1
|
Kowdley DS, Kowdley KV. Appropriate Clinical Genetic Testing of Hemochromatosis Type 2-4, Including Ferroportin Disease. Appl Clin Genet 2021; 14:353-361. [PMID: 34413666 PMCID: PMC8369226 DOI: 10.2147/tacg.s269622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/18/2021] [Indexed: 11/23/2022] Open
Abstract
Hereditary hemochromatosis (HH) is an inherited iron overload disorder due to a deficiency of hepcidin, or a failure of hepcidin to degrade ferroportin. The most common form of HH, Type 1 HH, is most commonly due to a homozygous C282Y mutation in HFE and is relatively well understood in significance and action; however, other rare forms of HH (Types 2–4) exist and are more difficult to identify and diagnose in clinical practice. In this review, we describe the clinical characteristics of HH Type 2–4 and the mutation patterns that have been described in these conditions. We also review the different methods for genetic testing available in clinical practice and a pragmatic approach to the patient with suspected non-HFE HH.
Collapse
Affiliation(s)
- Devan S Kowdley
- Liver Institute Northwest and Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Kris V Kowdley
- Liver Institute Northwest and Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| |
Collapse
|
2
|
Rishi G, Subramaniam VN. The liver in regulation of iron homeostasis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G157-G165. [PMID: 28596277 DOI: 10.1152/ajpgi.00004.2017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 01/31/2023]
Abstract
The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism.
Collapse
Affiliation(s)
- Gautam Rishi
- Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - V Nathan Subramaniam
- Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
3
|
Honda H, Nagamachi A, Inaba T. -7/7q- syndrome in myeloid-lineage hematopoietic malignancies: attempts to understand this complex disease entity. Oncogene 2014; 34:2413-25. [PMID: 24998854 DOI: 10.1038/onc.2014.196] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 01/19/2023]
Abstract
The recurrence of chromosomal abnormalities in a specific subtype of cancer strongly suggests that dysregulated gene expression in the corresponding region has a critical role in disease pathogenesis. -7/7q-, defined as the entire loss of chromosome 7 and partial deletion of its long arm, is among the most frequently observed chromosomal aberrations in myeloid-lineage hematopoietic malignancies such as myelodysplastic syndrome and acute myeloid leukemia, particularly in patients treated with cytotoxic agents and/or irradiation. Tremendous efforts have been made to clarify the molecular mechanisms underlying the disease development, and several possible candidate genes have been cloned. However, the study is still underway, and the entire nature of this syndrome is not completely understood. In this review, we focus on the attempts to identify commonly deleted regions in patients with -7/7q-; isolate the candidate genes responsible for disease development, cooperative genes and the factors affecting disease prognosis; and determine effective and potent therapeutic approaches. We also refer to the possibility that the accumulation of multiple gene haploinsufficiency, rather than the loss of a single tumor suppressor gene, may contribute to the development of diseases with large chromosomal deletions such as -7/7q-.
Collapse
Affiliation(s)
- H Honda
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - A Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - T Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis. Blood 2010; 116:5357-67. [PMID: 20826723 DOI: 10.1182/blood-2010-04-281360] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Erythropoietin (Epo) is required for erythroid progenitor differentiation. Although Epo crosslinking experiments have revealed the presence of Epo receptor (EpoR)-associated proteins that could never be identified, EpoR is considered to be a paradigm for homodimeric cytokine receptors. We purified EpoR-binding partners and identified the type 2 transferrin receptor (TfR2) as a component of the EpoR complex corresponding to proteins previously detected in cross-linking experiments. TfR2 is involved in iron metabolism by regulating hepcidin production in liver cells. We show that TfR2 and EpoR are synchronously coexpressed during the differentiation of erythroid progenitors. TfR2 associates with EpoR in the endoplasmic reticulum and is required for the efficient transport of this receptor to the cell surface. Erythroid progenitors from TfR2(-/-)mice show a decreased sensitivity to Epo and increased circulating Epo levels. In human erythroid progenitors, TfR2 knockdown delays the terminal differentiation. Erythroid cells produce growth differentiation factor-15, a cytokine that suppresses hepatic hepcidin production in certain erythroid diseases such as thalassemia. We show that the production of growth differentiation factor-15 by erythroid cells is dependent on both Epo and TfR2. Taken together, our results show that TfR2 exhibits a non hepatic function as a component of the EpoR complex and is required for efficient erythropoiesis.
Collapse
|
5
|
Gonçalves JP, Grãos M, Valente AX. POLAR MAPPER: a computational tool for integrated visualization of protein interaction networks and mRNA expression data. J R Soc Interface 2009; 6:881-96. [PMID: 19091689 PMCID: PMC2684442 DOI: 10.1098/rsif.2008.0407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 11/04/2008] [Indexed: 11/25/2022] Open
Abstract
Polar Mapper is a computational application for exposing the architecture of protein interaction networks. It facilitates the system-level analysis of mRNA expression data in the context of the underlying protein interaction network. Preliminary analysis of a human protein interaction network and comparison of the yeast oxidative stress and heat shock gene expression responses are addressed as case studies.
Collapse
Affiliation(s)
- Joana P. Gonçalves
- Unidade de Sistemas Biológicos, Biocant, 3060-197 Cantanhede, Portugal
- KDBIO Group, INESC-ID, 1000-029 Lisbon, Portugal
- IST, Technical University of Lisbon, 1169-047 Lisbon, Portugal
| | - Mário Grãos
- Unidade de Biologia Celular, Biocant, 3060-197 Cantanhede, Portugal
| | - André X.C.N. Valente
- Unidade de Sistemas Biológicos, Biocant, 3060-197 Cantanhede, Portugal
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
6
|
Law FBF, Chen YW, Wong KY, Ying J, Tao Q, Langford C, Lee PY, Law S, Cheung RWL, Chui CH, Tsao GSW, Lam KY, Wong J, Srivastava G, Tang JCO. Identification of a novel tumor transforming gene GAEC1 at 7q22 which encodes a nuclear protein and is frequently amplified and overexpressed in esophageal squamous cell carcinoma. Oncogene 2007; 26:5877-88. [PMID: 17384685 PMCID: PMC2875854 DOI: 10.1038/sj.onc.1210390] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 01/15/2007] [Accepted: 02/07/2007] [Indexed: 12/13/2022]
Abstract
By comparative DNA fingerprinting, we identified a 357-bp DNA fragment frequently amplified in esophageal squamous cell carcinomas (ESCC). This fragment overlaps with an expressed sequence tag mapped to 7q22. Further 5' and 3'-rapid amplification of cDNA ends revealed that it is part of a novel, single-exon gene with full-length mRNA of 2052 bp and encodes a nuclear protein of 109 amino acids ( approximately 15 kDa). This gene, designated as gene amplified in esophageal cancer 1 (GAEC1), was located within a 1-2 Mb amplicon at 7q22.1 identified by high-resolution 1 Mb array-comparative genomic hybridization in 6/10 ESCC cell lines. GAEC1 was ubiquitously expressed in normal tissues including esophageal and gastrointestinal organs; with amplification and overexpression in 6/10 (60%) ESCC cell lines and 34/99 (34%) primary tumors. Overexpression of GAEC1 in 3T3 mouse fibroblasts caused foci formation and colony formation in soft agar, comparable to H-ras and injection of GAEC1-transfected 3T3 cells into athymic nude mice formed undifferentiated sarcoma in vivo, indicating that GAEC1 is a transforming oncogene. Although no significant correlation was observed between GAEC1 amplification and clinicopathological parameters and prognosis, our study demonstrated that overexpressed GAEC1 has tumorigenic potential and suggest that overexpressed GAEC1 may play an important role in ESCC pathogenesis.
Collapse
Affiliation(s)
- FBF Law
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - YW Chen
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - KY Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - J Ying
- Cancer Epigenetics Laboratory, State Key Laboratory in Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong
| | - Q Tao
- Cancer Epigenetics Laboratory, State Key Laboratory in Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong
| | | | - PY Lee
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - S Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - RWL Cheung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - C. H. Chui
- Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hong Kong
| | - GSW Tsao
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - KY Lam
- Department of Pathology, Griffith University, Queensland, Australia
| | - J Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - G Srivastava
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Johnny CO Tang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hong Kong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, PR China
| |
Collapse
|
7
|
Calzolari A, Raggi C, Deaglio S, Sposi NM, Stafsnes M, Fecchi K, Parolini I, Malavasi F, Peschle C, Sargiacomo M, Testa U. TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J Cell Sci 2006; 119:4486-98. [PMID: 17046995 DOI: 10.1242/jcs.03228] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Transferrin receptor 2 (TfR2) possesses a YQRV motif similar to the YTRF motif of transferrin receptor 1 (TfR1) responsible for the internalization and secretion through the endosomal pathway. Raft biochemical dissection showed that TfR2 is a component of the low-density Triton-insoluble (LDTI) plasma membrane domain, able to co-immunoprecipitate with caveolin-1 and CD81, two structural raft proteins. In addition, subcellular fractionation experiments showed that TfR1, which spontaneously undergoes endocytosis and recycling, largely distributed to intracellular organelles, whereas TfR2 was mainly associated with the plasma membrane. Given the TfR2 localization in lipid rafts, we tested its capability to activate cell signalling. Interaction with an anti-TfR2 antibody or with human or bovine holotransferrin showed that it activated ERK1/ERK2 and p38 MAP kinases. Integrity of lipid rafts was required for MAPK activation. Co-localization of TfR2 with CD81, a raft tetraspanin exported through exosomes, prompted us to investigate exosomes released by HepG2 and K562 cells into culture medium. TfR2, CD81 and to a lesser extent caveolin-1, were found to be part of the exosomal budding vesicles. In conclusion, the present study indicates that TfR2 localizes in LDTI microdomains, where it promotes cell signalling, and is exported out of the cells through the exosome pathway, where it acts as an intercellular messenger.
Collapse
Affiliation(s)
- Alessia Calzolari
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 2006; 121:144-58. [PMID: 16904380 DOI: 10.1016/j.clim.2006.06.010] [Citation(s) in RCA: 438] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 06/16/2006] [Accepted: 06/16/2006] [Indexed: 11/21/2022]
Abstract
The transferrin receptor (TfR) is a cell membrane-associated glycoprotein involved in the cellular uptake of iron and in the regulation of cell growth. Iron uptake occurs via the internalization of iron-loaded transferrin (Tf) mediated by the interaction with the TfR. In addition, the TfR may also contain other growth regulatory properties in certain normal and malignant cells. The elevated levels of TfR in malignancies, its relevance in cancer, and the extracellular accessibility of this molecule make it an excellent antigen for the treatment of cancer using antibodies. The TfR can be targeted by monoclonal antibodies specific for the extracellular domain of the receptor. In this review, we summarize advancements in the basic physiology of the TfR including structure, function, and expression. We also discuss the efficacy of targeting the TfR using cytotoxic antibodies that inhibit cell growth and/or induce apoptosis in targeted malignant cells.
Collapse
Affiliation(s)
- Tracy R Daniels
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
9
|
Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyoma. ACTA ACUST UNITED AC 2005; 158:1-26. [PMID: 15771900 DOI: 10.1016/j.cancergencyto.2004.08.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 08/11/2004] [Accepted: 08/11/2004] [Indexed: 12/22/2022]
Affiliation(s)
- Avery A Sandberg
- Department of DNA Diagnostics, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| |
Collapse
|
10
|
Tacke F, Schöffski P, Luedde T, Meier PN, Ganser A, Manns MP, Trautwein C. Analysis of factors contributing to higher erythropoietin levels in patients with chronic liver disease. Scand J Gastroenterol 2004; 39:259-66. [PMID: 15074396 DOI: 10.1080/00365520310008340] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Dysregulated erythropoietin (EPO) plasma levels may play a role in the pathophysiology of chronic liver disease (CLD) because chronic anaemia is frequently observed in patients with liver cirrhosis. We aimed to identify the factors contributing to EPO regulation in patients with CLD. METHODS Plasma EPO concentrations were correlated with clinical and laboratory parameters in 111 CLD patients and 220 healthy controls. RESULTS Anaemia, though generally mild, was common in CLD patients, and thrombocytopenia and previous bleeding episodes were observed in two-thirds of the patients. Plasma EPO levels were significantly elevated in CLD patients (P < 0.001). EPO increased according to Child's stages of cirrhosis, independently of the aetiology of CLD. EPO correlated with haemoglobin (r= -0.498, P < 0.001). Additionally, EPO independently correlated with markers of liver dysfunction, e.g. prothrombin time, albumin concentration or cholinesterase activity, and platelet count. EPO was also significantly elevated in patients with a current bleeding tendency and with prior gastrointestinal haemorrhages. EPO levels were increased in patients with impaired pulmonary function, e.g. decreased diffusion capacity, vital capacity or hyperventilation. Interestingly, plasma interleukin-6 (IL-6) concentrations positively correlated with EPO (r=0.277, P = 0.003), suggesting a possible mechanism of EPO upregulation in patients with CLD through IL-6 dependent pathways, e.g. binding of STAT transcription factors in the putative EPO promoter region. CONCLUSIONS EPO is upregulated in patients with chronic liver diseases in response to anaemia, bleeding complications, impaired pulmonary function, thrombocytopenia and liver dysfunction. IL-6 dependent pathways could be involved in mediating elevated EPO levels in CLD patients.
Collapse
Affiliation(s)
- F Tacke
- Dept. of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Giovannone B, Lee E, Laviola L, Giorgino F, Cleveland KA, Smith RJ. Two novel proteins that are linked to insulin-like growth factor (IGF-I) receptors by the Grb10 adapter and modulate IGF-I signaling. J Biol Chem 2003; 278:31564-73. [PMID: 12771153 DOI: 10.1074/jbc.m211572200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Grb10 is a protein that binds to the intracellular domains of activated tyrosine kinase receptors, including insulin-like growth factor (IGF-I) and insulin receptors. This occurs through the interaction of two C-terminal Grb10 motifs (BPS and Src homology domains) with receptor phosphotyrosine residues. Published data from transfection/overexpression studies support both positive and negative regulatory effects of Grb10, thus leaving its physiological role unclear. Because Grb10 has the structure of an adapter protein, the objective of this study was to determine whether Grb10 links other proteins to IGF-I receptors and thus modulates IGF-I signaling. Using yeast two-hybrid screening, the N terminus of Grb10 was shown to interact with two novel proteins, designated GIGYF1 (Grb10 interacting GYF protein 1) and GIGYF2. Mutation analysis indicates that a 17-amino acid sequence in GIGYF1 and GIGYF2, homologous to the GYF domain described previously, binds to tandem proline-rich regions in the N terminus of Grb10. In IGF-I receptor-expressing R+ fibroblasts, there is detectable binding of a Myc-tagged fragment of GIGYF1 to Grb10 in the basal state. Stimulation with IGF-I results in increased binding of GIGYF1 to Grb10 and transient binding of both Grb10 and GIGYF1 to IGF-I receptors, presumably via the adapter function of Grb10. At later time points, GIGYF1 dissociates, but Grb10 remains linked to IGF-I receptors. Overexpression of the Grb10 binding fragment of GIGYF1 in R+ cells results in a significant increase in IGF-I-stimulated receptor tyrosine phosphorylation. In conclusion, we have identified two members of a novel protein family, which become transiently linked to IGF-I receptors by the Grb10 adapter protein following IGF-I stimulation. Grb10 and GIGYFs may act cooperatively to regulate receptor signaling.
Collapse
Affiliation(s)
- Barbara Giovannone
- Division of Endocrinology and the Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Brown Medical School, Providence, Rhode Island 02903, USA
| | | | | | | | | | | |
Collapse
|
12
|
Roetto A, Daraio F, Alberti F, Porporato P, Calì A, De Gobbi M, Camaschella C. Hemochromatosis due to mutations in transferrin receptor 2. Blood Cells Mol Dis 2002; 29:465-70. [PMID: 12547237 DOI: 10.1006/bcmd.2002.0585] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A rare recessive disorder which leads to iron overload and severe clinical complications similar to those reported in HFE-related hemochromatosis has been delineated and sometimes called hemochromatosis type 3. The gene responsible is Transferrin Receptor 2 (TFR2), which maps to chromosome 7q22. The TFR2 gene presents a significative homology to transferrin receptor (TFRC) gene, encodes for a transmembrane protein with a large extracellular domain, is able to bind transferrin, even if with lower affinity than TFRC. The TFR2 function is still unclear. The transcript does not contain IRE elements and is not modified by the cellular iron status. At variance with TFRC, interactions between TFR2 and HFE do not occur, at least in their soluble forms. TFR2 is spliced in two alternative forms, alfa and beta. The alfa form is strongly expressed in the liver. The beta form, codified from a start site in exon 4 of the alpha, has a low and ubiquitous expression. Using anti-TFR2 monoclonal antibodies we have confirmed expression of the protein in the liver but also in duodenal epithelial cells, and studied the protein functional behaviour in cell lines, in response to iron addition, iron deprivation and olo-transferrin exposure. Our results suggest a regulatory role of TFR2 in iron metabolism. Five TFR2 homozygous mutations have been documented in HFE3 patients: a nonsense mutation (Y250X); a C insertion that causes a frameshift and a premature stop codon (E60X); a missense mutation (M172K); a 12 basepair deletion in exon 16, that causes 4 aminoacid loss (AVAQ 594-597del) in the extracellular domain of TFR2; a missense mutation in exon 17 (Q690P). The mutation analysis supports the hypothesis that all are private mutations. The pathogenetic role of TFR2 in hemochromatosis has been recently further demonstrated through the targeted expression of the Y250X human mutation in mice, which develop sings of iron overload identical to the human disease. Although the rarity of TFR2 mutations limits their usefulness in diagnostic/screening programs, their study can contribute to a better understanding of the protein function.
Collapse
Affiliation(s)
- Antonella Roetto
- Department of Clinical and Biological Sciences, University of Turin, Azienda Ospedaliera San Luigi, 10043 Orbassano, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Moon NS, Rong Zeng W, Premdas P, Santaguida M, Bérubé G, Nepveu A. Expression of N-terminally truncated isoforms of CDP/CUX is increased in human uterine leiomyomas. Int J Cancer 2002; 100:429-32. [PMID: 12115525 DOI: 10.1002/ijc.10510] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetic analyses and mRNA expression studies have implicated CUTL1 as a candidate tumor-suppressor gene in uterine leiomyomas and breast cancers. However, modulation of CDP/Cux, the protein encoded by CUTL1, does not agree with this notion. The activity of CDP/Cux, which is the DNA binding subunit of HiNF-D, was upregulated as normal cells progressed into S phase and constitutively elevated in several tumor cell lines. Activation of CDP/Cux at the G(1)/S transition involved the proteolytic processing of the protein to generate a shorter isoform. Uterine leiomyomas represent a unique reagent for molecular analysis because they are resected as homogeneous tumor tissue together with the adjacent normal myometrium and they are often very large. In the present study, proteins were isolated from 16 pairs of matched tumors and adjacent myometrium and analyzed by Western blot and electrophoretic mobility shift assays. Strikingly, in 11/16 tumors, the steady-state level of small CDP/Cux isoforms was increased compared to normal control tissue. Where tested, a corresponding increase in CDP/Cux stable DNA binding activity was observed. DNA sequencing analysis of CUTL1 cDNAs from 6 leiomyomas, including 4 with LOH of CUTL1, did not reveal any gross rearrangement or point mutations. Altogether these findings suggest that CUTL1 is probably not the tumor suppressor on 7q22. Moreover, the frequent increase in smaller CDP/Cux isoforms indicates that molecular events associated with the truncation of CDP/Cux proteins may be selected in uterine leiomyomas.
Collapse
Affiliation(s)
- Nam Sung Moon
- Molecular Oncology Group, McGill University Health Center, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Camaschella C, Roetto A, De Gobbi M. Genetic haemochromatosis: genes and mutations associated with iron loading. Best Pract Res Clin Haematol 2002. [DOI: 10.1053/beha.2002.0207] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Girelli D, Bozzini C, Roetto A, Alberti F, Daraio F, Colombari R, Olivieri O, Corrocher R, Camaschella C. Clinical and pathologic findings in hemochromatosis type 3 due to a novel mutation in transferrin receptor 2 gene. Gastroenterology 2002; 122:1295-302. [PMID: 11984516 DOI: 10.1053/gast.2002.32984] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Although most patients with hereditary hemochromatosis are homozygous for a single mutation of the HFE gene on chromosome 6p, accumulating evidence indicates that the disease is genetically heterogeneous. Type 3 hemochromatosis, recently described in 4 families, is linked to mutations of the gene encoding transferrin receptor 2 on chromosome 7q22. Here we report data from a family carrying a new mutation of the transferrin receptor 2 gene. METHODS Detailed clinical and histopathologic documentation was available for most family members. The entire coding sequence and exon/intron boundaries of the transferrin receptor 2 gene were analyzed by direct sequencing. RESULTS A 12-nucleotide deletion in exon 16, causing the loss of 4 amino acids (AVAQ 594-597 del), was detected at the homozygous state in the 3 patients with histologically proven iron overload. The deletion segregated with the disease within the family and was not found in 100 healthy controls. Some clinical and pathologic characteristics, such as low penetrance in the premenopausal woman, and early iron deposition in periportal hepatocytes resembled those of classic, HFE-related hemochromatosis. CONCLUSIONS Our data support the role of the transferrin receptor 2 gene in hemochromatosis type 3 as well as its critical involvement in the maintenance of iron homeostasis in humans.
Collapse
Affiliation(s)
- Domenico Girelli
- Department of Clinical and Experimental Medicine, University of Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Makalowska I, Sood R, Faruque MU, Hu P, Robbins CM, Eddings EM, Mestre JD, Baxevanis AD, Carpten JD. Identification of six novel genes by experimental validation of GeneMachine predicted genes. Gene 2002; 284:203-13. [PMID: 11891061 DOI: 10.1016/s0378-1119(01)00897-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In silico gene identification from finished and unfinished human genome sequence has become critically important in many projects seeking to gain insights into the gene content of genomic regions implicated in diseases. To establish limitations and criteria for in silico gene identification, and to identify novel genes of potential relevance to human prostate cancer and melanoma, 3 Mb of chromosome 1 sequence have been analyzed using GeneMachine. This program is a software suite comprising of sequence similarity programs and four gene identification programs. A total of 49 potential transcripts were selected and 37 of them were selected for experimental validation. We verified 16 of the predicted genes by experimental analysis. The comparison of the predicted transcripts with their cloned forms helped to refine predicted gene models as well as to identify splice variants for several of them. Although sequences matching with ten of our verified genes have been recently deposited in the GenBank, six of them remain novel. Our studies support the feasibility of identifying novel genes from regions of interest using draft human genome sequence.
Collapse
Affiliation(s)
- Izabela Makalowska
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nakabayashi K, Fernandez BA, Teshima I, Shuman C, Proud VK, Curry CJ, Chitayat D, Grebe T, Ming J, Oshimura M, Meguro M, Mitsuya K, Deb-Rinker P, Herbrick JA, Weksberg R, Scherer SW. Molecular genetic studies of human chromosome 7 in Russell-Silver syndrome. Genomics 2002; 79:186-96. [PMID: 11829489 DOI: 10.1006/geno.2002.6695] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Russell-Silver syndrome (RSS) is a form of congenital short stature characterized by severe growth retardation and variable dysmorphic features. In some RSS individuals, alterations in imprinted genes may be involved because approximately 7% of sporadic patients have been observed to have maternal uniparental disomy (mUPD) of chromosome 7. RSS patients with structural abnormalities of chromosome 7 have also been described. In these individuals the chromosome rearrangement could disrupt the balance of imprinted genes, contribute to a recessive form of RSS, or lead to haploinsufficiency of a crucial developmental gene product. Because the mechanism and molecular defects on chromosome 7 causing RSS are still unknown, we tested our collection of 77 RSS families for mUPD7 and were able to identify three new cases. We also characterized two RSS patients with de novo cytogenetic abnormalities involving the short arm of chromosome 7. One had a partial duplication [46, XX, dup(7)(p12 p14)] and the second contained a paracentric inversion [46, XY, inv(7)(p14 p21)]. Fluorescence in situ hybridization (FISH) mapping revealed that the breakpoints on 7p14 were localized to the same novel gene, C7orf10, which encompasses >700 kb of DNA. We also identified other transcription units from this immediate region, but all seem to be biallelically expressed when using a somatic cell hybrid assay.
Collapse
Affiliation(s)
- Kazuhiko Nakabayashi
- Department of Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lea IA, Sivashanmugam P, O'Rand MG. Zonadhesin: characterization, localization, and zona pellucida binding. Biol Reprod 2001; 65:1691-700. [PMID: 11717130 DOI: 10.1095/biolreprod65.6.1691] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Zonadhesin is a multiple-domain transmembrane protein that is believed to function as a sperm-zona pellucida binding protein. In this study we sequenced zonadhesin from rabbit testis and analyzed its processing, expression, localization, and zona pellucida binding. We show that the precursor protein occurs exclusively in the testis and that proteolytic processing results in the formation of three fragments: p43 (D1 domain), p97 (D2-D4 domains), and p58 (D4 domain-C-terminal). In mature spermatozoa the p43 and p97 fragments exist as disulfide-bonded dimers. During spermatogenesis, synthesis of zonadhesin mRNA chiefly occurs in primary spermatocytes, whereas the protein is abundant in both Sertoli cells and spermatids. In spermatozoa the protein is localized exclusively to the anterior acrosome but is not available for binding antibody on live spermatozoa. Once the acrosome reaction is induced, zonadhesin is lost from the spermatozoon, but remains with the acrosomal shroud. We show that recombinant D4 domain can bind zona pellucida, and we propose that zonadhesin functions after the acrosome reaction has been initiated to bind the acrosomal shroud to the zona pellucida.
Collapse
Affiliation(s)
- I A Lea
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, 27599, USA.
| | | | | |
Collapse
|
19
|
Kratz CP, Emerling BM, Donovan S, Laig-Webster M, Taylor BR, Thompson P, Jensen S, Banerjee A, Bonifas J, Makalowski W, Green ED, Le Beau MM, Shannon KM. Candidate gene isolation and comparative analysis of a commonly deleted segment of 7q22 implicated in myeloid malignancies. Genomics 2001; 77:171-80. [PMID: 11597142 DOI: 10.1006/geno.2001.6636] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monosomy 7 and deletion of 7q are recurring abnormalities in malignant myeloid diseases. Here we extensively characterize an approximately 2-Mb commonly deleted segment (CDS) of 7q22 bounded by D7S1503 and D7S1841. Approximately 1.8 Mb of sequence have been generated from this interval, facilitating the construction of a transcript map that includes large numbers of genes and ESTs. The intron/exon organization of seven genes and expression patterns of three genes were determined, and leukemia samples were screened for mutations in five genes. We have used polymorphic markers from this region to examine leukemia cells for allelic loss within 7q22. Finally, we isolated mouse genomic clones orthologous to several of the characterized human genes. Fluorescence in situ hybridization studies using these clones indicate that a region of orthologous synteny lies on proximal mouse chromosome 5. These resources should greatly accelerate the pace of candidate gene discovery in this region.
Collapse
Affiliation(s)
- C P Kratz
- Department of Pediatrics, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nepveu A. Role of the multifunctional CDP/Cut/Cux homeodomain transcription factor in regulating differentiation, cell growth and development. Gene 2001; 270:1-15. [PMID: 11403998 DOI: 10.1016/s0378-1119(01)00485-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CDP/Cux/Cut proteins are an evolutionarily conserved family of proteins containing several DNA binding domains: one Cut homeodomain and one, two or three Cut repeats. In Drosophila melanogaster, genetic studies indicated that Cut functions as a determinant of cell-type specification in several tissues, notably in the peripheral nervous system, the wing margin and the Malpighian tubule. Moreover, Cut was found to be a target and an effector of the Notch signaling pathway. In vertebrates, the same functions appear to be fulfilled by two cut-related genes with distinct patterns of expression. Cloning of the cDNA for the CCAAT-displacement protein (CDP) revealed that it was the human homologue of Drosophila Cut. CDP was later found be the DNA binding protein of the previously characterized histone nuclear factor D (HiNF-D). CDP and its mouse counterpart, Cux, were also reported to interact with regulatory elements from a large number of genes, including matrix attachment regions (MARs). CDP/Cut proteins were found generally to function as transcriptional repressors, although a participation in transcriptional activation is suggested by some data. Repression by CDP/Cut involves competition for binding site occupancy and active repression via the recruitment of a histone deacetylase activity. Various combinations of Cut repeats and the Cut homeodomains can generate distinct DNA binding activities. These activities are elevated in proliferating cells and decrease during terminal differentiation. One activity, involving the Cut homeodomain, is upregulated in S phase. CDP/Cut function is regulated by several post-translational modification events including phosphorylation, dephosphorylation, and acetylation. The CUTL1 gene in human was mapped to 7q22, a chromosomal region that is frequently rearranged in various cancers.
Collapse
Affiliation(s)
- A Nepveu
- Molecular Oncology Group, McGill University Health Center, 687 Pine Ave West, Quebec, H3A 1A1, Montreal, Canada.
| |
Collapse
|
21
|
Wilson MD, Riemer C, Martindale DW, Schnupf P, Boright AP, Cheung TL, Hardy DM, Schwartz S, Scherer SW, Tsui LC, Miller W, Koop BF. Comparative analysis of the gene-dense ACHE/TFR2 region on human chromosome 7q22 with the orthologous region on mouse chromosome 5. Nucleic Acids Res 2001; 29:1352-65. [PMID: 11239002 PMCID: PMC29746 DOI: 10.1093/nar/29.6.1352] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chromosome 7q22 has been the focus of many cytogenetic and molecular studies aimed at delineating regions commonly deleted in myeloid leukemias and myelodysplastic syndromes. We have compared a gene-dense, GC-rich sub-region of 7q22 with the orthologous region on mouse chromosome 5. A physical map of 640 kb of genomic DNA from mouse chromosome 5 was derived from a series of overlapping bacterial artificial chromosomes. A 296 kb segment from the physical map, spanning ACHE: to Tfr2, was compared with 267 kb of human sequence. We identified a conserved linkage of 12 genes including an open reading frame flanked by ACHE: and Asr2, a novel cation-chloride cotransporter interacting protein Cip1, Ephb4, Zan and Perq1. While some of these genes have been previously described, in each case we present new data derived from our comparative sequence analysis. Adjacent unfinished sequence data from the mouse contains an orthologous block of 10 additional genes including three novel cDNA sequences that we subsequently mapped to human 7q22. Methods for displaying comparative genomic information, including unfinished sequence data, are becoming increasingly important. We supplement our printed comparative analysis with a new, Web-based program called Laj (local alignments with java). Laj provides interactive access to archived pairwise sequence alignments via the WWW. It displays synchronized views of a dot-plot, a percent identity plot, a nucleotide-level local alignment and a variety of relevant annotations. Our mouse-human comparison can be viewed at http://web.uvic.ca/~bioweb/laj.html. Laj is available at http://bio.cse.psu.edu/, along with online documentation and additional examples of annotated genomic regions.
Collapse
Affiliation(s)
- M D Wilson
- Department of Biology, Centre for Environmental Health, PO Box 3020, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wilson MD, Ruttan CC, Koop BF, Glickman BW. ERCC1: a comparative genomic perspective. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:209-215. [PMID: 11746756 DOI: 10.1002/em.1073] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
ERCC1 plays an essential role in the nucleotide excision repair (NER) of DNA. We compare 37 kb of sequence from the ERCC1 region on human chromosome 19q13.3 to the orthologous region on mouse chromosome 7. In addition to showing the conserved gene structure between ERCC1, ASE-1, and their murine counterparts, this genomic comparison reveals a highly conserved 497 bp segment found 5 kb upstream of ERCC1 exon 1 that contains a CpG island and previously unidentified "classical" promoter elements. Additional putative regulatory elements are also found within a conserved LINE-1 (long interspersed nuclear element) sequence 800 bp upstream of exon 1 in both human and mouse. Expressed sequence tag (EST) assemblies for human ERCC1 identified numerous splice variants involving exons 1, 2, 3, 7, 8, and 9 that could affect DNA repair efficiencies of ERCC1. A previously undescribed transcript that reads through exon 9 and utilizes the polyadenylation signal of a neighboring Alu element accounts for nearly half of the total splice variants identified in the human EST database. This transcript would theoretically translate to a larger ERCC1 protein product containing a novel C-terminal end. Overall, approximately 18% of publicly available ERCC1 cDNA sequences were determined to be splice variants, while no variants were found in the mouse. The ability to assess novel transcripts and identify candidate regulatory regions demonstrates the potential utility for a catalogue archiving comparative analyses for all genes involved in DNA repair. Our comparative genomic analysis of ERCC1 can be viewed at http://web.uvic.ca/-bioweb/laj.html.
Collapse
Affiliation(s)
- M D Wilson
- Centre for Environmental Health, Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | |
Collapse
|
23
|
Carter CA, Madden VJ. A newly characterized human endometrial adenocarcinoma cell line (CAC-1) differentiates in response to retinoic acid treatment. Exp Mol Pathol 2000; 69:175-91. [PMID: 11115359 DOI: 10.1006/exmp.2000.2334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new cell line of poorly differentiated human endometrial adenocarcinoma cells termed "CAC-1" cells has been established. These cells are epithelial, as indicated by positive cytokeratin and negative vimentin staining. They are rounded and possess a high nuclear-to-cytoplasmic ratio, desmosomes, surface microvilli, intercelular lumens, and pleomorphic nuclei containing multiple nucleoli. These cells have been in long-term culture for 2 years. Our previous studies demonstrated that moderately differentiated (RL95-2) cells differentiated in response to retinoic acid treatment, illustrated by their reorganization of actin filaments and cell enlargement (Carter et al., 1996; Anticancer Res. 16, 17-24). CAC-1 cells exhibited a similar response because they also organized actin filaments and enlarged in response to retinoic acid treatment. Concurrently, retinoic acid treatment caused a 40% decrease in cell detachment in an in vitro detachment assay compared to controls. A slight lag in cell growth was observed when CAC-1 cells were treated with 1 microM 13-cis or all-trans retinoic acid during a 12-day growth curve. In addition, we examined the effects of retinoic acid on protein kinase C-alpha (PKC-alpha) and myristoylated alanine-rich C-kinase substrate (MARCKS). Treatment with retinoic acid caused cytoplasmic PKC-alpha to increase concomitant with a decrease in PKC-alpha in the membrane. In contrast, MARCKS increased in the membrane in response to retinoic acid treatment. These data indicate that retinoid treatment causes inactivation of PKC-alpha, allowing MARCKS to relocalize to the membrane, where it can cross-link actin filaments. CAC-1 cells represent an ideal model for investigating the effects of retinoids on differentiation induction concomitant with actin reorganization.
Collapse
Affiliation(s)
- C A Carter
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | |
Collapse
|
24
|
Tosi S, Harbott J, Teigler-Schlegel A, Haas OA, Pirc-Danoewinata H, Harrison CJ, Biondi A, Cazzaniga G, Kempski H, Scherer SW, Kearney L. t(7;12)(q36;p13), a new recurrent translocation involving ETV6 in infant leukemia. Genes Chromosomes Cancer 2000; 29:325-32. [PMID: 11066076 DOI: 10.1002/1098-2264(2000)9999:9999<::aid-gcc1039>3.0.co;2-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The ETV6 gene is rearranged as a result of translocations involving a wide variety of chromosomal partners. To date, 12 partner genes for ETV6 have been cloned, and a further 23 chromosomal regions have been described. We previously identified a cryptic t(7;12) with ETV6 involvement in two cases of infant leukemia. The finding of a third case of t(7;12), also in an infant, prompted a more focussed search based on the common features found in these patients and those reported in the literature. The selection criteria were age at diagnosis < 20 months and the presence of +19 and/or +8 in the karyotype; cases with abnormalities of 7q and/or 12p were also considered. FISH studies using whole chromosome paints and probes for the ETV6 gene revealed a t(7;12) in 10 out of 23 cases studied. Seven of these had evidence of ETV6 rearrangement. Of those with ETV6 involvement, six had a 7q36 and one a 7q22 breakpoint. Importantly, in three cases the 7q36 breakpoint was within the same PAC, suggesting the existence of a new nonrandom translocation. However, in at least one patient the 7q36 breakpoint was different. The identification of the 7q partner genes will determine whether it is the disruption of ETV6 alone, or the formation of fusion genes, that is important for leukemogenesis in these patients. As both 7q36 and 7q22 are critical regions of gene loss in del(7q) leukemias, the identification of partner genes from these regions may also be important in understanding the pathogenesis of these diseases.
Collapse
Affiliation(s)
- S Tosi
- MRC Molecular Haematology Unit, Institute of Molecular Medicine, Oxford, U.K.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pratt WS, Crawley S, Hicks J, Ho J, Nash M, Kim YS, Gum JR, Swallow DM. Multiple transcripts of MUC3: evidence for two genes, MUC3A and MUC3B. Biochem Biophys Res Commun 2000; 275:916-23. [PMID: 10973822 DOI: 10.1006/bbrc.2000.3406] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The MUC3 gene encodes a transmembrane mucin-type glycoprotein. A number of consistent single nucleotide changes were observed in different MUC3 cDNAs from a single individual, suggesting the presence of at least three different transcripts per individual. This transcript heterogeneity is due both to the existence of a second copy of the MUC3 gene and to allelic changes. Sequencing of the second MUC3 shows that it has the same C-terminal domain and intron/exon structure as the previously described MUC3. The tandem repeat domain has the same amino acid consensus sequence but shows more substitutions. The unique exonic sequences range from 94 to 100% identity at the nucleotide level and correspondingly few amino acid changes have been identified. The introns show around 95% identity. We propose to name this second gene MUC3B, MUC3A being reserved for the first MUC3 gene. MUC3B, like MUC3A, is expressed in intestine and Caco-2 cells.
Collapse
Affiliation(s)
- W S Pratt
- MRC Human Biochemical Genetics Unit, University College London, 4 Stephenson Way, London, NW1 2HE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mallon AM, Platzer M, Bate R, Gloeckner G, Botcherby MR, Nordsiek G, Strivens MA, Kioschis P, Dangel A, Cunningham D, Straw RN, Weston P, Gilbert M, Fernando S, Goodall K, Hunter G, Greystrong JS, Clarke D, Kimberley C, Goerdes M, Blechschmidt K, Rump A, Hinzmann B, Mundy CR, Miller W, Poustka A, Herman GE, Rhodes M, Denny P, Rosenthal A, Brown SD. Comparative genome sequence analysis of the Bpa/Str region in mouse and Man. Genome Res 2000; 10:758-75. [PMID: 10854409 PMCID: PMC310879 DOI: 10.1101/gr.10.6.758] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The progress of human and mouse genome sequencing programs presages the possibility of systematic cross-species comparison of the two genomes as a powerful tool for gene and regulatory element identification. As the opportunities to perform comparative sequence analysis emerge, it is important to develop parameters for such analyses and to examine the outcomes of cross-species comparison. Our analysis used gene prediction and a database search of 430 kb of genomic sequence covering the Bpa/Str region of the mouse X chromosome, and 745 kb of genomic sequence from the homologous human X chromosome region. We identified 11 genes in mouse and 13 genes and two pseudogenes in human. In addition, we compared the mouse and human sequences using pairwise alignment and searches for evolutionary conserved regions (ECRs) exceeding a defined threshold of sequence identity. This approach aided the identification of at least four further putative conserved genes in the region. Comparative sequencing revealed that this region is a mosaic in evolutionary terms, with considerably more rearrangement between the two species than realized previously from comparative mapping studies. Surprisingly, this region showed an extremely high LINE and low SINE content, low G+C content, and yet a relatively high gene density, in contrast to the low gene density usually associated with such regions.
Collapse
Affiliation(s)
- A M Mallon
- MRC UK Mouse Genome Centre and Mammalian Genetics Unit, Harwell, Oxon, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vidal-Taboada JM, Lu A, Pique M, Pons G, Gil J, Oliva R. Down syndrome critical region gene 2: expression during mouse development and in human cell lines indicates a function related to cell proliferation. Biochem Biophys Res Commun 2000; 272:156-63. [PMID: 10872820 DOI: 10.1006/bbrc.2000.2726] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The isolation of the genes located in chromosome 21 and the characterisation of their function are essential steps towards the understanding of the physiopathological mechanisms involved in Down syndrome. We have used two complementary approaches to characterise the function of the novel gene DSCR2 (Down Syndrome Critical Region gene 2): the isolation and characterisation of the mouse gene homologue to the human DSCR2 gene, and the analysis of the expression of the gene in different human cell lines. We have isolated and characterised a 1012 bp of a mouse cDNA having a high homology to the human DSCR2 gene. The predicted mouse dscr2 protein has an identity of 85.4% as compared to the human protein, indicating that the DSCR2 protein has been conserved during the evolution. However, the amino acid sequence is not homologous to other known proteins, or to known protein domains. The dscr2 gene is expressed throughout all the stages of the mouse embryo development. In the adult mouse the gene is expressed in testis, kidney, liver, brain, heart, skeletal muscle, and pancreas. The expression analysis of the DSCR2 gene in different human tumour derived cell lines indicates that the gene is expressed in all proliferating cell lines tested. The levels of the DSCR2 mRNA correlate with cellular growth of T98G and Jurkat cells in response to different treatments. The expression pattern throughout the foetal development together with the correlation observed with the cell cycle indicates a possible function for the DSCR2 gene related to cell proliferation.
Collapse
Affiliation(s)
- J M Vidal-Taboada
- Human Genetics Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Faculty of Medicine, University of Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Camaschella C, Roetto A, Calì A, De Gobbi M, Garozzo G, Carella M, Majorano N, Totaro A, Gasparini P. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat Genet 2000; 25:14-5. [PMID: 10802645 DOI: 10.1038/75534] [Citation(s) in RCA: 538] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Haemochromatosis is a common recessive disorder characterized by progressive iron overload, which may lead to severe clinical complications. Most patients are homozygous for the C282Y mutation in HFE on 6p (refs 1-5). A locus for juvenile haemochromatosis (HFE2) maps to 1q (ref. 7). Here we report a new locus (HFE3) on 7q22 and show that a homozygous nonsense mutation in the gene encoding transferrin receptor-2 (TFR2) is found in people with haemochromatosis that maps to HFE3.
Collapse
Affiliation(s)
- C Camaschella
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Azienda Ospedaliera S.Luigi, Orbassano-Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fleming RE, Migas MC, Holden CC, Waheed A, Britton RS, Tomatsu S, Bacon BR, Sly WS. Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis. Proc Natl Acad Sci U S A 2000; 97:2214-9. [PMID: 10681454 PMCID: PMC15780 DOI: 10.1073/pnas.040548097] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hereditary hemochromatosis (HH) is a common autosomal recessive disorder characterized by excess absorption of dietary iron and progressive iron deposition in several tissues, particularly liver. Liver disease resulting from iron toxicity is the major cause of death in HH. Hepatic iron loading in HH is progressive despite down-regulation of the classical transferrin receptor (TfR). Recently a human cDNA highly homologous to TfR was identified and reported to encode a protein (TfR2) that binds holotransferrin and mediates uptake of transferrin-bound iron. We independently identified a full-length murine EST encoding the mouse orthologue of the human TfR2. Although homologous to murine TfR in the coding region, the TfR2 transcript does not contain the iron-responsive elements found in the 3' untranslated sequence of TfR mRNA. To determine the potential role for TfR2 in iron uptake by liver, we investigated TfR and TfR2 expression in normal mice and murine models of dietary iron overload (2% carbonyl iron), dietary iron deficiency (gastric parietal cell ablation), and HH (HFE -/-). Northern blot analyses demonstrated distinct tissue-specific patterns of expression for TfR and TfR2, with TfR2 expressed highly only in liver where TfR expression is low. In situ hybridization demonstrated abundant TfR2 expression in hepatocytes. In contrast to TfR, TfR2 expression in liver was not increased in iron deficiency. Furthermore, hepatic expression of TfR2 was not down-regulated with dietary iron loading or in the HFE -/- model of HH. From these observations, we propose that TfR2 allows continued uptake of Tf-bound iron by hepatocytes even after TfR has been down-regulated by iron overload, and this uptake contributes to the susceptibility of liver to iron loading in HH.
Collapse
Affiliation(s)
- R E Fleming
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rong Zeng W, Soucie E, Sung Moon N, Martin-Soudant N, Bérubé G, Leduy L, Nepveu A. Exon/intron structure and alternative transcripts of the CUTL1 gene. Gene 2000; 241:75-85. [PMID: 10607901 DOI: 10.1016/s0378-1119(99)00465-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human CUTL1 gene (Cut-like 1) is a candidate tumor suppressor gene located on chromosome 7 at band 22, a region that is frequently deleted in several human cancers. The gene spans at least 340kb and contains 33 exons. Synthesis of five different transcripts involves two promoter regions, two polyadenylation sites and seven alternative splicing events. The two polyadenylation sites are located at the ends of exons 24 and 33 and are separated by approximately 40kb. Transcription is initiated in two genomic regions, giving rise to alternate first exons which are spliced to a common exon 2. All transcripts contain exons 2 to 14, but differ in their 3' regions. Exon 14 can be spliced alternatively to the beginning or the middle of exon 15, or to exon 25, generating transcripts with exons 15 to 24 or exons 25 to 33. Moreover, exon 16 can be spliced out from the mature transcripts that contain exons 15 to 24. Overall, five distinct transcripts are generated as a result of alternative transcription initiation, splicing and polyadenylation. We discuss potential mechanisms by which alternate polyadenylation site usage may affect alternative splicing events and vice versa.
Collapse
Affiliation(s)
- W Rong Zeng
- Molecular Oncology Group, Departments of Medicine and Oncology, McGill University, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Male DA, Ormsby RJ, Ranganathan S, Giannakis E, Gordon DL. Complement factor H: sequence analysis of 221 kb of human genomic DNA containing the entire fH, fHR-1 and fHR-3 genes. Mol Immunol 2000; 37:41-52. [PMID: 10781834 DOI: 10.1016/s0161-5890(00)00024-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Complement factor H (fH) is a member of a family of proteins involved in the regulation of complement activation (RCA). These proteins share a common structural motif, the Short Consensus Repeat (SCR), which is structurally conserved among related genes and between phylogenetically divergent species. fH is composed of 20 such SCRs and a variety of biological functions have been localised to specific SCR domains. The majority of individual SCRs identified are encoded by single exons, and processes such as gene conversion, duplication and exon shuffling have been implicated in the evolution and genomic radiation of SCR-encoding genes. We have analysed two GenBank sequence entries relating to two overlapping PAC clones sequenced at the Sanger Centre which contain the entire human fH gene and two adjacent fH-related (fHR) genes, fHR-1 and fHR-3. Here, we report the detailed analysis of the assembled 221 kb of contiguous, ungapped genomic sequence from human chromosome 1q32, in part employing the RUMMAGE-DP automated annotation tool. Genomic duplications involving fH and fHR exons were identified and Alu/L1 repeat dating established that the duplications occurred after the separation of rodent and primate lineages. The analysis indicates that retrotransposition as well as single and multiple exon duplication events are likely to have been involved in SCR radiation and RCA gene evolution, facilitated by conservation of splice-phasing and the single-exon, single-SCR nature of the encoded domains.
Collapse
Affiliation(s)
- D A Male
- Department of Microbiology and Infectious Diseases, Flinders Medical Centre, Flinders University of South Australia, Bedford Park, Australia.
| | | | | | | | | |
Collapse
|
32
|
Momeni P, Glöckner G, Schmidt O, von Holtum D, Albrecht B, Gillessen-Kaesbach G, Hennekam R, Meinecke P, Zabel B, Rosenthal A, Horsthemke B, Lüdecke HJ. Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino-phalangeal syndrome type I. Nat Genet 2000; 24:71-4. [PMID: 10615131 DOI: 10.1038/71717] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tricho-rhino-phalangeal syndrome type I (TRPS I, MIM 190350) is a malformation syndrome characterized by craniofacial and skeletal abnormalities and is inherited in an autosomal dominant manner. TRPS I patients have sparse scalp hair, a bulbous tip of the nose, a long flat philtrum, a thin upper vermilion border and protruding ears. Skeletal abnormalities include cone-shaped epiphyses at the phalanges, hip malformations and short stature. We assigned TRPS1 to human chromosome 8q24. It maps proximal of EXT1, which is affected in a subgroup of patients with multiple cartilaginous exostoses and deleted in all patients with TRPS type II (TRPS II, or Langer-Giedion syndrome, MIM 150230; ref.2-5). We have positionally cloned a gene that spans the chromosomal breakpoint of two patients with TRPS I and is deleted in five patients with TRPS I and an interstitial deletion. Northern-blot analyses revealed transcripts of 7 and 10.5 kb. TRPS1has seven exons and an ORF of 3,843 bp. The predicted protein sequence has two potential nuclear localization signals and an unusual combination of different zinc-finger motifs, including IKAROS-like and GATA-binding sequences. We identified six different nonsense mutations in ten unrelated patients. Our findings suggest that haploinsufficiency for this putative transcription factor causes TRPS I.
Collapse
Affiliation(s)
- P Momeni
- Institut für Humangenetik, Universitätsklinikum, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- G B Downes
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
34
|
Tosi S, Scherer SW, Giudici G, Czepulkowski B, Biondi A, Kearney L. Delineation of multiple deleted regions in 7q in myeloid disorders. Genes Chromosomes Cancer 1999; 25:384-92. [PMID: 10398433 DOI: 10.1002/(sici)1098-2264(199908)25:4<384::aid-gcc11>3.0.co;2-d] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Loss of chromosome material due to deletions of the long arm of chromosome 7, del(7q), is a consistent finding in all types of myeloid disorders, invariably associated with a poor prognosis. Two different segments, 7q22 and 7q32-q33, have been implicated as critical regions of gene loss associated with these disorders. In the present study, we used fluorescence in situ hybridization (FISH) to characterize the 7q22 breakpoint of an apparently balanced t(7;7)(p13;q22) in an acute myeloid leukemia patient. FISH analysis on bone marrow metaphases from this patient revealed that the sequence corresponding to a series of three ordered cosmids from 7q22 was deleted from one of the der(7) chromosomes. These cosmids contain the human homologue of the Drosophila homeobox gene cut (CUTL1) and span a region of approximately 150 kb. Although the proximal boundary of the deleted segment could not be exactly defined, we estimate the size of this deletion to be approximately 500 kb. Subsequently, we carried out FISH studies using the CUTL1 cosmids on a further 16 patients with deletions of 7q and myeloid disorders. The sequence corresponding to at least two of the cosmids was deleted from the del(7q) in 11 out of 14 cases with a proximal breakpoint within 7q22. Further detailed FISH mapping in this series of 17 patients has identified two other nonoverlapping commonly deleted segments at 7q31-q32 and 7q33, respectively. These data confirm and refine other studies, implying that several different genes on 7q may be involved in the pathogenesis of myeloid diseases. Genes Chromosomes Cancer 25:384-392, 1999.
Collapse
Affiliation(s)
- S Tosi
- MRC Molecular Haematology Unit, Institute of Molecular Medicine, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Kawabata H, Yang R, Hirama T, Vuong PT, Kawano S, Gombart AF, Koeffler HP. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem 1999; 274:20826-32. [PMID: 10409623 DOI: 10.1074/jbc.274.30.20826] [Citation(s) in RCA: 436] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transferrin receptor (TfR) plays a major role in cellular iron uptake through binding and internalizing a carrier protein transferrin (Tf). We have cloned, sequenced, and mapped a human gene homologous to TfR, termed TfR2. Two transcripts were expressed from this gene: alpha (approximately 2.9 kilobase pairs), and beta (approximately 2.5 kilobase pairs). The predicted amino acid sequence revealed that the TfR2-alpha protein was a type II membrane protein and shared a 45% identity and 66% similarity in its extracellular domain with TfR. The TfR2-beta protein lacked the amino-terminal portion of the TfR2-alpha protein including the putative transmembrane domain. Northern blot analysis showed that the alpha transcript was predominantly expressed in the liver. In addition, high expression occurred in K562, an erythromegakaryocytic cell line. To analyze the function of TfR2, Chinese hamster ovary TfR-deficient cells (CHO-TRVb cells) were stably transfected with FLAG-tagged TfR2-alpha. These cells showed an increase in biotinylated Tf binding to the cell surface, which was competed by nonlabeled Tf, but not by lactoferrin. Also, these cells had a marked increase in Tf-bound (55)Fe uptake. Taken together, TfR2-alpha may be a second transferrin receptor that can mediate cellular iron transport.
Collapse
Affiliation(s)
- H Kawabata
- Cedars-Sinai Medical Center, Department of Medicine, Division of Hematology/Oncology, Burns and Allen Research Institute, University of California Los Angeles School of Medicine, Los Angeles, California 90048, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Chadwick BP, Mull J, Helbling LA, Gill S, Leyne M, Robbins CM, Pinkett HW, Makalowska I, Maayan C, Blumenfeld A, Axelrod FB, Brownstein M, Gusella JF, Slaugenhaupt SA. Cloning, mapping, and expression of two novel actin genes, actin-like-7A (ACTL7A) and actin-like-7B (ACTL7B), from the familial dysautonomia candidate region on 9q31. Genomics 1999; 58:302-9. [PMID: 10373328 DOI: 10.1006/geno.1999.5848] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Two novel human actin-like genes, ACTL7A and ACTL7B, were identified by cDNA selection and direct genomic sequencing from the familial dysautonomia candidate region on 9q31. ACTL7A encodes a 435-amino-acid protein (predicted molecular mass 48.6 kDa) and ACTL7B encodes a 415-amino-acid protein (predicted molecular mass 45. 2 kDa) that show greater than 65% amino acid identity to each other. Genomic analysis revealed ACTL7A and ACTL7B to be intronless genes contained on a common 8-kb HindIII fragment in a "head-to-head" orientation. The murine homologues were cloned and mapped by linkage analysis to mouse chromosome 4 in a region of gene order conserved with human chromosome 9q31. No recombinants were observed between the two genes, indicating a close physical proximity in mouse. ACTL7A is expressed in a wide variety of adult tissues, while the ACTL7B message was detected only in the testis and, to a lesser extent, in the prostate. No coding sequence mutations, genomic rearrangements, or differences in expression were detected for either gene in familial dysautonomia patients.
Collapse
MESH Headings
- Actins/genetics
- Adult
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Chromosome Mapping
- Chromosomes/genetics
- Chromosomes, Human, Pair 9/genetics
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA/isolation & purification
- DNA Mutational Analysis
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Dysautonomia, Familial/genetics
- Female
- Gene Expression
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muridae
- RNA/genetics
- RNA/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- B P Chadwick
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|