1
|
Wingert JC, Ramos JD, Reynolds SX, Gonzalez AE, Rose RM, Hegarty DM, Aicher SA, Bailey LG, Brown TE, Abbas AI, Sorg BA. Perineuronal Nets in the Rat Medial Prefrontal Cortex Alter Hippocampal-Prefrontal Oscillations and Reshape Cocaine Self-Administration Memories. J Neurosci 2024; 44:e0468242024. [PMID: 38991791 PMCID: PMC11340292 DOI: 10.1523/jneurosci.0468-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
The medial prefrontal cortex (mPFC) is a major contributor to relapse to cocaine in humans and to reinstatement in rodent models of cocaine use disorder. The output from the mPFC is potently modulated by parvalbumin (PV)-containing fast-spiking interneurons, the majority of which are surrounded by perineuronal nets. We previously showed that treatment with chondroitinase ABC (ABC) reduced the consolidation and reconsolidation of a cocaine conditioned place preference memory. However, self-administration memories are more difficult to disrupt. Here we report in male rats that ABC treatment in the mPFC attenuated the consolidation and blocked the reconsolidation of a cocaine self-administration memory. However, reconsolidation was blocked when rats were given a novel, but not familiar, type of retrieval session. Furthermore, ABC treatment prior to, but not after, memory retrieval blocked reconsolidation. This same treatment did not alter a sucrose memory, indicating specificity for cocaine-induced memory. In naive rats, ABC treatment in the mPFC altered levels of PV intensity and cell firing properties. In vivo recordings from the mPFC and dorsal hippocampus (dHIP) during the novel retrieval session revealed that ABC prevented reward-associated increases in high-frequency oscillations and synchrony of these oscillations between the dHIP and mPFC. Together, this is the first study to show that ABC treatment disrupts reconsolidation of the original memory when combined with a novel retrieval session that elicits coupling between the dHIP and mPFC. This coupling after ABC treatment may serve as a fundamental signature for how to disrupt reconsolidation of cocaine memories and reduce relapse.
Collapse
Affiliation(s)
- Jereme C Wingert
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon 97232
| | - Jonathan D Ramos
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon 97232
| | | | - Angela E Gonzalez
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon 97232
- Program in Neuroscience, Washington State University, Vancouver, Washington 98686
| | - R Mae Rose
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon 97232
| | - Deborah M Hegarty
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Sue A Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Lydia G Bailey
- Program in Neuroscience, Washington State University, Pullman, Washington 99164
| | - Travis E Brown
- Program in Neuroscience, Washington State University, Pullman, Washington 99164
| | - Atheir I Abbas
- Departments of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Psychiatry, Oregon Health & Science University, Portland, Oregon 97239
- Research Division, VA Portland Health Care System, Portland, Oregon 97239
| | - Barbara A Sorg
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon 97232
- Program in Neuroscience, Washington State University, Vancouver, Washington 98686
| |
Collapse
|
2
|
Sagarkar S, Bhat N, Rotti D, Subhedar NK. AMPA and NMDA receptors in dentate gyrus mediate memory for sucrose in two port discrimination task. Hippocampus 2024; 34:342-356. [PMID: 38780087 DOI: 10.1002/hipo.23609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/30/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Although the phenomenon of memory formation and recall associated with the use of psychotropic drugs has been extensively studied, mechanisms underlying memories for natural reward have not been clarified. Herein, we test the hypothesis that glutamatergic receptors in the dentate gyrus play a role in memories associated with sucrose. We used pellet self-administration protocol to generate memories in two-port nose-poke discrimination task using male Wistar rats. During non-rewarded probe trial, the conditioned animals readily discriminated the active port versus inactive port and showed massive increase in mRNA expression of AMPA receptor subunit genes (gria2, gria3) as well as c-Fos protein in the DG. Access to sweet pellet further enhanced c-Fos expression in the DG. However, animals pre-treated with AMPA receptor antagonist CNQX (intra-DG), on exposure to operant chamber (no pellet), showed decreased discrimination as well as c-Fos expression. We suggest that AMPA receptors in DG mediate recall and consolidation of memories associated with sucrose consumption. CNQX pre-treated animals, if presented with sweet pellet on nose poke, exhibited high discrimination index coupled with increased c-Fos expression. In these CNQX treated rats, the DI was again decreased following administration of NMDA receptor antagonist AP5. We suggest that, although AMPA receptors are blocked, the access to sweet pellet may induce surge of glutamate in the DG, which in turn may reinstate memories via activation of erstwhile silent synapses in NMDA dependant manner.
Collapse
MESH Headings
- Animals
- Male
- Rats
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Discrimination Learning/drug effects
- Discrimination Learning/physiology
- Discrimination, Psychological/drug effects
- Discrimination, Psychological/physiology
- Excitatory Amino Acid Antagonists/pharmacology
- Memory/physiology
- Memory/drug effects
- Proto-Oncogene Proteins c-fos/metabolism
- Rats, Wistar
- Receptors, AMPA/metabolism
- Receptors, AMPA/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- RNA, Messenger/metabolism
- Self Administration
- Sucrose/administration & dosage
Collapse
Affiliation(s)
- Sneha Sagarkar
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Nagashree Bhat
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Deepa Rotti
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | | |
Collapse
|
3
|
Lin J, Peng Y, Zhang J, Cheng J, Chen Q, Wang B, Liu Y, Niu S, Yan J. Interfering with reconsolidation by rimonabant results in blockade of heroin-associated memory. Front Pharmacol 2024; 15:1361838. [PMID: 38576487 PMCID: PMC10991728 DOI: 10.3389/fphar.2024.1361838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Drug-associated pathological memory remains a critical factor contributing to the persistence of substance use disorder. Pharmacological amnestic manipulation to interfere with drug memory reconsolidation has shown promise for the prevention of relapse. In a rat heroin self-administration model, we examined the impact of rimonabant, a selective cannabinoid receptor indirect agonist, on the reconsolidation process of heroin-associated memory. The study showed that immediately administering rimonabant after conditioned stimuli (CS) exposure reduced the cue- and herion + cue-induced heroin-seeking behavior. The inhibitory effects lasted for a minimum of 28 days. The effect of Rimonabant on reduced drug-seeking was not shown when treated without CS exposure or 6 hours after CS exposure. These results demonstrate a disruptive role of rimonabant on the reconsolidation of heroin-associated memory and the therapeutic potential in relapse control concerning substance use disorder.
Collapse
Affiliation(s)
- Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Junzhe Cheng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Binbin Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Department of Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Wingert JC, Ramos JD, Reynolds SX, Gonzalez AE, Rose RM, Hegarty DM, Aicher SA, Bailey LG, Brown TE, Abbas AI, Sorg BA. Perineuronal nets in the rat medial prefrontal cortex alter hippocampal-prefrontal oscillations and reshape cocaine self-administration memories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.577568. [PMID: 38370716 PMCID: PMC10871211 DOI: 10.1101/2024.02.05.577568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The medial prefrontal cortex (mPFC) is a major contributor to relapse to cocaine in humans and to reinstatement behavior in rodent models of cocaine use disorder. Output from the mPFC is modulated by parvalbumin (PV)-containing fast-spiking interneurons, the majority of which are surrounded by perineuronal nets (PNNs). Here we tested whether chondroitinase ABC (ABC)- mediated removal of PNNs prevented the acquisition or reconsolidation of a cocaine self-administration memory. ABC injections into the dorsal mPFC prior to training attenuated the acquisition of cocaine self-administration. Also, ABC given 3 days prior to but not 1 hr after memory reactivation blocked cue-induced reinstatement. However, reduced reinstatement was present only in rats given a novel reactivation contingency, suggesting that PNNs are required for the updating of a familiar memory. In naive rats, ABC injections into mPFC did not alter excitatory or inhibitory puncta on PV cells but reduced PV intensity. Whole-cell recordings revealed a greater inter-spike interval 1 hr after ABC, but not 3 days later. In vivo recordings from the mPFC and dorsal hippocampus (dHIP) during novel memory reactivation revealed that ABC in the mPFC prevented reward-associated increases in beta and gamma activity as well as phase-amplitude coupling between the dHIP and mPFC. Together, our findings show that PNN removal attenuates the acquisition of cocaine self-administration memories and disrupts reconsolidation of the original memory when combined with a novel reactivation session. Further, reduced dHIP/mPFC coupling after PNN removal may serve as a key biomarker for how to disrupt reconsolidation of cocaine memories and reduce relapse.
Collapse
|
5
|
Charpentier ANH, Olekanma DI, Valade CT, Reeves CA, Cho BR, Arguello AA. Influence of reconsolidation in maintenance of cocaine-associated contextual memories formed during adolescence or adulthood. Sci Rep 2023; 13:13936. [PMID: 37626103 PMCID: PMC10457301 DOI: 10.1038/s41598-023-39949-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Adolescents are at increased risk to develop substance use disorders and suffer from relapse throughout life. Targeted weakening of drug-associated memories has been shown to reduce relapse-like behavior in adult rats, however this process has been understudied in adolescents. We aimed to examine whether adolescent-formed, cocaine-associated memories could be manipulated via reconsolidation mechanisms. To accomplish this objective, we used an abbreviated operant cocaine self-administration paradigm (ABRV Coc-SA). Adult and adolescent rats received jugular catheterization surgery followed by ABRV Coc-SA in a distinct context for 2 h, 2×/day over 5 days. Extinction training (EXT) occurred in a second context for 2 h, 2×/day over 4 days. To retrieve cocaine-context memories, rats were exposed to the cocaine-paired context for 15 min, followed by subcutaneous injection of vehicle or the protein synthesis inhibitor cycloheximide (2.5 mg/kg). Two additional EXT sessions were conducted before a 2 h reinstatement test in the cocaine-paired context to assess cocaine-seeking behavior. We find that both adult and adolescent cocaine-exposed rats show similar levels of cocaine-seeking behavior regardless of post-reactivation treatment. Our results suggest that systemic treatment with the protein synthesis inhibitor cycloheximide does not impair reconsolidation of cocaine-context memories and subsequent relapse during adulthood or adolescence.
Collapse
Affiliation(s)
- André N Herrera Charpentier
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Doris I Olekanma
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Christian T Valade
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Christopher A Reeves
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Bo Ram Cho
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Amy A Arguello
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Zhang H, Rodriguez-Hernandez LD, D'Souza AJ, He D, Zain M, Fung SW, Bennett LA, Bonin RP. Nociceptor activity induces nonionotropic NMDA receptor signaling to enable spinal reconsolidation and reverse pathological pain. SCIENCE ADVANCES 2023; 9:eadg2819. [PMID: 37205760 DOI: 10.1126/sciadv.adg2819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Chronic, pathological pain is a highly debilitating condition that can arise and be maintained through central sensitization. Central sensitization shares mechanistic and phenotypic parallels with memory formation. In a sensory model of memory reconsolidation, plastic changes underlying pain hypersensitivity can be dynamically regulated and reversed following the reactivation of sensitized sensory pathways. However, the mechanisms by which synaptic reactivation induces destabilization of the spinal "pain engram" are unclear. We identified nonionotropic N-methyl-d-aspartate receptor (NI-NMDAR) signaling as necessary and sufficient for the reactive destabilization of dorsal horn long-term potentiation and the reversal of mechanical sensitization associated with central sensitization. NI-NMDAR signaling engaged directly or through the reactivation of sensitized sensory networks was associated with the degradation of excitatory postsynaptic proteins. Our findings identify NI-NMDAR signaling as a putative synaptic mechanism by which engrams are destabilized in reconsolidation and as a potential means of treating underlying causes of chronic pain.
Collapse
Affiliation(s)
- Hantao Zhang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Luis D Rodriguez-Hernandez
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Abigail J D'Souza
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - David He
- Department of Anesthesia, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maham Zain
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Samuel W Fung
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Laura A Bennett
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Goltseker K, Garay P, Bonefas K, Iwase S, Barak S. Alcohol-specific transcriptional dynamics of memory reconsolidation and relapse. Transl Psychiatry 2023; 13:55. [PMID: 36792579 PMCID: PMC9932068 DOI: 10.1038/s41398-023-02352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Relapse, a critical issue in alcohol addiction, can be attenuated by disruption of alcohol-associated memories. Memories are thought to temporarily destabilize upon retrieval during the reconsolidation process. Here, we provide evidence for unique transcriptional dynamics underpinning alcohol memory reconsolidation. Using a mouse place-conditioning procedure, we show that alcohol-memory retrieval increases the mRNA expression of immediate-early genes in the dorsal hippocampus and medial prefrontal cortex, and that alcohol seeking is abolished by post-retrieval non-specific inhibition of gene transcription, or by downregulating ARC expression using antisense-oligodeoxynucleotides. However, since retrieval of memories for a natural reward (sucrose) also increased the same immediate-early gene expression, we explored for alcohol-specific transcriptional changes using RNA-sequencing. We revealed a unique transcriptional fingerprint activated by alcohol memories, as the expression of this set of plasticity-related genes was not altered by sucrose-memory retrieval. Our results suggest that alcohol memories may activate two parallel transcription programs: one is involved in memory reconsolidation in general, and another is specifically activated during alcohol-memory processing.
Collapse
Affiliation(s)
- Koral Goltseker
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Patricia Garay
- The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
| | - Katherine Bonefas
- The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
| | - Shigeki Iwase
- The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
- Human Genetics Department, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, 48108, USA
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
8
|
Correa-Netto NF, Masukawa MY, Silva-Gomes AM, Linardi A, Santos-Junior JG. Memory reactivation mediates emotional valence updating of contextual memory in mice with protracted morphine withdrawal. Behav Brain Res 2023; 438:114212. [PMID: 36370948 DOI: 10.1016/j.bbr.2022.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Mice subjected to morphine locomotor sensitization develop increased anxiety-behavior expression during protracted morphine withdrawal. This behavioral change is dependent on reexposure to the context of locomotor sensitization and reflects a state of conditioned anxiety. In this study, the effect of memory reconsolidation on the expression of conditioned anxiety in mice with protracted morphine withdrawal was examined. Five experimental protocols involving male C57BL/6 mice were used in which the animals were subjected to locomotor sensitization induced by morphine and reexposed to the context associated with the drug effect 28 days after locomotor sensitization and immediately after subjected to elevated plus maze. In experiment 1, mice were subjected or not to memory reactivation session and was observed that memory reactivation 27 days after sensitization reduced conditioned anxiety. In experiment 2, mice were subjected to memory reactivation, 24 h, 6 h or 1 h before contextual reexposure, and the effect of memory reactivation coincided with the temporal requirement for reconsolidation. In experiment 3, which involved exposure to a situation of acute stress immediately before memory reactivation, the mice demonstrated a return to increased conditioned anxiety. To confirm the influence of reconsolidation, in experiments 4 and 5, mice subjected to memory reactivation were treated with Nimodipine, diazepam or cyclohexamine, substances commonly used as pharmacological controls in reconsolidation experiments. Treatment with each substance separately inhibited the effect of reactivation in experiment 5 (presence of acute stressor) but not in experiment 4 (absence of acute stressor). These results suggest that, in our experimental model, reconsolidation is mediated through updating of the emotional valence of contextual memory associated with the administration of morphine.
Collapse
Affiliation(s)
- Nelson Francisco Correa-Netto
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, São Paulo 01221-020, SP, Brazil.
| | - Márcia Yuriko Masukawa
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, São Paulo 01221-020, SP, Brazil
| | - Alessandro Marcos Silva-Gomes
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, São Paulo 01221-020, SP, Brazil
| | - Alessandra Linardi
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, São Paulo 01221-020, SP, Brazil
| | - Jair Guilherme Santos-Junior
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, São Paulo 01221-020, SP, Brazil
| |
Collapse
|
9
|
Li JY, Yu YJ, Su CL, Shen YQ, Chang CH, Gean PW. Modulation of methamphetamine memory reconsolidation by neural projection from basolateral amygdala to nucleus accumbens. Neuropsychopharmacology 2023; 48:478-488. [PMID: 36109595 PMCID: PMC9852248 DOI: 10.1038/s41386-022-01417-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023]
Abstract
Drug-associated conditioned cues promote subjects to recall drug reward memory, resulting in drug-seeking and reinstatement. A consolidated memory becomes unstable after recall, such that the amnestic agent can disrupt the memory during the reconsolidation stage, which implicates a potential therapeutic strategy for weakening maladaptive memories. The basolateral amygdala (BLA) involves the association of conditioned cues with reward and aversive valences and projects the information to the nucleus accumbens (NAc) that mediates reward-seeking. However, whether the BLA-NAc projection plays a role in drug-associated memory reactivation and reconsolidation is unknown. We used methamphetamine (MeAM) conditioned place preference (CPP) to investigate the role of BLA-NAc neural projection in the memory reconsolidation. Two weeks before CPP training, we infused adeno-associated virus (AAV) carrying the designer receptor exclusively activated by designer drugs (DREADD) or control constructs. We infused clozapine-N-oxide (CNO) after the recall test to manipulate the neural activity of BLA-NAc projections in mice. We found that after recall, DREADD-mediated inhibition of BLA neurons projecting to the NAc core blunted consolidated MeAM-associated memory. Inhibition of BLA glutamatergic nerve terminals in the NAc core 1 h after recall disrupted consolidated MeAM-associated memory. However, inhibiting this pathway after the time window of reconsolidation failed to affect memory. Furthermore, under the condition without memory retrieval, DREADD-mediated activation of BLA-NAc core projection was required for amnesic agents to disrupt consolidated MeAM-associated memory. Our findings provide evidence that the BLA-NAc pathway activity is involved in the post-retrieval processing of MeAM-associated memory in CPP.
Collapse
Affiliation(s)
- Jia-Ying Li
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC
| | - Yang-Jung Yu
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC
| | - Chun-Lin Su
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC
| | - Yu-Qi Shen
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC
| | - Chih-Hua Chang
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC.
- Department of Biotechnology and Bioindustry Sciences, National Cheng-Kung University, Tainan, 701, Taiwan, ROC.
| | - Po-Wu Gean
- Department of Pharmacology, National Cheng-Kung University, Tainan, 701, Taiwan, ROC.
- Department of Biotechnology and Bioindustry Sciences, National Cheng-Kung University, Tainan, 701, Taiwan, ROC.
| |
Collapse
|
10
|
Barak S, Goltseker K. New Approaches for Alcohol Use Disorder Treatment via Memory Retrieval and Reconsolidation Manipulations. Curr Top Behav Neurosci 2023. [PMID: 36627475 DOI: 10.1007/7854_2022_411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Relapse to alcohol seeking and drinking is a major clinical challenge in alcohol use disorder and is frequently brought about by cue-induced craving, caused by exposure to cues that evoke alcohol-related memories. It has been postulated that memories become labile for manipulation shortly after their retrieval and then restabilize in a "memory reconsolidation" process. Disruption or interference with the reconsolidation of drug-associated memories has been suggested as a possible strategy to reduce or even prevent cue-induced craving and relapse. Here, we review literature demonstrating the capacity of behavioral or pharmacological manipulations to reduce relapse in animal models and humans when applied after a short retrieval of memories associated with alcohol, suggestively disrupting the reconsolidation of such memories. We suggest that while there is a clear potential of using post-retrieval manipulations to target specific relapse-evoking memories, future research should be more systematic, standardized, and translational. Specifically, we discuss several critical limitations and boundary conditions, which should be addressed to improve consistency and replicability in the field and lead to the development of an efficient reconsolidation-based relapse prevention therapy.
Collapse
Affiliation(s)
- Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Koral Goltseker
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Tavares TF, Bueno JLO, Doyère V. Temporal prediction error triggers amygdala-dependent memory updating in appetitive operant conditioning in rats. Front Behav Neurosci 2023; 16:1060587. [PMID: 36703723 PMCID: PMC9873233 DOI: 10.3389/fnbeh.2022.1060587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Reinforcement learning theories postulate that prediction error, i.e., a discrepancy between the actual and expected outcomes, drives reconsolidation and new learning, inducing an updating of the initial memory. Pavlovian studies have shown that prediction error detection is a fundamental mechanism in triggering amygdala-dependent memory updating, where the temporal relationship between stimuli plays a critical role. However, in contrast to the well-established findings in aversive situations (e.g., fear conditioning), only few studies exist on prediction error in appetitive operant conditioning, and even less with regard to the role of temporal parameters. To explore if temporal prediction error in an appetitive operant paradigm could generate an updating and consequent reconsolidation and/or new learning of temporal association, we ran four experiments in adult male rats. Experiment 1 verified whether an unexpected delay in the time of reward's availability (i.e., a negative temporal prediction error) in a single session produces an updating in long-term memory of temporal expectancy in an appetitive operant conditioning. Experiment 2 showed that negative prediction errors, either due to the temporal change or through reward omission, increased in the basolateral amygdala nucleus (BLA) the activation of a protein that is critical for memory formation. Experiment 3 revealed that the presence of a protein synthesis inhibitor (anisomycin) in the BLA during the session when the reward was delayed (Error session) affected the temporal updating. Finally, Experiment 4 showed that anisomycin, when infused immediately after the Error session, interfered with the long-term memory of the temporal updating. Together, our study demonstrated an involvement of BLA after a change in temporal and reward contingencies, and in the resulting updating in long-term memory in appetitive operant conditioning.
Collapse
Affiliation(s)
- Tatiane Ferreira Tavares
- Laboratory of Associative Processes, Temporal Control and Memory, Department of Psychology, University of São Paulo, Ribeirão Preto, Brazil,Institut des Neurosciences Paris-Saclay – NeuroPSI CNRS, Université Paris-Saclay, Saclay, France,*Correspondence: Tatiane Ferreira Tavares,
| | - José Lino Oliveira Bueno
- Laboratory of Associative Processes, Temporal Control and Memory, Department of Psychology, University of São Paulo, Ribeirão Preto, Brazil
| | - Valérie Doyère
- Institut des Neurosciences Paris-Saclay – NeuroPSI CNRS, Université Paris-Saclay, Saclay, France,Valérie Doyère,
| |
Collapse
|
12
|
Weinstein AM. Reward, motivation and brain imaging in human healthy participants - A narrative review. Front Behav Neurosci 2023; 17:1123733. [PMID: 37035621 PMCID: PMC10079947 DOI: 10.3389/fnbeh.2023.1123733] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Over the past 20 years there has been an increasing number of brain imaging studies on the mechanisms underlying reward motivation in humans. This narrative review describes studies on the neural mechanisms associated with reward motivation and their relationships with cognitive function in healthy human participants. The brain's meso-limbic dopamine reward circuitry in humans is known to control reward-motivated behavior in humans. The medial and lateral Pre-Frontal Cortex (PFC) integrate motivation and cognitive control during decision-making and the dorsolateral PFC (dlPFC) integrates and transmits signals of reward to the mesolimbic and meso-cortical dopamine circuits and initiates motivated behavior. The thalamus and insula influence incentive processing in humans and the motor system plays a role in response to action control. There are reciprocal relationships between reward motivation, learning, memory, imagery, working memory, and attention. The most common method of assessing reward motivation is the monetary incentive delay task (DMRT) and there are several meta-analyses of this paradigm. Genetics modulates motivation reward, and dopamine provides the basis for the interaction between motivational and cognitive control. There is some evidence that male adolescents take more risky decisions than female adolescents and that the lateralization of reward-related DA release in the ventral striatum is confined to men. These studies have implications for our understanding of natural reward and psychiatric conditions like addiction, depression and ADHD. Furthermore, the association between reward and memory can help develop treatment techniques for drug addiction that interfere with consolidation of memory. Finally, there is a lack of research on reward motivation, genetics and sex differences and this can improve our understanding of the relationships between reward, motivation and the brain.
Collapse
|
13
|
Noël X. A critical perspective on updating drug memories through the integration of memory editing and brain stimulation. Front Psychiatry 2023; 14:1161879. [PMID: 37124256 PMCID: PMC10140428 DOI: 10.3389/fpsyt.2023.1161879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Addiction is a persistent, recurring condition characterized by repeated relapses despite the desire to control drug use or maintain sobriety. The attainment of abstinence is hindered by persistent maladaptive drug-associated memories, which drive drug-seeking and use behavior. This article examines the preliminary evidence supporting the combination of non-invasive brain stimulation (NIBS) techniques and memory editing (or reconsolidation) interventions as add-on forms of treatment for individuals with substance-related disorders (SUD). Studies have shown that NIBS can modestly reduce drug use and craving through improved cognitive control or other undetermined reasons. Memory reconsolidation, a process by which a previously consolidated memory trace can be made labile again, can potentially erase or significantly weaken SUD memories underpinning craving and the propensity for relapse. This approach conveys enthusiasm while also emphasizing the importance of managing boundary conditions and null results for interventions found on fear memory reconsolidation. Recent studies, which align with the state-dependency and activity-selectivity hypotheses, have shown that the combination of NIBS and behavioral interventions holds promise for treating SUD by reducing self-reported and physiological aspects of craving. Effective long-term outcomes for this procedure require better identification of critical memories, a deeper understanding of the brain mechanisms underlying SUD and memory reconsolidation and overcoming any boundary conditions of destabilized memories. This will enable the procedure to be personalized to the unique needs of individual patients.
Collapse
Affiliation(s)
- Xavier Noël
- Laboratoire de Psychologie Médicale et d’Addictologie, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- *Correspondence: Xavier Noël,
| |
Collapse
|
14
|
Rosenthal A, Ebrahimi C, Wedemeyer F, Romanczuk-Seiferth N, Beck A. The Treatment of Substance Use Disorders: Recent Developments and New Perspectives. Neuropsychobiology 2022; 81:451-472. [PMID: 35724634 DOI: 10.1159/000525268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/28/2022] [Indexed: 11/19/2022]
Abstract
Substance-related disorders are complex psychiatric disorders that are characterized by continued consumption in spite of harmful consequences. Addiction affects various brain networks critically involved in learning, reward, and motivation, as well as inhibitory control. Currently applied therapeutic approaches aim at modification of behavior that ultimately leads to decrease of consumption or abstinence in individuals with substance use disorders. However, traditional treatment methods might benefit from recent neurobiological and cognitive neuroscientific research findings. Novel cognitive-behavioral approaches in the treatment of addictive behavior aim at enhancement of strategies to cope with stressful conditions as well as craving-inducing cues and target erroneous learning mechanisms, including cognitive bias modification, reconsolidation-based interventions, mindfulness-based interventions, virtual-reality-based cue exposure therapy as well as pharmacological augmentation strategies. This review discusses therapeutic strategies that target dysregulated neurocognitive processes associated with the development and maintenance of disordered substance use and may hold promise as effective treatments for substance-related disorders.
Collapse
Affiliation(s)
- Annika Rosenthal
- Department of Psychiatry and Neurosciences
- CCM, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Ebrahimi
- Department of Psychiatry and Neurosciences
- CCM, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friederike Wedemeyer
- Department of Psychiatry and Neurosciences
- CCM, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Neurosciences
- CCM, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Beck
- Department of Psychiatry and Neurosciences
- CCM, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Health and Medical University, Campus Potsdam, Faculty of Health, Potsdam, Germany
| |
Collapse
|
15
|
Shi X, von Weltin E, Fitzsimmons E, Do C, Caban Rivera C, Chen C, Liu-Chen LY, Unterwald EM. Reactivation of cocaine contextual memory engages mechanistic target of rapamycin/S6 kinase 1 signaling. Front Pharmacol 2022; 13:976932. [PMID: 36238569 PMCID: PMC9552424 DOI: 10.3389/fphar.2022.976932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) C1 and its downstream effectors have been implicated in synaptic plasticity and memory. Our prior work demonstrated that reactivation of cocaine memory engages a signaling pathway consisting of Akt, glycogen synthase kinase-3β (GSK3β), and mTORC1. The present study sought to identify other components of mTORC1 signaling involved in the reconsolidation of cocaine contextual memory, including eukaryotic translation initiation factor 4E (eIF4E)-eIF4G interactions, p70 S6 kinase polypeptide 1 (p70S6K, S6K1) activity, and activity-regulated cytoskeleton (Arc) expression. Cocaine contextual memory was established in adult CD-1 mice using conditioned place preference. After cocaine place preference was established, mice were briefly re-exposed to the cocaine-paired context to reactivate the cocaine memory and brains examined. Western blot analysis showed that phosphorylation of the mTORC1 target, p70S6K, in nucleus accumbens and hippocampus was enhanced 60 min following reactivation of cocaine memories. Inhibition of mTORC1 with systemic administration of rapamycin or inhibition of p70S6K with systemic PF-4708671 after reactivation of cocaine contextual memory abolished the established cocaine place preference. Immunoprecipitation assays showed that reactivation of cocaine memory did not affect eIF4E-eIF4G interactions in nucleus accumbens or hippocampus. Levels of Arc mRNA were significantly elevated 60 and 120 min after cocaine memory reactivation and returned to baseline 24 h later. These findings demonstrate that mTORC1 and p70S6K are required for reconsolidation of cocaine contextual memory.
Collapse
Affiliation(s)
- Xiangdang Shi
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eva von Weltin
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Emma Fitzsimmons
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Chau Do
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Carolina Caban Rivera
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Chongguang Chen
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ellen M Unterwald
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Qi S, Tan SM, Wang R, Higginbotham JA, Ritchie JL, Ibarra CK, Arguello AA, Christian RJ, Fuchs RA. Optogenetic inhibition of the dorsal hippocampus CA3 region during early-stage cocaine-memory reconsolidation disrupts subsequent context-induced cocaine seeking in rats. Neuropsychopharmacology 2022; 47:1473-1483. [PMID: 35581381 PMCID: PMC9205994 DOI: 10.1038/s41386-022-01342-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/11/2022] [Accepted: 05/07/2022] [Indexed: 11/09/2022]
Abstract
The dorsal hippocampus (DH) is key to the maintenance of cocaine memories through reconsolidation into long-term memory stores after retrieval-induced memory destabilization. Here, we examined the time-dependent role of the cornu ammonis 3 DH subregion (dCA3) in cocaine-memory reconsolidation by utilizing the temporal and spatial specificity of optogenetics. eNpHR3.0-eYFP- or eYFP-expressing male Sprague-Dawley rats were trained to lever press for cocaine infusions in a distinct context and received extinction training in a different context. Rats were then re-exposed to the cocaine-paired context for 15 min to destabilize cocaine memories (memory reactivation) or remained in their home cages (no-reactivation). Optogenetic dCA3 inhibition for one hour immediately after memory reactivation reduced c-Fos expression (index of neuronal activation) in dCA3 stratum pyramidale (SP) glutamatergic and GABAergic neurons and in stratum lucidum (SL) GABAergic neurons during reconsolidation. Furthermore, dCA3 inhibition attenuated drug-seeking behavior (non-reinforced lever presses) selectively in the cocaine-paired context three days later (recall test), relative to no photoinhibition. This behavioral effect was eNpHR3.0-, memory-reactivation, and time-dependent, indicating a memory-reconsolidation deficit. Based on this observation and our previous finding that protein synthesis in the DH is not necessary for cocaine-memory reconsolidation, we postulate that recurrent pyramidal neuronal activity in the dCA3 may maintain labile cocaine memories prior to protein synthesis-dependent reconsolidation elsewhere, and SL/SP interneurons may facilitate this process by limiting extraneous neuronal activity. Interestingly, SL c-Fos expression was reduced at recall concomitant with impairment in cocaine-seeking behavior, suggesting that SL neurons may also facilitate cocaine-memory retrieval by inhibiting non-engram neuronal activity.
Collapse
Affiliation(s)
- Shuyi Qi
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Shi Min Tan
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Rong Wang
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Jessica A Higginbotham
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Jobe L Ritchie
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Christopher K Ibarra
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Amy A Arguello
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Robert J Christian
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Rita A Fuchs
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA.
- Alcohol and Drug Abuse Research Program, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
17
|
Jardine KH, Huff AE, Wideman CE, McGraw SD, Winters BD. The evidence for and against reactivation-induced memory updating in humans and nonhuman animals. Neurosci Biobehav Rev 2022; 136:104598. [PMID: 35247380 DOI: 10.1016/j.neubiorev.2022.104598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022]
Abstract
Systematic investigation of reactivation-induced memory updating began in the 1960s, and a wave of research in this area followed the seminal articulation of "reconsolidation" theory in the early 2000s. Myriad studies indicate that memory reactivation can cause previously consolidated memories to become labile and sensitive to weakening, strengthening, or other forms of modification. However, from its nascent period to the present, the field has been beset by inconsistencies in researchers' abilities to replicate seemingly established effects. Here we review these many studies, synthesizing the human and nonhuman animal literature, and suggest that these failures-to-replicate reflect a highly complex and delicately balanced memory modification system, the substrates of which must be finely tuned to enable adaptive memory updating while limiting maladaptive, inaccurate modifications. A systematic approach to the entire body of evidence, integrating positive and null findings, will yield a comprehensive understanding of the complex and dynamic nature of long-term memory storage and the potential for harnessing modification processes to treat mental disorders driven by pervasive maladaptive memories.
Collapse
Affiliation(s)
- Kristen H Jardine
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - A Ethan Huff
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Cassidy E Wideman
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Shelby D McGraw
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
18
|
Targeting the Reconsolidation of Licit Drug Memories to Prevent Relapse: Focus on Alcohol and Nicotine. Int J Mol Sci 2021; 22:ijms22084090. [PMID: 33920982 PMCID: PMC8071281 DOI: 10.3390/ijms22084090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
Alcohol and nicotine are widely abused legal substances worldwide. Relapse to alcohol or tobacco seeking and consumption after abstinence is a major clinical challenge, and is often evoked by cue-induced craving. Therefore, disruption of the memory for the cue–drug association is expected to suppress relapse. Memories have been postulated to become labile shortly after their retrieval, during a “memory reconsolidation” process. Interference with the reconsolidation of drug-associated memories has been suggested as a possible strategy to reduce or even prevent cue-induced craving and relapse. Here, we surveyed the growing body of studies in animal models and in humans assessing the effectiveness of pharmacological or behavioral manipulations in reducing relapse by interfering with the reconsolidation of alcohol and nicotine/tobacco memories. Our review points to the potential of targeting the reconsolidation of these memories as a strategy to suppress relapse to alcohol drinking and tobacco smoking. However, we discuss several critical limitations and boundary conditions, which should be considered to improve the consistency and replicability in the field, and for development of an efficient reconsolidation-based relapse-prevention therapy.
Collapse
|
19
|
Che X, Cai J, Liu Y, Xu T, Yang J, Wu C. Oxytocin signaling in the treatment of drug addiction: Therapeutic opportunities and challenges. Pharmacol Ther 2021; 223:107820. [PMID: 33600854 DOI: 10.1016/j.pharmthera.2021.107820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Drug addiction is one of the leading causes of mortality worldwide. Despite great advances were achieved in understanding the neurobiology of drug addiction, the therapeutic options are severely limited, with poor effectiveness and serious side effects. The neuropeptide oxytocin (OXT) is well known for its effects on uterine contraction, sexual/maternal behaviors, social affiliation, stress and learning/memory by interacting with the OXT receptor and other neuromodulators. Emerging evidence suggests that the acute or chronic exposure to drugs can affect the OXT system. Additionally, OXT administration can ameliorate a wide range of abused drug-induced neurobehavioral changes. Overall, OXT not only suppresses drug reward in the binge stage of drug addiction, but also reduces stress responses and social impairments during the withdrawal stage and, finally, prevents drug/cue/stress-induced reinstatement. More importantly, clinical studies have also shown that OXT can exert beneficial effects on reducing substance use disorders of a series of drugs, such as heroin, cocaine, alcohol, cannabis and nicotine. Thus, the present review focuses on the role of OXT in treating drug addiction, including the preclinical and clinical therapeutic potential of OXT and its analogs on the neurobiological perspectives of drugs, to provide a better insight of the efficacy of OXT as a clinical addiction therapeutic agent.
Collapse
Affiliation(s)
- Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Tianyu Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China.
| |
Collapse
|
20
|
Ucha M, Roura-Martínez D, Ambrosio E, Higuera-Matas A. The role of the mTOR pathway in models of drug-induced reward and the behavioural constituents of addiction. J Psychopharmacol 2020; 34:1176-1199. [PMID: 32854585 DOI: 10.1177/0269881120944159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to drugs of abuse induces neuroadaptations in critical nodes of the so-called reward systems that are thought to mediate the transition from controlled drug use to the compulsive drug-seeking that characterizes addictive disorders. These neural adaptations are likely to require protein synthesis, which is regulated, among others, by the mechanistic target of the rapamycin kinase (mTOR) signalling cascade. METHODS We have performed a narrative review of the literature available in PubMed about the involvement of the mTOR pathway in drug-reward and addiction-related phenomena. AIMS The aim of this study was to review the underlying architecture of this complex intracellular network and to discuss the alterations of its components that are evident after exposure to drugs of abuse. The aim was also to delineate the effects that manipulations of the mTOR network have on models of drug reward and on paradigms that recapitulate some of the psychological components of addiction. RESULTS There is evidence for the involvement of the mTOR pathway in the acute and rewarding effects of drugs of abuse, especially psychostimulants. However, the data regarding opiates are scarce. There is a need to use sophisticated animal models of addiction to ascertain the real role of the mTOR pathway in this pathology and not just in drug-mediated reward. The involvement of this pathway in behavioural addictions and impulsivity should also be studied in detail in the future. CONCLUSIONS Although there is a plethora of data about the modulation of mTOR by drugs of abuse, the involvement of this signalling pathway in addictive disorders requires further research.
Collapse
Affiliation(s)
- Marcos Ucha
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - David Roura-Martínez
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| |
Collapse
|
21
|
Taujanskaitė U, Cahill EN, Milton AL. Targeting drug memory reconsolidation: a neural analysis. Curr Opin Pharmacol 2020; 56:7-12. [PMID: 32961367 DOI: 10.1016/j.coph.2020.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Addiction can be conceptualised as a disorder of maladaptive learning and memory. Therefore, maladaptive drug memories supporting drug-seeking and relapse behaviours may present novel treatment targets for therapeutic approaches based upon reconsolidation-blockade. It is known that different structures within the limbic corticostriatal system contribute differentially to different types of maladaptive drug memories, including pavlovian associations between environmental cues and contexts with the drug high, and instrumental memories underlying drug-seeking. Here, we review the mechanisms underlying drug memory reconsolidation in the amygdala, striatum, and hippocampus, noting similarities and differences, and opportunities for future research.
Collapse
Affiliation(s)
- Uršulė Taujanskaitė
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma N Cahill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Drame ML, Balaet M, Lee JLC. Memory reconsolidation impairments in sign-tracking to an audiovisual compound stimulus. Behav Brain Res 2020; 393:112774. [PMID: 32553756 DOI: 10.1016/j.bbr.2020.112774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
Studies of memory reconsolidation of pavlovian memories have typically employed unimodal conditioned stimuli, despite the use of multimodal compound stimuli in other settings. Here we studied sign-tracking behaviour to a compound audiovisual stimulus. First, we observed not unexpectedly that sign-tracking was poorer to the audiovisual compound than to unimodal visual stimuli. Then, we showed that, depending on the parameters of compound stimulus re-exposure at memory reactivation, systemic MK-801 treatment either impaired extinction to improve sign-tracking at test, or disrupted reconsolidation to impair test behaviour. When memory reactivation consisted of re-exposure to only the auditory component of the compound stimulus, we observed sign-tracking impairments following MK-801 treatment, but only under certain test conditions. This was in contrast to the consistent impairment following reactivation with the full audiovisual compound. Moreover, the parameters of auditory stimulus presentation to enable MK-801-induced impairment at test varied depending on whether the stimulus was presented within or outside the training context. These findings suggest that behaviour under the control of appetitive pavlovian compound stimuli can be modulated by targeting both extinction and reconsolidation, and that it is not necessary to re-expose to the full compound stimulus in order to achieve a degree of modulation of behaviour.
Collapse
Affiliation(s)
| | - Maria Balaet
- University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
23
|
Sun K, Xiao L, Wu Y, Zuo D, Zhang C, Liu S, He Z, Rong S, Wang F, Sun T. GABAergic neurons in the insular cortex play an important role in cue-morphine reward memory reconsolidation. Life Sci 2020; 254:117655. [DOI: 10.1016/j.lfs.2020.117655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 01/26/2023]
|
24
|
Protocols for instrumental memory reconsolidation in rodents: A methodological review. J Neurosci Methods 2020; 342:108766. [PMID: 32413376 DOI: 10.1016/j.jneumeth.2020.108766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Memory reconsolidation enables the update of a previously consolidated memory trace after its reactivation. Although Pavlovian memory reconsolidation has been widely demonstrated, instrumental memory reconsolidation is still debated. Early studies suggested that instrumental memories did not undergo reconsolidation and therefore could not be disrupted, whereas other authors suggested that these memories are just more resistant to destabilization and reconsolidation in comparison to Pavlovian memories. AIM AND RESULTS The present paper reviews the behavioral protocols used to investigate appetitive instrumental memory reconsolidation in rodents and describes in detail the specific methods used for memory retrieval, with a critical analysis of the different experimental parameters. CONCLUSIONS The modalities under which the reconsolidation of appetitive (sucrose or drugs of abuse) instrumental memories occurs have been explored and partially elucidated. Further investigations are recommended on the boundary conditions that constrain instrumental memory reactivation.
Collapse
|
25
|
Liu W, Chen XJ, Wen YT, Winkler MH, Paul P, He YL, Wang L, Chen HX, Li YH. Memory Retrieval-Extinction Combined With Virtual Reality Reducing Drug Craving for Methamphetamine: Study Protocol for a Randomized Controlled Trial. Front Psychiatry 2020; 11:322. [PMID: 32411025 PMCID: PMC7202246 DOI: 10.3389/fpsyt.2020.00322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Relapse, often precipitated by drug-associated cues that evoke craving, is a key problem in the treatment of methamphetamine use disorder (MUD). Drug-associated memories play a major role in the maintenance of relapse. Extinction training is a common method for decreasing drug craving by suppressing drug-associated memories. However, the effects are often not permanent, which is evident in form of spontaneous recovery or renewal of cue-elicited responses. Based on memory reconsolidation theory, the retrieval-extinction (R-E) paradigm may be more effective in decreasing spontaneous recovery or renewal responses than extinction. After the original memory reactivated to a labile state, extinction will be introduced within the reconsolidation window, thereby updating drug-associated memories. However, there are still some controversial results, which suggest that the reactivation of drug-associated memories and the 10 min-6 h of limited time window are two main elements in the R-E protocol. Virtual reality (VR) is supposed to promote memory reactivation by providing vivid drug-related stimuli when compared with movies. OBJECTIVE The aim of this study is to examine the effectiveness of R-E training combined with VR on reducing spontaneous recovery or renewal of cue-elicited responses, in comparison to extinction, R-E training provided outside the time window of 6 h and R-E training retrieved using videos, in methamphetamine abusers. METHODS The study is a parallel matched controlled study including 95 participants with MUD. Participants will be randomly assigned to either a R-10 min-E group (methamphetamine-related cues retrieval in VR followed by extinction after 10 min) or a NR-10 min-E group (neutral cues retrieval in VR followed by extinction after 10 min) or a R-6 h-E group (methamphetamine-related cues retrieval in VR followed by extinction after 6 h) or a RV-10 min-E group (methamphetamine-related cues retrieval in videos followed by extinction after 10 min). Cue-evoked craving and reactivity will be assessed at pre-test and at 1 day, 1 week, 1 month, and 6-month post-tests. DISCUSSION To our knowledge, this study will probably be the first study to examine the efficacy of R-E training combined with VR to reduce cue-evoked responses in people with MUD. This innovative non-pharmacological intervention targeting drug-associated memories may provide significant clinical implications for reducing relapse, providing the study confirms its efficacy. CLINICAL TRIAL REGISTRATION The trial is registered with Chinese Clinical Trial Registry at 17 October 2018, number: ChiCTR1800018899, URL: http://www.chictr.org.cn/showproj.aspx?proj=30854.
Collapse
Affiliation(s)
- Wang Liu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Jing Chen
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Ya-Tong Wen
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Markus H Winkler
- Department of Psychology I, Biological Psychology, Clinical Psychology, and Psychotherapy, University of Wurzburg, Wurzburg, Germany
| | - Pauli Paul
- Department of Psychology I, Biological Psychology, Clinical Psychology, and Psychotherapy, University of Wurzburg, Wurzburg, Germany
| | - Yi-Ling He
- Center for Mental Health, Women's Drug Rehabilitation Center of Guangdong Province, Foshan, China
| | - Liang Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Xian Chen
- Mental Health Institute, Second Xiangya Hospital, Central South Universit y, Changsha, China
| | - Yong-Hui Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Meir Drexler S, Merz CJ, Lissek S, Tegenthoff M, Wolf OT. Reactivation of the Unconditioned Stimulus Inhibits the Return of Fear Independent of Cortisol. Front Behav Neurosci 2019; 13:254. [PMID: 31780910 PMCID: PMC6861211 DOI: 10.3389/fnbeh.2019.00254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 01/03/2023] Open
Abstract
Reconsolidation is the post-retrieval stabilization of memories, a time-limited process during which reactivated (i.e., retrieved) memories can be updated with new information, become stronger or weaker, depending on the specific treatment. We have previously shown that the stress hormone cortisol has an enhancing effect on the reconsolidation of fear memories in men. This effect was specific, i.e., limited to the conditioned stimulus (CS) that was reactivated, and did not generalize to other previously reinforced, but not reactivated CS. Based on these results, we suggested that cortisol plays a critical role in the continuous strengthening of reactivated emotional memories, contributing to their persistence and robustness. In the current study, we aimed to achieve a more generalized reconsolidation enhancement using an alternative reactivation method, i.e., by a low-intensity unconditioned stimulus (UCS) presentation instead of the more common unreinforced CS presentation. In previous studies, UCS reactivation was shown to lead to a more generalized reconsolidation effect. Therefore, we hypothesized that the combination of cortisol treatment and UCS reactivation would lead to an enhanced fear memory reconsolidation, which would generalize from previously reinforced CS to stimuli that resemble it. We tested 75 men in a 3-day fear conditioning paradigm: fear acquisition training on day 1; UCS reactivation/no reactivation and pharmacological treatment (20 mg hydrocortisone/placebo) on day 2; extinction training, reinstatement and test (of original and modified stimuli) on day 3. In contrast to our hypothesis, UCS reactivation prevented the return of fear [observed in skin conductance responses (SCR)] regardless of the pharmacological manipulation: while reinstatement to the original CS was found in the no-reactivation group, both reactivation groups (cortisol and placebo) showed no reinstatement. As the only methodological difference between our previous study and the current one was the reactivation method, we focus on UCS reactivation as the main explanation for these unexpected findings. We suggest that the robust prediction error generated by the UCS reactivation method (as opposed to CS reactivation), combined with the lower UCS intensity, has by itself weakened the emotional value of the UCS, thus preventing the return of fear to the CS that was associated with it. We call for future research to support these findings and to examine the potential of this reactivation method, or variations thereof, as a tool for therapeutic use.
Collapse
Affiliation(s)
- Shira Meir Drexler
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Christian J. Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Silke Lissek
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Oliver T. Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
27
|
Gisquet-Verrier P, Le Dorze C. Post Traumatic Stress Disorder and Substance Use Disorder as Two Pathologies Affecting Memory Reactivation: Implications for New Therapeutic Approaches. Front Behav Neurosci 2019; 13:26. [PMID: 30814940 PMCID: PMC6381044 DOI: 10.3389/fnbeh.2019.00026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
In the present review, we provide evidence indicating that although post traumatic stress disorder (PTSD) and substance use disorder (SUD) are two distinct pathologies with very different impacts on people affected by these chronic illnesses, they share numerous common characteristics, present high rates of co-morbidity, and may result from common physiological dysfunctions. We propose that these pathologies result from hyper reactivity to reminders, and thus should be considered as two disorders of memory, treated as such. We review the different possibilities to intervene on pathological memories such as extinction therapy and reconsolidation blockade. We also introduce new therapeutic avenues directly indicate by our recent proposal to replace the consolidation/reconsolidation hypothesis by the integration concept. State dependency and emotional remodeling are two innovative treatments that have already provided encouraging results. In summary, this review shows that the discovery of reactivation-dependent memory malleability has open new therapeutic avenues based on the reprocessing of pathological memories, which constitute promising approaches to treat PTSD and SUD.
Collapse
Affiliation(s)
- Pascale Gisquet-Verrier
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris-Sud, CNRS UMR 9197, Université Paris-Saclay, Orsay, France
| | | |
Collapse
|
28
|
Gisquet-Verrier P, Riccio DC. Memory integration: An alternative to the consolidation/reconsolidation hypothesis. Prog Neurobiol 2018; 171:15-31. [PMID: 30343034 DOI: 10.1016/j.pneurobio.2018.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 09/11/2018] [Accepted: 10/13/2018] [Indexed: 10/28/2022]
Abstract
The original concept of consolidation considers that memory requires time to be fixed. Since 2000, a comparable protein-dependent re-stabilization phase, called reconsolidation, has been assumed to take place after memory retrieval. This consolidation/reconsolidation hypothesis, has dominated the literature for more than 50 years, despite compelling evidence that is inconsistent with it. In this review, we present an historical overview and explain how, despite serious criticisms, this hypothesis has persisted for decades and become accepted as a dogma. Based on both older and more recent evidence, we next propose the concept of memory integration which involves the linkage or embedding of new material into an already existing representation. We believe integration provides a viable explanation for retrograde amnesia in place of the consolidation/reconsolidation hypothesis. Integration can further be the basis for several major cases of memory alteration such as time dependent memory enhancement, interference, counter-conditioning, updating and other instances of memory malleability. In a final section we consider the implications this new concept may have for memory processes and its translational applications.
Collapse
Affiliation(s)
- Pascale Gisquet-Verrier
- Neuro-PSI, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Bât 446, Orsay, F-91405, France.
| | - David C Riccio
- Department of Psychological Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|