1
|
Prenatal cyanuric acid exposure disrupts cognitive flexibility and mGluR1-mediated hippocampal long-term depression in male rats. Toxicol Lett 2022; 370:74-84. [PMID: 36152796 DOI: 10.1016/j.toxlet.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022]
Abstract
Cyanuric acid is one of the most widely used classes of industrial chemicals and is now well known as food adulterant and contaminant in pet food and infant formula. Previously, it was reported that animals prenatally exposed to cyanuric acid showed neurotoxic effects that impaired memory consolidating and suppressed long-term potentiation (LTP) in the hippocampus. However, it is not clear if prenatal exposure to cyanuric acid induces deficits in reversal learning and long-term depression (LTD), which is required for the developmental reorganization of synaptic circuits and updating learned behaviors. Here, pregnant rats were i.p. injected with cyanuric acid (20 mg/kg) during the whole of gestation, and male offspring were selected to examine the levels of hippocampal mGluR1 and mGluR2/3 in young adulthood. The LTD at the Schaffer collateral-CA1 pathway was induced by low-frequency stimulation (LFS) and recorded. Reversal learning and hippocampus-dependent learning strategy were tested in Morris-water maze (MWM) and T-maze tasks, respectively. To further confirm the potential mechanism, selective agonists of mGluR1 and mGluR2/3 and antagonists of mGluR were intra-hippocampal infused before behavioral and neuronal recording. We found the levels of alkaline phosphatase were markedly increased in the maternal placenta and fetal brain following prenatal exposure. The expression of mGluR1 but not mGluR2/3 was significantly decreased and mGluR1-mediated LTD was selectively weakened. Prenatal cyanuric acid impaired reversal learning ability, without changing place learning strategy. The mGluR1 agonist could effectively enhance LFS-induced LTD and mitigate reversal learning deficits. Meanwhile, the reductions in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)-mediated spontaneous excitatory postsynaptic currents (sEPSCs) amplitude and frequency of cyanuric acid offspring were simultaneously alleviated by mGluR1 agonist infusions. Therefore, the results indicate the cognitive and synaptic impairments induced by prenatal cyanuric acid exposure are attributed to the disruption of the hippocampal mGluR1 signaling. Our findings provided the first evidence for the deteriorated effects of cyanuric acid on synaptic depression and advanced cognitive performance.
Collapse
|
2
|
Shallcross J, Wu L, Wilkinson CS, Knackstedt LA, Schwendt M. Increased mGlu5 mRNA expression in BLA glutamate neurons facilitates resilience to the long-term effects of a single predator scent stress exposure. Brain Struct Funct 2021; 226:2279-2293. [PMID: 34175993 PMCID: PMC10416208 DOI: 10.1007/s00429-021-02326-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/17/2021] [Indexed: 12/28/2022]
Abstract
Post-traumatic stress disorder (PTSD) develops in a subset of individuals exposed to a trauma with core features being increased anxiety and impaired fear extinction. To model the heterogeneity of PTSD behavioral responses, we exposed male Sprague-Dawley rats to predator scent stress once for 10 min and then assessed anxiety-like behavior 7 days later using the elevated plus maze and acoustic startle response. Rats displaying anxiety-like behavior in both tasks were classified as stress Susceptible, and rats exhibiting behavior no different from un-exposed Controls were classified as stress Resilient. In Resilient rats, we previously found increased mRNA expression of mGlu5 in the amygdala and prefrontal cortex (PFC) and CB1 in the amygdala. Here, we performed fluorescent in situ hybridization (FISH) to determine the subregion and cell-type-specific expression of these genes in Resilient rats 3 weeks after TMT exposure. Resilient rats displayed increased mGlu5 mRNA expression in the basolateral amygdala (BLA) and the infralimbic and prelimbic regions of the PFC and increased BLA CB1 mRNA. These increases were limited to glutamatergic cells. To test the necessity of mGlu5 for attenuating TMT-conditioned contextual fear 3 weeks after TMT conditioning, intra-BLA infusions of the mGlu5 negative allosteric modulator MTEP were administered prior to context re-exposure. In TMT-exposed Resilient rats, but not Controls, MTEP increased freezing on the day of administration, which extinguished over two additional un-drugged sessions. These results suggest that increased mGlu5 expression in BLA glutamate neurons contributes to the behavioral flexibility observed in stress-Resilient animals by facilitating a capacity for extinguishing contextual fear associations.
Collapse
Affiliation(s)
- John Shallcross
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
| | - Lizhen Wu
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
| | - Courtney S Wilkinson
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
- Center for Addiction Research and Education (CARE), University of Florida, Gainesville, USA
| | - Lori A Knackstedt
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
- Center for Addiction Research and Education (CARE), University of Florida, Gainesville, USA
| | - Marek Schwendt
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA.
- Center for Addiction Research and Education (CARE), University of Florida, Gainesville, USA.
| |
Collapse
|
3
|
Zhong L, Gerges NZ. Neurogranin Regulates Metaplasticity. Front Mol Neurosci 2020; 12:322. [PMID: 32038160 PMCID: PMC6992556 DOI: 10.3389/fnmol.2019.00322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/17/2019] [Indexed: 01/14/2023] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two major forms of synaptic plasticity that are widely accepted as cellular mechanisms involved in learning and memory. Metaplasticity is a process whereby modifications in synaptic processes shift the threshold for subsequent plasticity. While metaplasticity has been functionally observed, its molecular basis is not well understood. Here, we report that neurogranin (Ng) regulates metaplasticity by shifting the threshold toward potentiation, i.e., increasing Ng in hippocampal neurons lowers the threshold for LTP and augments the threshold for LTD. We also show that Ng does not change the ultrastructural localization of calmodulin (CaM)-dependent protein Kinase II (CaMKII) or calcineurin, critical enzymes for the induction of LTP and LTD, respectively. Interestingly, while CaMKII concentrates close to the plasma membrane, calcineurin concentrates away from the plasma membrane. These data, along with the previous observation showing Ng targets CaM closer to the plasma membrane, suggesting that shifting the localization of CaM within the dendritic spines and closer to the plasma membrane, where there is more CaMKII, may be favoring the activation of CaMKII vs. that of calcineurin. Thus, the regulation of CaM localization/targeting within dendritic spines by Ng may provide a mechanistic basis for the regulation of metaplasticity.
Collapse
Affiliation(s)
| | - Nashaat Z. Gerges
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Stansley BJ, Fisher NM, Gogliotti RG, Lindsley CW, Conn PJ, Niswender CM. Contextual Fear Extinction Induces Hippocampal Metaplasticity Mediated by Metabotropic Glutamate Receptor 5. Cereb Cortex 2019; 28:4291-4304. [PMID: 29136107 DOI: 10.1093/cercor/bhx282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Abstract
Dysregulated fear memory can lead to a broad spectrum of anxiety disorders. The brain systems underlying fear memory are manifold, with the hippocampus being prominently involved by housing fear-related spatial memories as engrams, which are created and stored through neural changes such as synaptic plasticity. Although metabotropic glutamate (mGlu) receptors contribute significantly to both fear behavior and hippocampal synaptic plasticity, the relationship between these two phenomena has not been fully elucidated. Here, we report that contextual fear extinction induces a novel form of metaplasticity mediated by mGlu5 at the hippocampal SC-CA1 synapse. Further, blockade of mGlu5 prevents both contextual fear extinction and expression of this metaplasticity. This form of metaplasticity was absent in a mouse model of MECP2-duplication syndrome, corresponding to a complete deficit in extinction learning. These findings suggest that mGlu5-dependent metaplasticity within the hippocampus may play a critical role in extinction of contextual fear.
Collapse
Affiliation(s)
- Branden J Stansley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Nicole M Fisher
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Rocco G Gogliotti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Rahman MM, Kedia S, Fernandes G, Chattarji S. Activation of the same mGluR5 receptors in the amygdala causes divergent effects on specific versus indiscriminate fear. eLife 2017; 6. [PMID: 28555566 PMCID: PMC5468087 DOI: 10.7554/elife.25665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/26/2017] [Indexed: 01/29/2023] Open
Abstract
Although mGluR5-antagonists prevent fear and anxiety, little is known about how the same receptor in the amygdala gives rise to both. Combining in vitro and in vivo activation of mGluR5 in rats, we identify specific changes in intrinsic excitability and synaptic plasticity in basolateral amygdala neurons that give rise to temporally distinct and mutually exclusive effects on fear-related behaviors. The immediate impact of mGluR5 activation is to produce anxiety manifested as indiscriminate fear of both tone and context. Surprisingly, this state does not interfere with the proper encoding of tone-shock associations that eventually lead to enhanced cue-specific fear. These results provide a new framework for dissecting the functional impact of amygdalar mGluR-plasticity on fear versus anxiety in health and disease. DOI:http://dx.doi.org/10.7554/eLife.25665.001
Collapse
Affiliation(s)
- Mohammed Mostafizur Rahman
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Sonal Kedia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Giselle Fernandes
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Centre for Integrative Physiology, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Travaglia A, Bisaz R, Sweet ES, Blitzer RD, Alberini CM. Infantile amnesia reflects a developmental critical period for hippocampal learning. Nat Neurosci 2016; 19:1225-33. [PMID: 27428652 PMCID: PMC5003643 DOI: 10.1038/nn.4348] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/24/2016] [Indexed: 02/07/2023]
Abstract
Episodic memories formed during the first postnatal period are rapidly forgotten, a phenomenon known as 'infantile amnesia'. In spite of this memory loss, early experiences influence adult behavior, raising the question of which mechanisms underlie infantile memories and amnesia. Here we show that in rats an experience learned during the infantile amnesia period is stored as a latent memory trace for a long time; indeed, a later reminder reinstates a robust, context-specific and long-lasting memory. The formation and storage of this latent memory requires the hippocampus, follows a sharp temporal boundary and occurs through mechanisms typical of developmental critical periods, including the expression switch of the NMDA receptor subunits from 2B to 2A, which is dependent on brain-derived neurotrophic factor (BDNF) and metabotropic glutamate receptor 5 (mGluR5). Activating BDNF or mGluR5 after training rescues the infantile amnesia. Thus, early episodic memories are not lost but remain stored long term. These data suggest that the hippocampus undergoes a developmental critical period to become functionally competent.
Collapse
Affiliation(s)
- Alessio Travaglia
- Center for Neural Science, New York University, New York, 10003 NY, USA
| | - Reto Bisaz
- Center for Neural Science, New York University, New York, 10003 NY, USA
| | - Eric S. Sweet
- Department of Pharmacological Science, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Robert D. Blitzer
- Department of Pharmacological Science, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | | |
Collapse
|
7
|
Rivera-Olvera A, Rodríguez-Durán LF, Escobar ML. Conditioned taste aversion prevents the long-lasting BDNF-induced enhancement of synaptic transmission in the insular cortex: A metaplastic effect. Neurobiol Learn Mem 2016; 130:71-6. [DOI: 10.1016/j.nlm.2016.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 01/04/2023]
|
8
|
Huang CH, Yu YJ, Chang CH, Gean PW. Involvement of metabotropic glutamate receptor 5 in the inhibition of methamphetamine-associated contextual memory after prolonged extinction training. J Neurochem 2016; 137:216-25. [PMID: 26748780 DOI: 10.1111/jnc.13525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/15/2015] [Accepted: 12/29/2015] [Indexed: 12/31/2022]
Abstract
Addiction is thought to be a memory process between perception and environmental cues and addicted patients often relapse when they come into contact with the drug-related context once again. Here, we used a conditioned place preference protocol to seek a more effective extinction methodology of methamphetamine (METH) memory and delineate its underlying mechanism. Conditioning METH for 3 days in mice markedly increased the time spent in the METH-paired compartment. Then the mice were conditioned with saline for 6 days, from day 6 to day 11, a procedure termed extinction training. However, METH memory returned after a priming injection of METH. We prolonged extinction duration from 6 to 10 days and found that this extensive extinction (EE) training prevented priming effect. At the molecular level, we discovered that prolonged extinction training reversed the METH-conditioned place preference-induced increase in surface expression of GluA2 and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/NMDA ratio in the basolateral amygdala. In addition, we found that extinction with metabotropic glutamate receptor 5 (mGluR5) activation had similar results to EE: reduced relapse after extinction, decreased synaptic AMPA receptors AMPARs and the AMPA/NMDA ratio. On the contrary, EE with mGluR5 inhibition suppressed the results of EE. These data indicate that EE training-elicited inhibition of METH-primed reinstatement is mediated by the mGluR5. Conditioning mice with methamphetamine place preference (METH CPP) increases surface expression of AMPA receptors (AMPARs) in the basolateral amygdala. We found prolongation of extinction duration from 6 to 10 days prevented priming effect. At the molecular level, we discovered that extensive extinction (EE) reversed the METH CPP-induced increase in surface expression of GluA2 and AMPA/NMDA ratio. In addition, we found that extinction with the metabotropic glutamate receptor 5 (mGluR5) activation had similar results to EE: reduced relapse after extinction, decreased synaptic AMPARs and the AMPA/NMDA ratio. On the contrary, EE with mGluR5 inhibition suppressed the results of EE. These data indicate that EE training-elicited inhibition of METH-primed reinstatement is mediated by mGluR5 (PAM: positive allosteric modulator).
Collapse
Affiliation(s)
- Chien-Hsuan Huang
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan
| | - Yang-Jung Yu
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan
| | - Chih-Hua Chang
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan
| | - Po-Wu Gean
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Effects of glutamate and its metabotropic receptors class 1 antagonist in appetitive taste memory formation. Behav Brain Res 2015; 284:213-7. [DOI: 10.1016/j.bbr.2015.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 11/17/2022]
|
10
|
Chan D, Baker KD, Richardson R. Relearning a context-shock association after forgetting is an NMDAr-independent process. Physiol Behav 2014; 148:29-35. [PMID: 25446198 DOI: 10.1016/j.physbeh.2014.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Infantile amnesia (i.e., the rapid rate of forgetting in young animals) is at least partially due to a memory retrieval, rather than a storage, failure as studies have shown that these engrams can continue to influence later behavior. For example, prior conditioning affects the neural mechanisms underlying future learning. In adult animals, the initial learning of a context-shock association depends upon N-Methyl-D-Aspartate (NMDA) receptors, but this conditioning renders subsequent learning to a similar context NMDAr-independent. In the present study, we examined whether this transition from NMDAr-dependent to NMDAr-independent context conditioning occurs even after infantile amnesia. Experiment 1 demonstrated that infant (i.e., postnatal day 17) rats acquire a context-shock association when trained with multiple shocks, as assessed by context freezing one day later. However, they exhibit significant forgetting of this association 10days later. Experiments 2 and 3 showed that even when animals had forgotten the initial learning experience, future conditioning to the same context was NMDAr-independent. There was evidence of a transition to NMDAr-independent context fear learning in animals exposed only to the foot shock in infancy (Experiment 3) or only to the context in infancy (Experiment 3 but not Experiment 2). These latter results suggest that animals do not have to be exposed to the entire conditioning procedure at postnatal day 17 to show a transition to NMDAr-independent context learning. These experiments add to a growing body of evidence that forgotten infant memories can continue to affect later behavior by demonstrating that prior experience alters the mechanisms of future learning.
Collapse
Affiliation(s)
- Diana Chan
- School of Psychology, The University of New South Wales, Sydney 2052, Australia.
| | - Kathryn D Baker
- School of Psychology, The University of New South Wales, Sydney 2052, Australia.
| | - Rick Richardson
- School of Psychology, The University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
11
|
Sears RM, Schiff HC, LeDoux JE. Molecular Mechanisms of Threat Learning in the Lateral Nucleus of the Amygdala. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:263-304. [DOI: 10.1016/b978-0-12-420170-5.00010-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Baker KD, Edwards TM, Rickard NS. The role of intracellular calcium stores in synaptic plasticity and memory consolidation. Neurosci Biobehav Rev 2013; 37:1211-39. [PMID: 23639769 DOI: 10.1016/j.neubiorev.2013.04.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 12/20/2022]
Abstract
Memory processing requires tightly controlled signalling cascades, many of which are dependent upon intracellular calcium (Ca(2+)). Despite this, most work investigating calcium signalling in memory formation has focused on plasma membrane channels and extracellular sources of Ca(2+). The intracellular Ca(2+) release channels, ryanodine receptors (RyRs) and inositol (1,4,5)-trisphosphate receptors (IP3Rs) have a significant capacity to regulate intracellular Ca(2+) signalling. Evidence at both cellular and behavioural levels implicates both RyRs and IP3Rs in synaptic plasticity and memory formation. Pharmacobehavioural experiments using young chicks trained on a single-trial discrimination avoidance task have been particularly useful by demonstrating that RyRs and IP3Rs have distinct roles in memory formation. RyR-dependent Ca(2+) release appears to aid the consolidation of labile memory into a persistent long-term memory trace. In contrast, IP3Rs are required during long-term memory. This review discusses various functions for RyRs and IP3Rs in memory processing, including neuro- and glio-transmitter release, dendritic spine remodelling, facilitating vasodilation, and the regulation of gene transcription and dendritic excitability. Altered Ca(2+) release from intracellular stores also has significant implications for neurodegenerative conditions.
Collapse
Affiliation(s)
- Kathryn D Baker
- School of Psychology and Psychiatry, Monash University, Clayton 3800, Victoria, Australia.
| | | | | |
Collapse
|
13
|
Hulme SR, Jones OD, Abraham WC. Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci 2013; 36:353-62. [PMID: 23602195 DOI: 10.1016/j.tins.2013.03.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 12/01/2022]
Abstract
Since its initial conceptualisation, metaplasticity has come to encompass a wide variety of phenomena and mechanisms, creating the important challenge of understanding how they contribute to network function and behaviour. Here, we present a framework for considering potential roles of metaplasticity across three domains of function. First, metaplasticity appears ideally placed to prepare for subsequent learning by either enhancing learning ability generally or by preparing neuronal networks to encode specific content. Second, metaplasticity can homeostatically regulate synaptic plasticity, and this likely has important behavioural consequences by stabilising synaptic weights while ensuring the ongoing availability of synaptic plasticity. Finally, we discuss emerging evidence that metaplasticity mechanisms may play a role in disease causally and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Sarah R Hulme
- Department of Psychology and Brain Health Research Centre, Box 56, University of Otago, Dunedin, 9054, New Zealand
| | | | | |
Collapse
|
14
|
Evidence for a role of GABAergic and glutamatergic signalling in the basolateral amygdala in endocannabinoid-mediated fear-conditioned analgesia in rats. Pain 2013; 154:576-585. [DOI: 10.1016/j.pain.2012.12.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/25/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
|
15
|
Mao SC, Chang CH, Wu CC, Orejanera MJ, Manzoni OJ, Gean PW. Inhibition of spontaneous recovery of fear by mGluR5 after prolonged extinction training. PLoS One 2013; 8:e59580. [PMID: 23555716 PMCID: PMC3605338 DOI: 10.1371/journal.pone.0059580] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/15/2013] [Indexed: 11/19/2022] Open
Abstract
Fear behavior is vital for survival and involves learning contingent associations of non-threatening cues with aversive stimuli. In contrast, excessive levels of fear can be maladaptive and lead to anxiety disorders. Generally, extensive sessions of extinction training correlates with reduced spontaneous recovery. The molecular mechanisms underlying the long-term inhibition of fear recovery following repeated extinction training are not fully understood. Here we show that in rats, prolonged extinction training causes greater reduction in both fear-potentiated startle and spontaneous recovery. This effect was specifically blocked by metabotropic glutamate receptor 5 (mGluR5), but not by mGluR1 antagonists and by a protein synthesis inhibitor. Similar inhibition of memory recovery following prolonged extinction training was also observed in mice. In agreement with the instrumental role of mGluR5 in the prolonged inhibition of fear recovery, we found that FMR1-/- mice which exhibit enhanced mGluR5-mediated signaling exhibit lower spontaneous recovery of fear after extinction training than wild-type littermates. At the molecular level, we discovered that prolonged extinction training reversed the fear conditioning-induced increase in surface expression of GluR1, AMPA/NMDA ratio, postsynaptic density-95 (PSD-95) and synapse-associated protein-97 (SAP97). Accordingly, delivery of Tat-GluR2(3Y), a synthetic peptide that blocks AMPA receptor endocytosis, inhibited prolonged extinction training-induced inhibition of fear recovery. Together, our results demonstrate that prolonged extinction training results in the mGluR5-dependent long-term inhibition of fear recovery. This effect may involve the degradation of original memory and may explain the beneficial effects of prolonged exposure therapy for the treatment of phobias.
Collapse
Affiliation(s)
- Sheng-Chun Mao
- Institute of Basic Medical Sciences and Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan
| | - Chih-Hua Chang
- Institute of Basic Medical Sciences and Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan
| | - Chia-Chen Wu
- Institute of Basic Medical Sciences and Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan
| | | | | | - Po-Wu Gean
- Institute of Basic Medical Sciences and Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan
- * E-mail: (P-WG); (OJM)
| |
Collapse
|
16
|
Baumgärtel K, Mansuy IM. Neural functions of calcineurin in synaptic plasticity and memory. Learn Mem 2012; 19:375-84. [PMID: 22904368 DOI: 10.1101/lm.027201.112] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Major brain functions depend on neuronal processes that favor the plasticity of neuronal circuits while at the same time maintaining their stability. The mechanisms that regulate brain plasticity are complex and engage multiple cascades of molecular components that modulate synaptic efficacy. Protein kinases (PKs) and phosphatases (PPs) are among the most important of these components that act as positive and negative regulators of neuronal signaling and plasticity, respectively. In these cascades, the PP protein phosphatase 2B or calcineurin (CaN) is of particular interest because it is the only Ca(2+)-activated PP in the brain and a major regulator of key proteins essential for synaptic transmission and neuronal excitability. This review describes the primary properties of CaN and illustrates its functions and modes of action by focusing on several representative targets, in particular glutamate receptors, striatal enriched protein phosphatase (STEP), and neuromodulin (GAP43), and their functional significance for synaptic plasticity and memory.
Collapse
Affiliation(s)
- Karsten Baumgärtel
- Dorris Neuroscience Center, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037-1000, USA
| | | |
Collapse
|
17
|
The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neurosci Biobehav Rev 2012; 36:1667-707. [PMID: 22484475 DOI: 10.1016/j.neubiorev.2012.03.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 12/13/2022]
Abstract
Memory allows organisms to predict future events based on prior experiences. This requires encoded information to persist once important predictors are extracted, while also being modifiable in response to changes within the environment. Memory reconsolidation may allow stored information to be modified in response to related experience. However, there are many boundary conditions beyond which reconsolidation may not occur. One interpretation of these findings is that the event triggering memory retrieval must contain new information about a familiar stimulus in order to induce reconsolidation. Presently, the mechanisms that affect the likelihood of reconsolidation occurring under these conditions are not well understood. Here we speculate on a number of systems that may play a role in protecting memory from being destabilized during retrieval. We conclude that few memories may enter a state in which they cannot be modified. Rather, metaplasticity mechanisms may serve to alter the specific reactivation cues necessary to destabilize a memory. This might imply that destabilization mechanisms can differ depending on learning conditions.
Collapse
|
18
|
Abstract
Memories for emotionally arousing experiences are typically vivid and persistent. The recurrent, intrusive memories of traumatic events in post-traumatic stress disorder (PTSD) are an extreme example. Stress-responsive neurotransmitters released during emotional arousal are proposed to enhance the consolidation of fear memory. These transmitters may include norepinephrine and epinephrine (NE/E) because stimulating β-adrenergic receptors shortly after training can enhance memory consolidation. However, mice lacking NE/E acquire and consolidate fear memory normally. Here, we show by using pharmacologic and genetic manipulations in mice and rats that NE/E are not essential for classical fear memory consolidation because signaling by the β(2)-adrenergic receptor is redundant with signaling by dopamine at the D(5)-dopaminergic receptor. The intracellular signaling that is stimulated by these receptors to promote consolidation uses distinct G proteins to redundantly activate phospholipase C. The results support recent evidence indicating that blocking β-adrenergic receptors alone shortly after trauma may not be sufficient to prevent PTSD.
Collapse
|
19
|
De Jesús-Burgos M, Torres-Llenza V, Pérez-Acevedo NL. Activation of amygdalar metabotropic glutamate receptors modulates anxiety, and risk assessment behaviors in ovariectomized estradiol-treated female rats. Pharmacol Biochem Behav 2012; 101:369-78. [PMID: 22326382 DOI: 10.1016/j.pbb.2012.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/13/2012] [Accepted: 01/18/2012] [Indexed: 12/23/2022]
Abstract
Anxiety disorders are more prevalent in females than males. The underlying reasons for this gender difference are unknown. Metabotropic glutamate receptors (mGluRs) have been linked to anxiety and it has been shown that interaction between estrogen receptors and mGluRs modulate sexual receptivity in rats. We investigated the role of mGluRs in anxiety-related behaviors in ovariectomized female rats with (OVX+EB) or without (OVX) estradiol implants. We centrally infused (s)-3,5-dihydroxyphenylglycine (DHPG), a group I mGluR agonist, into the basolateral amygdala (BLA) of OVX+EB and OVX rats at 0.1 and 1.0 μM. Male rats that normally have low estradiol levels were used to compare with OVX rats. Generalized anxiety, explorative activity and detection and analysis of threat were analyzed in the elevated plus maze (EPM) and risk assessment behaviors (RABs). DHPG (1.0 μM) increased the percentage of time spent in- and entries into- the open arms in OVX+EB, but not in OVX or male rats. Flat-back approaches and stretch-attend postures, two RABs, were significantly reduced by DHPG (0.1 and 1.0 μM) in OVX+EB rats only. DHPG did not modulate rearing and freezing, behaviors related to exploration and fear-like behavior, respectively. However, DHPG (1.0 μM) increased head dipping and decreased grooming behaviors in OVX rats, suggesting a weak explorative modulation. The effects of DHPG observed in OVX+EB, were blocked by 50 μM of (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), a mGluR1 antagonist. AIDA and/or estradiol did not modulate anxiety and or RABs. Our results show that intra-BLA infusion of DHPG exerts an anxiolytic-like effect in OVX+EB, but not in OVX or male rats. This effect seems to depend upon mGluR1 subtype activation. Our findings led us to suggest that the effects observed in OVX+EB rats might be due to an interaction at the membrane level of estrogen receptors with mGlu1 within the BLA.
Collapse
Affiliation(s)
- María De Jesús-Burgos
- Department of Anatomy and Neurobiology, School of Medicine, UPR-MSC, PO Box 365067, San Juan, PR 00936-5067, USA
| | | | | |
Collapse
|
20
|
Johansen JP, Cain CK, Ostroff LE, LeDoux JE. Molecular mechanisms of fear learning and memory. Cell 2011; 147:509-24. [PMID: 22036561 DOI: 10.1016/j.cell.2011.10.009] [Citation(s) in RCA: 733] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Indexed: 01/08/2023]
Abstract
Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias.
Collapse
Affiliation(s)
- Joshua P Johansen
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
21
|
Drago A, Crisafulli C, Sidoti A, Serretti A. The molecular interaction between the glutamatergic, noradrenergic, dopaminergic and serotoninergic systems informs a detailed genetic perspective on depressive phenotypes. Prog Neurobiol 2011; 94:418-60. [DOI: 10.1016/j.pneurobio.2011.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/28/2011] [Accepted: 05/31/2011] [Indexed: 12/12/2022]
|
22
|
Mahan AL, Ressler KJ. Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 2011; 35:24-35. [PMID: 21798604 DOI: 10.1016/j.tins.2011.06.007] [Citation(s) in RCA: 419] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 06/11/2011] [Accepted: 06/17/2011] [Indexed: 12/30/2022]
Abstract
Posttraumatic stress disorder (PTSD) is an anxiety disorder that can develop after a traumatic experience such as domestic violence, natural disasters or combat-related trauma. The cost of such disorders on society and the individual can be tremendous. In this article, we review how the neural circuitry implicated in PTSD in humans is related to the neural circuitry of fear. We then discuss how fear conditioning is a suitable model for studying the molecular mechanisms of the fear components that underlie PTSD, and the biology of fear conditioning with a particular focus on the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB), GABAergic and glutamatergic ligand-receptor systems. We then summarize how such approaches might help to inform our understanding of PTSD and other stress-related disorders and provide insight to new pharmacological avenues of treatment of PTSD.
Collapse
Affiliation(s)
- Amy L Mahan
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University School of Medicine, 954 Gatewood Drive, Atlanta, GA 30329, USA
| | | |
Collapse
|
23
|
Conditioned taste aversion modifies persistently the subsequent induction of neocortical long-term potentiation in vivo. Neurobiol Learn Mem 2011; 95:519-26. [DOI: 10.1016/j.nlm.2011.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 02/24/2011] [Accepted: 03/21/2011] [Indexed: 12/21/2022]
|
24
|
Early continuous inhibition of group 1 mGlu signaling partially rescues dendritic spine abnormalities in the Fmr1 knockout mouse model for fragile X syndrome. Psychopharmacology (Berl) 2011; 215:291-300. [PMID: 21181121 DOI: 10.1007/s00213-010-2130-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 12/01/2010] [Indexed: 12/17/2022]
Abstract
RATIONALE Abnormal dendritic spine morphology is a significant neuroanatomical defect in fragile X mental retardation. It has been suggested that overactive group 1 metabotropic glutamate receptor (mGlu) signaling is associated with the spine dysmorphology occurring in fragile X syndrome (FXS). Thus, group 1 mGlu became a new therapeutic target for the treatment of FXS. OBJECTIVE The purpose of this study was to identify the effect of inhibition of mGlu signaling in FXS. METHODS We observed the changes in dendritic spines after pharmacological modulation of mGlu signaling in an Fmr1 knockout (KO) mouse model. RESULTS The activation of group 1 mGlu resulted in elongation of dendritic spines in the cultured neurons derived from Fmr1 KO mice and wild-type (WT) mice. Antagonism of group 1 mGlu reduced the average spine length of Fmr1 KO neurons. Furthermore, systemic administration of the selective group 1 mGlu5 antagonist 2-methyl-6-phenylethynyl pyridine (MPEP) reduced the average spine length and density in the cortical neurons of Fmr1 KO mice at developmental age. For the adult mice, MPEP administration was less effective for the restoration of spine length. The percentage of immature spines showed a similar reduction in parallel to the changes of spine length. Temporary MPEP intervention with single-dose treatment did not show any effect. CONCLUSION These results show that MPEP administration could partially rescue the morphological deficits of dendritic spines in Fmr1 KO mice at developmental age.
Collapse
|
25
|
Li Z, Ji G, Neugebauer V. Mitochondrial reactive oxygen species are activated by mGluR5 through IP3 and activate ERK and PKA to increase excitability of amygdala neurons and pain behavior. J Neurosci 2011; 31:1114-27. [PMID: 21248136 PMCID: PMC3073477 DOI: 10.1523/jneurosci.5387-10.2011] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 11/10/2010] [Indexed: 11/21/2022] Open
Abstract
Reactive oxygen species (ROS) such as superoxide are emerging as important signaling molecules in physiological plasticity but also in peripheral and spinal cord pain pathology. Underlying mechanisms and pain-related ROS signaling in the brain remain to be determined. Neuroplasticity in the amygdala plays a key role in emotional-affective pain responses and depends on group I metabotropic glutamate receptors (mGluRs) and protein kinases. Using patch-clamp, live-cell imaging, and behavioral assays, we tested the hypothesis that mitochondrial ROS links group I mGluRs to protein kinase activation to increase neuronal excitability and pain behavior. Agonists for mGluR1/5 (DHPG) or mGluR5 (CHPG) increased neuronal excitability of neurons in the laterocapsular division of the central nucleus of the amygdala (CeLC). DHPG effects were inhibited by an mGluR5 antagonist (MTEP), IP(3) receptor blocker (xestospongin C), or ROS scavengers (PBN, tempol), but not by an mGluR1 antagonist (LY367385) or NO synthase inhibitor (l-NAME). Tempol inhibited the effects of IP(3) but not those of a PKC activator, indicating that ROS activation was IP(3) mediated. Live-cell imaging in CeLC-containing brain slices directly showed DHPG-induced and synaptically evoked mitochondrial superoxide production. DHPG also increased pain-related vocalizations and spinal reflexes through a mechanism that required mGluR5, IP(3), and ROS. Combined application of inhibitors of ERK (U0126) and PKA (KT5720) was necessary to block completely the excitatory effects of a ROS donor (tBOOH). A PKC inhibitor (GF109203X) had no effect. Antagonists and inhibitors alone did not affect neuronal excitability. The results suggest an important role for the novel mGluR5- IP(3)-ROS-ERK/PKA signaling pathway in amygdala pain mechanisms.
Collapse
Affiliation(s)
- Zhen Li
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1069
| | - Guangchen Ji
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1069
| | - Volker Neugebauer
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1069
| |
Collapse
|
26
|
Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 2010; 90:419-63. [PMID: 20393190 DOI: 10.1152/physrev.00037.2009] [Citation(s) in RCA: 766] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The last 10 years have witnessed a surge of interest for the mechanisms underlying the acquisition and extinction of classically conditioned fear responses. In part, this results from the realization that abnormalities in fear learning mechanisms likely participate in the development and/or maintenance of human anxiety disorders. The simplicity and robustness of this learning paradigm, coupled with the fact that the underlying circuitry is evolutionarily well conserved, make it an ideal model to study the basic biology of memory and identify genetic factors and neuronal systems that regulate the normal and pathological expressions of learned fear. Critical advances have been made in determining how modified neuronal functions upon fear acquisition become stabilized during fear memory consolidation and how these processes are controlled in the course of fear memory extinction. With these advances came the realization that activity in remote neuronal networks must be coordinated for these events to take place. In this paper, we review these mechanisms of coordinated network activity and the molecular cascades leading to enduring fear memory, and allowing for their extinction. We will focus on Pavlovian fear conditioning as a model and the amygdala as a key component for the acquisition and extinction of fear responses.
Collapse
Affiliation(s)
- Hans-Christian Pape
- Institute of Physiology, Westfaelische Wilhelms-University, Muenster, Germany; and Rutgers State University, Newark, New Jersey, USA.
| | | |
Collapse
|
27
|
Olive MF. Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. Eur J Pharmacol 2010; 639:47-58. [PMID: 20371237 DOI: 10.1016/j.ejphar.2010.01.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 01/03/2023]
Abstract
Glutamate plays a pivotal role in regulating drug self-administration and drug-seeking behavior, and the past decade has witnessed a substantial surge of interest in the role of Group I metabotropic glutamate receptors (mGlu(1) and mGlu(5) receptors) in mediating these behaviors. As will be reviewed here, Group I mGlu receptors are involved in normal and drug-induced synaptic plasticity, drug reward, reinforcement and relapse-like behaviors, and addiction-related cognitive processes such as maladaptive learning and memory, behavioral inflexibility, and extinction learning. Animal models of addiction have revealed that antagonists of Group I mGlu receptors, particularly the mGlu(5) receptor, reduce self-administration of virtually all drugs of abuse. Since inhibitors of mGlu5 receptor function have now entered clinical trials for other medical conditions and appear to be well-tolerated, a key question that remains unanswered is - what changes in cognition are produced by these compounds that result in reduced drug intake and drug-seeking behavior? Finally, in contrast to mGlu(5) receptor antagonists, recent studies have indicated that positive allosteric modulation of mGlu(5) receptors actually enhances synaptic plasticity and improves various aspects of cognition, including spatial learning, behavioral flexibility, and extinction of drug-seeking behavior. Thus, while inhibition of Group I mGlu receptor function may reduce drug reward, reinforcement, and relapse-related behaviors, positive allosteric modulation of the mGlu5 receptor subtype may actually enhance cognition and potentially reverse some of the cognitive deficits associated with chronic drug use.
Collapse
Affiliation(s)
- M Foster Olive
- Center for Drug and Alcohol Programs, Department of Psychiatry, Medical University of South Carolina, 67 President Street, MSC 861, Charleston, SC 29425, USA.
| |
Collapse
|
28
|
McCool BA, Christian DT, Diaz MR, Läck AK. Glutamate plasticity in the drunken amygdala: the making of an anxious synapse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:205-33. [PMID: 20813244 DOI: 10.1016/s0074-7742(10)91007-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Plasticity at glutamatergic synapses is believed to be the cellular correlate of learning and memory. Classic fear conditioning, for example, is dependent upon NMDA-type glutamate receptor activation in the lateral/basolateral amygdala followed by increased synaptic expression of AMPA-type glutamate receptors. This review provides an extensive comparison between the initiation and expression of glutamatergic plasticity during learning/memory and glutamatergic alterations associated with chronic ethanol exposure and withdrawal. The parallels between these neuro-adaptive processes suggest that long-term ethanol exposure might "chemically condition" amygdala-dependent fear/anxiety via the increased function of pre- and post-synaptic glutamate signaling.
Collapse
Affiliation(s)
- Brian A McCool
- Department of Physiology & Pharmcology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|