1
|
Huang Y, Zelmann R, Hadar P, Dezha-Peralta J, Richardson RM, Williams ZM, Cash SS, Keller CJ, Paulk AC. Theta-burst direct electrical stimulation remodels human brain networks. Nat Commun 2024; 15:6982. [PMID: 39143083 PMCID: PMC11324911 DOI: 10.1038/s41467-024-51443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
Theta-burst stimulation (TBS), a patterned brain stimulation technique that mimics rhythmic bursts of 3-8 Hz endogenous brain rhythms, has emerged as a promising therapeutic approach for treating a wide range of brain disorders, though the neural mechanism of TBS action remains poorly understood. We investigated the neural effects of TBS using intracranial EEG (iEEG) in 10 pre-surgical epilepsy participants undergoing intracranial monitoring. Here we show that individual bursts of direct electrical TBS at 29 frontal and temporal sites evoked strong neural responses spanning broad cortical regions. These responses exhibited dynamic local field potential voltage changes over the course of stimulation presentations, including either increasing or decreasing responses, suggestive of short-term plasticity. Stronger stimulation augmented the mean TBS response amplitude and spread with more recording sites demonstrating short-term plasticity. TBS responses were stimulation site-specific with stronger TBS responses observed in regions with strong baseline stimulation effective (cortico-cortical evoked potentials) and functional (low frequency phase locking) connectivity. Further, we could use these measures to predict stable and varying (e.g. short-term plasticity) TBS response locations. Future work may integrate pre-treatment connectivity alongside other biophysical factors to personalize stimulation parameters, thereby optimizing induction of neuroplasticity within disease-relevant brain networks.
Collapse
Affiliation(s)
- Yuhao Huang
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Peter Hadar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaquelin Dezha-Peralta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Palo Alto, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA.
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Baginska U, Moro A, Toonen RF, Verhage M. Maximal Fusion Capacity and Efficient Replenishment of the Dense Core Vesicle Pool in Hippocampal Neurons. J Neurosci 2023; 43:7616-7625. [PMID: 37852790 PMCID: PMC10634579 DOI: 10.1523/jneurosci.2251-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 10/20/2023] Open
Abstract
Neuropeptides and neurotrophins, stored in dense core vesicles (DCVs), are together the largest currently known group of chemical signals in the brain. Exocytosis of DCVs requires high-frequency or patterned stimulation, but the determinants to reach maximal fusion capacity and for efficient replenishment of released DCVs are unknown. Here, we systematically studied fusion of DCV with single vesicle resolution on different stimulation patterns in mammalian CNS neurons. We show that tetanic stimulation trains of 50-Hz action potential (AP) bursts maximized DCV fusion, with significantly fewer fusion event during later bursts of the train. This difference was omitted by introduction of interburst intervals but did not increase total DCV fusion. Interburst intervals as short as 5 s were sufficient to restore the fusion capacity. Theta burst stimulation (TBS) triggered less DCV fusion than tetanic stimulation, but a similar fusion efficiency per AP. Prepulse stimulation did not alter this. However, low-frequency stimulation (4 Hz) intermitted with fast ripple stimulation (200 APs at 200 Hz) produced substantial DCV fusion, albeit not as much as tetanic stimulation. Finally, individual fusion events had longer durations with more intense stimulation. These data indicate that trains of 50-Hz AP stimulation patterns triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.SIGNIFICANCE STATEMENT Neuropeptides and neurotrophins modulate multiple regulatory functions of human body like reproduction, food intake or mood. They are packed into dense core vesicles (DCVs) that undergo calcium and action potential (AP) fusion with the plasma membrane. In order to study the fusion of DCVs in vitro, techniques like perfusion with buffer containing high concentration of potassium or electric field stimulation are needed to trigger the exocytosis of DCVs. Here, we studied the relationship between DCVs fusion properties and different electric field stimulation patterns. We used six different stimulation patterns and showed that trains of 50-Hz action potential bursts triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.
Collapse
Affiliation(s)
- Urszula Baginska
- Department of Functional Genomics, Faculty of Exact Science, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and Vrije Universiteit Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Alessandro Moro
- Department of Functional Genomics, Faculty of Exact Science, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and Vrije Universiteit Medical Center, Amsterdam 1081 HV, The Netherlands
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Faculty of Exact Science, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and Vrije Universiteit Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Faculty of Exact Science, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and Vrije Universiteit Medical Center, Amsterdam 1081 HV, The Netherlands
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
3
|
Nokia MS, Waselius T, Penttonen M. CA3-CA1 long-term potentiation occurs regardless of respiration and cardiac cycle phases in urethane-anesthetized rats. Hippocampus 2023; 33:1228-1232. [PMID: 37221699 DOI: 10.1002/hipo.23551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Breathing and heartbeat synchronize to each other and to brain function and affect cognition in humans. However, it is not clear how cardiorespiratory rhythms modulate such basic processes as synaptic plasticity thought to underlie learning. Thus, we studied if respiration and cardiac cycle phases at burst stimulation onset affect hippocampal long-term potentiation (LTP) in the CA3-CA1 synapse in urethane-anesthetized adult male Sprague-Dawley rats. In a between-subjects design, we timed burst stimulation of the ventral hippocampal commissure (vHC) to systole or diastole either during expiration or inspiration and recorded responses throughout the hippocampus with a linear probe. As classical conditioning in humans seems to be most efficient at expiration-diastole, we also expected LTP to be most efficient if burst stimulation was targeted to expiration-diastole. However, LTP was induced equally in all four groups and respiration and cardiac cycle phase did not modulate CA1 responses to vHC stimulation overall. This could be perhaps because we bypassed all natural routes of external influences on the CA1 by directly stimulating the vHC. In the future, the effect of cardiorespiratory rhythms on synaptic plasticity could also be studied in awake state and in other parts of the hippocampal tri-synaptic loop.
Collapse
Affiliation(s)
- Miriam S Nokia
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Jyväskylä, Finland
| | - Tomi Waselius
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Jyväskylä, Finland
| | - Markku Penttonen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Jyväskylä, Finland
| |
Collapse
|
4
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
5
|
Leung A, Rangamani P. Computational modeling of AMPK and mTOR crosstalk in glutamatergic synapse calcium signaling. NPJ Syst Biol Appl 2023; 9:34. [PMID: 37460570 DOI: 10.1038/s41540-023-00295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Neuronal energy consumption is vital for information processing and memory formation in synapses. The brain consists of just 2% of the human body's mass, but consumes almost 20% of the body's energy budget. Most of this energy is attributed to active transport in ion signaling, with calcium being the canonical second messenger of synaptic transmission. Here, we develop a computational model of synaptic signaling resulting in the activation of two protein kinases critical in metabolic regulation and cell fate, AMP-Activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) and investigate the effect of glutamate stimulus frequency on their dynamics. Our model predicts that frequencies of glutamate stimulus over 10 Hz perturb AMPK and mTOR oscillations at higher magnitudes by up to 36% and change the area under curve (AUC) by 5%. This dynamic difference in AMPK and mTOR activation trajectories potentially differentiates high frequency stimulus bursts from basal neuronal signaling leading to a downstream change in synaptic plasticity. Further, we also investigate the crosstalk between insulin receptor and calcium signaling on AMPK and mTOR activation and predict that the pathways demonstrate multistability dependent on strength of insulin signaling and metabolic consumption rate. Our predictions have implications for improving our understanding of neuronal metabolism, synaptic pruning, and synaptic plasticity.
Collapse
Affiliation(s)
- A Leung
- Chemical Engineering Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - P Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Shetty MS, Ris L, Schindler RFR, Mizuno K, Fedele L, Giese KP, Brand T, Abel T. Mice Lacking the cAMP Effector Protein POPDC1 Show Enhanced Hippocampal Synaptic Plasticity. Cereb Cortex 2022; 32:3457-3471. [PMID: 34937090 PMCID: PMC9376866 DOI: 10.1093/cercor/bhab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Extensive research has uncovered diverse forms of synaptic plasticity and an array of molecular signaling mechanisms that act as positive or negative regulators. Specifically, cyclic 3',5'-cyclic adenosine monophosphate (cAMP)-dependent signaling pathways are crucially implicated in long-lasting synaptic plasticity. In this study, we examine the role of Popeye domain-containing protein 1 (POPDC1) (or blood vessel epicardial substance (BVES)), a cAMP effector protein, in modulating hippocampal synaptic plasticity. Unlike other cAMP effectors, such as protein kinase A (PKA) and exchange factor directly activated by cAMP, POPDC1 is membrane-bound and the sequence of the cAMP-binding cassette differs from canonical cAMP-binding domains, suggesting that POPDC1 may have an unique role in cAMP-mediated signaling. Our results show that Popdc1 is widely expressed in various brain regions including the hippocampus. Acute hippocampal slices from Popdc1 knockout (KO) mice exhibit PKA-dependent enhancement in CA1 long-term potentiation (LTP) in response to weaker stimulation paradigms, which in slices from wild-type mice induce only transient LTP. Loss of POPDC1, while not affecting basal transmission or input-specificity of LTP, results in altered response during high-frequency stimulation. Popdc1 KO mice also show enhanced forskolin-induced potentiation. Overall, these findings reveal POPDC1 as a novel negative regulator of hippocampal synaptic plasticity and, together with recent evidence for its interaction with phosphodiesterases (PDEs), suggest that POPDC1 is involved in modulating activity-dependent local cAMP-PKA-PDE signaling.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Laurence Ris
- Department of Neuroscience, University of Mons, Research Institute for Health Sciences and Technology, 7000 Mons, Belgium
| | | | - Keiko Mizuno
- Department of Neuroscience, King’s College, London SE5 9NU, UK
| | - Laura Fedele
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | | | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Malci A, Lin X, Sandoval R, Gundelfinger ED, Naumann M, Seidenbecher CI, Herrera-Molina R. Ca 2+ signaling in postsynaptic neurons: Neuroplastin-65 regulates the interplay between plasma membrane Ca 2+ ATPases and ionotropic glutamate receptors. Cell Calcium 2022; 106:102623. [PMID: 35853264 DOI: 10.1016/j.ceca.2022.102623] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Upon postsynaptic glutamate receptor activation, the cytosolic Ca2+ concentration rises and initiates signaling and plasticity in spines. The plasma membrane Ca2+ ATPase (PMCA) is a major player to limit the duration of cytosolic Ca2+ signals. It forms complexes with the glycoprotein neuroplastin (Np) isoforms Np55 and Np65 and functionally interplays with N-methyl-D-aspartate (NMDA)-type ionotropic glutamate receptors (iGluNRs). Moreover, binding of the Np65-specific extracellular domain to Ca2+-permeable GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type ionotropic glutamate receptors (iGluA1Rs) was found to be required for long-term potentiation (LTP). However, the link between PMCA and iGluRs function to regulate cytosolic Ca2+ signals remained unclear. Here, we report that Np65 coordinates PMCA and iGluRs' functions to modulate the duration and amplitude of cytosolic Ca2+ transients in dendrites and spines of hippocampal neurons. Using live-cell Ca2+ imaging, acute pharmacological treatments, and GCaMP5G-expressing hippocampal neurons, we discovered that endogenous or Np65-promoted PMCA activity contributes to the restoration of basal Ca2+ levels and that this effect is dependent on iGluR activation. Super-resolution STED and confocal microscopy revealed that electrical stimulation increases the abundance of synaptic neuroplastin-PMCA complexes depending on iGluR activation and that low-rate overexpression of Np65 doubled PMCA levels and decreased cell surface levels of GluN2A and GluA1 in dendrites and Shank2-positive glutamatergic synapses. In neuroplastin-deficient hippocampi, we observed reduced PMCA and unchanged GluN2B levels, while GluN2A and GluA1 levels were imbalanced. Our electrophysiological data from hippocampal slices argues for an essential interplay of PMCA with GluN2A- but not with GluN2B-containing receptors upon induction of synaptic plasticity. Accordingly, we conclude that Np65 may interconnect PMCA with core players of glutamatergic neurotransmission to fine-tune the Ca2+ signal regulation in basal synaptic function and plasticity.
Collapse
Affiliation(s)
- Ayse Malci
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Xiao Lin
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Rodrigo Sandoval
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Rodrigo Herrera-Molina
- Center for Behavioral Brain Sciences, Magdeburg, Germany; Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile; Combinatorial Combinatorial NeuroImaging (CNI), Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
8
|
Figueroa AG, Benkwitz C, Surges G, Kunz N, Homanics GE, Pearce RA. Hippocampal β2-GABA A receptors mediate LTP suppression by etomidate and contribute to long-lasting feedback but not feedforward inhibition of pyramidal neurons. J Neurophysiol 2021; 126:1090-1100. [PMID: 34406874 PMCID: PMC8560413 DOI: 10.1152/jn.00303.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The general anesthetic etomidate, which acts through γ-aminobutyric acid type A (GABAA) receptors, impairs the formation of new memories under anesthesia. This study addresses the molecular and cellular mechanisms by which this occurs. Here, using a new line of genetically engineered mice carrying the GABAA receptor (GABAAR) β2-N265M mutation, we tested the roles of receptors that incorporate GABAA receptor β2 versus β3 subunits to suppression of long-term potentiation (LTP), a cellular model of learning and memory. We found that brain slices from β2-N265M mice resisted etomidate suppression of LTP, indicating that the β2-GABAARs are an essential target in this model. As these receptors are most heavily expressed by interneurons in the hippocampus, this finding supports a role for interneuron modulation in etomidate control of synaptic plasticity. Nevertheless, β2 subunits are also expressed by pyramidal neurons, so they might also contribute. Therefore, using a previously established line of β3-N265M mice, we also examined the contributions of β2- versus β3-GABAARs to GABAA,slow dendritic inhibition, because dendritic inhibition is particularly well suited to controlling synaptic plasticity. We also examined their roles in long-lasting suppression of population activity through feedforward and feedback inhibition. We found that both β2- and β3-GABAARs contribute to GABAA,slow inhibition and that both β2- and β3-GABAARs contribute to feedback inhibition, whereas only β3-GABAARs contribute to feedforward inhibition. We conclude that modulation of β2-GABAARs is essential to etomidate suppression of LTP. Furthermore, to the extent that this occurs through GABAARs on pyramidal neurons, it is through modulation of feedback inhibition.NEW & NOTEWORTHY Etomidate exerts its anesthetic actions through GABAA receptors. However, the mechanism remains unknown. Here, using a hippocampal brain slice model, we show that β2-GABAARs are essential to this effect. We also show that these receptors contribute to long-lasting dendritic inhibition in feedback but not feedforward inhibition of pyramidal neurons. These findings hold implications for understanding how anesthetics block memory formation and, more generally, how inhibitory circuits control learning and memory.
Collapse
Affiliation(s)
- Alexander G Figueroa
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Claudia Benkwitz
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gabe Surges
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicholas Kunz
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gregg E Homanics
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
9
|
Lecouflet P, Roux CM, Potier B, Leger M, Brunet E, Billard JM, Schumann-Bard P, Freret T. Interplay between 5-HT4 Receptors and GABAergic System within CA1 Hippocampal Synaptic Plasticity. Cereb Cortex 2020; 31:694-701. [PMID: 32935845 DOI: 10.1093/cercor/bhaa253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
The type 4 serotonin receptor (5-HT4R) is highly involved in cognitive processes such as learning and memory. Behavioral studies have shown a beneficial effect of its activation and conversely reported memory impairments by its blockade. However, how modulation of 5HT4R enables modifications of hippocampal synaptic plasticity remains elusive. To shed light on the mechanisms at work, we investigated the effects of the 5-HT4R agonist RS67333 on long-term potentiation (LTP) within the hippocampal CA1 area. Although high-frequency stimulation-induced LTP remained unaffected by RS67333, the magnitude of LTP induced by theta-burst stimulation was significantly decreased. This effect was blocked by the selective 5-HT4R antagonist RS39604. Further, 5-HT4R-induced decrease in LTP magnitude was fully abolished in the presence of bicuculline, a GABAAR antagonist; hence, demonstrating involvement of GABA neurotransmission. In addition, we showed that the application of a GABABR antagonist, CGP55845, mimicked the effect of 5-HT4R activation, whereas concurrent application of CGP55845 and RS67333 did not elicit an additive inhibition effect on LTP. To conclude, through investigation of theta burst induced functional plasticity, we demonstrated an interplay between 5-HT4R activation and GABAergic neurotransmission within the hippocampal CA1 area.
Collapse
Affiliation(s)
- Pierre Lecouflet
- Normandie Univ, UNICAEN, INSERM, COMETE, GIP CYCERON, 14000 Caen, France
| | - Candice M Roux
- Normandie Univ, UNICAEN, INSERM, COMETE, GIP CYCERON, 14000 Caen, France.,PORSOLT, 53940 Le Genest Saint-Isle, France
| | - Brigitte Potier
- LUMIN, Univ Paris-Saclay, CNRS, ENS Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Marianne Leger
- Normandie Univ, UNICAEN, INSERM, COMETE, GIP CYCERON, 14000 Caen, France
| | - Elie Brunet
- Normandie Univ, UNICAEN, INSERM, COMETE, GIP CYCERON, 14000 Caen, France
| | - Jean-Marie Billard
- Normandie Univ, UNICAEN, INSERM, COMETE, GIP CYCERON, 14000 Caen, France
| | | | - Thomas Freret
- Normandie Univ, UNICAEN, INSERM, COMETE, GIP CYCERON, 14000 Caen, France
| |
Collapse
|
10
|
Functional Alterations in the Olfactory Neuronal Circuit Occur before Hippocampal Plasticity Deficits in the P301S Mouse Model of Tauopathy: Implications for Early Diagnosis and Translational Research in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21155431. [PMID: 32751531 PMCID: PMC7432464 DOI: 10.3390/ijms21155431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/18/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by neuronal loss and impaired synaptic transmission, ultimately leading to cognitive deficits. Early in the disease, the olfactory track seems most sensitive to tauopathy, while most plasticity studies focused on the hippocampal circuits. Functional network connectivity (FC) and long-term potentiation (LTP), considered as the plasticity substrate of learning and memory, were longitudinally assessed in mice of the P301S model of tauopathy following the course (time and location) of progressively neurodegenerative pathology (i.e., at 3, 6, and 9 months of age) and in their wild type (WT) littermates. Using in vivo local field potential (LFP) recordings, early (at three months) dampening in the gamma oscillatory activity and impairments in the phase-amplitude theta-gamma coupling (PAC) were found in the olfactory bulb (OB) circuit of P301S mice, which were maintained through the whole course of pathology development. In contrast, LFP oscillatory activity and PAC indices were normal in the entorhinal cortex, hippocampal CA1 and CA3 nuclei. Field excitatory postsynaptic potential (fEPSP) recordings from the Shaffer collateral (SC)-CA1 hippocampal stratum pyramidal revealed a significant altered synaptic LTP response to high-frequency stimulation (HFS): at three months of age, no significant difference between genotypes was found in basal synaptic activity, while signs of a deficit in short term plasticity were revealed by alterations in the fEPSPs. At six months of age, a slight deviance was found in basal synaptic activity and significant differences were observed in the LTP response. The alterations in network oscillations at the OB level and impairments in the functioning of the SC-CA1 pyramidal synapses strongly suggest that the progression of tau pathology elicited a brain area, activity-dependent disturbance in functional synaptic transmission. These findings point to early major alterations of neuronal activity in the OB circuit prior to the disturbance of hippocampal synaptic plasticity, possibly involving tauopathy in the anomalous FC. Further research should determine whether those early deficits in the OB network oscillations and FC are possible mechanisms that potentially promote the emergence of hippocampal synaptic impairments during the progression of tauopathy.
Collapse
|
11
|
Mousavi Z, Kourosh-Arami M, Mohsenzadegan M, Komaki A. An immunohistochemical study of the effects of orexin receptor blockade on phospholipase C-β3 level in rat hippocampal dentate gyrus neurons. Biotech Histochem 2020; 96:191-196. [PMID: 32580652 DOI: 10.1080/10520295.2020.1778088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Orexin-A (hypocretin-1) is a neuropeptide that is produced in the lateral hypothalamic area (LHA) and promotes widespread cortical activation. We investigated the effect of SB-334867, a selective orexin receptor 1 (OXR1) antagonist, on phospholipase C-β3 (PLCβ3) level using slices of rat hippocampus preparations and immunohistochemistry. We used three Wistar rats in each of three groups. The control group was untreated rats and SB vehicle and SB groups received SB vehicle and 10 mg/kg SB-334867 daily from postnatal day (PND) 12 to PND30, respectively. We found that the orexin receptor antagonist decreased the PLCβ3 level in the inner and outer blades of dentate gyrus (DG) compared to SB vehicle treated rats. Orexin may increase the PLCβ3 level in most regions of the rat hippocampus.
Collapse
Affiliation(s)
- Zeinab Mousavi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Lab Medical Sciences, Allied Medical College, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Nordman JC, Ma X, Gu Q, Potegal M, Li H, Kravitz AV, Li Z. Potentiation of Divergent Medial Amygdala Pathways Drives Experience-Dependent Aggression Escalation. J Neurosci 2020; 40:4858-4880. [PMID: 32424020 PMCID: PMC7326350 DOI: 10.1523/jneurosci.0370-20.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022] Open
Abstract
Heightened aggression can be serious concerns for the individual and society at large and are symptoms of many psychiatric illnesses, such as post-traumatic stress disorder. The circuit and synaptic mechanisms underlying experience-induced aggression increase, however, are poorly understood. Here we find that prior attack experience leading to an increase in aggressive behavior, known as aggression priming, activates neurons within the posterior ventral segment of the medial amygdala (MeApv). Optogenetic stimulation of MeApv using a synaptic depression protocol suppresses aggression priming, whereas high-frequency stimulation enhances aggression, mimicking attack experience. Interrogation of the underlying neural circuitry revealed that the MeApv mediates aggression priming via synaptic connections with the ventromedial hypothalamus (VmH) and bed nucleus of the stria terminalis (BNST). These pathways undergo NMDAR-dependent synaptic potentiation after attack. Furthermore, we find that the MeApv-VmH synapses selectively control attack duration, whereas the MeApv-BNST synapses modulate attack frequency, both with no effect on social behavior. Synaptic potentiation of the MeApv-VmH and MeApv-BNST pathways contributes to increased aggression induced by traumatic stress, and weakening synaptic transmission at these synapses blocks the effect of traumatic stress on aggression. These results reveal a circuit and synaptic basis for aggression modulation by experience that can be potentially leveraged toward clinical interventions.SIGNIFICANCE STATEMENT Heightened aggression can have devastating social consequences and may be associated with psychiatric disorders, such as post-traumatic stress disorder. The circuit and synaptic mechanisms underlying experience-induced aggression escalation, however, are poorly understood. Here we identify two aggression pathways between the posterior ventral segment of the medial amygdala and its downstream synaptic partners, the ventromedial hypothalamus and bed nucleus of the stria terminalis that undergo synaptic potentiation after attack and traumatic stress to enhance aggression. Notably, weakening synaptic transmission in these circuits blocks aggression priming, naturally occurring aggression, and traumatic stress-induced aggression increase. These results illustrate a circuit and synaptic basis of aggression modulation by experience, which can be potentially targeted for clinical interventions.
Collapse
Affiliation(s)
- Jacob C Nordman
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Xiaoyu Ma
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Qinhua Gu
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael Potegal
- Program in Occupational Therapy, Center for Neurobehavioral Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - He Li
- Department of Psychiatry, Uniformed Services University, Bethesda, Maryland 20892
| | - Alexxai V Kravitz
- Eating and Addiction Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Zheng Li
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
13
|
Katz CN, Patel K, Talakoub O, Groppe D, Hoffman K, Valiante TA. Differential Generation of Saccade, Fixation, and Image-Onset Event-Related Potentials in the Human Mesial Temporal Lobe. Cereb Cortex 2020; 30:5502-5516. [PMID: 32494805 PMCID: PMC7472212 DOI: 10.1093/cercor/bhaa132] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/23/2022] Open
Abstract
Event-related potentials (ERPs) are a commonly used electrophysiological signature for studying mesial temporal lobe (MTL) function during visual memory tasks. The ERPs associated with the onset of visual stimuli (image-onset) and eye movements (saccades and fixations) provide insights into the mechanisms of their generation. We hypothesized that since eye movements and image-onset provide MTL structures with salient visual information, perhaps they both engage similar neural mechanisms. To explore this question, we used intracranial electroencephalographic data from the MTLs of 11 patients with medically refractory epilepsy who participated in a visual search task. We characterized the electrophysiological responses of MTL structures to saccades, fixations, and image-onset. We demonstrated that the image-onset response is an evoked/additive response with a low-frequency power increase. In contrast, ERPs following eye movements appeared to arise from phase resetting of higher frequencies than the image-onset ERP. Intriguingly, this reset was associated with saccade onset and not termination (fixation), suggesting it is likely the MTL response to a corollary discharge, rather than a response to visual stimulation. We discuss the distinct mechanistic underpinnings of these responses which shed light on the underlying neural circuitry involved in visual memory processing.
Collapse
Affiliation(s)
- Chaim N Katz
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Kramay Patel
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Omid Talakoub
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - David Groppe
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada
| | - Kari Hoffman
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Taufik A Valiante
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.,Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| |
Collapse
|
14
|
Effect of Aβ Oligomers on Neuronal APP Triggers a Vicious Cycle Leading to the Propagation of Synaptic Plasticity Alterations to Healthy Neurons. J Neurosci 2020; 40:5161-5176. [PMID: 32444385 DOI: 10.1523/jneurosci.2501-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/04/2020] [Accepted: 04/03/2020] [Indexed: 01/04/2023] Open
Abstract
Alterations of excitatory synaptic function are the strongest correlate to the pathologic disturbance of cognitive ability observed in the early stages of Alzheimer's disease (AD). This pathologic feature is driven by amyloid-β oligomers (Aβos) and propagates from neuron to neuron. Here, we investigated the mechanism by which Aβos affect the function of synapses and how these alterations propagate to surrounding healthy neurons. We used complementary techniques ranging from electrophysiological recordings and molecular biology to confocal microscopy in primary cortical cultures, and from acute hippocampal and cortical slices from male wild-type and amyloid precursor protein (APP) knock-out (KO) mice to assess the effects of Aβos on glutamatergic transmission, synaptic plasticity, and dendritic spine structure. We showed that extracellular application of Aβos reduced glutamatergic synaptic transmission and long-term potentiation. These alterations were not observed in APP KO neurons, suggesting that APP expression is required. We demonstrated that Aβos/APP interaction increases the amyloidogenic processing of APP leading to intracellular accumulation of newly produced Aβos. Intracellular Aβos participate in synaptic dysfunctions as shown by pharmacological inhibition of APP processing or by intraneuronal infusion of an antibody raised against Aβos. Furthermore, we provide evidence that following APP processing, extracellular release of Aβos mediates the propagation of the synaptic pathology characterized by a decreased spine density of neighboring healthy neurons in an APP-dependent manner. Together, our data unveil a complementary role for Aβos in AD, while intracellular Aβos alter synaptic function, extracellular Aβos promote a vicious cycle that propagates synaptic pathology from diseased to healthy neurons.SIGNIFICANCE STATEMENT Here we provide the proof that a vicious cycle between extracellular and intracellular pools of Aβ oligomers (Aβos) is required for the spreading of Alzheimer's disease (AD) pathology. We showed that extracellular Aβos propagate excitatory synaptic alterations by promoting amyloid precursor protein (APP) processing. Our results also suggest that subsequent to APP cleavage two pools of Aβos are produced. One pool accumulates inside the cytosol, inducing the loss of synaptic plasticity potential. The other pool is released into the extracellular space and contributes to the propagation of the pathology from diseased to healthy neurons. Pharmacological strategies targeting the proteolytic cleavage of APP disrupt the relationship between extracellular and intracellular Aβ, providing a therapeutic approach for the disease.
Collapse
|
15
|
Administration of Bacterial Lipopolysaccharide during Early Postnatal Ontogenesis Induces Transient Impairment of Long-Term Synaptic Plasticity Associated with Behavioral Abnormalities in Young Rats. Pharmaceuticals (Basel) 2020; 13:ph13030048. [PMID: 32197321 PMCID: PMC7151710 DOI: 10.3390/ph13030048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/31/2023] Open
Abstract
Infectious diseases in early postnatal ontogenesis often result in cognitive impairments, particularly learning and memory. The essential foundation of learning and memory is long-term synaptic plasticity, which depends on N-methyl-D-aspartate (NMDA) receptors. In the present study, bacterial infection was modeled by treating rat pups with bacterial lipopolysaccharide (LPS, 25 µg/kg) three times, during either the first or the third week of life. These time points are critical for the maturation of NMDA receptors. We assessed the effects of LPS treatments on the properties of long-term potentiation (LTP) in the CA1 hippocampus of young (21–23 days) and adolescent (51–55 days) rats. LTP magnitude was found to be significantly reduced in both groups of young rats, which also exhibited investigative and motor behavior disturbances in the open field test. No changes were observed in the main characteristics of synaptic transmission, although the LTP induction mechanism was disturbed. In rats treated with LPS during the third week, the NMDA-dependent form of LTP was completely suppressed, and LTP switched to the Type 1 metabotropic glutamate receptor (mGluR1)-dependent form. These impairments of synaptic plasticity and behavior were temporary. In adolescent rats, no difference was observed in LTP properties between the control and experimental groups. Lastly, the investigative and motor behavior parameters in both groups of adult rats were similar.
Collapse
|
16
|
Liu Y, Chen C, Liu Y, Li W, Wang Z, Sun Q, Zhou H, Chen X, Yu Y, Wang Y, Abumaria N. TRPM7 Is Required for Normal Synapse Density, Learning, and Memory at Different Developmental Stages. Cell Rep 2019; 23:3480-3491. [PMID: 29924992 DOI: 10.1016/j.celrep.2018.05.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/29/2018] [Accepted: 05/18/2018] [Indexed: 10/28/2022] Open
Abstract
The TRPM7 chanzyme contributes to several biological and pathological processes in different tissues. However, its role in the CNS under physiological conditions remains unclear. Here, we show that TRPM7 knockdown in hippocampal neurons reduces structural synapse density. The synapse density is rescued by the α-kinase domain in the C terminus but not by the ion channel region of TRPM7 or by increasing extracellular concentrations of Mg2+ or Zn2+. Early postnatal conditional knockout of TRPM7 in mice impairs learning and memory and reduces synapse density and plasticity. TRPM7 knockdown in the hippocampus of adult rats also impairs learning and memory and reduces synapse density and synaptic plasticity. In knockout mice, restoring expression of the α-kinase domain in the brain rescues synapse density/plasticity and memory, probably by interacting with and phosphorylating cofilin. These results suggest that brain TRPM7 is important for having normal synaptic and cognitive functions under physiological, non-pathological conditions.
Collapse
Affiliation(s)
- Yuqiang Liu
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Cui Chen
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Yunlong Liu
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wei Li
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Zhihong Wang
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Qifeng Sun
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hang Zhou
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Yongchun Yu
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Yun Wang
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Nashat Abumaria
- Department of Neurology, Huashan Hospital, and Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
17
|
van den Broeke EN, Gousset S, Bouvy J, Stouffs A, Lebrun L, van Neerven SGA, Mouraux A. Heterosynaptic facilitation of mechanical nociceptive input is dependent on the frequency of conditioning stimulation. J Neurophysiol 2019; 122:994-1001. [PMID: 31291140 PMCID: PMC6766737 DOI: 10.1152/jn.00274.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/10/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022] Open
Abstract
High-frequency burstlike electrical conditioning stimulation (HFS) applied to human skin induces an increase in mechanical pinprick sensitivity of the surrounding unconditioned skin (a phenomenon known as secondary hyperalgesia). The present study assessed the effect of frequency of conditioning stimulation on the development of this increased pinprick sensitivity in humans. In a first experiment, we compared the increase in pinprick sensitivity induced by HFS, using monophasic non-charge-compensated pulses and biphasic charge-compensated pulses. High-frequency stimulation, traditionally delivered with non-charge-compensated square-wave pulses, may induce a cumulative depolarization of primary afferents and/or changes in pH at the electrode-tissue interface due to the accumulation of a net residue charge after each pulse. Both could contribute to the development of the increased pinprick sensitivity in a frequency-dependent fashion. We found no significant difference in the increase in pinprick sensitivity between HFS delivered with charge-compensated and non-charge-compensated pulses, indicating that the possible contribution of charge accumulation when non-charge-compensated pulses are used is negligible. In a second experiment, we assessed the effect of different frequencies of conditioning stimulation (5, 20, 42, and 100 Hz) using charge-compensated pulses on the development of increased pinprick sensitivity. The maximal increase in pinprick sensitivity was observed at intermediate frequencies of stimulation (20 and 42 Hz). It is hypothesized that the stronger increase in pinprick sensitivity at intermediate frequencies may be related to the stronger release of substance P and/or neurokinin-1 receptor activation expressed at lamina I neurons after C-fiber stimulation.NEW & NOTEWORTHY Burstlike electrical conditioning stimulation applied to human skin induces an increase in pinprick sensitivity in the surrounding unconditioned skin (a phenomenon referred to as secondary hyperalgesia). Here we show that the development of the increase in pinprick sensitivity is dependent on the frequency of the burstlike electrical conditioning stimulation.
Collapse
Affiliation(s)
- E N van den Broeke
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - S Gousset
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - J Bouvy
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - A Stouffs
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - L Lebrun
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - S G A van Neerven
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - A Mouraux
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
18
|
Early Electrophysiological Disintegration of Hippocampal Neural Networks in a Novel Locus Coeruleus Tau-Seeding Mouse Model of Alzheimer's Disease. Neural Plast 2019; 2019:6981268. [PMID: 31285742 PMCID: PMC6594257 DOI: 10.1155/2019/6981268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by loss of synapses and disrupted functional connectivity (FC) across different brain regions. Early in AD progression, tau pathology is found in the locus coeruleus (LC) prior to amyloid-induced exacerbation of clinical symptoms. Here, a tau-seeding model in which preformed synthetic tau fibrils (K18) were unilaterally injected into the LC of P301L mice, equipped with multichannel electrodes for recording EEG in frontal cortical and CA1-CA3 hippocampal areas, was used to longitudinally quantify over 20 weeks of functional network dynamics in (1) power spectra; (2) FC using intra- and intersite phase-amplitude theta-gamma coupling (PAC); (3) coherence, partial coherence, and global coherent network efficiency (Eglob) estimates; and (4) the directionality of functional connectivity using extended partial direct coherence (PDC). A sustained leftward shift in the theta peak frequency was found early in the power spectra of hippocampal CA1 networks ipsilateral to the injection site. Strikingly, hippocampal CA1 coherence and Eglob measures were impaired in K18-treated animals. Estimation of instantaneous EEG amplitudes revealed deficiency in the propagation directionality of gamma oscillations in the CA1 circuit. Impaired PAC strength evidenced by decreased modulation of the theta frequency phase on gamma frequency amplitude further confirms impairments of the neural CA1 network. The present results demonstrate early dysfunctional hippocampal networks, despite no spreading tau pathology to the hippocampus and frontal cortex. The ability of the K18 seed in the brainstem LC to elicit such robust functional alterations in distant hippocampal structures in the absence of pathology challenges the classic view that tau pathology spread to an area is necessary to elicit functional impairments in that area.
Collapse
|
19
|
Kersten M, Rabbe T, Blome R, Porath K, Sellmann T, Bien CG, Köhling R, Kirschstein T. Novel Object Recognition in Rats With NMDAR Dysfunction in CA1 After Stereotactic Injection of Anti-NMDAR Encephalitis Cerebrospinal Fluid. Front Neurol 2019; 10:586. [PMID: 31231304 PMCID: PMC6560222 DOI: 10.3389/fneur.2019.00586] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose: Limbic encephalitis associated with autoantibodies against N-methyl D-aspartate receptors (NMDARs) often presents with memory impairment. NMDARs are key targets for memory acquisition and retrieval, and have been mechanistically linked to its underlying process, synaptic plasticity. Clinically, memory deficits are largely compatible with a pre-dominantly hippocampus-dependent phenotype, which, in rodents, is principally involved in spatial memory. Previous studies confirmed the impaired spatial memory in the rat model of anti-NMDAR encephalitis. Here, we hypothesized that non-spatial memory functions, such as object recognition might also be affected in this model. Methods: We performed stereotactic intrahippocampal bolus injection of human cerebrospinal fluid (CSF) from anti-NMDAR encephalitis and control patients into the hippocampus of the anesthetized rat. After recovery for 1–8 days, hippocampal slices were prepared from these animals and NMDAR-dependent long-term potentiation was assessed at the Schaffer collateral-CA1 synapse. In addition, we performed behavioral analyses using the open field and novel object recognition tasks. Results: NMDAR-dependent long-term potentiation in the hippocampal CA1 area was significantly suppressed, indicating successful NMDAR dysfunction in this subfield. Spontaneous locomotor activity as well as anxiety-related behavior in the open field did not differ between NMDAR-CSF-treated and control animals. In the novel object recognition task, there were no differences in the motivation to approach objects. In contrast, we observed a significantly preferred exploration of the novel object only in control, but not in NMDAR-CSF-treated rats. Conclusion: These results indicate that NMDAR dysfunction obtained by intrahippocampal stereotactic injection does not alter locomotor or anxiety-related behavior. In addition, approach to an object or exploratory behavior in general are not affected either, but intact initial NMDAR-dependent processes might be involved in novel object recognition.
Collapse
Affiliation(s)
- Maxi Kersten
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Theresa Rabbe
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Roman Blome
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Katrin Porath
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Tina Sellmann
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | | | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.,Center of Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.,Center of Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
20
|
Postnikova TY, Trofimova AM, Ergina JL, Zubareva OE, Kalemenev SV, Zaitsev AV. Transient Switching of NMDA-Dependent Long-Term Synaptic Potentiation in CA3-CA1 Hippocampal Synapses to mGluR 1-Dependent Potentiation After Pentylenetetrazole-Induced Acute Seizures in Young Rats. Cell Mol Neurobiol 2019; 39:287-300. [PMID: 30607810 DOI: 10.1007/s10571-018-00647-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/29/2018] [Indexed: 01/18/2023]
Abstract
The mechanisms of impairment in long-term potentiation after status epilepticus (SE) remain unclear. We investigated the properties of LTP induced by theta-burst stimulation in hippocampal slices of rats 3 h and 1, 3, and 7 days after SE. Seizures were induced in 3-week old rats by a single injection of pentylenetetrazole (PTZ). Only animals with generalized seizures lasting more than 30 min were included in the experiments. The results revealed that LTP was strongly attenuated in the CA1 hippocampal area after PTZ-induced SE as compared with that in control animals. Saturation of synaptic responses following epileptic activity does not explain weakening of LTP because neither the quantal size of the excitatory responses nor the slopes of the input-output curves for field excitatory postsynaptic potentials changed in the post-SE rats. After PTZ-induced SE, NMDA-dependent LTP was suppressed, and LTP transiently switched to the mGluR1-dependent form. This finding does not appear to have been reported previously in the literature. An antagonist of NMDA receptors, D-2-amino-5-phosphonovalerate, did not block LTP induction in 3-h and 1-day post-SE slices. An antagonist of mGluR1, FTIDS, completely prevented LTP in 1-day post-SE slices; whereas it did not affect LTP induction in control and post-SE slices at the other studied times. mGluR1-dependent LTP was postsynaptically expressed and did not require NMDA receptor activation. Recovery of NMDA-dependent LTP occurred 7 day after SE. Transient switching between NMDA-dependent LTP and mGluR1-dependent LTP could play a role in the pathogenesis of acquired epilepsy.
Collapse
Affiliation(s)
- Tatyana Y Postnikova
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia
- Peter the Great St.Petersburg Polytechnic University (SPbPU), Saint Petersburg, Russia
| | - Alina M Trofimova
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia
| | - Julia L Ergina
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia
| | - Olga E Zubareva
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia
| | - Sergey V Kalemenev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia.
- Peter the Great St.Petersburg Polytechnic University (SPbPU), Saint Petersburg, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia.
| |
Collapse
|
21
|
Amakhin DV, Soboleva EB, Ergina JL, Malkin SL, Chizhov AV, Zaitsev AV. Seizure-Induced Potentiation of AMPA Receptor-Mediated Synaptic Transmission in the Entorhinal Cortex. Front Cell Neurosci 2018; 12:486. [PMID: 30618633 PMCID: PMC6297849 DOI: 10.3389/fncel.2018.00486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/29/2018] [Indexed: 11/22/2022] Open
Abstract
Excessive excitation is considered one of the key mechanisms underlying epileptic seizures. We investigated changes in the evoked postsynaptic responses of medial entorhinal cortex (ERC) pyramidal neurons by seizure-like events (SLEs), using the modified 4-aminopyridine (4-AP) model of epileptiform activity. Rat brain slices were perfused with pro-epileptic solution contained 4-AP and elevated potassium and reduced magnesium concentration. We demonstrated that 15-min robust epileptiform activity in slices leads to an increase in the amplitude of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated component of the evoked response, as well as an increase in the polysynaptic γ-aminobutyric acid (GABA) and N-methyl-D-aspartate (NMDA) receptor-mediated components. The increase in AMPA-mediated postsynaptic conductance depends on NMDA receptor activation. It persists for at least 15 min after the cessation of SLEs and is partly attributed to the inclusion of calcium-permeable AMPA receptors in the postsynaptic membrane. The mathematical modeling of the evoked responses using the conductance-based refractory density (CBRD) approach indicated that such augmentation of the AMPA receptor function and depolarization by GABA receptors results in prolonged firing that explains the increase in polysynaptic components, which contribute to overall network excitability. Taken together, our data suggest that AMPA receptor enhancement could be a critical determinant of sustained status epilepticus (SE).
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Elena B Soboleva
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Julia L Ergina
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Sergey L Malkin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Anton V Chizhov
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia.,Ioffe Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia.,Institute of Experimental Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
22
|
Macro scale modelling of cortical spreading depression and the role of astrocytic gap junctions. J Theor Biol 2018; 458:78-91. [DOI: 10.1016/j.jtbi.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/08/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022]
|
23
|
Haselmann H, Mannara F, Werner C, Planagumà J, Miguez-Cabello F, Schmidl L, Grünewald B, Petit-Pedrol M, Kirmse K, Classen J, Demir F, Klöcker N, Soto D, Doose S, Dalmau J, Hallermann S, Geis C. Human Autoantibodies against the AMPA Receptor Subunit GluA2 Induce Receptor Reorganization and Memory Dysfunction. Neuron 2018; 100:91-105.e9. [PMID: 30146304 DOI: 10.1016/j.neuron.2018.07.048] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 03/14/2018] [Accepted: 07/27/2018] [Indexed: 11/29/2022]
Abstract
AMPA receptors are essential for fast excitatory transmission in the CNS. Autoantibodies to AMPA receptors have been identified in humans with autoimmune encephalitis and severe defects of hippocampal function. Here, combining electrophysiology and high-resolution imaging with neuronal culture preparations and passive-transfer models in wild-type and GluA1-knockout mice, we analyze how specific human autoantibodies against the AMPA receptor subunit GluA2 affect receptor function and composition, synaptic transmission, and plasticity. Anti-GluA2 antibodies induce receptor internalization and a reduction of synaptic GluA2-containing AMPARs followed by compensatory ryanodine receptor-dependent incorporation of synaptic non-GluA2 AMPARs. Furthermore, application of human pathogenic anti-GluA2 antibodies to mice impairs long-term synaptic plasticity in vitro and affects learning and memory in vivo. Our results identify a specific immune-neuronal rearrangement of AMPA receptor subunits, providing a framework to explain disease symptoms.
Collapse
Affiliation(s)
- Holger Haselmann
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Francesco Mannara
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Christian Werner
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jesús Planagumà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Federico Miguez-Cabello
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Laboratori de Neurofisiologia, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Lars Schmidl
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Benedikt Grünewald
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Mar Petit-Pedrol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Knut Kirmse
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Fatih Demir
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany; Forschungszentrum Jülich, Central Institute for Engineering, Electronics and Analytics (ZEA-3), Wilhelm-Johnen-Strasse, 52425 Jülich, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - David Soto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Laboratori de Neurofisiologia, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Josep Dalmau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), (Instituto Carlos III, Madrid), Av. Monforte de Lemos, 3-5 Pabellón 11, 28029 Madrid, Spain
| | - Stefan Hallermann
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Liebigstrasse 27, 04103 Leipzig, Germany
| | - Christian Geis
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| |
Collapse
|
24
|
Blome R, Bach W, Guli X, Porath K, Sellmann T, Bien CG, Köhling R, Kirschstein T. Differentially Altered NMDAR Dependent and Independent Long-Term Potentiation in the CA3 Subfield in a Model of Anti-NMDAR Encephalitis. Front Synaptic Neurosci 2018; 10:26. [PMID: 30108497 PMCID: PMC6079239 DOI: 10.3389/fnsyn.2018.00026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/11/2018] [Indexed: 11/24/2022] Open
Abstract
Purpose: Autoantibodies against NMDA receptors (NMDAR) in the cerebrospinal fluid (CSF) from anti-NMDAR encephalitis patients have been suggested to be pathogenic since in previous studies using patient CSF, NMDAR-dependent processes such as long-term potentiation (LTP) were compromised. However, autoantibodies may represent a family of antibodies targeted against different epitopes, and CSF may contain further autoantibodies. Here, we tested the specificity of the autoantibody by comparing NMDAR-dependent and NMDAR-independent LTP within the same hippocampal subfield, CA3, using CSF samples from four anti-NMDAR encephalitis patients and three control patients. Methods: We performed a stereotactic injection of patient-derived cell-free CSF with proven presence or absence of NMDAR-antibodies into the rat hippocampus in vivo. Hippocampal brain slices were prepared 1–8 days after intrahippocampal injection, and NMDAR-dependent LTP at the associational-commissural (A/C) fiber-CA3 synapse was compared to NMDAR-independent LTP at the mossy fiber (MF)-CA3 synapse. Results: The LTP magnitude at A/C fiber-CA3 synapses in slices from control-CSF-treated animals (168 ± 8% n = 54) was significantly higher than LTP in slices from NMDAR-CSF-treated animals (139 ± 9%, n = 40; P = 0.015), although there was some variation between the individual CSF samples. We found residual LTP in NMDAR-CSF-treated tissue which could be abolished by the NMDAR inhibitor D-AP5. Moreover, the CA3 field excitatory postsynaptic potential (fEPSP) was followed by epileptiform afterpotentials in 5% of slices (4/78) from control-CSF-treated animals, but in 26% of slices (12/46) from NMDAR-CSF-treated animals (P = 0.002). Application of the LTP-inducing paradigm increased the proportion of slices with epileptiform afterpotentials, but D-AP5 significantly reduced the occurrence of epileptiform afterpotentials only in NMDAR-CSF-treated, but not in control tissue. At the MF synapse, no significant difference in LTP values of control-CSF and in NMDAR-CSF-treated tissue was observed indicating that NMDAR-independent MF-LTP is intact in NMDAR-CSF-treated tissue. Conclusion: These findings indicate that anti-NMDAR containing CSF impairs LTP at the A/C fiber-CA3 synapse, although there is substantial variation among CSF samples suggesting different epitopes among patient-derived antibodies. The differential inhibition of LTP at this synapse in contrast to the MF-CA3 synapse suggests the specificity and underlines the pathophysiological role of the NMDAR-antibody.
Collapse
Affiliation(s)
- Roman Blome
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Willi Bach
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Xiati Guli
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Katrin Porath
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Tina Sellmann
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | | | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| |
Collapse
|
25
|
Hu E, Mergenthal A, Bingham CS, Song D, Bouteiller JM, Berger TW. A Glutamatergic Spine Model to Enable Multi-Scale Modeling of Nonlinear Calcium Dynamics. Front Comput Neurosci 2018; 12:58. [PMID: 30100870 PMCID: PMC6072875 DOI: 10.3389/fncom.2018.00058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/05/2018] [Indexed: 11/30/2022] Open
Abstract
In synapses, calcium is required for modulating synaptic transmission, plasticity, synaptogenesis, and synaptic pruning. The regulation of calcium dynamics within neurons involves cellular mechanisms such as synaptically activated channels and pumps, calcium buffers, and calcium sequestrating organelles. Many experimental studies tend to focus on only one or a small number of these mechanisms, as technical limitations make it difficult to observe all features at once. Computational modeling enables incorporation of many of these properties together, allowing for more complete and integrated studies. However, the scale of existing detailed models is often limited to synaptic and dendritic compartments as the computational burden rapidly increases when these models are integrated in cellular or network level simulations. In this article we present a computational model of calcium dynamics at the postsynaptic spine of a CA1 pyramidal neuron, as well as a methodology that enables its implementation in multi-scale, large-scale simulations. We first present a mechanistic model that includes individually validated models of various components involved in the regulation of calcium at the spine. We validated our mechanistic model by comparing simulated calcium levels to experimental data found in the literature. We performed additional simulations with the mechanistic model to determine how the simulated calcium activity varies with respect to presynaptic-postsynaptic stimulation intervals and spine distance from the soma. We then developed an input-output (IO) model that complements the mechanistic calcium model and provide a computationally efficient representation for use in larger scale modeling studies; we show the performance of the IO model compared to the mechanistic model in terms of accuracy and speed. The models presented here help achieve two objectives. First, the mechanistic model provides a comprehensive platform to describe spine calcium dynamics based on individual contributing factors. Second, the IO model is trained on the main dynamical features of the mechanistic model and enables nonlinear spine calcium modeling on the cell and network level simulation scales. Utilizing both model representations provide a multi-level perspective on calcium dynamics, originating from the molecular interactions at spines and propagating the effects to higher levels of activity involved in network behavior.
Collapse
Affiliation(s)
- Eric Hu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Adam Mergenthal
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Clayton S Bingham
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Jean-Marie Bouteiller
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Theodore W Berger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
26
|
Integrated models of neurovascular coupling and BOLD signals: Responses for varying neural activations. Neuroimage 2018. [DOI: 10.1016/j.neuroimage.2018.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Soares C, Lee KFH, Béïque JC. Metaplasticity at CA1 Synapses by Homeostatic Control of Presynaptic Release Dynamics. Cell Rep 2018; 21:1293-1303. [PMID: 29091767 DOI: 10.1016/j.celrep.2017.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/16/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022] Open
Abstract
Hebbian and homeostatic forms of plasticity operate on different timescales to regulate synaptic strength. The degree of mechanistic overlap between these processes and their mutual influence are still incompletely understood. Here, we report that homeostatic synaptic strengthening induced by prolonged network inactivity compromised the ability of CA1 synapses to exhibit LTP. This effect could not be accounted for by an obvious deficit in the postsynaptic capacity for LTP expression, since neither the fraction of silent synapses nor the ability to induce LTP by two-photon glutamate uncaging were reduced by the homeostatic process. Rather, optical quantal analysis reveals that homeostatically strengthened synapses display a reduced capacity to maintain glutamate release fidelity during repetitive stimulation, ultimately impeding the induction, and thus expression, of LTP. By regulating the short-term dynamics of glutamate release, the homeostatic process thus influences key aspects of dynamic network function and exhibits features of metaplasticity.
Collapse
Affiliation(s)
- Cary Soares
- Neuroscience Graduate Program, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kevin F H Lee
- Neuroscience Graduate Program, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Claude Béïque
- Neuroscience Graduate Program, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute's Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
28
|
Wang B, Han S. Inhibition of Inducible Nitric Oxide Synthase Attenuates Deficits in Synaptic Plasticity and Brain Functions Following Traumatic Brain Injury. THE CEREBELLUM 2018; 17:477-484. [DOI: 10.1007/s12311-018-0934-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Li X, Holmes WR. Biophysical attributes that affect CaMKII activation deduced with a novel spatial stochastic simulation approach. PLoS Comput Biol 2018; 14:e1005946. [PMID: 29401454 PMCID: PMC5814094 DOI: 10.1371/journal.pcbi.1005946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/15/2018] [Accepted: 12/19/2017] [Indexed: 12/02/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) holoenzymes play a critical role in decoding Ca2+ signals in neurons. Understanding how this occurs has been the focus of numerous studies including many that use models. However, CaMKII is notoriously difficult to simulate in detail because of its multi-subunit nature, which causes a combinatorial explosion in the number of species that must be modeled. To study the Ca2+-calmodulin-CaMKII reaction network with detailed kinetics while including the effect of diffusion, we have customized an existing stochastic particle-based simulator, Smoldyn, to manage the problem of combinatorial explosion. With this new method, spatial and temporal aspects of the signaling network can be studied without compromising biochemical details. We used this new method to examine how calmodulin molecules, both partially loaded and fully loaded with Ca2+, choose pathways to interact with and activate CaMKII under various Ca2+ input conditions. We found that the dependence of CaMKII phosphorylation on Ca2+ signal frequency is intrinsic to the network kinetics and the activation pattern can be modulated by the relative amount of Ca2+ to calmodulin and by the rate of Ca2+ diffusion. Depending on whether Ca2+ influx is saturating or not, calmodulin molecules could choose different routes within the network to activate CaMKII subunits, resulting in different frequency dependence patterns. In addition, the size of the holoenzyme produces a subtle effect on CaMKII activation. The more extended the subunits are organized, the easier for calmodulin molecules to access and activate the subunits. The findings suggest that particular intracellular environmental factors such as crowding and calmodulin availability can play an important role in decoding Ca2+ signals and can give rise to distinct CaMKII activation patterns in dendritic spines, Ca2+ channel nanodomains and cytoplasm.
Collapse
Affiliation(s)
- Ximing Li
- Department of Biological Sciences, Neuroscience Program, Ohio University, Athens, Ohio, United States of America
| | - William R. Holmes
- Department of Biological Sciences, Neuroscience Program, Ohio University, Athens, Ohio, United States of America
| |
Collapse
|
30
|
Padamsey Z, Tong R, Emptage N. Glutamate is required for depression but not potentiation of long-term presynaptic function. eLife 2017; 6:29688. [PMID: 29140248 PMCID: PMC5714480 DOI: 10.7554/elife.29688] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022] Open
Abstract
Hebbian plasticity is thought to require glutamate signalling. We show this is not the case for hippocampal presynaptic long-term potentiation (LTPpre), which is expressed as an increase in transmitter release probability (Pr). We find that LTPpre can be induced by pairing pre- and postsynaptic spiking in the absence of glutamate signalling. LTPpre induction involves a non-canonical mechanism of retrograde nitric oxide signalling, which is triggered by Ca2+ influx from L-type voltage-gated Ca2+ channels, not postsynaptic NMDA receptors (NMDARs), and does not require glutamate release. When glutamate release occurs, it decreases Pr by activating presynaptic NMDARs, and promotes presynaptic long-term depression. Net changes in Pr, therefore, depend on two opposing factors: (1) Hebbian activity, which increases Pr, and (2) glutamate release, which decreases Pr. Accordingly, release failures during Hebbian activity promote LTPpre induction. Our findings reveal a novel framework of presynaptic plasticity that radically differs from traditional models of postsynaptic plasticity. Neurons communicate with one another at junctions called synapses. One neuron at the synapse releases a chemical substance called a neurotransmitter, which binds to and activates the other neuron. The release of neurotransmitter thus enables the electrical activity of one cell to influence the electrical activity of another. The efficiency of this communication can change over time, as is thought to occur during learning. If the neurons on both sides of a synapse are repeatedly active at the same time, the ability of the neurons to transmit electrical signals to each other increases. One way that communication between neurons can become more efficient is if the first neuron becomes more likely to release neurotransmitter. Most synapses in the brain release a neurotransmitter called glutamate, and most types of learning involve changes in the efficiency of communication at glutamatergic synapses. But glutamate release is unreliable. Active glutamatergic neurons fail to release glutamate about 80% of the time. If glutamate has a key role in learning, how does the brain learn efficiently when glutamate release is so unlikely? To find out, Padamsey et al. studied glutamatergic synapses in slices of tissue from mouse and rat brains. When both neurons at a synapse were repeatedly active at the same time, the first neuron would sometimes become more likely to release glutamate. But this only happened at synapses in which the first neuron usually failed to release glutamate in the first place. This suggests that communication failures help to drive change at synapses. When two neurons that are often active at the same time do not communicate efficiently, this failure triggers molecular changes that make future communication more reliable. Previous results have shown that synapses can change when glutamate release occurs. The current results show that they can also change when it does not. This means that the brain can continue to learn despite frequent communication failures between neurons. Many neurological disorders, including Alzheimer’s disease, show altered glutamate signalling at synapses. Padamsey et al. hope that a better understanding of this process will lead to new therapies for these disorders.
Collapse
Affiliation(s)
- Zahid Padamsey
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Rudi Tong
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Nigel Emptage
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
The antipsychotic drugs olanzapine and haloperidol modify network connectivity and spontaneous activity of neural networks in vitro. Sci Rep 2017; 7:11609. [PMID: 28912551 PMCID: PMC5599625 DOI: 10.1038/s41598-017-11944-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/29/2017] [Indexed: 01/23/2023] Open
Abstract
Impaired neural synchronization is a hallmark of psychotic conditions such as schizophrenia. It has been proposed that schizophrenia-related cognitive deficits are caused by an unbalance of reciprocal inhibitory and stimulatory signaling. This supposedly leads to decreased power of induced gamma oscillations during the performance of cognitive tasks. In light of this hypothesis an efficient antipsychotic treatment should modify the connectivity and synchronization of local neural circuits. To address this issue, we investigated a model of hippocampal neuronal networks in vitro. Inhibitory and excitatory innervation of GABAergic and glutamatergic neurons was quantified using immunocytochemical markers and an automated routine to estimate network connectivity. The first generation (FGA) and second generation (SGA) antipsychotic drugs haloperidol and olanzapine, respectively, differentially modified the density of synaptic inputs. Based on the observed synapse density modifications, we developed a computational model that reliably predicted distinct changes in network activity patterns. The results of computational modeling were confirmed by spontaneous network activity measurements using the multiple electrode array (MEA) technique. When the cultures were treated with olanzapine, overall activity and synchronization were increased, whereas haloperidol had the opposite effect. We conclude that FGAs and SGAs differentially affect the balance between inhibition and excitation in hippocampal networks.
Collapse
|
32
|
Owen B, Reddy R, Grover LM. Nonspecific block of voltage-gated potassium channels has greater effect on distal schaffer collaterals than proximal schaffer collaterals during periods of high activity. Physiol Rep 2017; 5:5/14/e13354. [PMID: 28747510 PMCID: PMC5532488 DOI: 10.14814/phy2.13354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 02/05/2023] Open
Abstract
Previous studies established different responses between proximal and distal portions of Schaffer collateral axons during high‐frequency and burst stimulation, with distal axons demonstrating biphasic changes in excitability (hyperexcitability followed by depression), but proximal axons showing only monophasic depression. Voltage‐dependent potassium (KV) channels are important determinants of axonal excitability, and block of KV channels can promote axon hyperexcitability. We therefore hypothesized that block of KV channels should lead to biphasic response changes in proximal Schaffer collaterals, like those seen in distal Schaffer collaterals. To test this hypothesis, we made extracellular recordings of distal Schaffer collateral responses in stratum radiatum of hippocampal area CA1 and proximal Schaffer collateral responses in stratum pyramidale of area CA3 during high‐frequency stimulation (HFS) at 100 Hz and burst stimulation at 200 msec intervals (5 Hz or theta frequency). We then applied a nonselective KV channel blocker, tetraethlylammonium (TEA, 10 mmol/L) or 4‐aminopyridine (4‐AP, 100 μmol/L), and assessed effects on Schaffer collateral responses. Surprisingly, block of KV channels had little or no effect on proximal Schaffer collateral responses during high‐frequency or burst stimulation. In contrast, KV channel blockade caused more rapid depression of distal Schaffer collateral responses during both high‐frequency and burst stimulation. These findings indicate that KV channels are important for maintaining distal, but not proximal, Schaffer collateral excitability during period of sustained high activity. Differential sensitivity of distal versus proximal Schaffer collaterals to KV channel block may reflect differences in channel density, diversity, or subcellular localization.
Collapse
Affiliation(s)
- Benjamin Owen
- Department of Biomedical Sciences, Marshall University School of Medicine, Huntington, West Virginia, 25755
| | - Rishi Reddy
- Department of Biomedical Sciences, Marshall University School of Medicine, Huntington, West Virginia, 25755
| | - Lawrence M Grover
- Department of Biomedical Sciences, Marshall University School of Medicine, Huntington, West Virginia, 25755
| |
Collapse
|
33
|
Weible AP, Piscopo DM, Rothbart MK, Posner MI, Niell CM. Rhythmic brain stimulation reduces anxiety-related behavior in a mouse model based on meditation training. Proc Natl Acad Sci U S A 2017; 114:2532-2537. [PMID: 28223484 PMCID: PMC5347628 DOI: 10.1073/pnas.1700756114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Meditation training induces changes at both the behavioral and neural levels. A month of meditation training can reduce self-reported anxiety and other dimensions of negative affect. It also can change white matter as measured by diffusion tensor imaging and increase resting-state midline frontal theta activity. The current study tests the hypothesis that imposing rhythms in the mouse anterior cingulate cortex (ACC), by using optogenetics to induce oscillations in activity, can produce behavioral changes. Mice were randomly assigned to groups and were given twenty 30-min sessions of light pulses delivered at 1, 8, or 40 Hz over 4 wk or were assigned to a no-laser control condition. Before and after the month all mice were administered a battery of behavioral tests. In the light/dark box, mice receiving cortical stimulation had more light-side entries, spent more time in the light, and made more vertical rears than mice receiving rhythmic cortical suppression or no manipulation. These effects on light/dark box exploratory behaviors are associated with reduced anxiety and were most pronounced following stimulation at 1 and 8 Hz. No effects were seen related to basic motor behavior or exploration during tests of novel object and location recognition. These data support a relationship between lower-frequency oscillations in the mouse ACC and the expression of anxiety-related behaviors, potentially analogous to effects seen with human practitioners of some forms of meditation.
Collapse
Affiliation(s)
- Aldis P Weible
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| | | | - Mary K Rothbart
- Department of Psychology, University of Oregon, Eugene, OR 97403
| | - Michael I Posner
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403;
- Department of Psychology, University of Oregon, Eugene, OR 97403
| | - Cristopher M Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
- Department of Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
34
|
Epigenetic regulation and chromatin remodeling in learning and memory. Exp Mol Med 2017; 49:e281. [PMID: 28082740 PMCID: PMC5291841 DOI: 10.1038/emm.2016.140] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 01/12/2023] Open
Abstract
Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms.
Collapse
|
35
|
Constantinou M, Gonzalo Cogno S, Elijah DH, Kropff E, Gigg J, Samengo I, Montemurro MA. Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms. Front Comput Neurosci 2016; 10:133. [PMID: 28082890 PMCID: PMC5183636 DOI: 10.3389/fncom.2016.00133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/30/2016] [Indexed: 11/13/2022] Open
Abstract
Burst spike patterns are common in regions of the hippocampal formation such as the subiculum and medial entorhinal cortex (MEC). Neurons in these areas are immersed in extracellular electrical potential fluctuations often recorded as the local field potential (LFP). LFP rhythms within different frequency bands are linked to different behavioral states. For example, delta rhythms are often associated with slow-wave sleep, inactivity and anesthesia; whereas theta rhythms are prominent during awake exploratory behavior and REM sleep. Recent evidence suggests that bursting neurons in the hippocampal formation can encode LFP features. We explored this hypothesis using a two-compartment model of a bursting pyramidal neuron driven by time-varying input signals containing spectral peaks at either delta or theta rhythms. The model predicted a neural code in which bursts represented the instantaneous value, phase, slope and amplitude of the driving signal both in their timing and size (spike number). To verify whether this code is employed in vivo, we examined electrophysiological recordings from the subiculum of anesthetized rats and the MEC of a behaving rat containing prevalent delta or theta rhythms, respectively. In both areas, we found bursting cells that encoded information about the instantaneous voltage, phase, slope and/or amplitude of the dominant LFP rhythm with essentially the same neural code as the simulated neurons. A fraction of the cells encoded part of the information in burst size, in agreement with model predictions. These results provide in-vivo evidence that the output of bursting neurons in the mammalian brain is tuned to features of the LFP.
Collapse
Affiliation(s)
- Maria Constantinou
- Faculty of Biology, Medicine and Health, The University of Manchester Manchester, UK
| | | | - Daniel H Elijah
- Faculty of Biology, Medicine and Health, The University of Manchester Manchester, UK
| | - Emilio Kropff
- Leloir Institute, IIBBA-CONICET Buenos Aires, Argentina
| | - John Gigg
- Faculty of Biology, Medicine and Health, The University of Manchester Manchester, UK
| | - Inés Samengo
- Centro Atómico Bariloche and Instituto Balseiro San Carlos de Bariloche, Argentina
| | - Marcelo A Montemurro
- Faculty of Biology, Medicine and Health, The University of Manchester Manchester, UK
| |
Collapse
|
36
|
Quadri-Pulse Theta Burst Stimulation using Ultra-High Frequency Bursts - A New Protocol to Induce Changes in Cortico-Spinal Excitability in Human Motor Cortex. PLoS One 2016; 11:e0168410. [PMID: 27977758 PMCID: PMC5158069 DOI: 10.1371/journal.pone.0168410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022] Open
Abstract
Patterned transcranial magnetic stimulation (TMS) such as theta burst stimulation (TBS) or quadri-pulse stimulation (QPS) can induce changes in cortico-spinal excitability, commonly referred to as long-term potentiation (LTP)-like and long-term depression (LTD)-like effects in human motor cortex (M1). Here, we aimed to test the plasticity-inducing capabilities of a novel protocol that merged TBS and QPS. 360 bursts of quadri-pulse TBS (qTBS) were continuously given to M1 at 90% of active motor threshold (1440 full-sine pulses). In a first experiment, stimulation frequency of each burst was set to 666 Hz to mimic the rhythmicity of the descending cortico-spinal volleys that are elicited by TMS (i.e., I-wave periodicity). In a second experiment, burst frequency was set to 200 Hz to maximize postsynaptic Ca2+ influx using a temporal pattern unrelated to I-wave periodicity. The second phase of sinusoidal TMS pulses elicited either a posterior-anterior (PA) or anterior-posterior (AP) directed current in M1. Motor evoked potentials (MEPs) were recorded before and after qTBS to probe changes in cortico-spinal excitability. PA-qTBS at 666 Hz caused a decrease in PA-MEP amplitudes, whereas AP-qTBS at 666 Hz induced an increase in mean AP-MEP amplitudes. At a burst frequency of 200 Hz, PA-qTBS and AP-qTBS produced an increase in cortico-spinal excitability outlasting for at least 60 minutes in PA- and AP-MEP amplitudes, respectively. Continuous qTBS at 666 Hz or 200 Hz can induce lasting changes in cortico-spinal excitability. Induced current direction in the brain appears to be relevant when qTBS targets I-wave periodicity, corroborating that high-fidelity spike timing mechanisms are critical for inducing bi-directional plasticity in human M1.
Collapse
|
37
|
Pontes AH, de Sousa MV. Mass Spectrometry-Based Approaches to Understand the Molecular Basis of Memory. Front Chem 2016; 4:40. [PMID: 27790611 PMCID: PMC5064248 DOI: 10.3389/fchem.2016.00040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/27/2016] [Indexed: 01/15/2023] Open
Abstract
The central nervous system is responsible for an array of cognitive functions such as memory, learning, language, and attention. These processes tend to take place in distinct brain regions; yet, they need to be integrated to give rise to adaptive or meaningful behavior. Since cognitive processes result from underlying cellular and molecular changes, genomics and transcriptomics assays have been applied to human and animal models to understand such events. Nevertheless, genes and RNAs are not the end products of most biological functions. In order to gain further insights toward the understanding of brain processes, the field of proteomics has been of increasing importance in the past years. Advancements in liquid chromatography-tandem mass spectrometry (LC-MS/MS) have enabled the identification and quantification of thousands of proteins with high accuracy and sensitivity, fostering a revolution in the neurosciences. Herein, we review the molecular bases of explicit memory in the hippocampus. We outline the principles of mass spectrometry (MS)-based proteomics, highlighting the use of this analytical tool to study memory formation. In addition, we discuss MS-based targeted approaches as the future of protein analysis.
Collapse
Affiliation(s)
- Arthur H Pontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia Brasilia, Brazil
| | - Marcelo V de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia Brasilia, Brazil
| |
Collapse
|
38
|
Kouvaros S, Papatheodoropoulos C. Theta burst stimulation-induced LTP: Differences and similarities between the dorsal and ventral CA1 hippocampal synapses. Hippocampus 2016; 26:1542-1559. [DOI: 10.1002/hipo.22655] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Stylianos Kouvaros
- Laboratory of Physiology, Department of Medicine; School of Health Sciences, University of Patras; Rion Greece
| | - Costas Papatheodoropoulos
- Laboratory of Physiology, Department of Medicine; School of Health Sciences, University of Patras; Rion Greece
| |
Collapse
|
39
|
Planagumà J, Haselmann H, Mannara F, Petit-Pedrol M, Grünewald B, Aguilar E, Röpke L, Martín-García E, Titulaer MJ, Jercog P, Graus F, Maldonado R, Geis C, Dalmau J. Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity. Ann Neurol 2016; 80:388-400. [PMID: 27399303 DOI: 10.1002/ana.24721] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/14/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To demonstrate that ephrin-B2 (the ligand of EphB2 receptor) antagonizes the pathogenic effects of patients' N-methyl-D-aspartate receptor (NMDAR) antibodies on memory and synaptic plasticity. METHODS One hundred twenty-two C57BL/6J mice infused with cerebrospinal fluid (CSF) from patients with anti-NMDAR encephalitis or controls, with or without ephrin-B2, were investigated. CSF was infused through ventricular catheters connected to subcutaneous osmotic pumps over 14 days. Memory, behavioral tasks, locomotor activity, presence of human antibodies specifically bound to hippocampal NMDAR, and antibody effects on the density of cell-surface and synaptic NMDAR and EphB2 were examined at different time points using reported techniques. Short- and long-term synaptic plasticity were determined in acute brain sections; the Schaffer collateral pathway was stimulated and the field excitatory postsynaptic potentials were recorded in the CA1 region of the hippocampus. RESULTS Mice infused with patients' CSF, but not control CSF, developed progressive memory deficit and depressive-like behavior along with deposits of NMDAR antibodies in the hippocampus. These findings were associated with a decrease of the density of cell-surface and synaptic NMDAR and EphB2, and marked impairment of long-term synaptic plasticity without altering short-term plasticity. Administration of ephrin-B2 prevented the pathogenic effects of the antibodies in all the investigated paradigms assessing memory, depressive-like behavior, density of cell-surface and synaptic NMDAR and EphB2, and long-term synaptic plasticity. INTERPRETATION Administration of ephrin-B2 prevents the pathogenic effects of anti-NMDAR encephalitis antibodies on memory and behavior, levels of cell-surface NMDAR, and synaptic plasticity. These findings reveal a strategy beyond immunotherapy to antagonize patients' antibody effects. Ann Neurol 2016;80:388-400.
Collapse
Affiliation(s)
- Jesús Planagumà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Holger Haselmann
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Francesco Mannara
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mar Petit-Pedrol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Benedikt Grünewald
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Esther Aguilar
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Luise Röpke
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Elena Martín-García
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Pablo Jercog
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Graus
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Servei de Neurologia, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Christian Geis
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Josep Dalmau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain. .,Department of Neurology, University of Pennsylvania, Philadelphia, PA. .,Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER). .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
40
|
Pigott BM, Garthwaite J. Nitric Oxide Is Required for L-Type Ca(2+) Channel-Dependent Long-Term Potentiation in the Hippocampus. Front Synaptic Neurosci 2016; 8:17. [PMID: 27445786 PMCID: PMC4925670 DOI: 10.3389/fnsyn.2016.00017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) has long been implicated in the generation of long-term potentiation (LTP) and other types of synaptic plasticity, a role for which the intimate coupling between NMDA receptors (NMDARs) and the neuronal isoform of NO synthase (nNOS) is likely to be instrumental in many instances. While several types of synaptic plasticity depend on NMDARs, others do not, an example of which is LTP triggered by opening of L-type voltage-gated Ca2+ channels (L-VGCCs) in postsynaptic neurons. In CA3-CA1 synapses in the hippocampus, NMDAR-dependent LTP (LTPNMDAR) appears to be primarily expressed postsynaptically whereas L-VGCC-dependent LTP (LTPL−VGCC), which often coexists with LTPNMDAR, appears mainly to reflect enhanced presynaptic transmitter release. Since NO is an excellent candidate as a retrograde messenger mediating post-to-presynaptic signaling, we sought to determine if NO functions in LTPL−VGCC in mouse CA3-CA1 synapses. When elicited by a burst type of stimulation with NMDARs and the associated NO release blocked, LTPL−VGCC was curtailed by inhibition of NO synthase or of the NO-receptor guanylyl cyclase to the same extent as occurred with inhibition of L-VGCCs. Unlike LTPNMDAR at these synapses, LTPL−VGCC was unaffected in mice lacking endothelial NO synthase, implying that the major source of the NO is neuronal. Transient delivery of exogenous NO paired with tetanic synaptic stimulation under conditions of NMDAR blockade resulted in a long-lasting potentiation that was sensitive to inhibition of NO-receptor guanylyl cyclase but was unaffected by inhibition of L-VGCCs. The results indicate that NO, acting through its second messenger cGMP, plays an unexpectedly important role in L-VGCC-dependent, NMDAR-independent LTP, possibly as a retrograde messenger generated in response to opening of postsynaptic L-VGCCs and/or as a signal acting postsynaptically, perhaps to facilitate changes in gene expression.
Collapse
Affiliation(s)
- Beatrice M Pigott
- The Wolfson Institute for Biomedical Research, University College London London, UK
| | - John Garthwaite
- The Wolfson Institute for Biomedical Research, University College London London, UK
| |
Collapse
|
41
|
Sparks DW, Chapman CA. Heterosynaptic modulation of evoked synaptic potentials in layer II of the entorhinal cortex by activation of the parasubiculum. J Neurophysiol 2016; 116:658-70. [PMID: 27146979 DOI: 10.1152/jn.00095.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/04/2016] [Indexed: 11/22/2022] Open
Abstract
The superficial layers of the entorhinal cortex receive sensory and associational cortical inputs and provide the hippocampus with the majority of its cortical sensory input. The parasubiculum, which receives input from multiple hippocampal subfields, sends its single major output projection to layer II of the entorhinal cortex, suggesting that it may modulate processing of synaptic inputs to the entorhinal cortex. Indeed, stimulation of the parasubiculum can enhance entorhinal responses to synaptic input from the piriform cortex in vivo. Theta EEG activity contributes to spatial and mnemonic processes in this region, and the current study assessed how stimulation of the parasubiculum with either single pulses or short, five-pulse, theta-frequency trains may modulate synaptic responses in layer II entorhinal stellate neurons evoked by stimulation of layer I afferents in vitro. Parasubicular stimulation pulses or trains suppressed responses to layer I stimulation at intervals of 5 ms, and parasubicular stimulation trains facilitated layer I responses at a train-pulse interval of 25 ms. This suggests that firing of parasubicular neurons during theta activity may heterosynaptically enhance incoming sensory inputs to the entorhinal cortex. Bath application of the hyperpolarization-activated cation current (Ih) blocker ZD7288 enhanced the facilitation effect, suggesting that cholinergic inhibition of Ih may contribute. In addition, repetitive pairing of parasubicular trains and layer I stimulation induced a lasting depression of entorhinal responses to layer I stimulation. These findings provide evidence that theta activity in the parasubiculum may promote heterosynaptic modulation effects that may alter sensory processing in the entorhinal cortex.
Collapse
Affiliation(s)
- Daniel W Sparks
- Centre for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
| | - C Andrew Chapman
- Centre for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
42
|
Lu GL, Lee CH, Chiou LC. Orexin A induces bidirectional modulation of synaptic plasticity: Inhibiting long-term potentiation and preventing depotentiation. Neuropharmacology 2016; 107:168-180. [PMID: 26965217 DOI: 10.1016/j.neuropharm.2016.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/19/2016] [Accepted: 03/01/2016] [Indexed: 01/30/2023]
Abstract
The orexin system consists of two peptides, orexin A and B and two receptors, OX1R and OX2R. It is implicated in learning and memory regulation while controversy remains on its role in modulating hippocampal synaptic plasticity in vivo and in vitro. Here, we investigated effects of orexin A on two forms of synaptic plasticity, long-term potentiation (LTP) and depotentiation of field excitatory postsynaptic potentials (fEPSPs), at the Schaffer Collateral-CA1 synapse of mouse hippocampal slices. Orexin A (≧30 nM) attenuated LTP induced by theta burst stimulation (TBS) in a manner antagonized by an OX1R (SB-334867), but not OX2R (EMPA), antagonist. Conversely, at 1 pM, co-application of orexin A prevented the induction of depotentiation induced by low frequency stimulation (LFS), i.e. restoring LTP. This re-potentiation effect of sub-nanomolar orexin A occurred at LFS of 1 Hz, but not 2 Hz, and with LTP induced by either TBS or tetanic stimulation. It was significantly antagonized by SB-334867, EMPA and TCS-1102, selective OX1R, OX2R and dual OXR antagonists, respectively, and prevented by D609, SQ22536 and H89, inhibitors of phospholipase C (PLC), adenylyl cyclase (AC) and protein kinase A (PKA), respectively. LFS-induced depotentiation was antagonized by blockers of NMDA, A1-adenosine and type 1/5 metabotropic glutamate (mGlu1/5) receptors, respectively. However, orexin A (1 pM) did not affect chemical-induced depotentiation by agonists of these receptors. These results suggest that orexin A bidirectionally modulates hippocampal CA1 synaptic plasticity, inhibiting LTP via OX1Rs at moderate concentrations while inducing re-potentiation via OX1Rs and OX2Rs, possibly through PLC and AC-PKA signaling at sub-nanomolar concentrations.
Collapse
Affiliation(s)
- Guan-Ling Lu
- Graduate Institute and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsu Lee
- Graduate Institute and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lih-Chu Chiou
- Graduate Institute and College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Reserach Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan.
| |
Collapse
|
43
|
Zhang Q, Gao X, Li C, Feliciano C, Wang D, Zhou D, Mei Y, Monteiro P, Anand M, Itohara S, Dong X, Fu Z, Feng G. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci 2016; 36:2247-60. [PMID: 26888934 PMCID: PMC4756157 DOI: 10.1523/jneurosci.2528-15.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/21/2015] [Accepted: 01/13/2016] [Indexed: 12/27/2022] Open
Abstract
Intellectual disability is a common neurodevelopmental disorder characterized by impaired intellectual and adaptive functioning. Both environmental insults and genetic defects contribute to the etiology of intellectual disability. Copy number variations of SORBS2 have been linked to intellectual disability. However, the neurobiological function of SORBS2 in the brain is unknown. The SORBS2 gene encodes ArgBP2 (Arg/c-Abl kinase binding protein 2) protein in non-neuronal tissues and is alternatively spliced in the brain to encode nArgBP2 protein. We found nArgBP2 colocalized with F-actin at dendritic spines and growth cones in cultured hippocampal neurons. In the mouse brain, nArgBP2 was highly expressed in the cortex, amygdala, and hippocampus, and enriched in the outer one-third of the molecular layer in dentate gyrus. Genetic deletion of Sorbs2 in mice led to reduced dendritic complexity and decreased frequency of AMPAR-miniature spontaneous EPSCs in dentate gyrus granule cells. Behavioral characterization revealed that Sorbs2 deletion led to a reduced acoustic startle response, and defective long-term object recognition memory and contextual fear memory. Together, our findings demonstrate, for the first time, an important role for nArgBP2 in neuronal dendritic development and excitatory synaptic transmission, which may thus inform exploration of neurobiological basis of SORBS2 deficiency in intellectual disability. SIGNIFICANCE STATEMENT Copy number variations of the SORBS2 gene are linked to intellectual disability, but the neurobiological mechanisms are unknown. We found that nArgBP2, the only neuronal isoform encoded by SORBS2, colocalizes with F-actin at neuronal dendritic growth cones and spines. nArgBP2 is highly expressed in the cortex, amygdala, and dentate gyrus in the mouse brain. Genetic deletion of Sorbs2 in mice leads to impaired dendritic complexity and reduced excitatory synaptic transmission in dentate gyrus granule cells, accompanied by behavioral deficits in acoustic startle response and long-term memory. This is the first study of Sorbs2 function in the brain, and our findings may facilitate the study of neurobiological mechanisms underlying SORBS2 deficiency in the development of intellectual disability.
Collapse
Affiliation(s)
- Qiangge Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142
| | - Xian Gao
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Key Laboratory of Brain Functional Genomics (Ministry of Education and Science and Technology Commission of Shanghai Municipality), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142
| | - Chenchen Li
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142
| | - Catia Feliciano
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon 1400-038, Portugal
| | - Dongqing Wang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Dingxi Zhou
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, School of Life Sciences, Peking University, Beijing 100871, China, and
| | - Yuan Mei
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Patricia Monteiro
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142
| | - Michelle Anand
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Shigeyoshi Itohara
- Laboratory of Behavioral Genetics, RIKEN Brain Science Institute, Wako 351-0198, Japan
| | - Xiaowei Dong
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Science and Technology Commission of Shanghai Municipality), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Zhanyan Fu
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Key Laboratory of Brain Functional Genomics (Ministry of Education and Science and Technology Commission of Shanghai Municipality), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142,
| |
Collapse
|
44
|
Dileone M, Ranieri F, Florio L, Capone F, Musumeci G, Leoni C, Mordillo-Mateos L, Tartaglia M, Zampino G, Di Lazzaro V. Differential Effects of HRAS Mutation on LTP-Like Activity Induced by Different Protocols of Repetitive Transcranial Magnetic Stimulation. Brain Stimul 2016; 9:33-8. [DOI: 10.1016/j.brs.2015.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022] Open
|
45
|
Abstract
This review covers the spatial and temporal rules governing induction of hippocampal long-term potentiation (LTP) by theta-burst stimulation. Induction of LTP in field CA1 by high frequency stimulation bursts that resemble the burst discharges (complex-spikes) of hippocampal pyramidal neurons involves a multiple-step mechanism. A single burst is insufficient for LTP induction because it evokes both excitatory and inhibitory currents that partially cancel and limit postsynaptic depolarization. Bursts repeated at the frequency (~5 Hz) of the endogenous theta rhythm induce maximal LTP, primarily because this frequency disables feed-forward inhibition and allows sufficient postsynaptic depolarization to activate voltage-sensitive NMDA receptors. The disinhibitory process, referred to as "priming", involves presynaptic GABA autoreceptors that inhibit GABA release. Activation of NMDA receptors allows a calcium flux into dendritic spines that serves as the proximal trigger for LTP. We include new data showing that theta-burst stimulation is more efficient than other forms of stimulation for LTP induction. In addition, we demonstrate that associative interactions between synapses activated during theta-bursts are limited to major dendritic domains since such interactions occur within apical or basal dendritic trees but not between them. We review evidence that recordings of electrophysiological responses during theta burst stimulation can help to determine if experimental manipulations that affect LTP do so by affecting events antecedent to the induction process, such as NMDA receptor activation, or downstream signaling cascades that result from postsynaptic calcium fluxes. Finally, we argue that theta-burst LTP represents a minimal model for stable, non-decremental LTP that is more sensitive to a variety of experimental manipulations than is LTP induced by other stimulation paradigms. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- John Larson
- Psychiatric Institute, Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL 60612, United States.
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, Department of Cell and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, United States
| |
Collapse
|
46
|
Filser S, Ovsepian SV, Masana M, Blazquez-Llorca L, Brandt Elvang A, Volbracht C, Müller MB, Jung CKE, Herms J. Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions. Biol Psychiatry 2015; 77:729-39. [PMID: 25599931 DOI: 10.1016/j.biopsych.2014.10.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND BACE1 (beta site amyloid precursor protein cleaving enzyme 1) is the rate limiting protease in amyloid β production, hence a promising drug target for the treatment of Alzheimer's disease. Inhibition of BACE1, as the major β-secretase in vivo with multiple substrates, however is likely to have mechanism-based adverse effects. We explored the impact of long-term pharmacological inhibition of BACE1 on dendritic spine dynamics, synaptic functions, and cognitive performance of adult mice. METHODS Sandwich enzyme-linked immunosorbent assay was used to assess Aβ40 levels in brain and plasma after oral administration of BACE1 inhibitors SCH1682496 or LY2811376. In vivo two-photon microscopy of the somatosensory cortex was performed to monitor structural dynamics of dendritic spines while synaptic functions and plasticity were measured via electrophysiological recordings of excitatory postsynaptic currents and hippocampal long-term potentiation in brain slices. Finally, behavioral tests were performed to analyze the impact of pharmacological inhibition of BACE1 on cognitive performance. RESULTS Dose-dependent decrease of Aβ40 levels in vivo confirmed suppression of BACE1 activity by both inhibitors. Prolonged treatment caused a reduction in spine formation of layer V pyramidal neurons, which recovered after withdrawal of inhibitors. Congruently, the rate of spontaneous and miniature excitatory postsynaptic currents in pyramidal neurons and hippocampal long-term potentiation were reduced in animals treated with BACE1 inhibitors. These effects were not detected in Bace1(-/-) mice treated with SCH1682496, confirming BACE1 as the pharmacological target. Described structural and functional changes were associated with cognitive deficits as revealed in behavioral tests. CONCLUSIONS Our findings indicate important functions to BACE1 in structural and functional synaptic plasticity in the mature brain, with implications for cognition.
Collapse
Affiliation(s)
- Severin Filser
- German Center for Neurodegenerative Diseases, Ludwig Maximilian University Munich, Munich, Germany; Center for Neuropathology, Ludwig Maximilian University Munich, Munich, Germany
| | - Saak V Ovsepian
- German Center for Neurodegenerative Diseases, Ludwig Maximilian University Munich, Munich, Germany
| | - Mercè Masana
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Lidia Blazquez-Llorca
- German Center for Neurodegenerative Diseases, Ludwig Maximilian University Munich, Munich, Germany; Center for Neuropathology, Ludwig Maximilian University Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Ludwig Maximilian University Munich, Munich, Germany
| | | | | | | | - Christian K E Jung
- Center for Neuropathology, Ludwig Maximilian University Munich, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases, Ludwig Maximilian University Munich, Munich, Germany; Center for Neuropathology, Ludwig Maximilian University Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Ludwig Maximilian University Munich, Munich, Germany.
| |
Collapse
|
47
|
Owen B, Grover LM. Activity-dependent differences in function between proximal and distal Schaffer collaterals. J Neurophysiol 2015; 113:3646-62. [PMID: 25855695 DOI: 10.1152/jn.00446.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 04/07/2015] [Indexed: 11/22/2022] Open
Abstract
Axon conduction fidelity is important for signal transmission and has been studied in various axons, including the Schaffer collateral axons of the hippocampus. Previously, we reported that high-frequency stimulation (HFS) depresses Schaffer collateral excitability when assessed by whole-cell recordings from CA3 pyramidal cells but induces biphasic excitability changes (increase followed by decrease) in extracellular recordings of CA1 fiber volleys. Here, we examined responses from proximal (whole-cell or field-potential recordings from CA3 pyramidal cell somata) and distal (field-potential recordings from CA1 stratum radiatum) portions of the Schaffer collaterals during HFS and burst stimulation in hippocampal slices. Whole-cell and dual-field-potential recordings using 10-100-Hz HFS revealed frequency-dependent changes like those previously described, with higher frequencies producing more drastic changes. Dual-field-potential recordings revealed substantial differences in the response to HFS between proximal and distal regions of the Schaffer collaterals, with proximal axons depressing more strongly and only distal axons showing an initial excitability increase. Because CA3 pyramidal neurons normally fire in short bursts rather than long high-frequency trains, we repeated the dual recordings using 100-1,000-ms interval burst stimulation. Burst stimulation produced changes similar to those during HFS, with shorter intervals causing more drastic changes and substantial differences observed between proximal and distal axons. We suggest that functional differences between proximal and distal Schaffer collaterals may allow selective filtering of nonphysiological activity while maximizing successful conduction of physiological activity throughout an extensive axonal arbor.
Collapse
Affiliation(s)
- Benjamin Owen
- Department of Pharmacology, Physiology and Toxicology, Marshall University, School of Medicine, Huntington, West Virginia
| | - Lawrence M Grover
- Department of Pharmacology, Physiology and Toxicology, Marshall University, School of Medicine, Huntington, West Virginia
| |
Collapse
|
48
|
Effect of acute NR2B antagonist treatment on long-term potentiation in the rat hippocampus. Brain Res 2015; 1609:31-9. [PMID: 25796435 DOI: 10.1016/j.brainres.2015.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022]
Abstract
The long lasting antidepressant response seen following acute, i.v. ketamine administration in patients with treatment-resistant depression (TRD) is thought to result from enhanced synaptic plasticity in cortical and hippocampal circuits. Using extracellular field recordings in rat hippocampal slices, we show that a single dose of the non-selective NMDA receptor antagonist ketamine or CP-101,606, a selective antagonist of the NR2B subunit of the NMDA receptor, enhances hippocampal synaptic plasticity induced with high frequency stimulation (HFS) 24h after dosing - a time at which plasma concentrations of the drug are no longer detectable in the animal. These results indicate that acute inhibition of NMDA receptors containing the NR2B subunit can lead to long-lasting changes in hippocampal plasticity.
Collapse
|
49
|
Antidepressants that inhibit both serotonin and norepinephrine reuptake impair long-term potentiation in hippocampus. Psychopharmacology (Berl) 2014; 231:4429-41. [PMID: 24781518 PMCID: PMC4214920 DOI: 10.1007/s00213-014-3587-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Monoamine reuptake inhibitors can stimulate expression of brain-derived neurotrophic factor (BDNF) and alter long-term potentiation (LTP), a widely used model for the synaptic mechanisms that underlie memory formation. BDNF expression is upregulated during LTP, and BDNF in turn positively modulates LTP. Previously, we found that treatment with venlafaxine, a serotonin and norepinephrine reuptake inhibitor (SNRI), but not citalopram, a selective serotonin reuptake inhibitor (SSRI), reduced LTP in hippocampal area CA1 without changing hippocampal BDNF protein expression. OBJECTIVES We tested the hypothesis that combined serotonin and norepinephrine reuptake inhibition is necessary for LTP impairment, and we reexamined the potential role of BDNF by testing for region-specific changes in areas CA1, CA3, and dentate gyrus. We also tested whether early events in the LTP signaling pathway were altered to impair LTP. METHODS Animals were treated for 21 days with venlafaxine, imipramine, fluoxetine, or maprotiline. In vitro hippocampal slices were used for electrophysiological measurements. Protein expression was measured by enzyme-linked immunosorbent assay (ELISA) and Western blotting. RESULTS LTP was impaired only following treatment with combined serotonin and norepinephrine reuptake inhibitors (venlafaxine, imipramine) but not with selective serotonin (fluoxetine) or norepinephrine (maprotiline) reuptake inhibitors. BDNF protein expression was not altered by venlafaxine or imipramine treatment, nor were postsynaptic depolarization during LTP inducing stimulation or synaptic membrane NMDA receptor subunit expression affected. CONCLUSIONS LTP is impaired by chronic treatment with antidepressant that inhibit both serotonin and norepinephrine reuptake; this impairment results from changes that are downstream of postsynaptic depolarization and calcium influx.
Collapse
|
50
|
Dasgupta D, Sikdar SK. Calcium permeable AMPA receptor-dependent long lasting plasticity of intrinsic excitability in fast spiking interneurons of the dentate gyrus decreases inhibition in the granule cell layer. Hippocampus 2014; 25:269-85. [DOI: 10.1002/hipo.22371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Debanjan Dasgupta
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore Karnataka India 560012
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore Karnataka India 560012
| |
Collapse
|