1
|
Yang C, Harafuji N, Caldovic L, Yu W, Boddu R, Bhattacharya S, Barseghyan H, Gordish-Dressman H, Foreman O, Bebok Z, Eicher EM, Guay-Woodford LM. Pkhd1 cyli/cyli mice have altered renal Pkhd1 mRNA processing and hormonally sensitive liver disease. J Mol Med (Berl) 2023; 101:1141-1151. [PMID: 37584738 PMCID: PMC10482757 DOI: 10.1007/s00109-023-02351-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023]
Abstract
Autosomal-recessive polycystic kidney disease (ARPKD; MIM #263200) is a severe, hereditary, hepato-renal fibrocystic disorder that causes early childhood morbidity and mortality. Mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, which encodes the protein fibrocystin/polyductin complex (FPC), cause all typical forms of ARPKD. Several mouse lines carrying diverse, genetically engineered disruptions in the orthologous Pkhd1 gene have been generated, but none expresses the classic ARPKD renal phenotype. In the current study, we characterized a spontaneous mouse Pkhd1 mutation that is transmitted as a recessive trait and causes cysticliver (cyli), similar to the hepato-biliary disease in ARPKD, but which is exacerbated by age, sex, and parity. We mapped the mutation to Chromosome 1 and determined that an insertion/deletion mutation causes a frameshift within Pkhd1 exon 48, which is predicted to result in a premature termination codon (UGA). Pkhd1cyli/cyli (cyli) mice exhibit a severe liver pathology but lack renal disease. Further analysis revealed that several alternatively spliced Pkhd1 mRNA, all containing exon 48, were expressed in cyli kidneys, but in lower abundance than in wild-type kidneys, suggesting that these transcripts escaped from nonsense-mediated decay (NMD). We identified an AAAAAT motif in exon 48 upstream of the cyli mutation which could enable ribosomal frameshifting, thus potentially allowing production of sufficient amounts of FPC for renoprotection. This mechanism, expressed in a species-specific fashion, may help explain the disparities in the renal phenotype observed between Pkhd1 mutant mice and patients with PKHD1-related disease. KEY MESSAGES: The Pkhd1cyli/cyli mouse expresses cystic liver disease, but no kidney phenotype. Pkhd1 mRNA expression is decreased in cyli liver and kidneys compared to wild-type. Ribosomal frameshifting may be responsible for Pkhd1 mRNA escape from NMD. Pkhd1 mRNA escape from NMD could contribute to the absent kidney phenotype.
Collapse
Affiliation(s)
- Chaozhe Yang
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Naoe Harafuji
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Weiying Yu
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Ravindra Boddu
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Surajit Bhattacharya
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Heather Gordish-Dressman
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Oded Foreman
- Genentech USA, Inc, South San Francisco, CA, 94080, USA
- Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Zsuzsa Bebok
- Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Eva M Eicher
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Lisa M Guay-Woodford
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA.
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA.
- Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
2
|
Raza A, Xie Z, Chan EC, Chen WS, Scott LM, Robin Eisch A, Krementsov DN, Rosenberg HF, Parikh SM, Blankenhorn EP, Teuscher C, Druey KM. A natural mouse model reveals genetic determinants of systemic capillary leak syndrome (Clarkson disease). Commun Biol 2019; 2:398. [PMID: 31701027 PMCID: PMC6823437 DOI: 10.1038/s42003-019-0647-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
The systemic capillary leak syndrome (SCLS, Clarkson disease) is a disorder of unknown etiology characterized by recurrent episodes of vascular leakage of proteins and fluids into peripheral tissues, resulting in whole-body edema and hypotensive shock. The pathologic mechanisms and genetic basis for SCLS remain elusive. Here we identify an inbred mouse strain, SJL, which recapitulates cardinal features of SCLS, including susceptibility to histamine- and infection-triggered vascular leak. We named this trait "Histamine hypersensitivity" (Hhs/Hhs) and mapped it to Chromosome 6. Hhs is syntenic to the genomic locus most strongly associated with SCLS in humans (3p25.3), revealing that the predisposition to develop vascular hyperpermeability has a strong genetic component conserved between humans and mice and providing a naturally occurring animal model for SCLS. Genetic analysis of Hhs may reveal orthologous candidate genes that contribute not only to SCLS, but also to normal and dysregulated mechanisms underlying vascular barrier function more generally.
Collapse
Affiliation(s)
- Abbas Raza
- Departments of Medicine and Pathology, University of Vermont School of Medicine, Burlington, VT 05405 USA
| | - Zhihui Xie
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892 USA
| | - Eunice C. Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892 USA
| | - Wei-Sheng Chen
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892 USA
| | - Linda M. Scott
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892 USA
| | - A. Robin Eisch
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892 USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont School of Medicine, Burlington, VT 05405 USA
| | - Helene F. Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892 USA
| | - Samir M. Parikh
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215 USA
| | - Elizabeth P. Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - Cory Teuscher
- Departments of Medicine and Pathology, University of Vermont School of Medicine, Burlington, VT 05405 USA
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892 USA
| |
Collapse
|
3
|
Timmermans S, Souffriau J, Vandewalle J, Van Wyngene L, Van Looveren K, Vanderhaeghen T, Libert C. Using the inbred mouse strain SPRET/EiJ to provide novel insights in inflammation and infection research. Mamm Genome 2018; 29:585-592. [PMID: 29947962 DOI: 10.1007/s00335-018-9751-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/05/2018] [Indexed: 12/25/2022]
Abstract
Inbred mouse strains derived from the species Mus spretus have been very informative in the study of certain gene polymorphisms in inflammation and infection. Based on our interest in sepsis, we used SPRET/EiJ mice and mapped several critical loci that are linked to sensitivity to cytokine-induced inflammation and endotoxemia. These studies were based on prominent phenotypes that have never been observed in strains derived from Mus musculus and we mapped them at a resolution that enables us to draw conclusions on the mechanisms. Now that the genome of SPRET/EiJ has been sequenced, and other tools have become available, it is time to revisit this strain and emphasize its advantages and disadvantages as a research tool and a discovery platform.
Collapse
Affiliation(s)
- Steven Timmermans
- VIB Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Souffriau
- VIB Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- VIB Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lise Van Wyngene
- VIB Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kelly Van Looveren
- VIB Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tineke Vanderhaeghen
- VIB Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- VIB Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Eppig JT. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse. ILAR J 2017; 58:17-41. [PMID: 28838066 PMCID: PMC5886341 DOI: 10.1093/ilar/ilx013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided.
Collapse
Affiliation(s)
- Janan T. Eppig
- Janan T. Eppig, PhD, is Professor Emeritus at The Jackson Laboratory in Bar Harbor, Maine
| |
Collapse
|
5
|
Eppig JT, Richardson JE, Kadin JA, Ringwald M, Blake JA, Bult CJ. Mouse Genome Informatics (MGI): reflecting on 25 years. Mamm Genome 2015; 26:272-84. [PMID: 26238262 PMCID: PMC4534491 DOI: 10.1007/s00335-015-9589-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 12/02/2022]
Abstract
From its inception in 1989, the mission of the Mouse Genome Informatics (MGI) resource remains to integrate genetic, genomic, and biological data about the laboratory mouse to facilitate the study of human health and disease. This mission is ever more feasible as the revolution in genetics knowledge, the ability to sequence genomes, and the ability to specifically manipulate mammalian genomes are now at our fingertips. Through major paradigm shifts in biological research and computer technologies, MGI has adapted and evolved to become an integral part of the larger global bioinformatics infrastructure and honed its ability to provide authoritative reference datasets used and incorporated by many other established bioinformatics resources. Here, we review some of the major changes in research approaches over that last quarter century, how these changes are reflected in the MGI resource you use today, and what may be around the next corner.
Collapse
Affiliation(s)
- Janan T. Eppig
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Joel E. Richardson
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - James A. Kadin
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Martin Ringwald
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Judith A. Blake
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Carol J. Bult
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| |
Collapse
|
6
|
Kavakiotis I, Triantafyllidis A, Samaras P, Voulgaridis A, Karaiskou N, Konstantinidis E, Vlahavas I. Pattern discovery for microsatellite genome analysis. Comput Biol Med 2014; 46:71-8. [DOI: 10.1016/j.compbiomed.2014.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/06/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
|
7
|
Kif14 mutation causes severe brain malformation and hypomyelination. PLoS One 2013; 8:e53490. [PMID: 23308235 PMCID: PMC3537622 DOI: 10.1371/journal.pone.0053490] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/28/2012] [Indexed: 01/13/2023] Open
Abstract
We describe a novel spontaneous mouse mutant, laggard (lag), characterized by a flat head, motor impairment and growth retardation. The mutation is inherited as an autosomal recessive trait, and lag/lag mice suffer from cerebellar ataxia and die before weaning. lag/lag mice exhibit a dramatic reduction in brain size and slender optic nerves. By positional cloning, we identify a splice site mutation in Kif14. Transgenic complementation with wild-type Kif14-cDNA alleviates ataxic phenotype in lag/lag mice. To further confirm that the causative gene is Kif14, we generate Kif14 knockout mice and find that all of the phenotypes of Kif14 knockout mice are similar to those of lag/lag mice. The main morphological abnormality of lag/lag mouse is severe hypomyelination in central nervous system. The lag/lag mice express an array of myelin-related genes at significantly reduced levels. The disrupted cytoarchitecture of the cerebellar and cerebral cortices appears to result from apoptotic cell death. Thus, we conclude that Kif14 is essential for the generation and maturation of late-developing structures such as the myelin sheath, cerebellar and cerebral cortices. So far, no Kif14-deficient mice or mutation in Kif14 has ever been reported and we firstly define the biological function of Kif14 in vivo. The discovery of mammalian models, laggard, has opened up horizons for researchers to add more knowledge regarding the etiology and pathology of brain malformation.
Collapse
|
8
|
Heligmosomoides bakeri: a model for exploring the biology and genetics of resistance to chronic gastrointestinal nematode infections. Parasitology 2009; 136:1565-80. [PMID: 19450375 DOI: 10.1017/s0031182009006003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intestinal nematode Heligmosomoides bakeri has undergone 2 name changes during the last 4 decades. Originally, the name conferred on the organism in the early 20th century was Nematospiroides dubius, but this was dropped in favour of Heligmosomoides polygyrus, and then more recently H. bakeri, to distinguish it from a closely related parasite commonly found in wood mice in Europe. H. bakeri typically causes long-lasting infections in mice and in this respect it has been an invaluable laboratory model of chronic intestinal nematode infections. Resistance to H. bakeri is a dominant trait and is controlled by genes both within and outside the MHC. More recently, a significant QTL has been identified on chromosome 1, although the identity of the underlying genes is not yet known. Other QTL for resistance traits and for the accompanying immune responses were also defined, indicating that resistance to H. bakeri is a highly polygenic phenomenon. Hence marker-assisted breeding programmes aiming to improve resistance to GI nematodes in breeds of domestic livestock will need to be highly selective, focussing on genes that confer the greatest proportion of overall genetic resistance, whilst leaving livestock well-equipped genetically to cope with other types of pathogens and preserving important production traits.
Collapse
|
9
|
Dejager L, Libert C, Montagutelli X. Thirty years of Mus spretus: a promising future. Trends Genet 2009; 25:234-41. [PMID: 19361882 DOI: 10.1016/j.tig.2009.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/25/2009] [Accepted: 03/25/2009] [Indexed: 11/30/2022]
Abstract
Extensive genetic polymorphisms in Mus spretus have ensured its widespread use in many areas of genetics. With the recent increase in the number of single nucleotide polymorphisms available for laboratory mouse strains, M. spretus is becoming less appealing, in particular for genetic mapping. Although M. spretus mice are aggressive and poor breeders, they have a bright future because they provide phenotypes unobserved in laboratory strains, and tools are available for modifying their genome and dissecting the genetic architecture of complex traits. Furthermore, they provide information on fundamental genetic questions, such as the details of evolution of genomes and speciation. Here, we examine the use of M. spretus from these perspectives. The impending completion of the M. spretus genome sequence will synergize these advantages.
Collapse
Affiliation(s)
- Lien Dejager
- Department for Molecular Biomedical Research, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | | | | |
Collapse
|
10
|
Jaari S, Li MH, Merilä J. A first-generation microsatellite-based genetic linkage map of the Siberian jay (Perisoreus infaustus): insights into avian genome evolution. BMC Genomics 2009; 10:1. [PMID: 19121221 PMCID: PMC2671524 DOI: 10.1186/1471-2164-10-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 01/03/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Genomic resources for the majority of free-living vertebrates of ecological and evolutionary importance are scarce. Therefore, linkage maps with high-density genome coverage are needed for progress in genomics of wild species. The Siberian jay (Perisoreus infaustus; Corvidae) is a passerine bird which has been subject to lots of research in the areas of ecology and evolutionary biology. Knowledge of its genome structure and organization is required to advance our understanding of the genetic basis of ecologically important traits in this species, as well as to provide insights into avian genome evolution. RESULTS We describe the first genetic linkage map of Siberian jay constructed using 117 microsatellites and a mapping pedigree of 349 animals representing five families from a natural population breeding in western Finland from the years 1975 to 2006. Markers were resolved into nine autosomal and a Z-chromosome-specific linkage group, 10 markers remaining unlinked. The best-position map with the most likely positions of all significantly linked loci had a total sex-average size of 862.8 cM, with an average interval distance of 9.69 cM. The female map covered 988.4 cM, whereas the male map covered only 774 cM. The Z-chromosome linkage group comprised six markers, three pseudoautosomal and three sex-specific loci, and spanned 10.6 cM in females and 48.9 cM in males. Eighty-one of the mapped loci could be ordered on a framework map with odds of >1000:1 covering a total size of 809.6 cM in females and 694.2 cM in males. Significant sex specific distortions towards reduced male recombination rates were revealed in the entire best-position map as well as within two autosomal linkage groups. Comparative mapping between Siberian jay and chicken anchored 22 homologous loci on 6 different linkage groups corresponding to chicken chromosomes Gga1, 2, 3, 4, 5, and Z. Quite a few cases of intra-chromosomal rearrangements within the autosomes and three cases of inter-chromosomal rearrangement between the Siberian jay autosomal linkage groups (LG1, LG2 and LG3) and the chicken sex chromosome GgaZ were observed, suggesting a conserved synteny, but changes in marker order, within autosomes during about 100 million years of avian evolution. CONCLUSION The constructed linkage map represents a valuable resource for intraspecific genomics of Siberian jay, as well as for avian comparative genomic studies. Apart from providing novel insights into sex-specific recombination rates and patterns, the described maps - from a previously genomically uncharacterized superfamily (Corvidae) of passerine birds - provide new insights into avian genome evolution. In combination with high-resolution data on quantitative trait variability from the study population, they also provide a foundation for QTL-mapping studies.
Collapse
Affiliation(s)
- Sonja Jaari
- Ecological Genetics Research Unit, Department of Biological and Environmental Sciences, PO Box 65, FIN-00014 University of Helsinki, Finland.
| | | | | |
Collapse
|
11
|
Eleuch L, Jilal A, Grando S, Ceccarelli S, Schmising MVK, Tsujimoto H, Hajer A, Daaloul A, Baum M. Genetic diversity and association analysis for salinity tolerance, heading date and plant height of barley germplasm using simple sequence repeat markers. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1004-14. [PMID: 18713351 DOI: 10.1111/j.1744-7909.2008.00670.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The objective of this study was to investigate the genetic diversity of barley accessions. Additionally, association trait analysis was conducted for grain yield under salinity, heading date and plant height. For this purpose, 48 barley genotypes were analyzed with 22 microsatellite simple sequence repeat (SSR) markers. Four of the 22 markers (Bmac316, scssr03907, HVM67 and Bmag770) were able to differentiate all barley genotypes. Cluster and principal coordinate analysis allowed a clear grouping between countries from the same region. The genotypes used in this study have been evaluated for agronomic performance in different environments. Conducting association analysis for grain yield under salinity conditions using TASSEL software revealed a close association of the marker Bmag749 (2H, bin 13) in two different environments with common significant alleles (175, 177), whereas the HVHOTR1 marker (2H, bin 3) was only significant in Sakhar_Egypt with alleles size being 158 and 161. Heading date also showed an association with scssr03907 through the common significant specific allele 111 and EBmac0415 markers in three different agro climatic locations, whereas HVCMA, scssr00103 and HVM67 were linked to heading date in the Egyptian environment only. The plant height association analysis revealed significant markers Bmag770 via the significant allele 152 and scssr09398.
Collapse
Affiliation(s)
- Lilia Eleuch
- Laboratory of Genetics and Plant Breeding, Department of Agronomy and Plant Biotechnology, National Institute of Agronomy, 1085 Tunis, Tunisia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Paigen K, Szatkiewicz JP, Sawyer K, Leahy N, Parvanov ED, Ng SHS, Graber JH, Broman KW, Petkov PM. The recombinational anatomy of a mouse chromosome. PLoS Genet 2008; 4:e1000119. [PMID: 18617997 PMCID: PMC2440539 DOI: 10.1371/journal.pgen.1000119] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 06/04/2008] [Indexed: 11/18/2022] Open
Abstract
Among mammals, genetic recombination occurs at highly delimited sites known as recombination hotspots. They are typically 1–2 kb long and vary as much as a 1,000-fold or more in recombination activity. Although much is known about the molecular details of the recombination process itself, the factors determining the location and relative activity of hotspots are poorly understood. To further our understanding, we have collected and mapped the locations of 5,472 crossover events along mouse Chromosome 1 arising in 6,028 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. Crossovers were mapped to a minimum resolution of 225 kb, and those in the telomere-proximal 24.7 Mb were further mapped to resolve individual hotspots. Recombination rates were evolutionarily conserved on a regional scale, but not at the local level. There was a clear negative-exponential relationship between the relative activity and abundance of hotspot activity classes, such that a small number of the most active hotspots account for the majority of recombination. Females had 1.2× higher overall recombination than males did, although the sex ratio showed considerable regional variation. Locally, entirely sex-specific hotspots were rare. The initiation of recombination at the most active hotspot was regulated independently on the two parental chromatids, and analysis of reciprocal crosses indicated that parental imprinting has subtle effects on recombination rates. It appears that the regulation of mammalian recombination is a complex, dynamic process involving multiple factors reflecting species, sex, individual variation within species, and the properties of individual hotspots. In most eukaryotic organisms, recombination—the exchange of genetic information between homologous chromosomes—ensures the proper recognition and segregation of chromosomes during meiosis. Recombination events in mammals are not randomly positioned along the chromosomes but occur in preferential 1–2-kilobase sequences termed hotspots. Different species such as humans and mice do not share hotspots, although the same principles almost certainly regulate their placement in the genome. Hotspot positions and activities depend on genetic background and show sex-specific differences. In this study, we present a detailed analysis of recombination activity along the largest mouse chromosome, finding that recombination is regulated on multiple levels, including regional positioning relative to the chromosomal ends, local gene content, sex-specific mechanisms of hotspot recognition, and parental origin. Our results will contribute to further understanding of one of the most fundamental biological processes and are likely to cast light on several aspects of population genetics and evolutionary biology, as well as enhance our practical ability to define the genetic components of human disease.
Collapse
Affiliation(s)
- Kenneth Paigen
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jin P. Szatkiewicz
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Kathryn Sawyer
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Nicole Leahy
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Emil D. Parvanov
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Siemon H. S. Ng
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Joel H. Graber
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Karl W. Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Petko M. Petkov
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
13
|
Adjei S, Sato A, Nagase T, Matsubara K, Matsuda Y, Namikawa T, Ishikawa A. Genetic linkage map of the house musk shrew, Suncus murinus, constructed with PCR-based and RFLP markers. Exp Anim 2008; 57:129-34. [PMID: 18421175 DOI: 10.1538/expanim.57.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A genetic linkage map for Suncus murinus was previously constructed with 11 marker loci. In this study, we developed 172 new microsatellite and three RFLP markers, and re-constructed a new framework map by combining all markers. The new map comprises 42 markers that are distributed into 12 linkage groups, two of which are assigned to chromosomes, and spans 403.5 cM with an average inter-marker distance of 13.5 cM.
Collapse
Affiliation(s)
- Samuel Adjei
- Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Walter RB, Ju Z, Martinez A, Amemiya C, Samollow PB. Genomic resources for Xiphophorus research. Zebrafish 2008; 3:11-22. [PMID: 18248243 DOI: 10.1089/zeb.2006.3.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Xiphophorus fishes and interspecies hybrids are used in many areas of contemporary research. Due to their high degree of heterozygosity Xiphophorus interspecies hybrids are extremely valuable models for molecular genetic study of gene regulation in physiology and behavior. Historically, Xiphophorus fish have made a contribution to understanding the genetics underlying tumorigenesis but the role this experimental model system may play in contemporary comparative biology has only just begun to be realized. In spite of many advantages a genome-level Xiphophorus sequencing project has not yet been initiated. In order to set a stage for a genome-level initiative, many Xiphophorus resources have recently been, or are currently being developed. Recent completion of the Xiphophorus gene linkage map, construction of microsatellite marker and EST databases, and the accessibility of BAC library resources hallmark the progress in development of genomic capabilities for Xiphophorus investigations. Herein we review current Xiphophorus genomic resources and to provide the reader with information that will enable them to access these resources available to enhance their investigations.
Collapse
Affiliation(s)
- Ronald B Walter
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666-4616, USA.
| | | | | | | | | |
Collapse
|
15
|
Baudat F, de Massy B. Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosome Res 2007; 15:565-77. [PMID: 17674146 DOI: 10.1007/s10577-007-1140-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During meiosis the programmed induction of DNA double-stranded breaks (DSB) leads to crossover (CO) and non-crossover products (NCO). One key role of CO is to connect homologs before metaphase I and thus to ensure the proper reductional segregation. This role implies an accurate regulation of CO frequency with the establishment of at least one CO per chromosome arm. Current major challenges are to understand how CO and NCO formation are regulated and what is the role of NCO. We present here the current knowledge about CO and NCO and their regulation in mammals. CO density varies widely along chromosomes and their distribution is not random as they are subject to positive interference. As documented in the mouse and human, a significant excess of DSB are generated relative to the number of CO. In fact, evidence has been obtained for the formation of NCO products, for regulation of the choice of DSB repair towards CO or NCO and for a CO specific pathway. We discuss the roles of Msh4, Msh5 and Sycp1 which affect DSB repair and probably not only the CO pathway. We suggest that, in mammals, the regulation of NCO differs from that described in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Frédéric Baudat
- Institute of Human Genetics, UPR1142/CNRS, 141 rue de la Cardonille, 34396, Montpellier cedex 5, France
| | | |
Collapse
|
16
|
Interspecific recombinant congenic strains between C57BL/6 and mice of the Mus spretus species: a powerful tool to dissect genetic control of complex traits. Genetics 2007; 177:2321-33. [PMID: 17947429 DOI: 10.1534/genetics.107.078006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complex traits are under the genetic control of multiple genes, often with weak effects and strong epistatic interactions. We developed two new collections of mouse strains to improve genetic dissection of complex traits. They are derived from several backcrosses of the Mus spretus SEG/Pas or STF/Pas strains on the C57BL/6J background. Each of the 55 interspecific recombinant congenic strains (IRCSs) carries up to eight SEG/Pas chromosomal segments with an average size of 11.7 Mb, totalizing 1.37% of the genome. The complete series covers 39.7% of the SEG/Pas genome. As a complementary resource, six partial or complete interspecific consomic strains were developed and increased genome coverage to 45.6%. To evaluate the usefulness of these strains for QTL mapping, 16 IRCSs were compared with C57BL/6J for seven hematological parameters. Strain 66H, which carries three SEG/Pas chromosomal segments, had lower red blood cell volume and higher platelet count than C57BL/6J. Each chromosomal segment was isolated in a congenic strain to evaluate individual effects. Congenic strains were combined to assess epistasis. Our data show that both traits were controlled by several genes with complex epistatic interactions. IRCSs are therefore useful to unravel QTL with small effects and gene-by-gene interactions.
Collapse
|
17
|
Samollow PB, Gouin N, Miethke P, Mahaney SM, Kenney M, VandeBerg JL, Graves JAM, Kammerer CM. A microsatellite-based, physically anchored linkage map for the gray, short-tailed Opossum (Monodelphis domestica). Chromosome Res 2007; 15:269-81. [PMID: 17333535 DOI: 10.1007/s10577-007-1123-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 01/04/2007] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
The genome of the gray, short-tailed opossum, Monodelphis domestica, will be the first of any marsupial to be fully sequenced. The utility of this sequence will be greatly enhanced by construction and integration of detailed genetic and physical maps. Therefore, it is important to verify the unusual recombinational characteristics that were suggested by the 'first-generation' M. domestica linkage map; specifically, very low levels of recombination and severely reduced female recombination, both of which are contrary to patterns in other vertebrates. We constructed a new linkage map based on a different genetic cross, using a new and much larger set of map markers, and physically anchored and oriented the linkage groups onto chromosomes via fluorescence in-situ hybridization mapping. This map includes 150 loci in eight autosomal linkage groups corresponding to the eight autosome pairs, and spans 86-89% of the autosomal genome. The sex-averaged autosomal map covers 715 cM, with a full-length estimate of 866 cM; the shortest full-length linkage map reported for any vertebrate. The sex-specific maps confirmed severely reduced female recombination in all linkage groups, and an overall F/M map ratio = 0.54. These results greatly extend earlier findings, and provide an improved microsatellite-based linkage map for this species.
Collapse
Affiliation(s)
- Paul B Samollow
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shifman S, Bell JT, Copley RR, Taylor MS, Williams RW, Mott R, Flint J. A high-resolution single nucleotide polymorphism genetic map of the mouse genome. PLoS Biol 2007; 4:e395. [PMID: 17105354 PMCID: PMC1635748 DOI: 10.1371/journal.pbio.0040395] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 09/18/2006] [Indexed: 11/18/2022] Open
Abstract
High-resolution genetic maps are required for mapping complex traits and for the study of recombination. We report the highest density genetic map yet created for any organism, except humans. Using more than 10,000 single nucleotide polymorphisms evenly spaced across the mouse genome, we have constructed genetic maps for both outbred and inbred mice, and separately for males and females. Recombination rates are highly correlated in outbred and inbred mice, but show relatively low correlation between males and females. Differences between male and female recombination maps and the sequence features associated with recombination are strikingly similar to those observed in humans. Genetic maps are available from http://gscan.well.ox.ac.uk/#genetic_map and as supporting information to this publication.
Collapse
Affiliation(s)
- Sagiv Shifman
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jordana Tzenova Bell
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Richard R Copley
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Martin S Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert W Williams
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Richard Mott
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jonathan Flint
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Li B, Xia Q, Lu C, Zhou Z, Xiang Z. Analysis on frequency and density of microsatellites in coding sequences of several eukaryotic genomes. GENOMICS PROTEOMICS & BIOINFORMATICS 2005; 2:24-31. [PMID: 15629040 PMCID: PMC5172436 DOI: 10.1016/s1672-0229(04)02004-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microsatellites or simple sequence repeats (SSRs) have been found in most organisms during the last decade. Since large-scale sequences are being generated, especially those that can be used to search for microsatellites, the development of these markers is getting more convenient. Keeping SSRs in viewing the importance of the application, available CDS (coding sequences) or ESTs (expressed sequence tags) of some eukaryotic species were used to study the frequency and density of various types of microsatellites. On the basis of surveying CDS or EST sequences amounting to 66.6 Mb in silkworm, 37.2 Mb in fly, 20.8 Mb in mosquito, 60.0 Mb in mouse, 34.9 Mb in zebrafish and 33.5 Mb in Caenorhabditis elegans, the frequency of SSRs was 1/1.00 Kb in silkworm, 1/0.77 Kb in fly, 1/1.03 Kb in mosquito, 1/1.21 Kb in mouse, 1/1.25 Kb in zebrafish and 1/1.38 Kb in C. elegans. The overall average SSR frequency of these species is 1/1.07 Kb. Hexanucleotide repeats (64.5%-76.6%) are the most abundant class of SSR in the investigated species, followed by trimeric, dimeric, tetrameric, monomeric and pentameric repeats. Furthermore, the A-rich repeats are predominant in each type of SSRs, whereas G-rich repeats are rare in the coding regions.
Collapse
|
20
|
Warden CH, Stone S, Chiu S, Diament AL, Corva P, Shattuck D, Riley R, Hunt SC, Easlick J, Fisler JS, Medrano JF. Identification of a congenic mouse line with obesity and body length phenotypes. Mamm Genome 2005; 15:460-71. [PMID: 15181538 DOI: 10.1007/s00335-004-2353-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 01/16/2004] [Indexed: 01/27/2023]
Abstract
Our primary objective was to discover simplified mouse models corresponding to human obesity linkages. We used the B10.UW- H3(b) we Pax1(un) a(t)/Sn (B10.UW) congenic strain, a subcongenic strain with a reduced UW strain donor region, and their C57BL/10SnJ background strain. The congenic and subcongenic UW strain donor regions are on mouse Chr 2. We measured body length [anal-nasal (AN) length], summed fat depot weights normalized for body weight (Adiposity Index, AI), and percentage of body weight that is lipid. The B10.UW congenic and subcongenic strains have significantly smaller AN lengths ( p < 0.0001) and have a significantly lower AI and percentage of body weight as fat than the background strain ( p < 0.0001). In an F(2) intercross of the congenic and background strains, AN and AI were both linked to the distal half of the donor region with LOD scores greater than 19 and 5, respectively. F(2) haplotypes identified a minimal region for AN linkage of 0.8 megabases (Mb) that is estimated to express four genes in the current Celera mouse genome assembly. We narrowed the most likely location of the obesity gene to 15 Mb whose homologous genes are all located on human Chr 20 in the region surrounding the centromere. Since a previous study identified human obesity linkage peaking near the centromere, then the B10.UW mice may exhibit obesity due to the homologous gene.
Collapse
Affiliation(s)
- Craig H Warden
- Rowe Program in Human Genetics, Section of Neurobiology/Physiology/Behavior, University of California, Davis, California, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Samollow PB, Kammerer CM, Mahaney SM, Schneider JL, Westenberger SJ, VandeBerg JL, Robinson ES. First-generation linkage map of the gray, short-tailed opossum, Monodelphis domestica, reveals genome-wide reduction in female recombination rates. Genetics 2004; 166:307-29. [PMID: 15020427 PMCID: PMC1470690 DOI: 10.1534/genetics.166.1.307] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gray, short-tailed opossum, Monodelphis domestica, is the most extensively used, laboratory-bred marsupial resource for basic biologic and biomedical research worldwide. To enhance the research utility of this species, we are building a linkage map, using both anonymous markers and functional gene loci, that will enable the localization of quantitative trait loci (QTL) and provide comparative information regarding the evolution of mammalian and other vertebrate genomes. The current map is composed of 83 loci distributed among eight autosomal linkage groups and the X chromosome. The autosomal linkage groups appear to encompass a very large portion of the genome, yet span a sex-average distance of only 633.0 cM, making this the most compact linkage map known among vertebrates. Most surprising, the male map is much larger than the female map (884.6 cM vs. 443.1 cM), a pattern contrary to that in eutherian mammals and other vertebrates. The finding of genome-wide reduction in female recombination in M. domestica, coupled with recombination data from two other, distantly related marsupial species, suggests that reduced female recombination might be a widespread metatherian attribute. We discuss possible explanations for reduced female recombination in marsupials as a consequence of the metatherian characteristic of determinate paternal X chromosome inactivation.
Collapse
Affiliation(s)
- Paul B Samollow
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas, 78245-0549, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ball M, McLellan A, Collins B, Coadwell J, Stewart F, Moore T. An abundant placental transcript containing an IAP-LTR is allelic to mouse pregnancy-specific glycoprotein 23 (Psg23): cloning and genetic analysis. Gene 2004; 325:103-13. [PMID: 14697515 DOI: 10.1016/j.gene.2003.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Several families of endogenous retroviruses (ERVs) are expressed in mammalian placental tissues, and are implicated in aspects of placental development and function. We characterized the structure of abundant ERV-related transcripts in mouse placenta. In addition to the 7 kb full-length type I and 5 kb type I deleted intracisternal A-particle (IAP) transcripts, we identified and cloned an abundant 2 kb transcript encoding a novel member of the pregnancy-specific glycoprotein (Psg) gene family, which contains an IAP long terminal repeat (LTR) in the 3' untranslated region (UTR). The polyadenylation signal for the transcript is provided by the inserted LTR sequence. This sequence is allelic to Psg23 and is therefore denoted as Psg23(LTR). The transcript encodes a protein of 471 amino acids and has a domain organisation similar to previously described Psg proteins. Modelling of the protein N-domain produced a structure in good agreement with an existing crystalline structure for mouse sCEACAM1a. The LTR insertion is widely distributed among inbred mouse strains but is not found in 129/sv, CBA/2, or in wild mice. Cloning of the genomic region downstream of the LTR insertion site from the C57Bl/6J strain indicates that the insertion consists of a solo LTR without additional IAP sequence, and identified the original Psg23 polyadenylation signal sequence downstream of the insertion site. Psg23(LTR) was mapped to proximal chromosome 7 using the European collaborative interspecific mouse backcross (EUCIB) panel, and to yeast artificial chromosome (YAC) E072, which contains other members of the Psg gene family, by polymerase chain reaction (PCR). Northern blot analysis of RNA from adult and fetal mouse tissues and in situ hybridization to mid-gestation mouse embryos indicated that Psg23(LTR) is expressed predominantly in placental spongiotrophoblast. We detected a small, but statistically non-significant, bias in favour of transmission of Psg23(LTR) to the offspring of heterozygous parents. However, a larger study would be required to determine whether this allele is selectively advantageous to the developing embryo.
Collapse
MESH Headings
- Alleles
- Animals
- Base Sequence
- Cloning, Molecular
- Crosses, Genetic
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Female
- Gene Expression Profiling
- Genes, Intracisternal A-Particle/genetics
- Glycoproteins/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred DBA
- Mice, Inbred Strains
- Models, Molecular
- Molecular Sequence Data
- Muridae
- Physical Chromosome Mapping
- Placenta/metabolism
- Pregnancy Proteins/chemistry
- Pregnancy Proteins/genetics
- Protein Conformation
- Rats
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Terminal Repeat Sequences/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Melanie Ball
- Department of Biochemistry, BioSciences Institute, University College Cork, College Road, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
23
|
Ronin Y, Korol A, Shtemberg M, Nevo E, Soller M. High-resolution mapping of quantitative trait loci by selective recombinant genotyping. Genetics 2003; 164:1657-66. [PMID: 12930769 PMCID: PMC1462674 DOI: 10.1093/genetics/164.4.1657] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Selective recombinant genotyping (SRG) is a three-stage procedure for high-resolution mapping of a QTL that has previously been mapped to a known confidence interval (target C.I.). In stage 1, a large mapping population is accessed and phenotyped, and a proportion, P, of the high and low tails is selected. In stage 2, the selected individuals are genotyped for a pair of markers flanking the target C.I., and a group of R individuals carrying recombinant chromosomes in the target interval are identified. In stage 3, the recombinant individuals are genotyped for a set of M markers spanning the target C.I. Extensive simulations showed that: (1) Standard error of QTL location (SEQTL) decreased when QTL effect (d) or population size (N) increased, but was constant for given "power factor" (PF = d(2)N); (2) increasing the proportion selected in the tails beyond 0.25 had only a negligible effect on SEQTL; and (3) marker spacing in the target interval had a remarkably powerful effect on SEQTL, yielding a reduction of up to 10-fold in going from highest (24 cM) to lowest (0.29 cM) spacing at given population size and QTL effect. At the densest marker spacing, SEQTL of 1.0-0.06 cM were obtained at PF = 500-16,000. Two new genotyping procedures, the half-section algorithm and the golden section/half-section algorithm, allow the equivalent of complete haplotyping of the target C.I. in the recombinant individuals to be achieved with many fewer data points than would be required by complete individual genotyping.
Collapse
Affiliation(s)
- Y Ronin
- Institute of Evolution, University of Haifa, Mount Carmel, 31095 Haifa, Israel
| | | | | | | | | |
Collapse
|
24
|
Denny P, Hopes E, Gingles N, Broman KW, McPheat W, Morten J, Alexander J, Andrew PW, Brown SDM. A major locus conferring susceptibility to infection by Streptococcus pneumoniae in mice. Mamm Genome 2003; 14:448-53. [PMID: 12925893 DOI: 10.1007/s00335-002-2261-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 03/14/2003] [Indexed: 10/26/2022]
Abstract
We have studied the genetics of susceptibility to infection by Streptococcus pneumoniae in mice. Linkage analysis of the F(2) generation from a cross between resistant BALB/cO1aHsd and susceptible CBA/CaO1aHsd strains allowed us to map a major locus controlling the development of bacteremia and survival after intranasal infection.
Collapse
Affiliation(s)
- Paul Denny
- MRC UK Mouse Genome Centre & Mammalian Genetics Unit, Harwell, Oxon, OX11 0RD, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rowe LB, Barter ME, Kelmenson JA, Eppig JT. The comprehensive mouse radiation hybrid map densely cross-referenced to the recombination map: a tool to support the sequence assemblies. Genome Res 2003; 13:122-33. [PMID: 12529315 PMCID: PMC430952 DOI: 10.1101/gr.858103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have developed a unique comprehensive mouse radiation hybrid (RH) map of nearly 23,000 markers integrating data from three international genome centers and over 400 independent laboratories. We have cross-referenced this map to the 0.5-cM resolution recombination-based Jackson Laboratory (TJL) backcross panel map, building a complete set of RH framework chromosome maps based on a high density of known-ordered anchor markers. We have systematically typed markers to improve coverage and resolve discrepancies, and have reanalyzed data sets as needed. The cross-linking of the RH and recombination maps has resulted in a highly accurate genome-wide map with consistent marker order. We have compared these linked framework maps to the Ensemble mouse genome sequence assembly, and show that they are a useful medium resolution tool for both validating sequence assembly and elucidating chromosome biology.
Collapse
Affiliation(s)
- Lucy B Rowe
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
| | | | | | | |
Collapse
|
26
|
Boukouvala S, Price N, Sim E. Identification and functional characterization of novel polymorphisms associated with the genes for arylamine N-acetyltransferases in mice. PHARMACOGENETICS 2002; 12:385-94. [PMID: 12142728 DOI: 10.1097/00008571-200207000-00006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Arylamine N-acetyltransferase (NAT) polymorphism in humans has been associated with variation in susceptibility to drug toxicity and cancer. In mice, three NAT isoenzymes are encoded by Nat1, Nat2 and Nat3 genes. Only Nat2 has been shown previously to be polymorphic, a single nucleotide substitution causing the slow acetylator phenotype in the A/J strain. We sequenced the Nat genes from inbred (CBA and 129/Ola), outbred (PO and TO) and wild-derived inbred (Mus spretus and Mus musculus castaneus) mouse strains and report polymorphism in all three Nat genes of M. spretus and in Nat2 and Nat3 genes of M. m. castaneus. Enzymatic activity assays using liver homogenates demonstrated that M. m. castaneus is a 'fast' and M. spretus a 'slow' acetylator. Western blot analysis indicated that hepatic NAT2 protein is less abundant in M. spretus than M. m. castaneus. The new allozymes were expressed in a mammalian cell line and NAT enzymatic activity was measured with a series of substrates. NAT1 and NAT2 isoenzymes of M. m. castaneus exhibited a higher rate of acetylation, compared with those of M. spretus. Activity of the NAT3 allozymes was hardly detectable, although the Nat3 gene does appear to be transcribed, since mRNA was detected by RT-PCR in the spleen. Additional polymorphisms, useful for Nat-related genetic studies, have been identified between BALB/c, C57Bl/6J, A/J, 129/Ola, CBA, PO, TO, M. m. castaneus and M. spretus strains in four microsatellite repeats located close to the Nat genes.
Collapse
|
27
|
Ruivenkamp CAL, van Wezel T, Zanon C, Stassen APM, Vlcek C, Csikós T, Klous AM, Tripodis N, Perrakis A, Boerrigter L, Groot PC, Lindeman J, Mooi WJ, Meijjer GA, Scholten G, Dauwerse H, Paces V, van Zandwijk N, van Ommen GJB, Demant P. Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat Genet 2002; 31:295-300. [PMID: 12089527 DOI: 10.1038/ng903] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Only a small proportion of cancers result from familial cancer syndromes with Mendelian inheritance. Nonfamilial, 'sporadic' cancers, which represent most cancer cases, also have a significant hereditary component, but the genes involved have low penetrance and are extremely difficult to detect. Therefore, mapping and cloning of quantitative trait loci (QTLs) for cancer susceptibility in animals could help identify homologous genes in humans. Several cancer-susceptibility QTLs have been mapped in mice and rats, but none have been cloned so far. Here we report the positional cloning of the mouse gene Scc1 (Susceptibility to colon cancer 1) and the identification of Ptprj, encoding a receptor-type protein tyrosine phosphatase, as the underlying gene. In human colon, lung and breast cancers, we show frequent deletion of PTPRJ, allelic imbalance in loss of heterozygosity (LOH) and missense mutations. Our data suggest that PTPRJ is relevant to the development of several different human cancers.
Collapse
Affiliation(s)
- Claudia A L Ruivenkamp
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Klose J, Nock C, Herrmann M, Stühler K, Marcus K, Blüggel M, Krause E, Schalkwyk LC, Rastan S, Brown SDM, Büssow K, Himmelbauer H, Lehrach H. Genetic analysis of the mouse brain proteome. Nat Genet 2002; 30:385-93. [PMID: 11912495 DOI: 10.1038/ng861] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Proteome analysis is a fundamental step in systematic functional genomics. Here we have resolved 8,767 proteins from the mouse brain proteome by large-gel two-dimensional electrophoresis. We detected 1,324 polymorphic proteins from the European collaborative interspecific backcross. Of these, we mapped 665 proteins genetically and identified 466 proteins by mass spectrometry. Qualitatively polymorphic proteins, to 96%, reflect changes in conformation and/or mass. Quantitatively polymorphic proteins show a high frequency (73%) of allele-specific transmission in codominant heterozygotes. Variations in protein isoforms and protein quantity often mapped to chromosomal positions different from that of the structural gene, indicating that single proteins may act as polygenic traits. Genetic analysis of proteomes may detect the types of polymorphism that are most relevant in disease-association studies.
Collapse
Affiliation(s)
- Joachim Klose
- Institut für Humangenetik, Humboldt-Universität zu Berlin, Charité, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hayes C, Rump A, Cadman MR, Harrison M, Evans EP, Lyon MF, Morriss-Kay GM, Rosenthal A, Brown SD. A high-resolution genetic, physical, and comparative gene map of the doublefoot (Dbf) region of mouse chromosome 1 and the region of conserved synteny on human chromosome 2q35. Genomics 2001; 78:197-205. [PMID: 11735226 DOI: 10.1006/geno.2001.6657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0.4-cM (+/-0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation.
Collapse
Affiliation(s)
- C Hayes
- Medical Research Council, Mammalian Genetics Unit and UK Mouse Genome Centre, Harwell, Didcot, Oxon., OX11 0RD, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Schalkwyk LC, Cusack B, Dunkel I, Hopp M, Kramer M, Palczewski S, Piefke J, Scheel S, Weiher M, Wenske G, Lehrach H, Himmelbauer H. Advanced integrated mouse YAC map including BAC framework. Genome Res 2001; 11:2142-50. [PMID: 11731506 PMCID: PMC311217 DOI: 10.1101/gr.176201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Functional characterization of the mouse genome requires the availability of a comprehensive physical map to obtain molecular access to chromosomal regions of interest. Positional cloning remains a crucial way of linking phenotype with particular genes. A key step and frequent stumbling block in positional cloning is making a contig of a genetically defined candidate region. The most efficient first step is isolating YAC (Yeast Artificial Chromosome) clones. A robust, detailed YAC contig map is thus an important tool. Employing Interspersed Repetitive Sequence (IRS)-PCR genomics, we have generated an advanced second-generation YAC contig map of the mouse genome that doubles both the depth of clones and the density of markers available. In addition to the primarily YAC-based map, we located 1942 BAC (Bacterial Artificial Chromosome) clones. This allows us to present for the first time a dense framework of BACs spanning the genome of the mouse, which, for instance, can serve as a nucleus for genomic sequencing. Four large-insert mouse YAC libraries from three different strains are included in our data, and our analysis incorporates the data of Hunter et al. and Nusbaum et al. There is a total of 20,205 markers on the final map, 12,033 from our own data, and a total of 56,093 YACs, of which 44,401 are positive for more than one marker.
Collapse
Affiliation(s)
- L C Schalkwyk
- Max-Planck-Institute of Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Murdoch JN, Rachel RA, Shah S, Beermann F, Stanier P, Mason CA, Copp AJ. Circletail, a new mouse mutant with severe neural tube defects: chromosomal localization and interaction with the loop-tail mutation. Genomics 2001; 78:55-63. [PMID: 11707073 DOI: 10.1006/geno.2001.6638] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circletail (Crc) is a new mouse mutant that exhibits a severe form of neural tube defect, craniorachischisis, in which almost the entire neural tube fails to close. This phenotype is seen in very few other mutants, the best characterized of which is loop-tail (Ltap(Lp), referred to hereafter as Lp). We tested the possibility of allelism between Lp and Crc by intercrossing Lp/+ and Crc/+mice. A proportion of double heterozygotes (Lp/+,Crc/+) exhibit craniorachischisis, revealing failure of complementation. However, genetic analysis shows that Crc is not linked to the markers that flank the Lp locus and cannot, therefore, be an allele of Lp. A genome-wide scan has localized the Crc gene to a region of 8.8 cM on central chromosome 15. Partial penetrance of the craniorachischisis phenotype in Crc/+,Lp/+double heterozygotes suggests the existence of a third, unlinked genetic locus that influences the interaction between Crc and Lp.
Collapse
Affiliation(s)
- J N Murdoch
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
Hudson TJ, Church DM, Greenaway S, Nguyen H, Cook A, Steen RG, Van Etten WJ, Castle AB, Strivens MA, Trickett P, Heuston C, Davison C, Southwell A, Hardisty R, Varela-Carver A, Haynes AR, Rodriguez-Tome P, Doi H, Ko MS, Pontius J, Schriml L, Wagner L, Maglott D, Brown SD, Lander ES, Schuler G, Denny P. A radiation hybrid map of mouse genes. Nat Genet 2001; 29:201-5. [PMID: 11586302 DOI: 10.1038/ng1001-201] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A comprehensive gene-based map of a genome is a powerful tool for genetic studies and is especially useful for the positional cloning and positional candidate approaches. The availability of gene maps for multiple organisms provides the foundation for detailed conserved-orthology maps showing the correspondence between conserved genomic segments. These maps make it possible to use cross-species information in gene hunts and shed light on the evolutionary forces that shape the genome. Here we report a radiation hybrid map of mouse genes, a combined project of the Whitehead Institute/Massachusetts Institute of Technology Center for Genome Research, the Medical Research Council UK Mouse Genome Centre, and the National Center for Biotechnology Information. The map contains 11,109 genes, screened against the T31 RH panel and positioned relative to a reference map containing 2,280 mouse genetic markers. It includes 3,658 genes homologous to the human genome sequence and provides a framework for overlaying the human genome sequence to the mouse and for sequencing the mouse genome.
Collapse
Affiliation(s)
- T J Hudson
- Center for Genome Research, Whitehead Institute/Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cai WW, Chow CW, Damani S, Gregory SG, Marra M, Bradley A. An SSLP marker-anchored BAC framework map of the mouse genome. Nat Genet 2001; 29:133-4. [PMID: 11586294 DOI: 10.1038/ng1001-133] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have constructed a BAC framework map of the mouse genome consisting of 2,808 PCR-confirmed BAC clusters, using a previously described method. Fingerprints of BACs from selected clusters confirm the accuracy of the map. Combined with BAC fingerprint data, the framework map covers 37% of the mouse genome.
Collapse
Affiliation(s)
- W W Cai
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
34
|
Barber R, Plumb M, Smith AG, Cesar CE, Boulton E, Jeffreys AJ, Dubrova YE. No correlation between germline mutation at repeat DNA and meiotic crossover in male mice exposed to X-rays or cisplatin. Mutat Res 2000; 457:79-91. [PMID: 11106800 DOI: 10.1016/s0027-5107(00)00130-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To test the hypothesis that mouse germline expanded simple tandem repeat (ESTR) mutations are associated with recombination events during spermatogenesis, crossover frequencies were compared with germline mutation rates at ESTR loci in male mice acutely exposed to 1Gy of X-rays or to 10mg/kg of the anticancer drug cisplatin. Ionising radiation resulted in a highly significant 2.7-3.6-fold increase in ESTR mutation rate in males mated 4, 5 and 6 weeks after exposure, but not 3 weeks after exposure. In contrast, irradiation had no effect on meiotic crossover frequencies assayed on six chromosomes using 25 polymorphic microsatellite loci spaced at approximately 20cM intervals and covering 421cM of the mouse genome. Paternal exposure to cisplatin did not affect either ESTR mutation rates or crossover frequencies, despite a report that cisplatin can increase crossover frequency in mice. Correlation analysis did not reveal any associations between the paternal ESTR mutation rate and crossover frequency in unexposed males and in those exposed to X-rays or cisplatin. This study does not, therefore, support the hypothesis that mutation induction at mouse ESTR loci results from a general genome-wide increase in meiotic recombination rate.
Collapse
Affiliation(s)
- R Barber
- Department of Genetics, University of Leicester, LE1 7RH, Leicester, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
O'Carroll D, Scherthan H, Peters AH, Opravil S, Haynes AR, Laible G, Rea S, Schmid M, Lebersorger A, Jerratsch M, Sattler L, Mattei MG, Denny P, Brown SD, Schweizer D, Jenuwein T. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol Cell Biol 2000; 20:9423-33. [PMID: 11094092 PMCID: PMC102198 DOI: 10.1128/mcb.20.24.9423-9433.2000] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Higher-order chromatin has been implicated in epigenetic gene control and in the functional organization of chromosomes. We have recently discovered mouse (Suv39h1) and human (SUV39H1) histone H3 lysine 9-selective methyltransferases (Suv39h HMTases) and shown that they modulate chromatin dynamics in somatic cells. We describe here the isolation, chromosomal assignment, and characterization of a second murine gene, Suv39h2. Like Suv39h1, Suv39h2 encodes an H3 HMTase that shares 59% identity with Suv39h1 but which differs by the presence of a highly basic N terminus. Using fluorescent in situ hybridization and haplotype analysis, the Suv39h2 locus was mapped to the subcentromeric region of mouse chromosome 2, whereas the Suv39h1 locus resides at the tip of the mouse X chromosome. Notably, although both Suv39h loci display overlapping expression profiles during mouse embryogenesis, Suv39h2 transcripts remain specifically expressed in adult testes. Immunolocalization of Suv39h2 protein during spermatogenesis indicates enriched distribution at the heterochromatin from the leptotene to the round spermatid stage. Moreover, Suv39h2 specifically accumulates with chromatin of the sex chromosomes (XY body) which undergo transcriptional silencing during the first meiotic prophase. These data are consistent with redundant enzymatic roles for Suv39h1 and Suv39h2 during mouse development and suggest an additional function of the Suv39h2 HMTase in organizing meiotic heterochromatin that may even impart an epigenetic imprint to the male germ line.
Collapse
Affiliation(s)
- D O'Carroll
- Research Institute of Molecular Pathology at The Vienna Biocenter, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rowe LB, Barter ME, Eppig JT. Cross-referencing radiation hybrid data to the recombination map: lessons from mouse chromosome 18. Genomics 2000; 69:27-36. [PMID: 11013072 DOI: 10.1006/geno.2000.6314] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We are building a framework map of known-order anchor markers between the mouse T31 radiation hybrid (RH) panel and the recombination map based on The Jackson Laboratory (TJL) interspecific backcross panels using the established genetic order to evaluate and strengthen the RH results. In making this map comparison, we have elucidated several problems inherent in RH mapping and minimized these by careful attention to data gathering and interpretation methods. We describe lessons and pitfalls of developing radiation hybrid maps, using the example of mouse Chromosome 18, for which we have built a framework map of microsatellite anchor loci spanning the entire chromosome at significant LOD with no gaps. Sixty-five D18Mit- simple sequence length polymorphism (SSLP) markers form a continuous linkage along the T31 RH Chromosome 18 (RH map length 1598 cR, genetic length 41 cM) with all LODs greater than 6. These markers are also placed on TJL interspecific backcrosses, and the order of the markers in the two systems is in complete agreement. We are continuing to cross-reference the RH data to TJL backcross data for the other mouse chromosomes to improve further the power of RH mapping and to integrate more precisely the extensive existing recombination mapping data for the mouse with the incoming radiation hybrid map data.
Collapse
Affiliation(s)
- L B Rowe
- The Jackson Laboratory, Bar Harbor, Maine 04609-1500, USA.
| | | | | |
Collapse
|
37
|
Abstract
The use of DNA markers to define the genetic makeup (genotype) and predict the performance of an animal is a powerful aid to animal breeding. One strategy is known as marker-assisted selection (MAS). MAS facilitates the exploitation of existing genetic diversity in breeding populations and can be used to improve a whole range of desirable traits. DNA markers are, by definition, polymorphic, and the methods used to define DNA markers include restriction fragment length polymorphisms (RFLPs), microsatellites, and single nucleotide polymorphisms (SNPs). Linkage analysis, association analysis and analysis of gene function can be used to determine which polymorphisms are useful markers for desirable traits. Future prospects include the use of high throughput DNA microarray (DNA chip) technology which could revolutionize animal breeding in the next millennium.
Collapse
Affiliation(s)
- N D Beuzen
- Department of Veterinary Pathology, Univesity of Galsgow, UK
| | | | | |
Collapse
|
38
|
Hemberger M, Himmelbauer H, Ruschmann J, Zeitz C, Fundele R. cDNA subtraction cloning reveals novel genes whose temporal and spatial expression indicates association with trophoblast invasion. Dev Biol 2000; 222:158-69. [PMID: 10885754 DOI: 10.1006/dbio.2000.9705] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trophoblast invasion is a critical process in development of most mammals that shares similarities with the invasive behavior of tumor cells. In the present investigation, a cDNA subtraction library was constructed between invasive trophoblast at day 8 of murine development and mature noninvasive placenta at day 18 of gestation. One of the differentially expressed clones, Epcs26, was mapped to the X chromosome and revealed no homology to any known gene. It was predominantly expressed in parietal endoderm, undifferentiated cells of the ectoplacental cone, and a few trophoblast giant cells. Another gene, designated Epcs50, was mapped to chromosome 19. It exhibited homologies to the mouse Mps1 gene and, like Mps1, may have a distant relationship to the lytic protein perforin. High expression was detected in parietal endoderm cells and in a subset of secondary trophoblast giant cells. Two sequences, Epcs24 and Epcs68, exhibited an extensive open reading frame that shared the common features of the cysteine proteinase cathepsin L. Expression was confined to an undefined subpopulation of trophoblast giant cells. Both genes were mapped to chromosome 13 in close proximity to cathepsins L and J. The known functions of MPS1 and cathepsin L proteins indicate that the related proteins EPCS50, EPCS24, and EPCS68 participate in conferring invasive properties to the mouse trophoblast.
Collapse
Affiliation(s)
- M Hemberger
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | | | |
Collapse
|
39
|
Pezzi N, Prieto I, Kremer L, Pérez Jurado LA, Valero C, Del Mazo J, Martínez-A C, Barbero JL. STAG3, a novel gene encoding a protein involved in meiotic chromosome pairing and location of STAG3-related genes flanking the Williams-Beuren syndrome deletion. FASEB J 2000; 14:581-92. [PMID: 10698974 DOI: 10.1096/fasebj.14.3.581] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chromatin rearrangements in the meiotic prophase are characterized by the assembly and disassembly of synaptonemal complexes (SC), a protein structure that stabilizes the pairing of homologous chromosomes in prophase. We report the identification of human and mouse cDNA coding for stromalin 3 (STAG3), a new mammalian stromalin member of the synaptonemal complex. The stromalins are a group of highly conserved proteins, represented in several organisms from yeast to humans. Stromalins are characterized by the stromalin conservative domain (SCD), a specific motif found in all proteins of the family described to date. STAG3 is expressed specifically in testis, and immunolocalization experiments show that STAG3 is associated to the synaptonemal complex. As the protein encoded by the homologous gene (Scc3p) in Saccharomyces cerevisiae was found to be a subunit of a cohesin complex that binds chromosomes until the onset of anaphase, our data suggest that STAG3 is involved in chromosome pairing and maintenance of synaptonemal complex structure during the pachytene phase of meiosis in a cohesin-like manner. We have mapped the human STAG3 gene to the 7q22 region of chromosome 7; six human STAG3-related genes have also been mapped: two at 7q22 near the functional gene, one at 7q11.22, and three at 7q11.23, two of them flanking the breakpoints commonly associated with the Williams-Beuren syndrome (WBS) deletion. Since the WBS deletion occurs as a consequence of unequal meiotic crossing over, we suggest that STAG3 duplications predispose to germline chromosomal rearrangement within this region.
Collapse
Affiliation(s)
- N Pezzi
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, UAM Campus de Cantoblanco, Madrid E-28049, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Caetano AR, Shiue YL, Lyons LA, O'Brien SJ, Laughlin TF, Bowling AT, Murray JD. A comparative gene map of the horse (Equus caballus). Genome Res 1999; 9:1239-49. [PMID: 10613847 PMCID: PMC311003 DOI: 10.1101/gr.9.12.1239] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
A comparative gene map of the horse genome composed of 127 loci was assembled based on the new assignment of 68 equine type I loci and on data published previously. PCR primers based on consensus gene sequences conserved across mammalian species were used to amplify markers for assigning 68 equine type I loci to 27 horse synteny groups established previously with a horse-mouse somatic cell hybrid panel (SCHP, UC Davis). This increased the number of coding genes mapped to the horse genome by over 2-fold and allowed refinements of the comparative mapping data available for this species. In conjunction with 57 previous assignments of type I loci to the horse genome map, these data have allowed us to confirm the assignment of 24 equine synteny groups to their respective chromosomes, to provisionally assign nine synteny groups to chromosomes, and to further refine the genetic composition established with Zoo-FISH of two horse chromosomes. The equine type I markers developed in this study provide an important resource for the future development of the horse linkage and physical genome maps.
Collapse
Affiliation(s)
- A R Caetano
- Veterinary Genetics Laboratory, University of California Davis, Davis, California 95616-8744, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Tekki-Kessaris N, Bonventre JV, Boulter CA. Characterization of the mouse Kid1 gene and identification of a highly related gene, Kid2. Gene 1999; 240:13-22. [PMID: 10564808 DOI: 10.1016/s0378-1119(99)00440-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Kid1 encodes a zinc finger protein that has been implicated in renal cell differentiation. Levels of Kid1 mRNA correlate with maturation of kidney tubule epithelia in rat post-natal kidney development and during kidney regeneration following injury. KID1 is a putative transcriptional repressor, containing a KRAB domain at its amino terminus that mediates transcriptional repression in transient cell transfection assays when fused to a heterologous DNA-binding domain. In this paper, we describe the isolation and characterization of the mouse homologue of Kid1 and the identification of a novel highly related mouse gene, Kid2, Kid1 and Kid2 are tightly linked on mouse chromosome 11 and show conservation across mammals. Both genes are expressed predominantly in the mouse adult kidney and brain, but transcripts are also detected in embryonic brain, kidney, gut and lung, suggesting an additional role for these genes during mouse development.
Collapse
Affiliation(s)
- N Tekki-Kessaris
- University of Cambridge, Department of Genetics, Downing Street, Cambridge, UK
| | | | | |
Collapse
|
42
|
Affiliation(s)
- A I McClatchey
- MGH Cancer Center and Harvard Medical School, Department of Pathology, Building 149, 13th Street, Charlestown, Massachusetts, MA 02129, USA
| |
Collapse
|
43
|
Van Etten WJ, Steen RG, Nguyen H, Castle AB, Slonim DK, Ge B, Nusbaum C, Schuler GD, Lander ES, Hudson TJ. Radiation hybrid map of the mouse genome. Nat Genet 1999; 22:384-7. [PMID: 10431245 DOI: 10.1038/11962] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Radiation hybrid (RH) maps are a useful tool for genome analysis, providing a direct method for localizing genes and anchoring physical maps and genomic sequence along chromosomes. The construction of a comprehensive RH map for the human genome has resulted in gene maps reflecting the location of more than 30,000 human genes. Here we report the first comprehensive RH map of the mouse genome. The map contains 2,486 loci screened against an RH panel of 93 cell lines. Most loci (93%) are simple sequence length polymorphisms (SSLPs) taken from the mouse genetic map, thereby providing direct integration between these two key maps. We performed RH mapping by a new and efficient approach in which we replaced traditional gel- or hybridization-based assays by a homogeneous 5'-nuclease assays involving a single common probe for all genetic markers. The map provides essentially complete connectivity and coverage across the genome, and good resolution for ordering loci, with 1 centiRay (cR) corresponding to an average of approximately 100 kb. The RH map, together with an accompanying World-Wide Web server, makes it possible for any investigator to rapidly localize sequences in the mouse genome. Together with the previously constructed genetic map and a YAC-based physical map reported in a companion paper, the fundamental maps required for mouse genomics are now available.
Collapse
Affiliation(s)
- W J Van Etten
- Whitehead Institute/MIT Center for Genome Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nusbaum C, Slonim DK, Harris KL, Birren BW, Steen RG, Stein LD, Miller J, Dietrich WF, Nahf R, Wang V, Merport O, Castle AB, Husain Z, Farino G, Gray D, Anderson MO, Devine R, Horton LT, Ye W, Wu X, Kouyoumjian V, Zemsteva IS, Wu Y, Collymore AJ, Courtney DF, Tam J, Cadman M, Haynes AR, Heuston C, Marsland T, Southwell A, Trickett P, Strivens MA, Ross MT, Makalowski W, Xu Y, Boguski MS, Carter NP, Denny P, Brown SD, Hudson TJ, Lander ES. A YAC-based physical map of the mouse genome. Nat Genet 1999; 22:388-93. [PMID: 10431246 DOI: 10.1038/11967] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A physical map of the mouse genome is an essential tool for both positional cloning and genomic sequencing in this key model system for biomedical research. Indeed, the construction of a mouse physical map with markers spaced at an average interval of 300 kb is one of the stated goals of the Human Genome Project. Here we report the results of a project at the Whitehead Institute/MIT Center for Genome Research to construct such a physical map of the mouse. We built the map by screening sequenced-tagged sites (STSs) against a large-insert yeast artificial chromosome (YAC) library and then integrating the STS-content information with a dense genetic map. The integrated map shows the location of 9,787 loci, providing landmarks with an average spacing of approximately 300 kb and affording YAC coverage of approximately 92% of the mouse genome. We also report the results of a project at the MRC UK Mouse Genome Centre targeted at chromosome X. The project produced a YAC-based map containing 619 loci (with 121 loci in common with the Whitehead map and 498 additional loci), providing especially dense coverage of this sex chromosome. The YAC-based physical map directly facilitates positional cloning of mouse mutations by providing ready access to most of the genome. More generally, use of this map in addition to a newly constructed radiation hybrid (RH) map provides a comprehensive framework for mouse genomic studies.
Collapse
Affiliation(s)
- C Nusbaum
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Manenti G, Stafford A, De Gregorio L, Gariboldi M, Falvella FS, Avner P, Dragani TA. Linkage Disequilibrium and Physical Mapping of Pas1 in Mice. Genome Res 1999. [DOI: 10.1101/gr.9.7.639] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
By using linkage disequilibrium (LD) analysis in 21 strains of known susceptibility to lung cancer and by assembling a YAC contig, we mapped to a ∼1.5-Mb region on distal mouse chromosome 6 the Pas1locus, the major determinant of lung cancer predisposition in mice. Our results, on the basis of haplotype and phenetic analysis, suggest that the Pas1s susceptibility allele is shared by several mouse-inbred strains of independent origin, which show either high or intermediate predisposition to lung tumorigenesis. Therefore, the Pas1s allele is probably derived from an ancestral mouse rather than from independent mutations of the same gene. We showed the feasibility of LD in common inbred strains for the fine mapping of disease loci, and provided the biological basis and the reagents for the cloning of the Pas1 gene.
Collapse
|
46
|
Krause R, Hemberger M, Himmelbauer H, Kalscheuer V, Fundele RH. Identification and characterization of G90, a novel mouse RNA that lacks an extensive open reading frame. Gene 1999; 232:35-42. [PMID: 10333519 DOI: 10.1016/s0378-1119(99)00120-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe the cloning and characterization of the murine G90 gene, identified by subtractive hybridization based on the differential presence of its transcript in large and small intestine. The full-length cDNA and genomic sequences were cloned and found to produce a 1.5kb transcript that is polyadenylated but has no open reading frame larger than 249bp. The G90 gene was mapped to the proximal region of mouse chromosome 6. Expression analysis by Northern blotting showed that G90 is transcribed at very high levels in the small intestine and at lower levels in large intestine, testis and kidney of the mouse. In situ hybridization analysis on sections of small and large intestine and testis showed that G90 transcripts are present only in post-mitotic cells.
Collapse
Affiliation(s)
- R Krause
- Institut für Biologie III der Universität Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | | | | | | | | |
Collapse
|
47
|
Zechner U, Scheel S, Hemberger M, Hopp M, Haaf T, Fundele R, Wanker EE, Lehrach H, Wedemeyer N, Himmelbauer H. Characterization of the mouse Src homology 3 domain gene Sh3d2c on Chr 7 demonstrates coexpression with huntingtin in the brain and identifies the processed pseudogene Sh3d2c-ps1 on Chr 2. Genomics 1998; 54:505-10. [PMID: 9878254 DOI: 10.1006/geno.1998.5584] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Formation of intracellular protein complexes is often mediated by Src homology 3 domain-containing proteins interacting with proline-rich target sequences on other proteins. The Sh3d2c gene or its rat/human orthologs have been implicated in synaptic vesicle recycling due to interaction with dynamin I and synaptojanin in nerve terminals. In a yeast two-hybrid system, association with a huntingtin fragment containing an elongated stretch of polyglutamines was observed recently. By genetic mapping and fluorescence in situ hybridization we demonstrate the localization of Sh3d2c on mouse chromosome 7. A processed pseudogene of Sh3d2c, Sh3d2c-ps1, was identified and mapped to mouse chromosome 2. Using RNA in situ hybridization, we show that Sh3d2c is transcribed in various regions of the brain. The striatum, hippocampus, cortex, basal hypothalamus, brain stem, and cerebellum are the most prominent sites of expression. Because huntingtin and Sh3d2c are coexpressed in most regions of the brain, it can be speculated that there is a link between the association of huntingtin/Sh3d2c and the pathogenesis of Huntington disease.
Collapse
Affiliation(s)
- U Zechner
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, Berlin-Dahlem, D14195, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|