1
|
Pigeon S, Lonergan M, Rotondo O, Pitman RK, Brunet A. Impairing memory reconsolidation with propranolol in healthy and clinical samples: a meta-analysis. J Psychiatry Neurosci 2022; 47:E109-E122. [PMID: 35361699 PMCID: PMC8979654 DOI: 10.1503/jpn.210057] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/16/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Reconsolidation impairment using propranolol is a novel intervention for mental disorders with an emotional memory at their core. In this systematic review and meta-analysis, we examined the evidence for this intervention in healthy and clinical adult samples. METHODS We searched 8 databases for randomized, double-blind studies that involved at least 1 propranolol group and 1 placebo group. We conducted a meta-analysis of 14 studies (n = 478) in healthy adults and 12 studies in clinical samples (n = 446). RESULTS Compared to placebo, reconsolidation impairment under propranolol resulted in reduced recall of aversive material and cue-elicited conditioned emotional responses in healthy adults, as evidenced by an effect size (Hedges g) of -0.51 (p = 0.002, 2-tailed). Moreover, compared to placebo, reconsolidation impairment under propranolol alleviated psychiatric symptoms and reduced cue-elicited reactivity in clinical samples with posttraumatic stress disorder, addiction or phobia (g = -0.42, p = 0.010). LIMITATIONS Methodological differences between studies posed an obstacle for identifying sources of heterogeneity. CONCLUSION Reconsolidation impairment is a robust, well-replicated phenomenon in humans. Its clinical use is promising and deserves further controlled investigation.
Collapse
Affiliation(s)
- Sereena Pigeon
- From McGill University, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the Douglas Mental Health University Institute Research Center, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the School of Psychology, University of Ottawa, Ottawa, Ont., Canada (Lonergan); and the Department of Psychiatry, Harvard Medical School, Charlestown, Mass., USA (Pitman)
| | - Michelle Lonergan
- From McGill University, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the Douglas Mental Health University Institute Research Center, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the School of Psychology, University of Ottawa, Ottawa, Ont., Canada (Lonergan); and the Department of Psychiatry, Harvard Medical School, Charlestown, Mass., USA (Pitman)
| | - Olivia Rotondo
- From McGill University, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the Douglas Mental Health University Institute Research Center, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the School of Psychology, University of Ottawa, Ottawa, Ont., Canada (Lonergan); and the Department of Psychiatry, Harvard Medical School, Charlestown, Mass., USA (Pitman)
| | - Roger K Pitman
- From McGill University, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the Douglas Mental Health University Institute Research Center, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the School of Psychology, University of Ottawa, Ottawa, Ont., Canada (Lonergan); and the Department of Psychiatry, Harvard Medical School, Charlestown, Mass., USA (Pitman)
| | - Alain Brunet
- From McGill University, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the Douglas Mental Health University Institute Research Center, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the School of Psychology, University of Ottawa, Ottawa, Ont., Canada (Lonergan); and the Department of Psychiatry, Harvard Medical School, Charlestown, Mass., USA (Pitman)
| |
Collapse
|
2
|
Hu SJ, Chang HA, Dai W. Dose-dependent effect of retrieval-extinction on preventing reinstatement of cocaine-associated memory in mice. CHINESE J PHYSIOL 2022; 65:159-170. [DOI: 10.4103/0304-4920.354804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
3
|
Justel N, Salguero A, Marengo L, Psyrdellis M, Pautassi RM. Open field exposure facilitates the expression of a spatial, recognition memory. Neurosci Lett 2021; 757:135997. [PMID: 34058293 DOI: 10.1016/j.neulet.2021.135997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Novelty seems to reduce the persistence of aversive memories and to modulate frustration responses, yet much less is known on how this treatment affects memories lacking hedonic or emotional content. The present study analyzed how a 5-min exposure to a novel open field modulated the expression of a spatial recognition memory. Experiment 1 indicated that male Wistar rats trained in a T-maze in which one goal arm is blocked exhibit, when tested 2 h later, preference for the novel arm. This recognition memory was impaired by the muscarinic cholinergic antagonist scopolamine. Postraining, but not pretraining, novelty exposure rescued the cognitive impairment induced by scopolamine (Experiment 2 and 3). Pretraining open field exposure alleviated the lack of memory expression, induced by imposing a 6 h delay between training and testing (Experiment 4). The study shows that a very brief exposure to novelty can improve expression of a spatial, recognition memory, a modulation that - in the case of the pretraining novelty exposure -- emerges even in spite of cholinergic blockade. The present results are consistent with research suggesting that novelty exposure can be an effective, non-pharmacological, treatment to modulate memory expression.
Collapse
Affiliation(s)
- Nadia Justel
- Laboratorio de Psicología Experimental y Aplicada (PSEA), Instituto de Investigaciones Médicas (IDIM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Argentina
| | - Agustín Salguero
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC), CONICET Universidad Nacional de Córdoba (UNC), Argentina
| | - Leonardo Marengo
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC), CONICET Universidad Nacional de Córdoba (UNC), Argentina
| | - Mariana Psyrdellis
- Laboratorio de Psicología Experimental y Aplicada (PSEA), Instituto de Investigaciones Médicas (IDIM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Argentina
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC), CONICET Universidad Nacional de Córdoba (UNC), Argentina; Facultad de Psicología, Universidad Nacional de Córdoba (UNC), Argentina.
| |
Collapse
|
4
|
Huang WL, Hsiung MH, Dai W, Hu SSJ. Rottlerin, BDNF, and the impairment of inhibitory avoidance memory. Psychopharmacology (Berl) 2021; 238:421-439. [PMID: 33146738 DOI: 10.1007/s00213-020-05690-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE AND OBJECTIVE As a eukaryotic elongation factor 2 kinase (eEF2K) inhibitor and a mitochondrial uncoupler, oncologists have extensively studied rottlerin. Neuroscientists, however, have accumulated scarce data on the role of rottlerin in affective and cognitive functions. Only two prior studies have, respectively, documented its antidepressant-like effect and how it impairs psychostimulant-supported memory. Whether or not rottlerin would affect aversive memory remains unknown. Hence, we sought to investigate the effects of rottlerin on aversive memory in the inhibitory avoidance (IA) task in mice. MATERIALS AND METHODS Male C57BL/6J mice were trained to acquire the IA task. Rottlerin (5 mg/kg, i.p. or 3 μg bilaterally in the hippocampus) or the vehicle was administered before footshock training (acquisition), after footshock training (consolidation), after the memory reactivation (reconsolidation), and before the test (retrieval) in the IA task. RESULTS Systemic and intrahippocampal rottlerin impaired the acquisition, consolidation, and retrieval of IA memory, without affecting the reconsolidation process. Rottlerin (5 mg/kg, i.p.) induced a fast-onset and long-lasting increase in the brain-derived neurotrophic factor (BDNF) protein levels in the mouse hippocampus. Systemic injection of 7,8-dihydroxyflavone (7,8-DHF, 30 mg/kg), a BDNF tropomyosin receptor kinase B (TrkB) agonist impaired IA memory consolidation, and treatment with K252a (5 μg/kg), a Trk receptor antagonist, reversed the suppressing effect of rottlerin on IA memory consolidation. CONCLUSION Rottlerin impairs IA memory consolidation through the enhancement of BDNF signaling in the mouse hippocampus. Excessive brain BDNF levels can be detrimental to cognitive function. Rottlerin is likely to affect the original memory-associated neuroplasticity. Thus, it can be combined with exposure therapy to facilitate the forgetting of maladaptive aversive memory, such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Wan-Ling Huang
- Cannabinoid Signaling Laboratory, Department of Psychology, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan
| | - Ming-Heng Hsiung
- Cannabinoid Signaling Laboratory, Department of Psychology, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan
| | - Wen Dai
- Cannabinoid Signaling Laboratory, Department of Psychology, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan
| | - Sherry Shu-Jung Hu
- Cannabinoid Signaling Laboratory, Department of Psychology, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan.
| |
Collapse
|
5
|
Craig M, Knowles C, Hill S, Dewar M. A study on episodic memory reconsolidation that tells us more about consolidation. Learn Mem 2021; 28:30-33. [PMID: 33452111 PMCID: PMC7812862 DOI: 10.1101/lm.052274.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022]
Abstract
Awake quiescence immediately after encoding is conducive to episodic memory consolidation. Retrieval can render episodic memories labile again, but reconsolidation can modify and restrengthen them. It remained unknown whether awake quiescence after retrieval supports episodic memory reconsolidation. We sought to examine this question via an object-location memory paradigm. We failed to probe the effect of quiescence on reconsolidation, but we did observe an unforeseen “delayed” effect of quiescence on consolidation. Our findings reveal that the beneficial effect of quiescence on episodic memory consolidation is not restricted to immediately following encoding but can be achieved at a delayed stage and even following a period of task engagement.
Collapse
Affiliation(s)
- Michael Craig
- Memory Lab, Department of Psychology, School of Social Sciences, Heriot Watt University, Edinburgh EH14 4AS, United Kingdom.,Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Christopher Knowles
- Memory Lab, Department of Psychology, School of Social Sciences, Heriot Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Stephanie Hill
- Memory Lab, Department of Psychology, School of Social Sciences, Heriot Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Michaela Dewar
- Memory Lab, Department of Psychology, School of Social Sciences, Heriot Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
6
|
Cross-Frequency Phase-Amplitude Coupling between Hippocampal Theta and Gamma Oscillations during Recall Destabilizes Memory and Renders It Susceptible to Reconsolidation Disruption. J Neurosci 2020; 40:6398-6408. [PMID: 32661022 DOI: 10.1523/jneurosci.0259-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023] Open
Abstract
Avoidance memory reactivation at recall triggers theta-gamma hippocampal phase amplitude coupling (hPAC) only when it elicits hippocampus-dependent reconsolidation. However, it is not known whether there is a causal relationship between these phenomena. We found that in adult male Wistar rats, silencing the medial septum during recall did not affect avoidance memory expression or maintenance but abolished hPAC and the amnesia caused by the intrahippocampal administration of reconsolidation blockers, both of which were restored by concomitant theta burst stimulation of the fimbria-fornix pathway. Remarkably, artificial hPAC generated by fimbria-fornix stimulation during recall of a learned avoidance response naturally resistant to hippocampus-dependent reconsolidation made it susceptible to reactivation-dependent amnesia. Our results indicate that hPAC mediates the destabilization required for avoidance memory reconsolidation and suggest that the generation of artificial hPAC at recall overcomes the boundary conditions of this process.SIGNIFICANCE STATEMENT Theta-gamma hippocampal phase-amplitude coupling (hPAC) increases during the induction of hippocampus-dependent avoidance memory reconsolidation. However, whether hPAC plays a causal role in this process remains unknown. Using behavioral, electrophysiological, optogenetic, and biochemical tools in adult male Wistar rats, we demonstrate that reactivation-induced hPAC is necessary for avoidance memory destabilization, and that artificial induction of this patterned activity during recall of reconsolidation-resistant aversive memories renders them liable to the amnesic effect of reconsolidation inhibitors.
Collapse
|
7
|
Alarcon TA, Areal LB, Herlinger AL, Paiva KK, Cicilini MA, Martins-Silva C, Pires RGW. The cannabinoid agonist WIN-2 affects acquisition but not consolidation of a spatial information in training and retraining processes: Relation with transcriptional regulation of the endocannabinoid system? Behav Brain Res 2020; 377:112231. [PMID: 31526770 DOI: 10.1016/j.bbr.2019.112231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 10/26/2022]
Abstract
The endocannabinoid system is capable of modulating multiple physiological brain functions including learning and memory. Moreover, there is evidence that the processes of acquisition and consolidation have distinct biological basis. We used the cannabinoid agonist WIN 55,212-2 (WIN-2) to investigate whether chronic CB1 activation affects acquisition and consolidation differently by evaluating gene expression in the hippocampus (HIP) and prefrontal cortex (PFC). Swiss mice were treated with WIN-2 (2 mg/kg) and submitted to the Morris water maze to evaluate different aspects of memory. We observed short-term memory impairment in acquisition of the spatial task while consolidation remained unchanged. In the PFC, animals that received WIN-2 prior to the task exhibited increased expression of the 2-AG synthesis enzyme diacylglycerol lipase and decreased levels of the degradation enzyme monoacylglycerol lipase, while mice that were treated after the task for the evaluation of consolidation exhibited the opposite profile. With respect to genes related to AEA metabolism, no correlation between the molecular and behavioral data could be established. In this sense, the cognitive impairment in the acquisition promoted by WIN-2 treatment may be related to a possible increase in the concentration of 2-AG in the PFC. Overall, this study confirms the relevance of the endocannabinoid system in the modulation of cognitive processes. A better understanding of the mechanisms underlying endocannabinoids roles in cognition could provide guidance for the development of treatments to reduce the cognitive deficits caused by drug abuse.
Collapse
Affiliation(s)
- T A Alarcon
- Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil; Graduate Program in Biochemistry and Pharmacology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil
| | - L B Areal
- Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil; Graduate Program in Neuroscience, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - A L Herlinger
- Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil; Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - K K Paiva
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil
| | - M A Cicilini
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil
| | - C Martins-Silva
- Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil; Graduate Program in Biochemistry and Pharmacology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil; Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil
| | - R G W Pires
- Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil; Graduate Program in Biochemistry and Pharmacology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil; Graduate Program in Neuroscience, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil; Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil.
| |
Collapse
|
8
|
Inhibition of transcription and translation in dorsal hippocampus does not interfere with consolidation of memory of intense training. Neurobiol Learn Mem 2019; 166:107092. [DOI: 10.1016/j.nlm.2019.107092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/23/2019] [Accepted: 09/14/2019] [Indexed: 01/01/2023]
|
9
|
de la Fuente V, Medina C, Falasco G, Urrutia L, Kravitz AV, Urbano FJ, Vázquez S, Pedreira ME, Romano A. The lateral neocortex is critical for contextual fear memory reconsolidation. Sci Rep 2019; 9:12157. [PMID: 31434945 PMCID: PMC6704072 DOI: 10.1038/s41598-019-48340-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022] Open
Abstract
Memories are a product of the concerted activity of many brain areas. Deregulation of consolidation and reprocessing of mnemonic traces that encode fearful experiences might result in fear-related psychopathologies. Here, we assessed how pre-established memories change with experience, particularly the labilization/reconsolidation of memory, using the whole-brain analysis technique of positron emission tomography in male mice. We found differences in glucose consumption in the lateral neocortex, hippocampus and amygdala in mice that underwent labilization/reconsolidation processes compared to animals that did not reactivate a fear memory. We used chemogenetics to obtain insight into the role of cortical areas in these phases of memory and found that the lateral neocortex is necessary for fear memory reconsolidation. Inhibition of lateral neocortex during reconsolidation altered glucose consumption levels in the amygdala. Using an optogenetic/neuronal recording-based strategy we observed that the lateral neocortex is functionally connected with the amygdala, which, along with retrograde labeling using fluorophore-conjugated cholera toxin subunit B, support a monosynaptic connection between these areas and poses this connection as a hot-spot in the circuits involved in reactivation of fear memories.
Collapse
Affiliation(s)
- Verónica de la Fuente
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina. .,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| | - Candela Medina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Germán Falasco
- Centro de Imágenes Moleculares, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Escobar, Buenos Aires, Argentina
| | - Leandro Urrutia
- Centro de Imágenes Moleculares, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Escobar, Buenos Aires, Argentina
| | - Alexxai V Kravitz
- National Institute of Diabetes and Kidney and Digestive Diseases, Bethesda, MD, 20814, USA
| | - Francisco J Urbano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Silvia Vázquez
- Centro de Imágenes Moleculares, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Escobar, Buenos Aires, Argentina
| | - María Eugenia Pedreira
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Arturo Romano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| |
Collapse
|
10
|
Zameer S, Akhtar M, Vohora D. Behavioral Experimental Paradigms for the Evaluation of Drug’s Influence on Cognitive Functions: Interpretation of Associative, Spatial/Nonspatial and Working Memory. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:185-204. [DOI: 10.2174/1871527318666190112143834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/14/2018] [Accepted: 12/31/2018] [Indexed: 11/22/2022]
Abstract
Background:
Currently, a large number of people throughout the world are affected by neurodegenerative
disorders such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease
which appear with a lapse in recall, attention and altered cognitive functions. Learning and memory,
the fundamental indices defining cognitive functions, are the complex psychological processes governing
acquisition, consolidation, and retrieval of stored information. These processes are synchronized
by the coordination of various parts of the brain including hippocampus, striatum and amygdala.
Objective:
The present review is centered on different behavioral paradigms in rodents interpreting
learning and memory both explicitly and implicitly. Furthermore, it is also emphasizing on the interaction
of various brain structures during different stages of associative, spatial and non-spatial memory.
Methods:
We embarked on an objective review of literature relevant to screening methods for evaluation
of drug’s influence on a wide range of cognitive functions (learning and memory) as well as the
underlying mechanism responsible for modulation of these functions.
Results:
Our review highlighted the behavioral paradigms based on associative, spatial/nonspatial and
working memory. The cited research acknowledged the hippocampal and striatal control on learning
and memory.
Conclusion:
Since the neurodegenerative disorders and dementia have continuously been increasing, a
wide range of therapeutic targets have been developed at the cellular and molecular level. This arises
the necessity of screening of these targets in different cognitive behavioral paradigms which reflect
their memory enhancing potential. The understanding of behavioral models and the involvement of
brain structures in cognitive functions highlighted in the present review might be helpful to advance
therapeutic interventions.
Collapse
Affiliation(s)
- Saima Zameer
- Department of Pharmacology, SPER, Jamia Hamdard, New Delhi, India
| | - Mohd. Akhtar
- Department of Pharmacology, SPER, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
11
|
Gisquet-Verrier P, Riccio DC. Memory integration: An alternative to the consolidation/reconsolidation hypothesis. Prog Neurobiol 2018; 171:15-31. [PMID: 30343034 DOI: 10.1016/j.pneurobio.2018.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 09/11/2018] [Accepted: 10/13/2018] [Indexed: 10/28/2022]
Abstract
The original concept of consolidation considers that memory requires time to be fixed. Since 2000, a comparable protein-dependent re-stabilization phase, called reconsolidation, has been assumed to take place after memory retrieval. This consolidation/reconsolidation hypothesis, has dominated the literature for more than 50 years, despite compelling evidence that is inconsistent with it. In this review, we present an historical overview and explain how, despite serious criticisms, this hypothesis has persisted for decades and become accepted as a dogma. Based on both older and more recent evidence, we next propose the concept of memory integration which involves the linkage or embedding of new material into an already existing representation. We believe integration provides a viable explanation for retrograde amnesia in place of the consolidation/reconsolidation hypothesis. Integration can further be the basis for several major cases of memory alteration such as time dependent memory enhancement, interference, counter-conditioning, updating and other instances of memory malleability. In a final section we consider the implications this new concept may have for memory processes and its translational applications.
Collapse
Affiliation(s)
- Pascale Gisquet-Verrier
- Neuro-PSI, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Bât 446, Orsay, F-91405, France.
| | - David C Riccio
- Department of Psychological Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
12
|
Hu J, Wang W, Homan P, Wang P, Zheng X, Schiller D. Reminder duration determines threat memory modification in humans. Sci Rep 2018; 8:8848. [PMID: 29891856 PMCID: PMC5995965 DOI: 10.1038/s41598-018-27252-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/29/2018] [Indexed: 11/10/2022] Open
Abstract
Memory reminders can return a memory into an unstable state such that it will decay unless actively restabilized into long-term memory through reconsolidation. Exposure to a memory reminder, however, does not always lead to destabilization. The 'trace dominance' principle posits that the extent of exposure to memory reminders governs memory susceptibility to disruption. Here, we provide a first systematic investigation of reminder duration effects on threat memory modification in humans. Reminder duration was parametrically varied across 155 participants in a three-day protocol. We found that short reminders (1 s and 4 s) made the memory prone to interference from post-retrieval extinction, suggesting that the memory had been updated. In contrast, no reminder or long reminders (30 s and 3 min) made the memory resistant to such interference, and robustly return. Reminder duration therefore influences memory stability and may be a critical determinant of therapeutic efficacy.
Collapse
Affiliation(s)
- Jingchu Hu
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wenqing Wang
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Philipp Homan
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| | - Penggui Wang
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Xifu Zheng
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.
| | - Daniela Schiller
- Department of Psychiatry, Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Jobim PFC, Dos Santos CEI, Jeromel L, Pellicon P, Amaral L, Dias JF. Changes in the element concentration of the dorsal hippocampus CA1 region during memory consolidation and reconsolidation. J Chem Neuroanat 2017; 90:49-56. [PMID: 29248756 DOI: 10.1016/j.jchemneu.2017.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
The concentration and distribution of Mg, P, Cl, K, Cu and Zn in the dorsal hippocampus CA1 region of rat brains were studied during memory consolidation and reconsolidation processes stimulated with inhibitory avoidance (IA) tests. Experimental rats were divided into four groups: i) group not submitted to inhibitory avoidance task (IA-N); ii) group submitted to inhibitory avoidance training session (IA-Y); iii) group submitted to inhibitory avoidance reactivation session but did not step down from the platform (IAR-N); and iv) group submitted to avoidance reactivation session and stepped down from the platform (IAR-Y). Elemental concentration and distribution in the CA1 hippocampus region were obtained through the Particle-Induced X-ray Emission (PIXE) technique. The results indicate that the concentration of Mg, P, Cl, K and Cu increased during memory consolidation. During the memory reconsolidation process, the concentrations of Mg, P, Cl and K increased, while Cu and Zn had no significant changes with respect to their basal condition. These results show that the major part of these elements may be engaged in memory consolidation could be also participating in memory reconsolidation. For all elements, the general trend related to their concentration did not change during reconsolidation regardless the presence of a novelty event, i.e. stepping down from the platform.
Collapse
Affiliation(s)
- Paulo Fernandes Costa Jobim
- Physiology Department, Federal University of Health Sciences of Porto Alegre, Rua Sarmento Leite 245, CEP 90050-170, Porto Alegre, RS, Brazil.
| | - Carla Eliete Iochims Dos Santos
- Institute of Physics, Statistics and Mathematics, Federal University of Rio Grande, CEP 95500-000, Santo Antônio da Patrulha, RS, Brazil.
| | - Luka Jeromel
- Department for Low and Medium Energy Physics, Jožef Stefan Institute, SI-1000, Ljubljana, Slovenia.
| | - Primoz Pellicon
- Department for Low and Medium Energy Physics, Jožef Stefan Institute, SI-1000, Ljubljana, Slovenia.
| | - Livio Amaral
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15051, CEP 91501-970, Porto Alegre, RS, Brazil.
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15051, CEP 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Treanor M, Brown LA, Rissman J, Craske MG. Can Memories of Traumatic Experiences or Addiction Be Erased or Modified? A Critical Review of Research on the Disruption of Memory Reconsolidation and Its Applications. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2017; 12:290-305. [PMID: 28346121 DOI: 10.1177/1745691616664725] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent research suggests that the mere act of retrieving a memory can temporarily make that memory vulnerable to disruption. This process of "reconsolidation" will typically restabilize the neural representation of the memory and foster its long-term storage. However, the process of reconsolidating the memory takes time to complete, and during this limited time window, the original memory may be modified either by the presentation of new information or with pharmacological agents. Such findings have prompted rising interest in using disruption during reconsolidation as a clinical intervention for anxiety, posttraumatic stress, and substance use disorders. However, "boundary conditions" on memory reconsolidation may pose significant obstacles to clinical translation. The aim of this article is to critically examine the nature of these boundary conditions, their neurobiological substrates, and the potential effect they may have on disruption of reconsolidation as a clinical intervention. These boundary conditions also highlight potential constraints on the reconsolidation phenomenon and suggest a limited role for memory updating consistent with evolutionary accounts of associative learning for threat and reward. We conclude with suggestions for future research needed to elucidate the precise conditions under which reconsolidation disruption may be clinically useful.
Collapse
|
15
|
Radiske A, Gonzalez MC, Conde-Ocazionez SA, Feitosa A, Köhler CA, Bevilaqua LR, Cammarota M. Prior Learning of Relevant Nonaversive Information Is a Boundary Condition for Avoidance Memory Reconsolidation in the Rat Hippocampus. J Neurosci 2017; 37:9675-9685. [PMID: 28887385 PMCID: PMC6596618 DOI: 10.1523/jneurosci.1372-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/13/2017] [Accepted: 08/28/2017] [Indexed: 01/07/2023] Open
Abstract
Reactivated memories can be modified during reconsolidation, making this process a potential therapeutic target for posttraumatic stress disorder (PTSD), a mental illness characterized by the recurring avoidance of situations that evoke trauma-related fears. However, avoidance memory reconsolidation depends on a set of still loosely defined boundary conditions, limiting the translational value of basic research. In particular, the involvement of the hippocampus in fear-motivated avoidance memory reconsolidation remains controversial. Combining behavioral and electrophysiological analyses in male Wistar rats, we found that previous learning of relevant nonaversive information is essential to elicit the participation of the hippocampus in avoidance memory reconsolidation, which is associated with an increase in theta- and gamma-oscillation power and cross-frequency coupling in dorsal CA1 during reactivation of the avoidance response. Our results indicate that the hippocampus is involved in memory reconsolidation only when reactivation results in contradictory representations regarding the consequences of avoidance and suggest that robust nesting of hippocampal theta-gamma rhythms at the time of retrieval is a specific reconsolidation marker.SIGNIFICANCE STATEMENT Posttraumatic stress disorder (PTSD) is characterized by maladaptive avoidance responses to stimuli or behaviors that represent or bear resemblance to some aspect of a traumatic experience. Disruption of reconsolidation, the process by which reactivated memories become susceptible to modifications, is a promising approach for treating PTSD patients. However, much of what is known about fear-motivated avoidance memory reconsolidation derives from studies based on fear conditioning instead of avoidance-learning paradigms. Using a step-down inhibitory avoidance task in rats, we found that the hippocampus is involved in memory reconsolidation only when the animals acquired the avoidance response in an environment that they had previously learned as safe and showed that increased theta- and gamma-oscillation coupling during reactivation is an electrophysiological signature of this process.
Collapse
Affiliation(s)
- Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| | - Maria Carolina Gonzalez
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| | - Sergio A Conde-Ocazionez
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| | - Anatildes Feitosa
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| | - Cristiano A Köhler
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| | - Lia R Bevilaqua
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| |
Collapse
|
16
|
Roesler R. Molecular mechanisms controlling protein synthesis in memory reconsolidation. Neurobiol Learn Mem 2017; 142:30-40. [DOI: 10.1016/j.nlm.2017.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
|
17
|
Prado-Alcalá RA, Medina AC, Bello-Medina PC, Quirarte GL. Inhibition of transcription and translation in the striatum after memory reactivation: Lack of evidence of reconsolidation. Neurobiol Learn Mem 2017; 142:21-29. [DOI: 10.1016/j.nlm.2016.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 01/22/2023]
|
18
|
Hemstedt TJ, Lattal KM, Wood MA. Reconsolidation and extinction: Using epigenetic signatures to challenge conventional wisdom. Neurobiol Learn Mem 2017; 142:55-65. [PMID: 28119018 DOI: 10.1016/j.nlm.2017.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/17/2022]
Abstract
Epigenetic mechanisms have the potential to give rise to lasting changes in cell function that ultimately can affect behavior persistently. This concept is especially interesting with respect to fear reconsolidation and fear memory extinction. These two behavioral approaches are used in the laboratory to investigate how fear memory can be attenuated, which becomes important when searching for therapeutic intervention to treat anxiety disorders and post-traumatic stress disorder. Here we review the role of several key epigenetic mechanisms in reconsolidation and extinction of learned fear and their potential to persistently alter behavioral responses to conditioned cues. We also briefly discuss how epigenetic mechanisms may establish persistent behaviors that challenge our definitions of extinction and reconsolidation.
Collapse
Affiliation(s)
- Thekla J Hemstedt
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, Irvine, CA, USA
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, Irvine, CA, USA.
| |
Collapse
|
19
|
Cercato MC, Vázquez CA, Kornisiuk E, Aguirre AI, Colettis N, Snitcofsky M, Jerusalinsky DA, Baez MV. GluN1 and GluN2A NMDA Receptor Subunits Increase in the Hippocampus during Memory Consolidation in the Rat. Front Behav Neurosci 2017; 10:242. [PMID: 28133447 PMCID: PMC5233710 DOI: 10.3389/fnbeh.2016.00242] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/12/2016] [Indexed: 01/14/2023] Open
Abstract
It is widely accepted that NMDA receptors (NMDAR) are required for learning and memory formation, and for synaptic plasticity induction. We have previously shown that hippocampal GluN1 and GluN2A NMDAR subunits significantly increased following habituation of rats to an open field (OF), while GluN2B remained unchanged. Similar results were obtained after CA1-long-term potentiation (LTP) induction in rat hippocampal slices. Other studies have also shown NMDAR up regulation at earlier and later time points after LTP induction or learning acquisition. In this work, we have studied NMDAR subunits levels in the hippocampus and prefrontal cortex (PFC) after OF habituation and after object recognition (OR), to find out whether rising of NMDAR subunits is a general and structure-specific feature during memory formation. In 1, 2 and 3 month old rats there was an increase in hippocampal GluN1 and GluN2A, but not in GluN2B levels 70 min after OF habituation. This rise overlaps with early phase of memory consolidation, suggesting a putative relationship between them. The increases fell down to control levels 90 min after training. Similar results were obtained in the hippocampus of adult rats 70 min after OR training, without changes in PFC. Following OF test or OR discrimination phase, NMDAR subunits remained unchanged. Hence, rising of hippocampal GluN1 and GluN2A appears to be a general feature after novel “spatial/discrimination” memory acquisition. To start investigating the dynamics and possible mechanisms of these changes, we have studied hippocampal neuron cultures stimulated by KCl to induce plasticity. GluN1 and GluN2A increased both in dendrites and neuronal bodies, reaching a maximum 75 min later and returning to control levels at 90 min. Translation and/or transcription and mobilization differentially contribute to this rise in subunits in bodies and dendrites. Our results showed that the NMDAR subunits increase follows a similar time course both in vitro and in vivo. These changes happen in the hippocampus where a spatial representation of the environment is being formed making possible short term and long term memories (STM and LTM); appear to be structure-specific; are preserved along life; and could be related to synaptic tagging and/or to memory consolidation of new spatial/discrimination information.
Collapse
Affiliation(s)
- Magali C Cercato
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Cecilia A Vázquez
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Edgar Kornisiuk
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Alejandra I Aguirre
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Natalia Colettis
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Marina Snitcofsky
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Diana A Jerusalinsky
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICETBuenos Aires, Argentina; Ciclo Básico Común-Universidad de Buenos AiresBuenos Aires, Argentina
| | - María V Baez
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICETBuenos Aires, Argentina; 1UA de Biología Celular, Histología, Embriología y Genética, Departamento de Histología, Facultad de Medicina, Universidad de Buenos AiresBuenos Aires, Argentina
| |
Collapse
|
20
|
The fate of memory: Reconsolidation and the case of Prediction Error. Neurosci Biobehav Rev 2016; 68:423-441. [DOI: 10.1016/j.neubiorev.2016.06.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 05/07/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022]
|
21
|
Rossato JI, Köhler CA, Radiske A, Bevilaqua LRM, Cammarota M. Inactivation of the dorsal hippocampus or the medial prefrontal cortex impairs retrieval but has differential effect on spatial memory reconsolidation. Neurobiol Learn Mem 2015; 125:146-51. [PMID: 26348793 DOI: 10.1016/j.nlm.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 08/10/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Active memories can incorporate new information through reconsolidation. However, the notion that memory retrieval is necessary for reconsolidation has been recently challenged. Non-reinforced retrieval induces hippocampus and medial prefrontal cortex (mPFC)-dependent reconsolidation of spatial memory in the Morris water maze (MWM). We found that the effect of protein synthesis inhibition on this process is abolished when retrieval of the learned spatial preference is hindered through mPFC inactivation but not when it is blocked by deactivation of dorsal CA1. Our results do not fully agree with the hypothesis that retrieval is unneeded for reconsolidation. Instead, they support the idea that a hierarchic interaction between the hippocampus and the mPFC controls spatial memory in the MWM, and indicate that this cortex is sufficient to retrieve the information essential to reconsolidate the spatial memory trace, even when the hippocampus is inactivated.
Collapse
Affiliation(s)
- Janine I Rossato
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Cristiano A Köhler
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Lia R M Bevilaqua
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil.
| |
Collapse
|
22
|
Baldi E, Bucherelli C. Brain sites involved in fear memory reconsolidation and extinction of rodents. Neurosci Biobehav Rev 2015; 53:160-90. [DOI: 10.1016/j.neubiorev.2015.04.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 12/21/2022]
|
23
|
Borba Filho GL, Zenki KC, Kalinine E, Baggio S, Pettenuzzo L, Zimmer ER, Weis SN, Calcagnotto ME, Onofre de Souza D. A new device for step-down inhibitory avoidance task--effects of low and high frequency in a novel device for passive inhibitory avoidance task that avoids bioimpedance variations. PLoS One 2015; 10:e0116000. [PMID: 25706879 PMCID: PMC4338061 DOI: 10.1371/journal.pone.0116000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/03/2014] [Indexed: 12/28/2022] Open
Abstract
Background Step-down inhibitory avoidance task has been widely used to evaluate aversive memory, but crucial parameters inherent to traditional devices that may influence the behavior analysis (as stimulus frequency, animal’s bioimpedance) are frequently neglected. New Method We developed a new device for step-down inhibitory avoidance task by modifying the shape and distribution of the stainless steel bars in the box floor where the stimuli are applied. The bars are 2mm wide, with rectangular shape, arranged in pairs at intervals of 1cm from the next pairs. Each pair makes an electrical dipole where the polarity inverts after each pulse. This device also presents a component that acquires and records the exact current received by the animal foot and precisely controls the frequency of stimulus applied during the entire experiment. Result Different from conventional devices, this new apparatus increases the contact surface with bars and animal´s paws, allowing the electric current pass through the animal´s paws only, drastically reducing the influence of animal’s bioimpedance. The analysis of recorded data showed that the current received by the animal was practically the same as applied, independent of the animal´s body composition. Importantly, the aversive memory was observed at specific stimuli intensity and frequency (0.35 or 0.5 mA at 62 and 125Hz but not at 0.20 mA or 20 Hz). Moreover, with this device it was possible to observe the well-known step-down inhibitory avoidance task memory impairment induced by guanosine. Conclusion This new device offers a substantial improvement for behavioral analysis in step-down inhibitory avoidance task and allows us to precisely compare data from different animals with distinct body composition.
Collapse
Affiliation(s)
- Gilvan Luiz Borba Filho
- Programa de Pós-Graduação em Educação em Ciências, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- * E-mail:
| | - Kamila Cagliari Zenki
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Eduardo Kalinine
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Programa de Pós-Graduação em Ciências Fisiológicas—Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil
| | - Suelen Baggio
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Letícia Pettenuzzo
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Eduardo Rigon Zimmer
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Simone Nardin Weis
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Maria Elisa Calcagnotto
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Departamento de Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Diogo Onofre de Souza
- Programa de Pós-Graduação em Educação em Ciências, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Departamento de Bioquímica, ICBS—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| |
Collapse
|
24
|
Colettis NC, Snitcofsky M, Kornisiuk EE, Gonzalez EN, Quillfeldt JA, Jerusalinsky DA. Amnesia of inhibitory avoidance by scopolamine is overcome by previous open-field exposure. ACTA ACUST UNITED AC 2014; 21:634-45. [PMID: 25322799 PMCID: PMC4201807 DOI: 10.1101/lm.036210.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The muscarinic cholinergic receptor (MAChR) blockade with scopolamine either extended or restricted to the hippocampus, before or after training in inhibitory avoidance (IA) caused anterograde or retrograde amnesia, respectively, in the rat, because there was no long-term memory (LTM) expression. Adult Wistar rats previously exposed to one or two open-field (OF) sessions of 3 min each (habituated), behaved as control animals after a weak though over-threshold training in IA. However, after OF exposure, IA LTM was formed and expressed in spite of an extensive or restricted to the hippocampus MAChR blockade. It was reported that during and after OF exposure and reexposure there was an increase in both hippocampal and cortical ACh release that would contribute to “prime the substrate,” e.g., by lowering the synaptic threshold for plasticity, leading to LTM consolidation. In the frame of the “synaptic tagging and capture” hypothesis, plasticity-related proteins synthesized during/after the previous OF could facilitate synaptic plasticity for IA in the same structure. However, IA anterograde amnesia by hippocampal protein synthesis inhibition with anisomycin was also prevented by two OF exposures, strongly suggesting that there would be alternative interpretations for the role of protein synthesis in memory formation and that another structure could also be involved in this “OF effect.”
Collapse
Affiliation(s)
- Natalia C Colettis
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Marina Snitcofsky
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Edgar E Kornisiuk
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Emilio N Gonzalez
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Jorge A Quillfeldt
- Laboratório de Psicobiologia e Neurocomputação, Depto. de Biofísica, UFRGS, Porto Alegre 91501-970, Brazil
| | - Diana A Jerusalinsky
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| |
Collapse
|
25
|
Baldi E, Bucherelli C. Entorhinal cortex contribution to contextual fear conditioning extinction and reconsolidation in rats. Neurobiol Learn Mem 2014; 110:64-71. [PMID: 24569052 DOI: 10.1016/j.nlm.2014.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/23/2014] [Accepted: 02/11/2014] [Indexed: 01/27/2023]
Abstract
During contextual fear conditioning a rat learns a temporal contiguity association between the exposition to a previously neutral context (CS) and an aversive unconditioned stimulus (US) as a footshock. This condition determines in the rat the freezing reaction during the subsequent re-exposition to the context. Potentially the re-exposition without US presentation initiates two opposing and competing processes: reconsolidation and extinction. Reconsolidation process re-stabilizes and strengthens the original memory and it is initiated by a brief re-exposure to context. Instead the extinction process leads to the decrease of the expression of the original memory and it is triggered by prolonged re-exposure to the context. Here we analyzed the entorhinal cortex (ENT) participation in contextual fear conditioning reconsolidation and extinction. The rats were trained in contextual fear conditioning and 24h later they were subjected either to a brief (2 min) reactivation session or to a prolonged (120 min) re-exposition to context to induce extinction of the contextual fear memory. Immediately after the reactivation or the extinction session, the animals were submitted to bilateral ENT TTX inactivation. Memory retention was assessed as conditioned freezing duration measured 72 h after TTX administration. The results showed that ENT inactivation both after reactivation and extinction session was followed by contextual freezing retention impairment. Thus, the present findings point out that ENT is involved in contextual fear memory reconsolidation and extinction. This neural structure might be part of parallel circuits underlying two phases of contextual fear memory processing.
Collapse
Affiliation(s)
- Elisabetta Baldi
- Dipartimento di Medicina, Sperimentale e Clinica, Sezione di Fisiologia, Università degli Studi di Firenze, Viale G.B. Morgagni 63, I-50134 Firenze, Italy
| | - Corrado Bucherelli
- Dipartimento di Medicina, Sperimentale e Clinica, Sezione di Fisiologia, Università degli Studi di Firenze, Viale G.B. Morgagni 63, I-50134 Firenze, Italy.
| |
Collapse
|
26
|
Taherian F, Vafaei AA, Vaezi GH, Eskandarian S, Kashef A, Rashidy-Pour A. Propranolol-induced Impairment of Contextual Fear Memory Reconsolidation in Rats: A similar Effect on Weak and Strong Recent and Remote Memories. Basic Clin Neurosci 2014; 5:231-9. [PMID: 25337385 PMCID: PMC4202546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Previous studies have demonstrated that the β-adrenergic receptor antagonist propranolol impairs fear memory reconsolidation in experimental animals. There are experimental parameters such as the age and the strength of memory that can interact with pharmacological manipulations of memory reconsolidation. In this study, we investigated the ability of the age and the strength of memory to influence the disrupting effects of propranolol on fear memory reconsolidation in rats. METHODS The rats were trained in a contextual fear conditioning using two (weak training) or five (strong training) footshocks (1mA). Propranolol (10mg/kg) injection was immediately followed retrieval of either a one-day recent (weak or strong) or 36-day remote (weak or strong) contextual fear memories. RESULTS We found that propranolol induced a long-lasting impairment of subsequent expression of recent and remote memories with either weak or strong strength. We also found no memory recovery after a weak reminder shock. Furthermore, no significant differences were found on the amount of memory deficit induced by propranolol among memories with different age and strength. DISCUSSION Our data suggest that the efficacy of propranolol in impairing fear memory reconsolidation is not limited to the age or strength of the memory.
Collapse
Affiliation(s)
| | - Abbas Ali Vafaei
- Laboratory of Learning and Memory, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | - Adel Kashef
- Laboratory of Learning and Memory, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Laboratory of Learning and Memory, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran,Corresponding Author: SuAli Rashidy-Pour, PhD, Laboratory of Learning and Memory, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran. Tel/Fax: +98(231)3354186. E-mail:
| |
Collapse
|
27
|
Flavell CR, Lambert EA, Winters BD, Bredy TW. Mechanisms governing the reactivation-dependent destabilization of memories and their role in extinction. Front Behav Neurosci 2013; 7:214. [PMID: 24421762 PMCID: PMC3872723 DOI: 10.3389/fnbeh.2013.00214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/13/2013] [Indexed: 12/28/2022] Open
Abstract
The extinction of learned associations has traditionally been considered to involve new learning, which competes with the original memory for control over behavior. However, a recent resurgence of interest in reactivation-dependent amnesia has revealed that the retrieval of fear-related memory (with what is essentially a brief extinction session) can result in its destabilization. This review discusses some of the cellular and molecular mechanisms that are involved in the destabilization of a memory following its reactivation and/or extinction, and investigates the evidence that extinction may involve both new learning as well as a partial destabilization-induced erasure of the original memory trace.
Collapse
Affiliation(s)
- Charlotte R Flavell
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| | - Elliot A Lambert
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| | - Boyer D Winters
- Department of Psychology, University of Guelph Guelph, ON, Canada
| | - Timothy W Bredy
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
28
|
Tetzlaff C, Kolodziejski C, Timme M, Tsodyks M, Wörgötter F. Synaptic scaling enables dynamically distinct short- and long-term memory formation. PLoS Comput Biol 2013; 9:e1003307. [PMID: 24204240 PMCID: PMC3814677 DOI: 10.1371/journal.pcbi.1003307] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/11/2013] [Indexed: 01/17/2023] Open
Abstract
Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling - a slow process usually associated with the maintenance of activity homeostasis - combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.
Collapse
Affiliation(s)
- Christian Tetzlaff
- Faculty of Physics – Biophysics, Georg August University Friedrich-Hund Platz 1, Göttingen, Germany
- Network Dynamics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Georg-August-University Friedrich-Hund Platz 1, Göttingen, Germany
- * E-mail:
| | - Christoph Kolodziejski
- Network Dynamics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Georg-August-University Friedrich-Hund Platz 1, Göttingen, Germany
- Faculty of Physics – Nonlinear Dynamics, Georg August University Friedrich-Hund Platz 1, Göttingen, Germany
| | - Marc Timme
- Network Dynamics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Georg-August-University Friedrich-Hund Platz 1, Göttingen, Germany
- Faculty of Physics – Nonlinear Dynamics, Georg August University Friedrich-Hund Platz 1, Göttingen, Germany
| | - Misha Tsodyks
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Florentin Wörgötter
- Faculty of Physics – Biophysics, Georg August University Friedrich-Hund Platz 1, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Georg-August-University Friedrich-Hund Platz 1, Göttingen, Germany
| |
Collapse
|
29
|
Tetzlaff C, Kolodziejski C, Timme M, Tsodyks M, Wörgötter F. Synaptic scaling enables dynamically distinct short- and long-term memory formation. BMC Neurosci 2013. [PMCID: PMC3704751 DOI: 10.1186/1471-2202-14-s1-p415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
30
|
Extracellular signal-regulated kinase in the basolateral amygdala, but not the nucleus accumbens core, is critical for context-response-cocaine memory reconsolidation in rats. Neuropsychopharmacology 2013; 38:753-62. [PMID: 23232446 PMCID: PMC3671999 DOI: 10.1038/npp.2012.238] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The reconsolidation of cocaine memories following retrieval is necessary for the sustained ability of a cocaine-paired environmental context to elicit cocaine seeking. Extracellular signal-regulated kinase (ERK) is an intracellular signaling molecule involved in nucleus accumbens core (NACc)-mediated reconsolidation of Pavlovian cocaine memories. Here, we used a rodent model of drug context-elicited relapse to test the hypothesis that ERK would be similarly required for the reconsolidation of context-response-cocaine memories that underlie drug context-induced reinstatement of instrumental cocaine-seeking behavior, with a focus on the NACc and on the basolateral amygdala (BLA), another important locus for the reconsolidation of cocaine memories. We show that the mitogen-activated protein kinase (MEK)/ERK1/2 inhibitor, U0126 (1.0 μg/0.5 μl/hemisphere), microinfused bilaterally into the BLA--but not the NACc--immediately after brief re-exposure to a previously cocaine-paired context (that is, cocaine-memory reactivation), significantly attenuated subsequent drug context-induced cocaine seeking relative to vehicle (VEH). This effect in the BLA was associated with a transient inhibition of ERK1/2 phosphorylation, and it depended on memory reactivation given that U0126 administered following exposure to a novel context did not alter subsequent cocaine seeking. Furthermore, similar to U0126, baclofen+muscimol-induced (B+M; 106.8/5.7 ng/0.5 μl/hemisphere) neural inactivation of the NACc, following cocaine-memory reactivation, failed to alter subsequent cocaine seeking. These findings demonstrate that ERK activation in the BLA, but not the NACc, is required for the reconsolidation of context-response-cocaine associative memories. Together with prior research, these results suggest that contextual drug-memory reconsolidation in Pavlovian and instrumental settings involves distinct neuroanatomical mechanisms.
Collapse
|
31
|
The effects of N-methyl d-aspartate and B-adrenergic receptor antagonists on the reconsolidation of reward memory: A meta-analysis. Neurosci Biobehav Rev 2013; 37:240-55. [DOI: 10.1016/j.neubiorev.2012.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 11/25/2012] [Accepted: 11/28/2012] [Indexed: 02/05/2023]
|
32
|
Oliveira DR, Sanada PF, Filho ACS, Conceição GMS, Cerutti JM, Cerutti SM. Long-term treatment with standardized extract of Ginkgo biloba L. enhances the conditioned suppression of licking in rats by the modulation of neuronal and glial cell function in the dorsal hippocampus and central amygdala. Neuroscience 2013; 235:70-86. [PMID: 23321541 DOI: 10.1016/j.neuroscience.2013.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/21/2012] [Accepted: 01/08/2013] [Indexed: 01/02/2023]
Abstract
Our group previously demonstrated that short-term treatment with a standardized extract of Ginkgo biloba (EGb) changed fear-conditioned memory by modulating gene expression in the hippocampus, amygdaloid complex and prefrontal cortex. Although there are few controlled studies that support the long-term use of EGb for the prevention and/or treatment of memory impairment, the chronic use of Ginkgo is common. This study evaluated the effects of chronic treatment with EGb on the conditioned emotional response, assessed by the suppression of ongoing behavior and in the modulation of gene and protein expression. Male adult Wistar rats were treated over 28days and assigned to five groups (n=10) as follows: positive control (4mgkg(-1) Diazepam), negative control (12% Tween 80), EGb groups (0.5 and 1.0gkg(-1)) and the naïve group. The suppression of the licking response was calculated for each rat in six trials. Our results provide further evidence for the efficacy of EGb on memory. For the first time, we show that long-term treatment with the highest dose of EGb improves the fear memory and suggests that increased cAMP-responsive element-binding protein (CREB)-1 and glial fibrillary acidic protein (GFAP) mRNA and protein (P<0.001) in the dorsal hippocampus and amygdaloid complex and reduced growth and plasticity-associated protein 43 (GAP-43) (P<0.01) in the hippocampus are involved in this process. The fear memory/treatment-dependent changes observed in our study suggest that EGb might be effective for memory enhancement through its effect on the dorsal hippocampus and amygdaloid complex.
Collapse
Affiliation(s)
- D R Oliveira
- Behavior Pharmacology and Etnopharmacology Laboratory, Department of Biological Science, Universidade Federal de Sao Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Kwak C, Choi JH, Bakes JT, Lee K, Kaang BK. Effect of intensity of unconditional stimulus on reconsolidation of contextual fear memory. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:293-6. [PMID: 23118552 PMCID: PMC3484513 DOI: 10.4196/kjpp.2012.16.5.293] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/11/2012] [Accepted: 09/20/2012] [Indexed: 11/15/2022]
Abstract
Memory reconsolidation is ubiquitous across species and various memory tasks. It is a dynamic process in which memory is modified and/or updated. In experimental conditions, memory reconsolidation is usually characterized by the fact that the consolidated memory is disrupted by a combination of memory reactivation and inhibition of protein synthesis. However, under some experimental conditions, the reactivated memory is not disrupted by inhibition of protein synthesis. This so called "boundary condition" of reconsolidation may be related to memory strength. In Pavlovian fear conditioning, the intensity of unconditional stimulus (US) determines the strength of the fear memory. In this study, we examined the effect of the intensity of US on the reconsolidation of contextual fear memory. Strong contextual fear memory, which is conditioned with strong US, is not disrupted by inhibition of protein synthesis after its reactivation; however, a weak fear memory is often disrupted. This suggests that a US of strong intensity can inhibit reconsolidation of contextual fear memory.
Collapse
Affiliation(s)
- Chuljung Kwak
- National Creative Research Initiative Center for Memory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| | | | | | | | | |
Collapse
|
34
|
Besnard A, Caboche J, Laroche S. Reconsolidation of memory: A decade of debate. Prog Neurobiol 2012; 99:61-80. [PMID: 22877586 DOI: 10.1016/j.pneurobio.2012.07.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/13/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
|
35
|
Zarrindast M, Ghiasvand M, Rezayof A, Ahmadi S. The amnesic effect of intra-central amygdala administration of a cannabinoid CB1 receptor agonist, WIN55,212-2, is mediated by a beta-1 noradrenergic system in rat. Neuroscience 2012; 212:77-85. [DOI: 10.1016/j.neuroscience.2012.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/31/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
|
36
|
Inhibition of mTOR by rapamycin in the amygdala or hippocampus impairs formation and reconsolidation of inhibitory avoidance memory. Neurobiol Learn Mem 2011; 97:105-12. [PMID: 22037516 DOI: 10.1016/j.nlm.2011.10.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/07/2011] [Accepted: 10/12/2011] [Indexed: 11/22/2022]
Abstract
Mammalian target of rapamycin (mTOR), a central regulator of protein synthesis in neurons, has been implicated in synaptic plasticity and memory. Here we show that mTOR inhibition by rapamycin in the basolateral amygdala (BLA) or dorsal hippocampus (DH) impairs both formation and reconsolidation of memory for inhibitory avoidance (IA) in rats. Male Wistar rats received bilateral infusions of vehicle or rapamycin into the BLA or DH before or after IA training or retrieval. Memory retention was tested at different time points after drug infusion. Rapamycin impaired long-term IA retention when given before or immediately after training or retrieval into the BLA. When infused into the DH, rapamycin produced memory impairment when given before training or immediately after retrieval. The impairing effects of post-retrieval rapamycin required memory retrieval and were not reversed by a reminder shock. The results provide the first evidence that mTOR in the BLA and DH might play a role in IA memory reconsolidation.
Collapse
|
37
|
Osan R, Tort ABL, Amaral OB. A mismatch-based model for memory reconsolidation and extinction in attractor networks. PLoS One 2011; 6:e23113. [PMID: 21826231 PMCID: PMC3149635 DOI: 10.1371/journal.pone.0023113] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 07/06/2011] [Indexed: 11/23/2022] Open
Abstract
The processes of memory reconsolidation and extinction have received increasing attention in recent experimental research, as their potential clinical applications begin to be uncovered. A number of studies suggest that amnestic drugs injected after reexposure to a learning context can disrupt either of the two processes, depending on the behavioral protocol employed. Hypothesizing that reconsolidation represents updating of a memory trace in the hippocampus, while extinction represents formation of a new trace, we have built a neural network model in which either simple retrieval, reconsolidation or extinction of a stored attractor can occur upon contextual reexposure, depending on the similarity between the representations of the original learning and reexposure sessions. This is achieved by assuming that independent mechanisms mediate Hebbian-like synaptic strengthening and mismatch-driven labilization of synaptic changes, with protein synthesis inhibition preferentially affecting the former. Our framework provides a unified mechanistic explanation for experimental data showing (a) the effect of reexposure duration on the occurrence of reconsolidation or extinction and (b) the requirement of memory updating during reexposure to drive reconsolidation.
Collapse
Affiliation(s)
- Remus Osan
- Center for Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Center for Biodynamics, Boston University, Boston, Massachusetts, United States of America
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
| | - Adriano B. L. Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal, Rio Grande do Norte, Brazil
| | - Olavo B. Amaral
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
38
|
Garber P, Gomes D, Bicca-Marques J. Experimental field study of problem-solving using tools in free-ranging capuchins (Sapajus nigritus, formerly Cebus nigritus). Am J Primatol 2011; 74:344-58. [DOI: 10.1002/ajp.20957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/15/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022]
Affiliation(s)
- P.A. Garber
- Department of Anthropology; University of Illinois; Urbana; Illinois
| | - D.F. Gomes
- Faculdade de Biociências; Pontifícia Universidade Católica do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - J.C. Bicca-Marques
- Faculdade de Biociências; Pontifícia Universidade Católica do Rio Grande do Sul; Porto Alegre; RS; Brazil
| |
Collapse
|
39
|
Sadowski RN, Canal CE, Gold PE. Lidocaine attenuates anisomycin-induced amnesia and release of norepinephrine in the amygdala. Neurobiol Learn Mem 2011; 96:136-42. [PMID: 21453778 DOI: 10.1016/j.nlm.2011.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/10/2011] [Accepted: 03/18/2011] [Indexed: 12/25/2022]
Abstract
When administered near the time of training, protein synthesis inhibitors such as anisomycin impair later memory. A common interpretation of these findings is that memory consolidation requires new protein synthesis initiated by training. However, recent findings support an alternative interpretation that abnormally large increases in neurotransmitter release after injections of anisomycin may be responsible for producing amnesia. In the present study, a local anesthetic was administered prior to anisomycin injections in an attempt to mitigate neurotransmitter actions and thereby attenuate the resulting amnesia. Rats received lidocaine and anisomycin injections into the amygdala 130 and 120 min, respectively, prior to inhibitory avoidance training. Memory tests 48 h later revealed that lidocaine attenuated anisomycin-induced amnesia. In other rats, in vivo microdialysis was performed at the site of amygdala infusion of lidocaine and anisomycin. As seen previously, anisomycin injections produced large increases in release of norepinephrine in the amygdala. Lidocaine attenuated the anisomycin-induced increase in release of norepinephrine but did not reverse anisomycin inhibition of protein synthesis, as assessed by c-Fos immunohistochemistry. These findings are consistent with past evidence suggesting that anisomycin causes amnesia by initiating abnormal release of neurotransmitters in response to the inhibition of protein synthesis.
Collapse
Affiliation(s)
- Renee N Sadowski
- Neuroscience Program, College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | | | | |
Collapse
|
40
|
Piri M, Zarrindast M. Nitric oxide in the ventral tegmental area is involved in retrieval of inhibitory avoidance memory by nicotine. Neuroscience 2011; 175:154-61. [DOI: 10.1016/j.neuroscience.2010.11.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 11/25/2022]
|
41
|
Zhang Y, Fukushima H, Kida S. Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory. Mol Brain 2011; 4:4. [PMID: 21244716 PMCID: PMC3035037 DOI: 10.1186/1756-6606-4-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/19/2011] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation. However, it is still poorly understood whether gene expression in brain regions other than the amygdala/hippocampus is required for the consolidation of fear memory; however, several brain regions are known to play modulatory roles in fear memory formation. RESULTS To further understand the mechanisms underlying the formation of fear memory, we first identified brain regions where gene expression is activated after learning inhibitory avoidance (IA) by analyzing the expression of the immediately early genes c-fos and Arc as markers. Similarly with previous findings, the induction of c-fos and Arc expression was observed in the amygdala and hippocampus. Interestingly, we also observed the induction of c-fos and Arc expression in the medial prefrontal cortex (mPFC: prelimbic (PL) and infralimbic (IL) regions) and Arc expression in the anterior cingulate cortex (ACC). We next examined the roles of these brain regions in the consolidation of IA memory. Consistent with previous findings, inhibiting protein synthesis in the hippocampus blocked the consolidation of IA memory. More importantly, inhibition in the mPFC or ACC also blocked the formation of IA memory. CONCLUSION Our observations indicated that the formation of IA memory requires gene expression in the ACC and mPFC as well as in the amygdala and hippocampus, suggesting essential roles of the ACC and mPFC in IA memory formation.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | | | | |
Collapse
|
42
|
Makkar SR, Zhang SQ, Cranney J. Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory. Neuropsychopharmacology 2010; 35:1625-52. [PMID: 20410874 PMCID: PMC3055480 DOI: 10.1038/npp.2010.53] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/17/2010] [Accepted: 03/22/2010] [Indexed: 11/09/2022]
Abstract
The current review systematically documents the role of gamma-amino-butyric acid (GABA) in different aspects of fear memory-acquisition and consolidation, reconsolidation, and extinction, and attempts to resolve apparent contradictions in the data in order to identify the function of GABA(A) receptors in fear memory. First, numerous studies have shown that pre- and post-training administration of drugs that facilitate GABAergic transmission disrupt the initial formation of fear memories, indicating a role for GABA(A) receptors, possibly within the amygdala and hippocampus, in the acquisition and consolidation of fear memories. Similarly, recent evidence indicates that these drugs are also detrimental to the restorage of fear memories after their reactivation. This suggests a role for GABA(A) receptors in the reconsolidation of fear memories, although the precise neural circuits are yet to be identified. Finally, research regarding the role of GABA in extinction has shown that GABAergic transmission is also disruptive to the formation of newly acquired extinction memories. We argue that contradictions to these patterns are the result of variations in (a) the location of drug infusion, (b) the dosage of the drug and/or (c) the time point of drug administration. The question of whether these GABA-induced memory deficits reflect deficits in retrieval is discussed. Overall, the evidence implies that the processes mediating memory stability consequent to initial fear learning, memory reactivation, and extinction training are dependent on a common mechanism of reduced GABAergic neurotransmission.
Collapse
Affiliation(s)
- Steve R Makkar
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Shirley Q Zhang
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Jacquelyn Cranney
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
43
|
Mahmoodi G, Ahmadi S, Pourmotabbed A, Oryan S, Zarrindast MR. Inhibitory avoidance memory deficit induced by scopolamine: Interaction of cholinergic and glutamatergic systems in the ventral tegmental area. Neurobiol Learn Mem 2010; 94:83-90. [PMID: 20403448 DOI: 10.1016/j.nlm.2010.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 04/08/2010] [Accepted: 04/13/2010] [Indexed: 11/17/2022]
Abstract
Interaction of cholinergic and glutamatergic inputs in the ventral tegmental area (VTA) influencing a learned behavior is a topic of great interest. In the present study the effect of intra-VTA administration of a nonselective muscarinic acetylcholine antagonist, scopolamine, and N-methyl-d-aspartate (NMDA) receptor agents by themselves as well as their interactions on consolidation and retrieval of inhibitory avoidance (IA) memory have been investigated. A step-through inhibitory avoidance task was used for memory assessment in male Wistar rats. The results showed that intra-VTA administration of scopolamine (1 and 2microg/rat) and NMDA receptor antagonist, MK-801 (0.75 and 1microg/rat) immediately after training, impaired consolidation of IA memory. Interestingly, co-administration of an ineffective dose of MK-801 (0.5microg/rat) with ineffective doses of scopolamine (0.25 and 0.5microg/rat) significantly decreased the consolidation process. Post-training intra-VTA injections of NMDA (0.001 and 0.01microg/rat) had no effects by itself, whereas its co-administration with scopolamine (2microg/rat) prevented the effect of the later drug. The results also showed that pre-test intra-VTA administration of scopolamine (3 and 4microg/rat) and MK-801 (1 and 2microg/rat) impaired retrieval of the IA memory. Moreover, co-administration of an ineffective dose of MK-801 (0.5microg/rat) with ineffective doses of scopolamine (1 and 2microg/rat) increasingly reduced the retrieval of the IA memory. On the contrary to its post-training treatment, pre-test administration of NMDA either alone or in combination with scopolamine caused no significant effect on retrieval of IA memory. It can be concluded that muscarinic acetylcholine and NMDA glutamate receptors in the VTA are involved in the mechanism(s) underlying consolidation and retrieval of the IA memory.
Collapse
Affiliation(s)
- Gelavij Mahmoodi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | | | | |
Collapse
|
44
|
Sherry JM, Milsome SL, Crowe SF. The roles of RNA synthesis and protein translation during reconsolidation of passive-avoidance learning in the day-old chick. Pharmacol Biochem Behav 2010; 94:438-46. [DOI: 10.1016/j.pbb.2009.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 10/10/2009] [Accepted: 10/15/2009] [Indexed: 01/30/2023]
|
45
|
Lee JLC. Reconsolidation: maintaining memory relevance. Trends Neurosci 2009; 32:413-20. [PMID: 19640595 DOI: 10.1016/j.tins.2009.05.002] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/13/2009] [Accepted: 05/15/2009] [Indexed: 11/18/2022]
Abstract
The retrieval of a memory places it into a plastic state, the result of which is that the memory can be disrupted or even enhanced by experimental treatment. This phenomenon has been conceptualised within a framework of memories being reactivated and then reconsolidated in repeated rounds of cellular processing. The reconsolidation phase has been seized upon as crucial for the understanding of memory stability and, more recently, as a potential therapeutic target in the treatment of disorders such as post-traumatic stress and drug addiction. However, little is known about the reactivation process, or what might be the adaptive function of retrieval-induced plasticity. Reconsolidation has long been proposed to mediate memory updating, but only recently has this hypothesis been supported experimentally. Here, the adaptive function of memory reconsolidation is explored in more detail, with a strong emphasis on its role in updating memories to maintain their relevance.
Collapse
Affiliation(s)
- Jonathan L C Lee
- School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
46
|
Infusion of protein synthesis inhibitors in the entorhinal cortex blocks consolidation but not reconsolidation of object recognition memory. Neurobiol Learn Mem 2009; 91:466-72. [DOI: 10.1016/j.nlm.2008.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 01/12/2023]
|
47
|
Abstract
The predominant view about memory formation states that a consolidation process stabilizes newly acquired traces until they are safely stored in the brain. However, during the last ten years evidence has accumulated to indicate that, upon retrieval, consolidated memories are rendered again vulnerable to the action of metabolic blockers, notably protein synthesis inhibitors. This has led to the hypothesis that memories are reconsolidated at the time of retrieval, and that this requires protein synthesis in different brain regions. Here we will address the consolidation-reconsolidation debate and discuss some controversial issues about the reconsolidation hypothesis, in particular the biological role of this process.
Collapse
|
48
|
|
49
|
D-cycloserine facilitates extinction the first time but not the second time: an examination of the role of NMDA across the course of repeated extinction sessions. Neuropsychopharmacology 2008; 33:3096-102. [PMID: 18354389 DOI: 10.1038/npp.2008.32] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Extinction of learned fear is facilitated by the partial NMDA agonist D-cycloserine (DCS). However, some studies suggest that the involvement of NMDA in learning differs depending on whether learning is for the first or second time. The current study aimed to extend these findings by examining the role of NMDA in extinction for the first and the second time. Specifically, the present series of experiments used Pavlovian fear conditioning and extinction paradigms to compare the effect of DCS on extinction of fear to a light CS the first and second time around. As found previously, DCS facilitated extinction of learned fear (Experiment 1). A novel finding, however, was that DCS did not facilitate the re-extinction of fear to this same CS following retraining (Experiments 2A and 2B). Finally, it was demonstrated that the transition from NMDA-dependent to NMDA-independent extinction was stimulus specific (Experiment 3). That is, rats were first trained to fear a CS (light); this fear was then extinguished. Following this, rats were then retrained to fear the same CS (light) or a new CS (white noise). When given a second extinction session, DCS was found to facilitate extinction of the new CS but not the original CS. The results of this series of experiments suggest that the role of NMDA in extinction depends on whether extinction is new learning (first extinction) or retrieval of a previous extinction memory (re-extinction).
Collapse
|
50
|
Abstract
Although ethanol has been shown to impair acquisition of memory, its effect on consolidated memories is not clear. Recent reports revealed that memory retrieval converted consolidated memory into a labile state and initiated the reconsolidation process. In the present study, we have demonstrated the effect of ethanol on reactivated fear memory. We used contextual fear conditioning where rats were conditioned with mild footshock, re-exposed to the training context for 2 min, immediately injected with ethanol or saline, and finally tested 48 h after re-exposure. Ethanol-treated groups demonstrated longer freezing and the effect lasted for 2 weeks. Reactivation is necessary for this effect. Injection of ethanol itself did not induce a fearful response. Reactivated and ethanol-treated rats exhibited longer freezing than non-reactivated controls, suggesting that ethanol does not inhibit the memory decline but facilitates the fear memory. Two minute re-exposures induced no or little extinction. The effect of ethanol was specific for 2-min reactivation, which induces reconsolidation. Moreover, we found that picrotoxin inhibited the memory enhancement that was produced by ethanol administered just after the reactivation. These studies demonstrate that ethanol enhances reactivated contextual fear memories via activation of GABA(A) receptors.
Collapse
|