSRs which was substantiated by variation in motif constitution between species with different host range. The three species with broad host range (M97, M100, M116) have around 90% of their mono-nucleotide repeat motifs composed of G or C and only M16 has both A and T mononucleotide motifs. Around 20% of the di-nucleotide repeat motifs in the genomes exhibiting a broad host range were CT/TC, which were either absent or represented to a much lesser extent in the other genomes.
Collapse
Affiliation(s)
- Chaudhary Mashhood Alam
- Luke/BI Plant Genome Dynamics Lab, Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.,Ingenious e-Brain Solutions, Gurugram, India
| | - Asif Iqbal
- PIRO Technologies Private Limited, New Delhi, India
| | - Anjana Sharma
- Department of Biomedical Sciences, SRCASW, University of Delhi, New Delhi, India
| | - Alan H Schulman
- Luke/BI Plant Genome Dynamics Lab, Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.,Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Safdar Ali
- Department of Biomedical Sciences, SRCASW, University of Delhi, New Delhi, India.,Department of Biological Sciences, Aliah University, Kolkata, India
| |
Collapse
|
36
|
Purwoko D, Cartealy IC, Tajuddin T, Dinarti D, Sudarsono S. SSR identification and marker development for sago palm based on NGS genome data. BREEDING SCIENCE 2019; 69:1-10. [PMID: 31086478 PMCID: PMC6507712 DOI: 10.1270/jsbbs.18061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023]
Abstract
Sago palm (Metroxylon sagu Rottb.) is one of the most productive carbohydrate-producing crops. Unfortunately, only limited information regarding sago palm genetics is available. This study aimed to develop simple sequence repeat (SSR) markers using sago palm NGS genomic data and use these markers to evaluate the genetic diversity of sago palm from Indonesia. De novo assembly of partial sago palm genomic data and subsequent SSR mining identified 29,953 contigs containing 31,659 perfect SSR loci and 31,578 contigs with 33,576 imperfect SSR loci. The perfect SSR loci density was 132.57/Mb, and AG, AAG and AAAT were the most frequent SSR motifs. Five hundred perfect SSR loci were randomly selected and used for designing SSR primers; 93 SSR primer pairs were identified. After synteny analysis using rice genome sequences, 20 primer pairs were validated using 11 sago palm accessions, and seven primers generated polymorphic alleles. Genetic diversity analysis of 41 sago palm accessions from across Indonesia using polymorphic SSR loci indicated the presence of three clusters. These results demonstrated the success of SSR identification and marker development for sago palm based on NGS genome data, which can be further used for assisting sago palm breeding in the future.
Collapse
Affiliation(s)
- Devit Purwoko
- Laboratory for Biotechnology, Agroindustrial Technology and Biotechnology, Agency for Assessment and Application of Technology,
Build. 630 Puspiptek Area Setu, South Tangerang 15314, Banten,
Indonesia
| | - Imam Civi Cartealy
- Laboratory for Biotechnology, Agroindustrial Technology and Biotechnology, Agency for Assessment and Application of Technology,
Build. 630 Puspiptek Area Setu, South Tangerang 15314, Banten,
Indonesia
| | - Teuku Tajuddin
- Laboratory for Biotechnology, Agroindustrial Technology and Biotechnology, Agency for Assessment and Application of Technology,
Build. 630 Puspiptek Area Setu, South Tangerang 15314, Banten,
Indonesia
| | - Diny Dinarti
- Plant Molecular Biology Laboratory, Department of Agronomy and Horticulture, Bogor Agricultural University,
Darmaga, Bogor 16680, West Java,
Indonesia
| | - Sudarsono Sudarsono
- Plant Molecular Biology Laboratory, Department of Agronomy and Horticulture, Bogor Agricultural University,
Darmaga, Bogor 16680, West Java,
Indonesia
| |
Collapse
|
37
|
Murphy SC, Evans JM, Tsai KL, Clark LA. Length variations within the Merle retrotransposon of canine PMEL: correlating genotype with phenotype. Mob DNA 2018; 9:26. [PMID: 30123327 PMCID: PMC6091007 DOI: 10.1186/s13100-018-0131-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/27/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The antisense insertion of a canine short interspersed element (SINEC_Cf) in the pigmentation gene PMEL (or SILV) causes a coat pattern phenotype in dogs termed merle. Merle is a semi-dominant trait characterized by patches of full pigmentation on a diluted background. The oligo(dT) tract of the Merle retrotransposon is long and uninterrupted and is prone to dramatic truncation. Phenotypically wild-type individuals carrying shorter oligo(dT) lengths of the Merle allele have been previously described and termed cryptic merles. Two additional coat patterns, dilute merle (uniform, steely-grey coat) and harlequin merle (white background with black patches), also appear in breeds segregating the Merle allele. RESULTS Sequencing of all PMEL exons in a dilute and a harlequin merle reveals that variation exists solely within the oligo(dT) tract of the SINEC_Cf insertion. In fragment analyses from 259 dogs heterozygous for Merle, we observed a spectrum of oligo(dT) lengths spanning 25 to 105 base pairs (bp), with ranges that correspond to the four varieties of the merle phenotype: cryptic (25-55 bp), dilute (66-74 bp), standard (78-86 bp), and harlequin (81-105 bp). Somatic contractions of the oligo(dT) were observed in 43% of standard and 51% of harlequin merle dogs. A small proportion (4.6%) of the study cohort inherited de novo contractions or expansions of the Merle allele that resulted in dilute or harlequin coat patterns, respectively. CONCLUSIONS The phenotypic consequence of the Merle SINE insertion directly depends upon oligo(dT) length. In transcription, we propose that the use of an alternative splice site increases with oligo(dT) length, resulting in insufficient PMEL and a pigment dilution spectrum, from dark grey to complete hypopigmentation. We further propose that during replication, contractions and expansions increase in frequency with oligo(dT) length, causing coat variegation (somatic events in melanocytes) and the spontaneous appearance of varieties of the merle phenotype (germline events).
Collapse
Affiliation(s)
- Sarah C. Murphy
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| | - Jacquelyn M. Evans
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| | - Kate L. Tsai
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| | - Leigh Anne Clark
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| |
Collapse
|
38
|
Li C, Lenhard B, Luscombe NM. Integrated analysis sheds light on evolutionary trajectories of young transcription start sites in the human genome. Genome Res 2018; 28:676-688. [PMID: 29618487 PMCID: PMC5932608 DOI: 10.1101/gr.231449.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/21/2018] [Indexed: 01/06/2023]
Abstract
Understanding the molecular mechanisms and evolution of the gene regulatory system remains a major challenge in biology. Transcription start sites (TSSs) are especially interesting because they are central to initiating gene expression. Previous studies revealed widespread transcription initiation and fast turnover of TSSs in mammalian genomes. Yet, how new TSSs originate and how they evolve over time remain poorly understood. To address these questions, we analyzed ∼200,000 human TSSs by integrating evolutionary (inter- and intra-species) and functional genomic data, particularly focusing on evolutionarily young TSSs that emerged in the primate lineage. TSSs were grouped according to their evolutionary age using sequence alignment information as a proxy. Comparisons of young and old TSSs revealed that (1) new TSSs emerge through a combination of intrinsic factors, like the sequence properties of transposable elements and tandem repeats, and extrinsic factors such as their proximity to existing regulatory modules; (2) new TSSs undergo rapid evolution that reduces the inherent instability of repeat sequences associated with a high propensity of TSS emergence; and (3) once established, the transcriptional competence of surviving TSSs is gradually enhanced, with evolutionary changes subject to temporal (fewer regulatory changes in younger TSSs) and spatial constraints (fewer regulatory changes in more isolated TSSs). These findings advance our understanding of how regulatory innovations arise in the genome throughout evolution and highlight the genomic robustness and evolvability in these processes.
Collapse
Affiliation(s)
- Cai Li
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Boris Lenhard
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Sars International Centre for Marine Molecular Biology, University of Bergen, N-5008 Bergen, Norway
| | - Nicholas M Luscombe
- The Francis Crick Institute, London NW1 1AT, United Kingdom.,UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom.,Okinawa Institute of Science & Technology Graduate University, Okinawa, 904-0495, Japan
| |
Collapse
|
39
|
Saina JK, Li ZZ, Gichira AW, Liao YY. The Complete Chloroplast Genome Sequence of Tree of Heaven (Ailanthus altissima (Mill.) (Sapindales: Simaroubaceae), an Important Pantropical Tree. Int J Mol Sci 2018; 19:E929. [PMID: 29561773 PMCID: PMC5979363 DOI: 10.3390/ijms19040929] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
Ailanthus altissima (Mill.) Swingle (Simaroubaceae) is a deciduous tree widely distributed throughout temperate regions in China, hence suitable for genetic diversity and evolutionary studies. Previous studies in A. altissima have mainly focused on its biological activities, genetic diversity and genetic structure. However, until now there is no published report regarding genome of this plant species or Simaroubaceae family. Therefore, in this paper, we first characterized A. altissima complete chloroplast genome sequence. The tree of heaven chloroplast genome was found to be a circular molecule 160,815 base pairs (bp) in size and possess a quadripartite structure. The A. altissima chloroplast genome contains 113 unique genes of which 79 and 30 are protein coding and transfer RNA (tRNA) genes respectively and also 4 ribosomal RNA genes (rRNA) with overall GC content of 37.6%. Microsatellite marker detection identified A/T mononucleotides as majority SSRs in all the seven analyzed genomes. Repeat analyses of seven Sapindales revealed a total of 49 repeats in A. altissima, Rhus chinensis, Dodonaea viscosa, Leitneria floridana, while Azadirachta indica, Boswellia sacra, and Citrus aurantiifolia had a total of 48 repeats. The phylogenetic analysis using protein coding genes revealed that A. altissima is a sister to Leitneria floridana and also suggested that Simaroubaceae is a sister to Rutaceae family. The genome information reported here could be further applied for evolution and invasion, population genetics, and molecular studies in this plant species and family.
Collapse
Affiliation(s)
- Josphat K Saina
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China.
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Zhi-Zhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Andrew W Gichira
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Yi-Ying Liao
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China.
| |
Collapse
|
40
|
Taheri S, Lee Abdullah T, Yusop MR, Hanafi MM, Sahebi M, Azizi P, Shamshiri RR. Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants. Molecules 2018; 23:E399. [PMID: 29438290 PMCID: PMC6017569 DOI: 10.3390/molecules23020399] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 11/17/2022] Open
Abstract
Microsatellites, or simple sequence repeats (SSRs), are one of the most informative and multi-purpose genetic markers exploited in plant functional genomics. However, the discovery of SSRs and development using traditional methods are laborious, time-consuming, and costly. Recently, the availability of high-throughput sequencing technologies has enabled researchers to identify a substantial number of microsatellites at less cost and effort than traditional approaches. Illumina is a noteworthy transcriptome sequencing technology that is currently used in SSR marker development. Although 454 pyrosequencing datasets can be used for SSR development, this type of sequencing is no longer supported. This review aims to present an overview of the next generation sequencing, with a focus on the efficient use of de novo transcriptome sequencing (RNA-Seq) and related tools for mining and development of microsatellites in plants.
Collapse
Affiliation(s)
- Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Thohirah Lee Abdullah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Rafii Yusop
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamed Musa Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Parisa Azizi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Redmond Ramin Shamshiri
- Smart Farming Technology Research Center, Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
41
|
Deng K, Deng R, Fan J, Chen E. Transcriptome analysis and development of simple sequence repeat (SSR) markers in Zingiber striolatum Diels. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:125-134. [PMID: 29398844 PMCID: PMC5787116 DOI: 10.1007/s12298-017-0485-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/16/2017] [Accepted: 11/06/2017] [Indexed: 05/26/2023]
Abstract
Illumina-based paired-end sequencing technology was used for the high-throughput transcriptome sequencing of combined Zingiber striolatum Diels tissues (i.e., root, stem, leaf, flower, and fruit tissues). More than 130 million sequencing reads were generated, and a de novo assembly yielded 287,959 contigs and 112,107 unigenes with an average length of 1029 and 28,891 bp, respectively. Similarity searches with known sequences led to the identification of 51,804 (46.21%) genes. Of the annotated unigenes, 6867 and 51,987 were assigned to Gene Ontology and Clusters of Orthologous Groups categories, respectively. Additionally, 8384 simple sequence repeats (SSRs) were identified as potential molecular markers in the unigenes. Thirty pairs of polymerase chain reaction primers were designed and used to validate the unigenes and assess the associated genomic polymorphism. The PCR amplification products for 25 primer pairs were of the expected size. These primers may represent usable molecular markers. The thousands of SSR markers identified in the present study may be useful for analyses of genetic diversity, genetic linkage mapping, and the identification and improvement of varieties during the breeding of Z. striolatum Diels. The unigene sequences and SSR markers described herein may serve as valuable resources for future investigations of Z. striolatum Diels.
Collapse
Affiliation(s)
- Kuanping Deng
- Zunyi Academy of Agricultural Sciences, Zunyi, 563100 Guizhou China
| | - Renju Deng
- Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou China
| | - Jianxin Fan
- Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou China
| | - Enfa Chen
- Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou China
| |
Collapse
|
42
|
Xu L, Haasl RJ, Sun J, Zhou Y, Bickhart DM, Li J, Song J, Sonstegard TS, Van Tassell CP, Lewin HA, Liu GE. Systematic Profiling of Short Tandem Repeats in the Cattle Genome. Genome Biol Evol 2018; 9:20-31. [PMID: 28172841 PMCID: PMC5381564 DOI: 10.1093/gbe/evw256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2016] [Indexed: 12/13/2022] Open
Abstract
Short tandem repeats (STRs), or microsatellites, are genetic variants with repetitive 2–6 base pair motifs in many mammalian genomes. Using high-throughput sequencing and experimental validations, we systematically profiled STRs in five Holsteins. We identified a total of 60,106 microsatellites and generated the first high-resolution STR map, representing a substantial pool of polymorphism in dairy cattle. We observed significant STRs overlap with functional genes and quantitative trait loci (QTL). We performed evolutionary and population genetic analyses using over 20,000 common dinucleotide STRs. Besides corroborating the well-established positive correlation between allele size and variance in allele size, these analyses also identified dozens of outlier STRs based on two anomalous relationships that counter expected characteristics of neutral evolution. And one STR locus overlaps with a significant region of a summary statistic designed to detect STR-related selection. Additionally, our results showed that only 57.1% of STRs located within SNP-based linkage disequilibrium (LD) blocks whereas the other 42.9% were out of blocks. Therefore, a substantial number of STRs are not tagged by SNPs in the cattle genome, likely due to STR's distinct mutation mechanism and elevated polymorphism. This study provides the foundation for future STR-based studies of cattle genome evolution and selection.
Collapse
Affiliation(s)
- Lingyang Xu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, MD.,Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Animal and Avian Sciences, University of Maryland, College Park, MD
| | - Ryan J Haasl
- Department of Biology, University of Wisconsin - Platteville, WI
| | - Jiajie Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang Zhou
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, MD.,College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shannxi, China
| | - Derek M Bickhart
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, MD
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD
| | - Tad S Sonstegard
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, MD
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, MD
| | - Harris A Lewin
- Department of Evolution and Ecology, University of California, Davis, CA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, MD
| |
Collapse
|
43
|
Xu Y, Li W, Hu Z, Zeng T, Shen Y, Liu S, Zhang X, Li J, Yue B. Genome-wide mining of perfect microsatellites and tetranucleotide orthologous microsatellites estimates in six primate species. Gene 2017; 643:124-132. [PMID: 29223358 DOI: 10.1016/j.gene.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 12/16/2022]
Abstract
Advancement in genome sequencing and in silico mining tools have provided new opportunities for comparative primate genomics of microsatellites. The SSRs (simple sequence repeats) numbers were not correlated with the genome size (Pearson, r=0.310, p=0.550), and were positively correlated with the total length of SSRs (Pearson, r=0.992, p=0.00). A total of 224,289 tetranucleotide orthologous microsatellites families and 367 single-copy orthologous SSRs loci were found in six primate species by homologous alignment. The inner mutation types of single-copy orthologous SSRs loci included the copy number variance, point mutation, and chromosomal translocation. The accumulated repeat times and average length of tetranucleotide orthologous microsatellites in Rhinopithecus roxellana, Papio anubis and Macaca mulatta were longer than Homo sapiens and Pan troglodytes, which showed the tetranucleotide orthologous SSRs loci had more repeat times and longer average length on the branches with earlier divergence time, one exception may be Microcebus murinus as a primitive monkey with a smallest morphology in Malagasy. Our conclusion indicated that single-copy tetranucleotide orthologous SSRs sequences accumulated individual mutation more slowly through time in H. sapiens and P. troglodytes than in R. roxellanae, P. anubis and M. mulatta. However, such divergence wouldn't arise uniformly in all branches of the primate tree. A comparison of genomic sequence assemblages would offer remarkable insights about comparisons and contrasts, and the evolutionary processes of the microsatellites involved in human and nonhuman primate species.
Collapse
Affiliation(s)
- Yongtao Xu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Wujiao Li
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Zongxiu Hu
- Yibin Hengshu Animal Models Resource Industry Technology Academy, Yibin 644609, PR China
| | - Tao Zeng
- Yibin Hengshu Animal Models Resource Industry Technology Academy, Yibin 644609, PR China
| | - Yongmei Shen
- Sichuan Engineering Research Center for Medical Animal, Chengdu 610064, PR China
| | - Sanxu Liu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Jing Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
44
|
Li L, Fang Z, Zhou J, Chen H, Hu Z, Gao L, Chen L, Ren S, Ma H, Lu L, Zhang W, Peng H. An accurate and efficient method for large-scale SSR genotyping and applications. Nucleic Acids Res 2017; 45:e88. [PMID: 28184437 PMCID: PMC5449614 DOI: 10.1093/nar/gkx093] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/01/2017] [Indexed: 01/10/2023] Open
Abstract
Accurate and efficient genotyping of simple sequence repeats (SSRs) constitutes the basis of SSRs as an effective genetic marker with various applications. However, the existing methods for SSR genotyping suffer from low sensitivity, low accuracy, low efficiency and high cost. In order to fully exploit the potential of SSRs as genetic marker, we developed a novel method for SSR genotyping, named as AmpSeq-SSR, which combines multiplexing polymerase chain reaction (PCR), targeted deep sequencing and comprehensive analysis. AmpSeq-SSR is able to genotype potentially more than a million SSRs at once using the current sequencing techniques. In the current study, we simultaneously genotyped 3105 SSRs in eight rice varieties, which were further validated experimentally. The results showed that the accuracies of AmpSeq-SSR were nearly 100 and 94% with a single base resolution for homozygous and heterozygous samples, respectively. To demonstrate the power of AmpSeq-SSR, we adopted it in two applications. The first was to construct discriminative fingerprints of the rice varieties using 3105 SSRs, which offer much greater discriminative power than the 48 SSRs commonly used for rice. The second was to map Xa21, a gene that confers persistent resistance to rice bacterial blight. We demonstrated that genome-scale fingerprints of an organism can be efficiently constructed and candidate genes, such as Xa21 in rice, can be accurately and efficiently mapped using an innovative strategy consisting of multiplexing PCR, targeted sequencing and computational analysis. While the work we present focused on rice, AmpSeq-SSR can be readily extended to animals and micro-organisms.
Collapse
Affiliation(s)
- Lun Li
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| | - Zhiwei Fang
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| | - Junfei Zhou
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| | - Hong Chen
- Center for Development of Science and Technology, Ministry of Agriculture, P.R. China, Beijing 100122, China
| | - Zhangfeng Hu
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| | - Lifen Gao
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| | - Lihong Chen
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| | - Sheng Ren
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA.,Department of Mathematical Sciences, McMicken College of Arts & Sciences, University of Cincinnati, 2815 Commons Way, Cincinnati, OH 45221-0025, USA
| | - Hongyu Ma
- Thermo Fisher Scientific, Building 6, No. 27, Xin Jinqiao Rd., Pudong, Shanghai 201206, China
| | - Long Lu
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China.,Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Weixiong Zhang
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China.,Department of Computer Science and Engineering, Washington University in St Louis, MO 63130, USA.,Department of Genetics, Washington University School of Medicine, St Louis, MO 63130, USA
| | - Hai Peng
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| |
Collapse
|
45
|
Salmona J, Heller R, Quéméré E, Chikhi L. Climate change and human colonization triggered habitat loss and fragmentation in Madagascar. Mol Ecol 2017; 26:5203-5222. [DOI: 10.1111/mec.14173] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Jordi Salmona
- Instituto Gulbenkian de Ciênca; Oeiras Portugal
- Laboratoire Evolution & Diversité Biologique; UMR 5174 CNRS; Université Paul Sabatier; Toulouse France
- UMR 5174 EDB; Université de Toulouse; Toulouse France
| | - Rasmus Heller
- Department of Biology; University of Copenhagen; Copenhagen N Denmark
| | - Erwan Quéméré
- CEFS; Université de Toulouse; INRA; Castanet-Tolosan France
| | - Lounès Chikhi
- Instituto Gulbenkian de Ciênca; Oeiras Portugal
- Laboratoire Evolution & Diversité Biologique; UMR 5174 CNRS; Université Paul Sabatier; Toulouse France
- UMR 5174 EDB; Université de Toulouse; Toulouse France
| |
Collapse
|
46
|
Wang Y, Liu K, Bi D, Zhou S, Shao J. Characterization of the transcriptome and EST-SSR development in Boea clarkeana, a desiccation-tolerant plant endemic to China. PeerJ 2017; 5:e3422. [PMID: 28630801 PMCID: PMC5474092 DOI: 10.7717/peerj.3422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/16/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Desiccation-tolerant (DT) plants can recover full metabolic competence upon rehydration after losing most of their cellular water (>95%) for extended periods of time. Functional genomic approaches such as transcriptome sequencing can help us understand how DT plants survive and respond to dehydration, which has great significance for plant biology and improving the drought tolerance of crops. Boea clarkeana Hemsl. (Gesneriaceae) is a DT dicotyledonous herb. Its genomic sequences characteristics remain unknown. Based on transcriptomic analyses, polymorphic EST-SSR (simple sequence repeats in expressed sequence tags) molecular primers can be designed, which will greatly facilitate further investigations of the population genetics and demographic histories of DT plants. METHODS In the present study, we used the platform Illumina HiSeq™2000 and de novo assembly technology to obtain leaf transcriptomes of B. clarkeana and conducted a BLASTX alignment of the sequencing data and protein databases for sequence classification and annotation. Then, based on the sequence information, the EST-SSR markers were developed, and the functional annotation of ESTs containing polymorphic SSRs were obtained through BLASTX. RESULTS A total of 91,449 unigenes were generated from the leaf cDNA library of B. clarkeana. Based on a sequence similarity search with a known protein database, 72,087 unigenes were annotated. Among the annotated unigenes, a total of 71,170 unigenes showed significant similarity to the known proteins of 463 popular model species in the Nr database, and 59,962 unigenes and 32,336 unigenes were assigned to Gene Ontology (GO) classifications and Cluster of Orthologous Groups (COG), respectively. In addition, 44,924 unigenes were mapped in 128 KEGG pathways. Furthermore, a total of 7,610 unigenes with 8,563 microsatellites were found. Seventy-four primer pairs were selected from 436 primer pairs designed for polymorphism validation. SSRs with higher polymorphism rates were concentrated on dinucleotides, pentanucleotides and hexanucleotides. Finally, 17 pairs with stable, highly polymorphic loci were selected for polymorphism screening. There was a total of 65 alleles, with 2-6 alleles at each locus. Primarily due to the unique biological characteristics of plants, the HE (0-0.196), HO (0.082-0.14) and PIC (0-0.155) per locus were very low. The functional annotation distribution centered on ESTs containing di- and tri-nucleotide SSRs, and the ESTs containing primers BC2, BC4 and BC12 were annotated to vegetative dehydration/desiccation pathways. DISCUSSION This work is the first genetic study of B. clarkeana as a new plant resource of DT genes. A substantial number of transcriptome sequences were generated in this study. These sequences are valuable resources for gene annotation and discovery as well as molecular marker development. These sequences could also provide a valuable basis for future molecular studies of B. clarkeana.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, Anhui, China
| | - Kun Liu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, Anhui, China
| | - De Bi
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shoubiao Zhou
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, China
| | - Jianwen Shao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
47
|
Zumaraga MP, Medina PJ, Recto JM, Abrahan L, Azurin E, Tanchoco CC, Jimeno CA, Palmes-Saloma C. Targeted next generation sequencing of the entire vitamin D receptor gene reveals polymorphisms correlated with vitamin D deficiency among older Filipino women with and without fragility fracture. J Nutr Biochem 2016; 41:98-108. [PMID: 28068558 DOI: 10.1016/j.jnutbio.2016.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/08/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
This study aimed to discover genetic variants in the entire 101 kB vitamin D receptor (VDR) gene for vitamin D deficiency in a group of postmenopausal Filipino women using targeted next generation sequencing (TNGS) approach in a case-control study design. A total of 50 women with and without osteoporotic fracture seen at the Philippine Orthopedic Center were included. Blood samples were collected for determination of serum vitamin D, calcium, phosphorus, glucose, blood urea nitrogen, creatinine, aspartate aminotransferase, alanine aminotransferase and as primary source for targeted VDR gene sequencing using the Ion Torrent Personal Genome Machine. The variant calling was based on the GATK best practice workflow and annotated using Annovar tool. A total of 1496 unique variants in the whole 101-kb VDR gene were identified. Novel sequence variations not registered in the dbSNP database were found among cases and controls at a rate of 23.1% and 16.6% of total discovered variants, respectively. One disease-associated enhancer showed statistically significant association to low serum 25-hydroxy vitamin D levels (Pearson chi-square P-value=0.009). The transcription factor binding site prediction program PROMO predicted the disruption of three transcription factor binding sites in this enhancer region. These findings show the power of TNGS in identifying sequence variations in a very large gene and the surprising results obtained in this study greatly expand the catalog of known VDR sequence variants that may represent an important clue in the emergence of vitamin D deficiency. Such information will also provide the additional guidance necessary toward a personalized nutritional advice to reach sufficient vitamin D status.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- National Institute of Molecular Biology and Biotechnology, University of the Philippines, Diliman, Quezon City, Philippines; Philippine Genome Center, Quezon City, Philippines; Food and Nutrition Research Institute, Department of Science and Technology, Taguig City, Philippines
| | - Paul Julius Medina
- Philippine Orthopedic Center, Banawe, Quezon City, Philippines; Mindanao State University - College of Medicine, Iligan City, Philippines
| | - Juan Miguel Recto
- National Institute of Molecular Biology and Biotechnology, University of the Philippines, Diliman, Quezon City, Philippines
| | - Lauro Abrahan
- Philippine Orthopedic Center, Banawe, Quezon City, Philippines
| | - Edelyn Azurin
- Philippine Orthopedic Center, Banawe, Quezon City, Philippines
| | - Celeste C Tanchoco
- Food and Nutrition Research Institute, Department of Science and Technology, Taguig City, Philippines
| | - Cecilia A Jimeno
- Philippine Society of Endocrinology, Diabetes and Metabolism, Pasig City, Philippines
| | - Cynthia Palmes-Saloma
- National Institute of Molecular Biology and Biotechnology, University of the Philippines, Diliman, Quezon City, Philippines; Philippine Genome Center, Quezon City, Philippines.
| |
Collapse
|
48
|
Leaf Transcriptome Sequencing for Identifying Genic-SSR Markers and SNP Heterozygosity in Crossbred Mango Variety 'Amrapali' (Mangifera indica L.). PLoS One 2016; 11:e0164325. [PMID: 27736892 PMCID: PMC5063295 DOI: 10.1371/journal.pone.0164325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022] Open
Abstract
Mango (Mangifera indica L.) is called “king of fruits” due to its sweetness, richness of taste, diversity, large production volume and a variety of end usage. Despite its huge economic importance genomic resources in mango are scarce and genetics of useful horticultural traits are poorly understood. Here we generated deep coverage leaf RNA sequence data for mango parental varieties ‘Neelam’, ‘Dashehari’ and their hybrid ‘Amrapali’ using next generation sequencing technologies. De-novo sequence assembly generated 27,528, 20,771 and 35,182 transcripts for the three genotypes, respectively. The transcripts were further assembled into a non-redundant set of 70,057 unigenes that were used for SSR and SNP identification and annotation. Total 5,465 SSR loci were identified in 4,912 unigenes with 288 type I SSR (n ≥ 20 bp). One hundred type I SSR markers were randomly selected of which 43 yielded PCR amplicons of expected size in the first round of validation and were designated as validated genic-SSR markers. Further, 22,306 SNPs were identified by aligning high quality sequence reads of the three mango varieties to the reference unigene set, revealing significantly enhanced SNP heterozygosity in the hybrid Amrapali. The present study on leaf RNA sequencing of mango varieties and their hybrid provides useful genomic resource for genetic improvement of mango.
Collapse
|
49
|
Amos W, Kosanović D, Eriksson A. Inter-allelic interactions play a major role in microsatellite evolution. Proc Biol Sci 2016; 282:20152125. [PMID: 26511050 DOI: 10.1098/rspb.2015.2125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microsatellite mutations identified in pedigrees confirm that most changes involve the gain or loss of single repeats. However, an unexpected pattern is revealed when the resulting data are plotted on standardized scales that range from the shortest to longest allele at a locus. Both mutation rate and mutation bias reveal a strong dependency on allele length relative to other alleles at the same locus. We show that models in which alleles mutate independently cannot explain these patterns. Instead, both mutation probability and direction appear to involve interactions between homologues in heterozygous individuals. Simple models in which the longer homologue in heterozygotes is more likely to mutate and/or biased towards contraction readily capture the observed trends. The exact model remains unclear in all its details but inter-allelic interactions are a vital component, implying a link between demographic history and the mode and tempo of microsatellite evolution.
Collapse
Affiliation(s)
- William Amos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Danica Kosanović
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Anders Eriksson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
50
|
Bastías A, Correa F, Rojas P, Almada R, Muñoz C, Sagredo B. Identification and Characterization of Microsatellite Loci in Maqui (Aristotelia chilensis [Molina] Stunz) Using Next-Generation Sequencing (NGS). PLoS One 2016; 11:e0159825. [PMID: 27459734 PMCID: PMC4961369 DOI: 10.1371/journal.pone.0159825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/09/2016] [Indexed: 12/18/2022] Open
Abstract
Maqui (Aristotelia chilensis [Molina] Stunz) is a small dioecious tree native to South America with edible fruit characterized by very high antioxidant capacity and anthocyanin content. To preserve maqui as a genetic resource it is essential to study its genetic diversity. However, the complete genome is unknown and only a few gene sequences are available in databases. Simple sequence repeats (SSR) markers, which are neutral, co-dominant, reproducible and highly variable, are desirable to support genetic studies in maqui populations. By means of identification and characterization of microsatellite loci from a maqui genotype, using 454 sequencing technology, we develop a set of SSR for this species. Obtaining a total of 165,043 shotgun genome sequences, with an average read length of 387 bases, we covered 64 Mb of the maqui genome. Reads were assembled into 4,832 contigs, while 98,546 reads remained as singletons, generating a total of 103,378 consensus genomic sequences. A total of 24,494 SSR maqui markers were identified. Of them, 15,950 SSR maqui markers were classified as perfects. The most common SSR motifs were dinucleotide (31%), followed by tetranucleotide (26%) and trinucleotide motifs (24%). The motif AG/CT (28.4%) was the most abundant, while the motif AC (89 bp) was the largest. Eleven polymorphic SSRs were selected and used to analyze a population of 40 maqui genotypes. Polymorphism information content (PIC) ranged from 0.117 to 0.82, with an average of 0.58. Non-significant groups were observed in the maqui population, showing a panmictic genetic structure. In addition, we also predicted 11150 putative genes and 3 microRNAs (miRNAs) in maqui sequences. This results, including partial sequences of genes, some miRNAs and SSR markers from high throughput next generation sequencing (NGS) of maqui genomic DNA, constitute the first platform to undertake genetic and molecular studies of this important species.
Collapse
Affiliation(s)
- Adriana Bastías
- Instituto de Investigaciones Agropecuarias (INIA) CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - Francisco Correa
- Facultad de Ingeniería, Universidad de Talca, Avenida Lircay s/n, Talca
| | - Pamela Rojas
- Instituto de Investigaciones Agropecuarias (INIA) CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - Rubén Almada
- Centro de Estudios Avanzados en Fruticultura (CEAF), Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - Carlos Muñoz
- Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa N° 11315, La Pintana, Santiago de Chile, Chile
| | - Boris Sagredo
- Instituto de Investigaciones Agropecuarias (INIA) CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
- * E-mail:
| |
Collapse
|