1
|
Shaw JC, Dyson RM, Palliser HK, Sixtus RP, Barnes H, Pavy CL, Crombie GK, Berry MJ, Hirst JJ. Examining Neurosteroid-Analogue Therapy in the Preterm Neonate For Promoting Hippocampal Neurodevelopment. Front Physiol 2022; 13:871265. [PMID: 35514343 PMCID: PMC9062084 DOI: 10.3389/fphys.2022.871265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Preterm birth can lead to brain injury and currently there are no targeted therapies to promote postnatal brain development and protect these vulnerable neonates. We have previously shown that the neurosteroid-analogue ganaxolone promotes white matter development and improves behavioural outcomes in male juvenile guinea pigs born preterm. Adverse side effects in this previous study necessitated this current follow-up dosing study, where a focus was placed upon physical wellbeing during the treatment administration and markers of neurodevelopment at the completion of the treatment period. Methods: Time-mated guinea pigs delivered preterm (d62) by induction of labour or spontaneously at term (d69). Preterm pups were randomized to receive no treatment (Prem-CON) or ganaxolone at one of three doses [0.5 mg/kg ganaxolone (low dose; LOW-GNX), 1.0 mg/kg ganaxolone (mid dose; MID-GNX), or 2.5 mg/kg ganaxolone (high dose; HIGH-GNX) in vehicle (45% β-cyclodextrin)] daily until term equivalence age. Physical parameters including weight gain, ponderal index, supplemental feeding, and wellbeing (a score based on respiration, activity, and posture) were recorded throughout the preterm period. At term equivalence, brain tissue was collected, and analysis of hippocampal neurodevelopment was undertaken by immunohistochemistry and RT-PCR. Results: Low and mid dose ganaxolone had some impacts on early weight gain, supplemental feeding, and wellbeing, whereas high dose ganaxolone significantly affected all physical parameters for multiple days during the postnatal period when compared to the preterm control neonates. Deficits in the preterm hippocampus were identified using neurodevelopmental markers including mRNA expression of oligodendrocyte lineage cells (CSPG4, MBP), neuronal growth (INA, VEGFA), and the GABAergic/glutamatergic system (SLC32A1, SLC1A2, GRIN1, GRIN2C, DLG4). These deficits were not affected by ganaxolone at the doses used at the equivalent of normal term. Conclusion: This is the first study to investigate the effects of a range of doses of ganaxolone to improve preterm brain development. We found that of the three doses, only the highest dose of ganaxolone (2.5 mg/kg) impaired key indicators of physical health and wellbeing over extended periods of time. Whilst it may be too early to see improvements in markers of neurodevelopment, further long-term study utilising the lower doses are warranted to assess functional outcomes at ages when preterm birth associated behavioural disorders are observed.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Rebecca M Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ryan P Sixtus
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Heather Barnes
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
2
|
Neuroligin-3 Regulates Excitatory Synaptic Transmission and EPSP-Spike Coupling in the Dentate Gyrus In Vivo. Mol Neurobiol 2021; 59:1098-1111. [PMID: 34845591 PMCID: PMC8857112 DOI: 10.1007/s12035-021-02663-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/22/2021] [Indexed: 11/27/2022]
Abstract
Neuroligin-3 (Nlgn3), a neuronal adhesion protein implicated in autism spectrum disorder (ASD), is expressed at excitatory and inhibitory postsynapses and hence may regulate neuronal excitation/inhibition balance. To test this hypothesis, we recorded field excitatory postsynaptic potentials (fEPSPs) in the dentate gyrus of Nlgn3 knockout (KO) and wild-type mice. Synaptic transmission evoked by perforant path stimulation was reduced in KO mice, but coupling of the fEPSP to the population spike was increased, suggesting a compensatory change in granule cell excitability. These findings closely resemble those in neuroligin-1 (Nlgn1) KO mice and could be partially explained by the reduction in Nlgn1 levels we observed in hippocampal synaptosomes from Nlgn3 KO mice. However, unlike Nlgn1, Nlgn3 is not necessary for long-term potentiation. We conclude that while Nlgn1 and Nlgn3 have distinct functions, both are required for intact synaptic transmission in the mouse dentate gyrus. Our results indicate that interactions between neuroligins may play an important role in regulating synaptic transmission and that ASD-related neuroligin mutations may also affect the synaptic availability of other neuroligins.
Collapse
|
3
|
Li J, Zhang J, Tang W, Mizu RK, Kusumoto H, XiangWei W, Xu Y, Chen W, Amin JB, Hu C, Kannan V, Keller SR, Wilcox WR, Lemke JR, Myers SJ, Swanger SA, Wollmuth LP, Petrovski S, Traynelis SF, Yuan H. De novo GRIN variants in NMDA receptor M2 channel pore-forming loop are associated with neurological diseases. Hum Mutat 2019; 40:2393-2413. [PMID: 31429998 DOI: 10.1002/humu.23895] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/08/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) mediate slow excitatory postsynaptic transmission in the central nervous system, thereby exerting a critical role in neuronal development and brain function. Rare genetic variants in the GRIN genes encoding NMDAR subunits segregated with neurological disorders. Here, we summarize the clinical presentations for 18 patients harboring 12 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M2 re-entrant loop, a region that lines the pore and is intolerant to missense variation. These de novo variants were identified in children with a set of neurological and neuropsychiatric conditions. Evaluation of the receptor cell surface expression, pharmacological properties, and biophysical characteristics show that these variants can have modest changes in agonist potency, proton inhibition, and surface expression. However, voltage-dependent magnesium inhibition is significantly reduced in all variants. The NMDARs hosting a single copy of a mutant subunit showed a dominant reduction in magnesium inhibition for some variants. These variant NMDARs also show reduced calcium permeability and single-channel conductance, as well as altered open probability. The data suggest that M2 missense variants increase NMDAR charge transfer in addition to varied and complex influences on NMDAR functional properties, which may underlie the patients' phenotypes.
Collapse
Affiliation(s)
- Jia Li
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Jin Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Weiting Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Ruth K Mizu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Hirofumi Kusumoto
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Wenshu XiangWei
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Yuchen Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenjuan Chen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Johansen B Amin
- Department of Neurobiology & Behavior, Stony Brook University School of Medicine, Stony Brook, New York
| | - Chun Hu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Varun Kannan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Stephanie R Keller
- Division of Pediatric Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - William R Wilcox
- Division of Medical Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, Georgia
| | - Sharon A Swanger
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University School of Medicine, Stony Brook, New York
| | - Slavé Petrovski
- Department of Medicine, The University of Melbourne, Austin Health and Royal Melbourne Hospital, Melbourne, VIC, Australia.,Centre for Genomics Research, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, Georgia
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Yabuki Y, Wu L, Fukunaga K. Cognitive enhancer ST101 improves schizophrenia-like behaviors in neonatal ventral hippocampus-lesioned rats in association with improved CaMKII/PKC pathway. J Pharmacol Sci 2019; 140:263-272. [PMID: 31474557 DOI: 10.1016/j.jphs.2019.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 12/31/2022] Open
Abstract
Atypical antipsychotics improve positive and negative symptoms but are not effective for treating cognitive impairments in patients with schizophrenia. We previously reported that cognitive impairments in neonatal ventral hippocampus (NVH)-lesioned rats show resistance to atypical antipsychotics risperidone and are associated with reduced calcium/calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) signaling in memory-related regions. The cognitive enhancer ST101 (spiro[imi-dazo[1,2-a]pyridine-3,2-indan]-2(3H)-one) stimulates CaMKII activity in the hippocampus and medial prefrontal cortex (mPFC). We thus tested ST101 on cognitive impairments in NVH-lesioned rats. Chronic ST101 administration (0.1 and/or 0.5 mg/kg, p.o.) significantly improved deficits in prepulse inhibition (PPI), social interaction, and cognitive function in NVH-lesioned rats. ST101 administration (0.5 mg/kg, p.o.) significantly restored the decreased CaMKII autophosphorylation (Thr-286) in the mPFC and hippocampal CA1 regions of NVH-lesioned rats when assessed by immunohistochemistry. Chronic ST101 administration (0.1 mg/kg, p.o.) improved the decline in phosphorylation levels of CaMKII (Thr-286), PKCα (Ser-657), α-amino-3-hydroxy-5-methyl-4-isoxazol- propionic acid (AMPA)-type glutamate receptor subunit 1 (GluA1: Ser-831), and N-methyl-d-aspartate (NMDA) receptor subunit 1 (GluN1: Ser-896) in the mPFC and hippocampal CA1 regions. Taken together, these results suggest that ST101 improves schizophrenia-like behaviors and cognitive impairment by enhancing CaMKII/PKCα signaling in the mPFC and hippocampus in NVH-lesioned rats.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Lei Wu
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
5
|
Bye CM, McDonald RJ. A Specific Role of Hippocampal NMDA Receptors and Arc Protein in Rapid Encoding of Novel Environmental Representations and a More General Long-Term Consolidation Function. Front Behav Neurosci 2019; 13:8. [PMID: 30863289 PMCID: PMC6399163 DOI: 10.3389/fnbeh.2019.00008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/14/2019] [Indexed: 11/27/2022] Open
Abstract
Activation of the NMDA receptor (NMDAR) has been proposed to be a key event responsible for the structural changes that occur in neurons during learning and memory formation. It has been extensively studied yet no consensus has been reached on its mnemonic role as both NMDAR dependent and independent forms of learning have been observed. We investigated the role that hippocampal NMDAR have in rapid spatial learning and memory across training environments. Hippocampal NMDAR was blocked via intra-hippocampal injection of the competitive antagonist CPP. Groups of rats were pre-trained on a spatial version of the Morris water task, and then mass reversal training under NMDAR blockade occurred in the same or different training environments as pre-training. We measured expression of Arc protein throughout the main hippocampal subfields, CA1, CA3, and dentate gyrus, after mass-training. We observed that NMDAR blockade allowed for rapid spatial learning, but not consolidation, when the SUBJECTS used previously acquired environmental information. Interestingly, NMDAR blockade impaired rapid spatial learning when rats were mass-trained in a novel context. Arc protein expression in the dentate gyrus followed this pattern of NMDAR dependent spatial behavior, with high levels of expression observed after being trained in the new environment, and low levels when trained in the same environment. CPP significantly reduced Arc expression in the dentate gyrus. These results implicate dentate NMDAR in the acquisition of novel environmental information.
Collapse
Affiliation(s)
- Cameron M Bye
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
6
|
Sprengel R, Eltokhi A, Single FN. Gene Targeted Mice with Conditional Knock-In (-Out) of NMDAR Mutations. Methods Mol Biol 2017; 1677:201-230. [PMID: 28986875 DOI: 10.1007/978-1-4939-7321-7_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
For the genetic alterations of NMDA receptor (NMDAR) properties like Ca2+-permeability or voltage-dependent gating in mice and for the experimental analysis of nonsense or missense mutations that were identified in human patients, single nucleotide mutations have to be introduced into the germ line of mice (Burnashev and Szepetowski, Curr Opin Pharmacol 20:73-82, 2015; Endele et al., Nat Genet 42:1021-1026, 2010). This can be done with very high precision by the well-established method of gene replacement, which makes use of homologous recombination in pluripotent embryonic stem (ES) cells of mice. The homologous recombination at NMDAR subunit genes (Grin; for glutamate receptor ionotropic NMDAR subtype) has to be performed by targeting vectors, also called replacement vectors. The targeting vector should encode part of the gene for the NMDAR subunit, the NMDAR mutation, and a removable selection maker. In these days, the targeting vector can be precisely designed using DNA sequences from public databases. The assembly of the vector is then done from isogenic NMDAR gene fragments cloned in bacterial artificial chromosomes (BACs) using "high fidelity" long-range PCR reactions. During these PCR reactions, the NMDAR mutations are introduced into the cloned NMDAR gene fragments of the targeting vector. Finally, the targeting vector is used for homologous recombination in mouse ES cells. Positive ES cell clones which have the correct mutation have to be selected and are then used for blastocyst injection to generate chimeric mice that hopefully transmit the Grin gene targeted ES cells to their offspring. In the first offspring generation of the founder (F1), some animals will be heterozygous for the targeted NMDAR gene mutation. In order to regulate the expression of NMDAR mutations, it is important to keep the targeted NMDAR mutation under conditional control. Here, we describe a general method how those conditionally controlled NMDAR mutations can be engraved into the germ line of mice as hypomorphic Grin alleles. By breeding these hypomorphic Grin gene targeted mice with Cre recombinase expressing mice, the hypomorphic Grin allele can be activated at specific time points in specific cell types, and the function of the mutated NMDAR can be analyzed in these - so called - conditional mouse models. In this method chapter, we describe in detail the different methodical steps for successful gene targeting and generation of conditional NMDAR mutant mouse lines. Within the last 20 years, several students in our Department of Molecular Neurobiology in Heidelberg used these techniques several times to generate different mouse lines with mutated NMDARs.
Collapse
Affiliation(s)
- Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, Germany.
- Max Planck Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, Heidelberg, Germany.
| | - Ahmed Eltokhi
- Max Planck Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, Heidelberg, Germany
| | - Frank N Single
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, Germany
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, Bergisch Gladbach, Germany
| |
Collapse
|
7
|
Abstract
The hippocampus has a pivotal role in learning and in the formation and consolidation of memory and is critically involved in the regulation of emotion, fear, anxiety, and stress. Studies of the hippocampus have been central to the study of memory in humans and in recent years, the regional specialization and organization of hippocampal functions have been elucidated in experimental models and in human neurological and psychiatric diseases. The hippocampus has long been considered a classic model for the study of neuroplasticity as many examples of synaptic plasticity such as long-term potentiation and -depression have been identified and demonstrated in hippocampal circuits. Neuroplasticity is the ability to adapt and reorganize the structure or function to internal or external stimuli and occurs at the cellular, population, network or behavioral level and is reflected in the cytological and network architecture as well as in intrinsic properties of hippocampal neurons and circuits. The high degree of hippocampal neuroplasticity might, however, be also negatively reflected in the pronounced vulnerability of the hippocampus to deleterious conditions such as ischemia, epilepsy, chronic stress, neurodegeneration and aging targeting hippocampal structure and function and leading to cognitive deficits. Considering this framework of plasticity and vulnerability, we here review basic principles of hippocampal anatomy and neuroplasticity on various levels as well as recent findings regarding the functional organization of the hippocampus in light of the regional vulnerability in Alzheimer's disease, ischemia, epilepsy, neuroinflammation and aging.
Collapse
Affiliation(s)
- T Bartsch
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany.
| | - P Wulff
- Institute of Physiology, Neurophysiology, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| |
Collapse
|
8
|
A critical appraisal of the what-where-when episodic-like memory test in rodents: Achievements, caveats and future directions. Prog Neurobiol 2015; 130:71-85. [DOI: 10.1016/j.pneurobio.2015.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/07/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
|
9
|
Gonzales ELT, Yang SM, Choi CS, Mabunga DFN, Kim HJ, Cheong JH, Ryu JH, Koo BN, Shin CY. Repeated neonatal propofol administration induces sex-dependent long-term impairments on spatial and recognition memory in rats. Biomol Ther (Seoul) 2015; 23:251-60. [PMID: 25995824 PMCID: PMC4428718 DOI: 10.4062/biomolther.2014.120] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/31/2014] [Accepted: 02/07/2015] [Indexed: 11/05/2022] Open
Abstract
Propofol is an anesthetic agent that gained wide use because of its fast induction of anesthesia and rapid recovery post-anesthesia. However, previous studies have reported immediate neurodegeneration and long-term impairment in spatial learning and memory from repeated neonatal propofol administration in animals. Yet, none of those studies has explored the sex-specific long-term physical changes and behavioral alterations such as social (sociability and social preference), emotional (anxiety), and other cognitive functions (spatial working, recognition, and avoidance memory) after neonatal propofol treatment. Seven-day-old Wistar-Kyoto (WKY) rats underwent repeated daily intraperitoneal injections of propofol or normal saline for 7 days. Starting fourth week of age and onwards, rats were subjected to behavior tests including open-field, elevated-plus-maze, Y-maze, 3-chamber social interaction, novel-object-recognition, passive-avoidance, and rotarod. Rats were sacrificed at 9 weeks and hippocampal protein expressions were analyzed by Western blot. Results revealed long-term body weight gain alterations in the growing rats and sex-specific impairments in spatial (female) and recognition (male) learning and memory paradigms. A markedly decreased expression of hippocampal NMDA receptor GluN1 subunit in female- and increased expression of AMPA GluR1 subunit protein expression in male rats were also found. Other aspects of behaviors such as locomotor activity and coordination, anxiety, sociability, social preference and avoidance learning and memory were not generally affected. These results suggest that neonatal repeated propofol administration disrupts normal growth and some aspects of neurodevelopment in rats in a sex-specific manner.
Collapse
Affiliation(s)
- Edson Luck T Gonzales
- Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University, Seoul 143-701
| | - Sung Min Yang
- Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University, Seoul 143-701
| | - Chang Soon Choi
- Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University, Seoul 143-701
| | - Darine Froy N Mabunga
- Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University, Seoul 143-701
| | - Hee Jin Kim
- Department of Pharmacy, Sahmyook University, Seoul 139-742
| | | | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul 130-701
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 120-752, Repulic of Korea
| | - Chan Young Shin
- Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University, Seoul 143-701 ; Department of Pharmacology, School of Medicine, Konkuk University, Seoul 143-701
| |
Collapse
|
10
|
Yang J, Song Y, Wang H, Liu C, Li Z, Liu Y, Kong Y. Insulin treatment prevents the increase in D-serine in hippocampal CA1 area of diabetic rats. Am J Alzheimers Dis Other Demen 2015; 30:201-8. [PMID: 25118332 PMCID: PMC10852815 DOI: 10.1177/1533317514545379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
PURPOSE Diabetes is a high risk factor for dementia. Employing a diabetic rat model, the present study was designed to determine whether the content of D-serine (D-Ser) in hippocampus is associated with the impairment of spatial learning and memory ability. METHODS Diabetes was induced by a single intravenous injection of streptozotocin (STZ). The insulin treatment began 3 days after STZ injection. RESULTS We found that both water maze learning and hippocampal CA1 long-term potentiation (LTP) were impaired in diabetic rats. The contents of glutamate, D-Ser, and serine racemase in the hippocampus of diabetic rats were significantly higher than those in the control group. Insulin treatment prevented the STZ-induced impairment in water maze learning and hippocampal CA1-LTP in diabetic rats and also maintained the contents of glutamate, D-Ser, and serine racemase at the normal range in hippocampus. CONCLUSIONS These results suggest that insulin treatment has a potent protection effect on CA1-LTP, spatial learning and memory ability of the diabetic rats in vivo. Furthermore, insulin may take effect by inhibiting the overactivation of N-methyl-d-aspartate receptors, which play a critical role in neurotoxicity.
Collapse
Affiliation(s)
- Jing Yang
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Liaoning Medical University, Jinzhou, China
| | - Yang Song
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Liaoning Medical University, Jinzhou, China
| | - Hongxin Wang
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Liaoning Medical University, Jinzhou, China
| | - Chunna Liu
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Liaoning Medical University, Jinzhou, China
| | - Zhongzhe Li
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Liaoning Medical University, Jinzhou, China
| | - Ying Liu
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Liaoning Medical University, Jinzhou, China
| | - Yawei Kong
- Division of Plastic and Reconstructive Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
DiBattista AM, Dumanis SB, Song JM, Bu G, Weeber E, Rebeck GW, Hoe HS. Very low density lipoprotein receptor regulates dendritic spine formation in a RasGRF1/CaMKII dependent manner. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:904-17. [PMID: 25644714 DOI: 10.1016/j.bbamcr.2015.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 12/20/2014] [Accepted: 01/22/2015] [Indexed: 11/17/2022]
Abstract
Very Low Density Lipoprotein Receptor (VLDLR) is an apolipoprotein E receptor involved in synaptic plasticity, learning, and memory. However, it is unknown how VLDLR can regulate synaptic and cognitive function. In the present study, we found that VLDLR is present at the synapse both pre- and post-synaptically. Overexpression of VLDLR significantly increases, while knockdown of VLDLR decreases, dendritic spine number in primary hippocampal cultures. Additionally, knockdown of VLDLR significantly decreases synaptophysin puncta number while differentially regulating cell surface and total levels of glutamate receptor subunits. To identify the mechanism by which VLDLR induces these synaptic effects, we investigated whether VLDLR affects dendritic spine formation through the Ras signaling pathway, which is involved in spinogenesis and neurodegeneration. Interestingly, we found that VLDLR interacts with RasGRF1, a Ras effector, and knockdown of RasGRF1 blocks the effect of VLDLR on spinogenesis. Moreover, we found that VLDLR did not rescue the deficits induced by the absence of Ras signaling proteins CaMKIIα or CaMKIIβ. Taken together, our results suggest that VLDLR requires RasGRF1/CaMKII to alter dendritic spine formation.
Collapse
Affiliation(s)
| | - Sonya B Dumanis
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA; Max Delbreuck Center for Molecular Medicine, Berlin, Germany
| | - Jung Min Song
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Edwin Weeber
- Department of Molecular Pharmacology and Physiology, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
12
|
Straub C, Granger AJ, Saulnier JL, Sabatini BL. CRISPR/Cas9-mediated gene knock-down in post-mitotic neurons. PLoS One 2014; 9:e105584. [PMID: 25140704 PMCID: PMC4139396 DOI: 10.1371/journal.pone.0105584] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/22/2014] [Indexed: 12/22/2022] Open
Abstract
The prokaryotic adaptive immune system CRISPR/Cas9 has recently been adapted for genome editing in eukaryotic cells. This technique allows for sequence-specific induction of double-strand breaks in genomic DNA of individual cells, effectively resulting in knock-out of targeted genes. It thus promises to be an ideal candidate for application in neuroscience where constitutive genetic modifications are frequently either lethal or ineffective due to adaptive changes of the brain. Here we use CRISPR/Cas9 to knock-out Grin1, the gene encoding the obligatory NMDA receptor subunit protein GluN1, in a sparse population of mouse pyramidal neurons. Within this genetically mosaic tissue, manipulated cells lack synaptic current mediated by NMDA-type glutamate receptors consistent with complete knock-out of the targeted gene. Our results show the first proof-of-principle demonstration of CRISPR/Cas9-mediated knock-down in neurons in vivo, where it can be a useful tool to study the function of specific proteins in neuronal circuits.
Collapse
Affiliation(s)
- Christoph Straub
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adam J. Granger
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jessica L. Saulnier
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bernardo L. Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Lourenço CF, Ferreira NR, Santos RM, Lukacova N, Barbosa RM, Laranjinha J. The pattern of glutamate-induced nitric oxide dynamics in vivo and its correlation with nNOS expression in rat hippocampus, cerebral cortex and striatum. Brain Res 2014; 1554:1-11. [PMID: 24495843 DOI: 10.1016/j.brainres.2014.01.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 01/13/2014] [Accepted: 01/18/2014] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) is a diffusible intercellular messenger, acting via volume signaling in the brain and, therefore, the knowledge of its temporal dynamics is determinant to the understanding of its neurobiological role. However, such an analysis in vivo is challenging and indirect or static approaches are mostly used to infer NO bioactivity. In the present work we measured the glutamate-dependent NO temporal dynamics in vivo in the hippocampus (CA1, CA3 and DG subregions), cerebral cortex and striatum, using NO selective microelectrodes. Concurrently, the immunolocalization of nNOS was evaluated in each region. A transitory increase in NO levels occurred at higher amplitudes in the striatum and hippocampus relatively to the cortex. In the hippocampus, subtle differences in the profiles of NO signals were observed along the trisynaptic loop, with CA1 exhibiting the largest signals. The topography of NO temporal dynamics did not fully overlap with the pattern of the density of nNOS expression, suggesting that, complementary to the distribution of nNOS, the local regulation of NO synthesis as well as the decay pathways critically determine the effective NO concentration sensed by a target within the diffusional spread of this free radical. In sum, the rate and pattern of NO changes here shown, by incorporating regulatory mechanisms and processes that affect NO synthesis and decay, provide refined information critical for the understanding of NO multiple actions in the brain.
Collapse
Affiliation(s)
- C F Lourenço
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - N R Ferreira
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - R M Santos
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - N Lukacova
- Institute of Neurobiology, Slovak Academy of Sciences, Soltésovej 4, 040 01 Kosice, Slovak Republic
| | - R M Barbosa
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - J Laranjinha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
14
|
Wiescholleck V, Manahan-Vaughan D. Long-lasting changes in hippocampal synaptic plasticity and cognition in an animal model of NMDA receptor dysfunction in psychosis. Neuropharmacology 2013; 74:48-58. [DOI: 10.1016/j.neuropharm.2013.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/21/2012] [Accepted: 01/04/2013] [Indexed: 12/29/2022]
|
15
|
Alvarado S, Tajerian M, Millecamps M, Suderman M, Stone LS, Szyf M. Peripheral nerve injury is accompanied by chronic transcriptome-wide changes in the mouse prefrontal cortex. Mol Pain 2013; 9:21. [PMID: 23597049 PMCID: PMC3640958 DOI: 10.1186/1744-8069-9-21] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/22/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Peripheral nerve injury can have long-term consequences including pain-related manifestations, such as hypersensitivity to cutaneous stimuli, as well as affective and cognitive disturbances, suggesting the involvement of supraspinal mechanisms. Changes in brain structure and cortical function associated with many chronic pain conditions have been reported in the prefrontal cortex (PFC). The PFC is implicated in pain-related co-morbidities such as depression, anxiety and impaired emotional decision-making ability. We recently reported that this region is subject to significant epigenetic reprogramming following peripheral nerve injury, and normalization of pain-related structural, functional and epigenetic abnormalities in the PFC are all associated with effective pain reduction. In this study, we used the Spared Nerve Injury (SNI) model of neuropathic pain to test the hypothesis that peripheral nerve injury triggers persistent long-lasting changes in gene expression in the PFC, which alter functional gene networks, thus providing a possible explanation for chronic pain associated behaviors. RESULTS SNI or sham surgery where performed in male CD1 mice at three months of age. Six months after injury, we performed transcriptome-wide sequencing (RNAseq), which revealed 1147 differentially regulated transcripts in the PFC in nerve-injured vs. control mice. Changes in gene expression occurred across a number of functional gene clusters encoding cardinal biological processes as revealed by Ingenuity Pathway Analysis. Significantly altered biological processes included neurological disease, skeletal muscular disorders, behavior, and psychological disorders. Several of the changes detected by RNAseq were validated by RT-QPCR and included transcripts with known roles in chronic pain and/or neuronal plasticity including the NMDA receptor (glutamate receptor, ionotropic, NMDA; grin1), neurite outgrowth (roundabout 3; robo3), gliosis (glial fibrillary acidic protein; gfap), vesicular release (synaptotagmin 2; syt2), and neuronal excitability (voltage-gated sodium channel, type I; scn1a). CONCLUSIONS This study used an unbiased approach to document long-term alterations in gene expression in the brain following peripheral nerve injury. We propose that these changes are maintained as a memory of an insult that is temporally and spatially distant from the initial injury.
Collapse
Affiliation(s)
- Sebastian Alvarado
- Department of Pharmacology and Therapeutics, McGill University, Faculty of Medicine, 3655 Promenade Sir William Osler, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Ide Y, Miyazaki T, Lauwereyns J, Sandner G, Tsukada M, Aihara T. Optical imaging of plastic changes induced by fear conditioning in the auditory cortex. Cogn Neurodyn 2013; 6:1-10. [PMID: 23372615 DOI: 10.1007/s11571-011-9173-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 08/19/2011] [Accepted: 08/19/2011] [Indexed: 11/29/2022] Open
Abstract
The plastic changes in the auditory cortex induced by a fear conditioning, through pairing a sound (CS) with an electric foot-shock (US), were investigated using an optical recording method with voltage sensitive dye, RH795. In order to investigate the effects of association learning, optical signals in the auditory cortex in response to CS (12 kHz pure tone) and non-CS (4, 8, 16 kHz pure tone) were recorded before and after normal and sham conditioning. As a result, the response area to CS enlarged only in the conditioning group after the conditioning. Additionally, the rise time constant of the auditory response to CS significantly decreased and the relative peak value and the decay time constant of the auditory response to CS significantly increased after the conditioning. This study introduces an optical approach to the investigation of fear conditioning, representational plasticity, and the cholinergic system. The findings are synthesized in a model of the synaptic mechanisms that underlie cortical plasticity.
Collapse
Affiliation(s)
- Yoshinori Ide
- Tamagawa University Brain Science Institute, 6-1-1 Tamagawa-gakuen, Machida, Tokyo, 194-8610 Japan
| | | | | | | | | | | |
Collapse
|
17
|
Nebieridze N, Zhang XL, Chachua T, Velíšek L, Stanton PK, Velíšková J. β-Estradiol unmasks metabotropic receptor-mediated metaplasticity of NMDA receptor transmission in the female rat dentate gyrus. Psychoneuroendocrinology 2012; 37:1845-54. [PMID: 22541715 PMCID: PMC3432293 DOI: 10.1016/j.psyneuen.2012.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/13/2012] [Accepted: 03/26/2012] [Indexed: 02/08/2023]
Abstract
Loss of estrogen in women following menopause is associated with increased risk for cognitive decline, dementia and depression, all of which can be prevented by estradiol replacement. The dentate gyrus plays an important role in cognition, learning and memory. The gatekeeping function of the dentate gyrus to filter incoming activity into the hippocampus is modulated by estradiol in a frequency-dependent manner and involves activation of metabotropic glutamate receptors (mGluR). In the present study, we investigated whether estradiol (EB) modulates the metaplastic effect of inducing synaptic long-term potentiation (LTP) on subsequent propensity for expression of LTP in the dentate gyrus. At medial perforant path-dentate granule cell synapses in hippocampal slices of ovariectomized female rats, EB replacement was critical for an initial induction of LTP to enhance the magnitude of subsequent LTP elicited by a second high-frequency stimulation, metaplasticity, which was not present in slices from oil-treated control animals. EB enhanced expression of group I mGluRs, and the metaplastic effect of EB on LTP required activation of group I mGluRs that led to Src-family tyrosine kinase-mediated phosphorylation of NR2B subunits of N-methyl-d-aspartate receptors (NMDAR) that enhanced the magnitude of NMDAR-dependent LTP. Our data show that EB effects on LTP in the hippocampal dentate gyrus require activation of group I mGluRs, which in turn leads to functional metaplastic regulation of NR2B subunit-containing NMDARs, as opposed to direct effects of EB on NMDARs.
Collapse
Affiliation(s)
- Nino Nebieridze
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | - Xiao-lei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | - Tamar Chachua
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA,Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Patric K. Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA,Department of Neurology, New York Medical College, Valhalla, New York, USA
| | - Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA,Department of Obstetrics & Gynecology, New York Medical College, Valhalla, New York, USA,Correspondence: Jana Velíšková, MD, PhD, New York Medical College, Department of Cell Biology & Anatomy, Basic Medical Sciences Bldg., Room #A21, Valhalla, NY 10595, USA, , Phone: (914) 594-4840, Fax: (914) 594-4653
| |
Collapse
|
18
|
Abstract
The Mg2+ block of NMDA-type glutamate receptors (NMDARs) is crucial to their function as synaptic coincidence detectors. An analysis of Drosophila expressing a Mg2+-independent NMDAR by in this issue of Neuron concludes that the Mg2+ block is required primarily for long-term memory.
Collapse
|
19
|
Impaired short-term plasticity in mossy fiber synapses caused by mitochondrial dysfunction of dentate granule cells is the earliest synaptic deficit in a mouse model of Alzheimer's disease. J Neurosci 2012; 32:5953-63. [PMID: 22539855 DOI: 10.1523/jneurosci.0465-12.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) in the early stages is characterized by memory impairment, which may be attributable to synaptic dysfunction. Oxidative stress, mitochondrial dysfunction, and Ca²⁺ dysregulation are key factors in the pathogenesis of AD, but the causal relationship between these factors and synaptic dysfunction is not clearly understood. We found that in the hippocampus of an AD mouse model (Tg2576), mitochondrial Ca²⁺ handling in dentate granule cells was impaired as early as the second postnatal month, and this Ca²⁺ dysregulation caused an impairment of post-tetanic potentiation in mossy fiber-CA3 synapses. The alteration of cellular Ca²⁺ clearance in Tg2576 mice is region-specific within hippocampus because in another region, CA1 pyramidal neuron, no significant difference in Ca²⁺ clearance was detected between wild-type and Tg2576 mice at this early stage. Impairment of mitochondrial Ca²⁺ uptake was associated with increased mitochondrial reactive oxygen species and depolarization of mitochondrial membrane potential. Mitochondrial dysfunctions in dentate granule cells and impairment of post-tetanic potentiation in mossy fiber-CA3 synapses were fully restored when brain slices obtained from Tg2576 were pretreated with antioxidant, suggesting that mitochondrial oxidative stress initiates other dysfunctions. Reversibility of early dysfunctions by antioxidants at the preclinical stage of AD highlights the importance of early diagnosis and antioxidant therapy to delay or prevent the disease processes.
Collapse
|
20
|
Yu T, Liu C, Belichenko P, Clapcote SJ, Li S, Pao A, Kleschevnikov A, Bechard AR, Asrar S, Chen R, Fan N, Zhou Z, Jia Z, Chen C, Roder JC, Liu B, Baldini A, Mobley WC, Yu YE. Effects of individual segmental trisomies of human chromosome 21 syntenic regions on hippocampal long-term potentiation and cognitive behaviors in mice. Brain Res 2010; 1366:162-71. [PMID: 20932954 DOI: 10.1016/j.brainres.2010.09.107] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/15/2010] [Accepted: 09/29/2010] [Indexed: 10/19/2022]
Abstract
As the genomic basis for Down syndrome (DS), human trisomy 21 is the most common genetic cause of intellectual disability in children and young people. The genomic regions on human chromosome 21 (Hsa21) are syntenic to three regions in the mouse genome, located on mouse chromosome 10 (Mmu10), Mmu16, and Mmu17. Recently, we have developed three new mouse models using chromosome engineering carrying the genotypes of Dp(10)1Yey/+, Dp(16)1Yey/+, or Dp(17)1Yey/+, which harbor a duplication spanning the entire Hsa21 syntenic region on Mmu10, Mmu16, or Mmu17, respectively. In this study, we analyzed the hippocampal long-term potentiation (LTP) and cognitive behaviors of these models. Our results show that, while the genotype of Dp(17)1Yey/+ results in abnormal hippocampal LTP, the genotype of Dp(16)1Yey/+ leads to both abnormal hippocampal LTP and impaired learning/memory. Therefore, these mutant mice can serve as powerful tools for further understanding the mechanism underlying cognitively relevant phenotypes associated with DS, particularly the impacts of different syntenic regions on these phenotypes.
Collapse
Affiliation(s)
- Tao Yu
- Genetics Program and Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Burger C. Region-specific genetic alterations in the aging hippocampus: implications for cognitive aging. Front Aging Neurosci 2010; 2:140. [PMID: 21048902 PMCID: PMC2967426 DOI: 10.3389/fnagi.2010.00140] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 08/17/2010] [Indexed: 01/31/2023] Open
Abstract
Aging is associated with cognitive decline in both humans and animals and of all brain regions, the hippocampus appears to be particularly vulnerable to senescence. Age-related spatial learning deficits result from alterations in hippocampal connectivity and plasticity. These changes are differentially expressed in each of the hippocampal fields known as cornu ammonis 1 (CA1), cornu ammonis 3 (CA3), and the dentate gyrus. Each sub-region displays varying degrees of susceptibility to aging. For example, the CA1 region is particularly susceptible in Alzheimer's disease while the CA3 region shows vulnerability to stress and glucocorticoids. Further, in animals, aging is the main factor associated with the decline in adult neurogenesis in the dentate gyrus. This review discusses the relationship between region-specific hippocampal connectivity, morphology, and gene expression alterations and the cognitive deficits associated with senescence. In particular, data are reviewed that illustrate how the molecular changes observed in the CA1, CA3, and dentate regions are associated with age-related learning deficits. This topic is of importance because increased understanding of how gene expression patterns reflect individual differences in cognitive performance is critical to the process of identifying new and clinically useful biomarkers for cognitive aging.
Collapse
Affiliation(s)
- Corinna Burger
- Department of Neurology, Medical Sciences Center, University of WisconsinMadison, USA
| |
Collapse
|
22
|
Guiraudie-Capraz G, Chaillan FA, Truchet B, Franc JL, Mourre C, Roman FS. Increase in polysialyltransferase gene expression following LTP in adult rat dentate gyrus. Hippocampus 2010; 21:1180-9. [PMID: 20665595 DOI: 10.1002/hipo.20835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2010] [Indexed: 11/10/2022]
Abstract
Neural cell adhesion molecule (NCAM) is frequently associated with polysialic acid (PSA), and its function is highly dependent on this polysialylation. PSA-NCAM plays an important role in synaptic plasticity in the hippocampus. STX and PST are the enzymes responsible for NCAM polysialylation. We investigated whether unilateral long-term potentiation (LTP) induction in vivo, in adult rat dentate gyrus (DG), triggered NCAM polysialylation by STX and PST produced in the hippocampus. We found that levels of STX and PST mRNA increased strongly since the early stage of hippocampal LTP and remained high during the maintenance of DG-LTP for 4 h. This rapid increase in polysialyltransferase gene expression occurred in both the hippocampi, probably resulting from bilateral LTP induction by strong unilateral HFS. Thus, LTP triggers interhemispheric molecular changes in the hippocampal network. This study is the first to describe the effects of LTP induction and maintenance on polysialyl-transferases in vivo. Our findings suggest that hippocampal synaptic remodeling requires NCAM polysialylation.
Collapse
Affiliation(s)
- G Guiraudie-Capraz
- Laboratoire Neurobiologie des Processus Mnésiques, Marseille Cedex, France.
| | | | | | | | | | | |
Collapse
|