1
|
Bencze D, Marián M, Szőllősi Á, Pajkossy P, Nemecz Z, Keresztes A, Hermann P, Vidnyánszky Z, Racsmány M. Contribution of the lateral occipital and parahippocampal cortices to pattern separation of objects and contexts. Cereb Cortex 2024; 34:bhae295. [PMID: 39077920 DOI: 10.1093/cercor/bhae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/23/2024] [Indexed: 07/31/2024] Open
Abstract
Contextual features are integral to episodic memories; yet, we know little about context effects on pattern separation, a hippocampal function promoting orthogonalization of overlapping memory representations. Recent studies suggested that various extrahippocampal brain regions support pattern separation; however, the specific role of the parahippocampal cortex-a region involved in context representation-in pattern separation has not yet been studied. Here, we investigated the contribution of the parahippocampal cortex (specifically, the parahippocampal place area) to context reinstatement effects on mnemonic discrimination, using functional magnetic resonance imaging. During scanning, participants saw object images on unique context scenes, followed by a recognition task involving the repetitions of encoded objects or visually similar lures on either their original context or a lure context. Context reinstatement at retrieval improved item recognition but hindered mnemonic discrimination. Crucially, our region of interest analyses of the parahippocampal place area and an object-selective visual area, the lateral occipital cortex indicated that while during successful mnemonic decisions parahippocampal place area activity decreased for old contexts compared to lure contexts irrespective of object novelty, lateral occipital cortex activity differentiated between old and lure objects exclusively. These results imply that pattern separation of contextual and item-specific memory features may be differentially aided by scene and object-selective cortical areas.
Collapse
Affiliation(s)
- Dorottya Bencze
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - Miklós Marián
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
- Institute of Psychology, University of Szeged, Egyetem utca 2., Szeged 6722, Hungary
| | - Ágnes Szőllősi
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
- Cognitive Medicine Research Group, Competence Centre for Neurocybernetics of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, University of Szeged, Dugonics tér 13., Szeged 6720, Hungary
| | - Péter Pajkossy
- Cognitive Medicine Research Group, Competence Centre for Neurocybernetics of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, University of Szeged, Dugonics tér 13., Szeged 6720, Hungary
- Department of Cognitive Science, Budapest University of Technology and Economics, Egry József utca 1., Budapest 1111, Hungary
| | - Zsuzsanna Nemecz
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella utca 46., Budapest 1064, Hungary
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca. 46., Budapest 1064, Hungary
| | - Attila Keresztes
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca. 46., Budapest 1064, Hungary
| | - Petra Hermann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - Mihály Racsmány
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
- Institute of Psychology, University of Szeged, Egyetem utca 2., Szeged 6722, Hungary
- Cognitive Medicine Research Group, Competence Centre for Neurocybernetics of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, University of Szeged, Dugonics tér 13., Szeged 6720, Hungary
| |
Collapse
|
2
|
Chen YY, Areti A, Yoshor D, Foster BL. Individual-specific memory reinstatement patterns within human face-selective cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552130. [PMID: 37609262 PMCID: PMC10441346 DOI: 10.1101/2023.08.06.552130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Humans have the remarkable ability to vividly retrieve sensory details of past events. According to the theory of sensory reinstatement, during remembering, brain regions involved in the sensory processing of prior events are reactivated to support this perception of the past. Recently, several studies have emphasized potential transformations in the spatial organization of reinstated activity patterns. In particular, studies of scene stimuli suggest a clear anterior shift in the location of retrieval activations compared with those during perception. However, it is not clear that such transformations occur universally, with evidence lacking for other important stimulus categories, particularly faces. Critical to addressing these questions, and to studies of reinstatement more broadly, is the growing importance of considering meaningful variations in the organization of sensory systems across individuals. Therefore, we conducted a multi-session neuroimaging study to first carefully map individual participants face-selective regions within ventral temporal cortex (VTC), followed by a second session to examine the correspondence of activity patterns during face memory encoding and retrieval. Our results showed distinct configurations of face-selective regions within the VTC across individuals. While a significant degree of overlap was observed between face perception and memory encoding, memory retrieval engagement exhibited a more selective and constricted reinstatement pattern within these regions. Importantly, these activity patterns were consistently tied to individual-specific neural substrates, but did not show any consistent direction of spatial transformation (e.g., anteriorization). To provide further insight to these findings, we also report on unique human intracranial recordings from VTC under the same experimental conditions. Our findings highlight the importance of considering individual variations in functional neuroanatomy in the context of assessing the nature of cortical reinstatement. Consideration of such factors will be important for establishing general principles shaping the neural transformations that occur from perception to memory.
Collapse
Affiliation(s)
- Yvonne Y Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | - Daniel Yoshor
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
3
|
Gieske A, Sommer T. Independent effects of emotional arousal and reward anticipation on episodic memory formation. Cereb Cortex 2022; 33:4527-4541. [PMID: 36205480 DOI: 10.1093/cercor/bhac359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/26/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022] Open
Abstract
Events that elicit emotional arousal or are associated with reward are more likely remembered. Emotional arousal activates the amygdala and the central noradrenergic system, whereas reward anticipation results in an activity in the mesocorticolimbic dopaminergic system. The activation of both pathways enhances memory formation in the hippocampus where their effects are based on similar neural substrates, e.g. tagging of active hippocampal synapses. Moreover, emotional arousal and reward anticipation both enhance attention, which can also affect memory formation. In addition, both neuromodulators interact on the cellular level. Therefore, we tested in the current functional magnetic resonance imaging study whether simultaneously occurring emotional arousal and reward anticipation might have interacting effects on memory formation. We did not find evidence for such an interaction, neither on the behavioral nor on the neural level. Our results further suggest that reward anticipation enhances memory formation rather by an increase in anticipation-related arousal-reflected in activity in the dorsal anterior cingulate cortex-and not dopaminergic midbrain activity. Accompanying behavioral experiments indicated that the effect of reward anticipation on memory is (i) caused at least to some extent by anticipating the speeded response to obtain the reward and not by the valance of the outcome and (ii) can be observed already immediately after encoding, i.e. before consolidation.
Collapse
Affiliation(s)
- Astrid Gieske
- Medical Center Hamburg-Eppendorf, Institute for Systems Neuroscience, Hamburg, Germany
| | - Tobias Sommer
- Medical Center Hamburg-Eppendorf, Institute for Systems Neuroscience, Hamburg, Germany
| |
Collapse
|
4
|
Schultz H, Yoo J, Meshi D, Heekeren HR. Category-specific memory encoding in the medial temporal lobe and beyond: the role of reward. Learn Mem 2022; 29:379-389. [PMID: 36180131 PMCID: PMC9536755 DOI: 10.1101/lm.053558.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/28/2022] [Indexed: 12/15/2022]
Abstract
The medial temporal lobe (MTL), including the hippocampus (HC), perirhinal cortex (PRC), and parahippocampal cortex (PHC), is central to memory formation. Reward enhances memory through interplay between the HC and substantia nigra/ventral tegmental area (SNVTA). While the SNVTA also innervates the MTL cortex and amygdala (AMY), their role in reward-enhanced memory is unclear. Prior research suggests category specificity in the MTL cortex, with the PRC and PHC processing object and scene memory, respectively. It is unknown, however, whether reward modulates category-specific memory processes. Furthermore, no study has demonstrated clear category specificity in the MTL for encoding processes contributing to subsequent recognition memory. To address these questions, we had 39 healthy volunteers (27 for all memory-based analyses) undergo functional magnetic resonance imaging while performing an incidental encoding task pairing objects or scenes with high or low reward, followed by a next-day recognition test. Behaviorally, high reward preferably enhanced object memory. Neural activity in the PRC and PHC reflected successful encoding of objects and scenes, respectively. Importantly, AMY encoding effects were selective for high-reward objects, with a similar pattern in the PRC. The SNVTA and HC showed no clear evidence of successful encoding. This behavioral and neural asymmetry may be conveyed through an anterior-temporal memory system, including the AMY and PRC, potentially in interplay with the ventromedial prefrontal cortex.
Collapse
Affiliation(s)
- Heidrun Schultz
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Jungsun Yoo
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Cognitive Sciences, University of California at Irvine, Irvine, California 92697, USA
| | - Dar Meshi
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Advertising and Public Relations, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hauke R Heekeren
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Executive University Board, Universität Hamburg, 20148 Hamburg, Germany
| |
Collapse
|
5
|
Sommer T, Hennies N, Lewis PA, Alink A. The Assimilation of Novel Information into Schemata and Its Efficient Consolidation. J Neurosci 2022; 42:5916-5929. [PMID: 35710624 PMCID: PMC9337604 DOI: 10.1523/jneurosci.2373-21.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 01/29/2023] Open
Abstract
Schemata enhance memory formation for related novel information. This is true even when this information is neutral with respect to schema-driven expectations. This assimilation of novel information into schemata has been attributed to more effective organizational processing that leads to more referential connections with the activated associative schema network. Animal data suggest that systems consolidation of novel assimilated information is also accelerated. In the current study, we used both multivariate and univariate fMRI analyses to provide further support for these proposals and to elucidate the neural underpinning of these processes. Twenty-eight participants (5 male) overlearned fictitious schemata for 7 weeks and then encoded novel related and control facts in the scanner. These facts were retrieved both immediately and 2 weeks later, also in the scanner. Our results conceptually replicate previous findings with respect to enhanced vmPFC-hippocampus coupling during encoding of novel related information and point to a prior knowledge effect that is distinct from situations where novel information is experienced as congruent or incongruent with a schema. Moreover, the combination of both multivariate and univariate results further specified the proposed contributions of the vmPFC, precuneus and angular gyrus network to the more efficient encoding of schema-related information. In addition, our data provide further evidence for more efficient systems consolidation of such novel schema-related and potentially assimilated information.SIGNIFICANCE STATEMENT Our prior knowledge in a certain domain, often termed schema, heavily influences whether and how we form memories for novel information that can be related to them. The results of the current study show how a ventromedial prefrontal-precuneal-angular network contributes to the more efficient encoding of novel related information. Furthermore, the observed increase in prefrontal-hippocampal coupling during this process points to a critical distinction from the previously described mechanisms supporting the encoding of information that is experienced as congruent with schema-driven expectations. In addition, we find further support for the proposal based on animal data that prior knowledge enhances also the consolidation of schema-related information.
Collapse
Affiliation(s)
- Tobias Sommer
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Nora Hennies
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Penelope A Lewis
- CUBRIC, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Arjen Alink
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| |
Collapse
|