1
|
Loftus SN, Gharaee-Kermani M, Xu B, Moore TM, Hannoudi A, Mallbris MJ, Klein B, Gudjonsson JE, Kahlenberg JM. Interferon alpha promotes caspase-8 dependent ultraviolet light-mediated keratinocyte apoptosis via interferon regulatory factor 1. Front Immunol 2024; 15:1384606. [PMID: 38660315 PMCID: PMC11039837 DOI: 10.3389/fimmu.2024.1384606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Ultraviolet (UV) light is a known trigger of both cutaneous and systemic disease manifestations in lupus patients. Lupus skin has elevated expression of type I interferons (IFNs) that promote increased keratinocyte (KC) death after UV exposure. The mechanisms by which KC cell death is increased by type I IFNs are unknown. Methods Here, we examine the specific cell death pathways that are activated in KCs by type I IFN priming and UVB exposure using a variety of pharmacological and genetic approaches. Mice that overexpress Ifnk in the epidermis were exposed to UVB light and cell death was measured. RNA-sequencing from IFN-treated KCs was analyzed to identify candidate genes for further analysis that could drive enhanced cell death responses after UVB exposure. Results We identify enhanced activation of caspase-8 dependent apoptosis, but not other cell death pathways, in type I IFN and UVB-exposed KCs. In vivo, overexpression of epidermal Ifnk resulted in increased apoptosis in murine skin after UVB treatment. This increase in KC apoptosis was not dependent on known death ligands but rather dependent on type I IFN-upregulation of interferon regulatory factor 1 (IRF1). Discussion These data suggest that enhanced sensitivity to UV light exhibited by lupus patients results from type I IFN priming of KCs that drives IRF1 expression resulting in caspase-8 activation and increased apoptosis after minimal exposures to UVB.
Collapse
Affiliation(s)
- Shannon N. Loftus
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Bin Xu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Tyson M. Moore
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Andrew Hannoudi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Mischa J. Mallbris
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | | | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Gavanji S, Bakhtari A, Famurewa AC, Othman EM. Cytotoxic Activity of Herbal Medicines as Assessed in Vitro: A Review. Chem Biodivers 2023; 20:e202201098. [PMID: 36595710 DOI: 10.1002/cbdv.202201098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Since time immemorial, human beings have sought natural medications for treatment of various diseases. Weighty evidence demonstrates the use of chemical methodologies for sensitive evaluation of cytotoxic potentials of herbal agents. However, due to the ubiquitous use of cytotoxicity methods, there is a need for providing updated guidance for the design and development of in vitro assessment. The aim of this review is to provide practical guidance on common cell-based assays for suitable assessment of cytotoxicity potential of herbal medicines and discussing their advantages and disadvantages Relevant articles in authentic databases, including PubMed, Web of Science, Science Direct, Scopus, Google Scholar and SID, from 1950 to 2022 were collected according to selection criteria of in vitro cytotoxicity assays and protocols. In addition, the link between cytotoxicity assay selection and different factors such as the drug solvent, concentration and exposure duration were discussed.
Collapse
Affiliation(s)
- Shahin Gavanji
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, 8415683111, Isfahan, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, 7133654361, Shiraz, Iran
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, PMB 1010, Ikwo, Ebonyi State, Nigeria.,Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka State, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.,Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Wuerzburg, Germany
| |
Collapse
|
3
|
Kim H, Lenoir S, Helfricht A, Jung T, Karneva ZK, Lee Y, Beumer W, van der Horst GB, Anthonijsz H, Buil LC, van der Ham F, Platenburg GJ, Purhonen P, Hebert H, Humbert S, Saudou F, Klein P, Song JJ. A pathogenic proteolysis-resistant huntingtin isoform induced by an antisense oligonucleotide maintains huntingtin function. JCI Insight 2022; 7:154108. [PMID: 35943803 PMCID: PMC9536263 DOI: 10.1172/jci.insight.154108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington’s disease (HD) is a late-onset neurological disorder for which therapeutics are not available. Its key pathological mechanism involves the proteolysis of polyglutamine-expanded (polyQ-expanded) mutant huntingtin (mHTT), which generates N-terminal fragments containing polyQ, a key contributor to HD pathogenesis. Interestingly, a naturally occurring spliced form of HTT mRNA with truncated exon 12 encodes an HTT (HTTΔ12) with a deletion near the caspase-6 cleavage site. In this study, we used a multidisciplinary approach to characterize the therapeutic potential of targeting HTT exon 12. We show that HTTΔ12 was resistant to caspase-6 cleavage in both cell-free and tissue lysate assays. However, HTTΔ12 retained overall biochemical and structural properties similar to those of wt-HTT. We generated mice in which HTT exon 12 was truncated and found that the canonical exon 12 was dispensable for the main physiological functions of HTT, including embryonic development and intracellular trafficking. Finally, we pharmacologically induced HTTΔ12 using the antisense oligonucleotide (ASO) QRX-704. QRX-704 showed predictable pharmacology and efficient biodistribution. In addition, it was stable for several months and inhibited pathogenic proteolysis. Furthermore, QRX-704 treatments resulted in a reduction of HTT aggregation and an increase in dendritic spine count. Thus, ASO-induced HTT exon 12 splice switching from HTT may provide an alternative therapeutic strategy for HD.
Collapse
Affiliation(s)
- Hyeongju Kim
- Department of Biological Sciences, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea, Republic of
| | - Sophie Lenoir
- Grenoble Institute Neurosciences, University Grenoble Alpes, Grenoble, France
| | | | - Taeyang Jung
- Department of Biological Sciences, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea, Republic of
| | | | - Yejin Lee
- Department of Biological Sciences, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea, Republic of
| | | | | | | | | | | | | | - Pasi Purhonen
- Department of Biomedical Engineering and Health Systems, The Royal Institute of Technology, KTH, Huddinge, Sweden
| | - Hans Hebert
- Department of Biomedical Engineering and Health Systems, The Royal Institute of Technology, KTH, Huddinge, Sweden
| | - Sandrine Humbert
- Grenoble Institute Neurosciences, University Grenoble Alpes, Grenoble, France
| | - Frédéric Saudou
- Grenoble Institute Neurosciences, University Grenoble Alpes, Grenoble, France
| | | | - Ji-Joon Song
- Department of Biological Sciences, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea, Republic of
| |
Collapse
|
4
|
Barba-Ostria C, Carrera-Pacheco SE, Gonzalez-Pastor R, Heredia-Moya J, Mayorga-Ramos A, Rodríguez-Pólit C, Zúñiga-Miranda J, Arias-Almeida B, Guamán LP. Evaluation of Biological Activity of Natural Compounds: Current Trends and Methods. Molecules 2022; 27:4490. [PMID: 35889361 PMCID: PMC9324072 DOI: 10.3390/molecules27144490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Natural compounds have diverse structures and are present in different forms of life. Metabolites such as tannins, anthocyanins, and alkaloids, among others, serve as a defense mechanism in live organisms and are undoubtedly compounds of interest for the food, cosmetic, and pharmaceutical industries. Plants, bacteria, and insects represent sources of biomolecules with diverse activities, which are in many cases poorly studied. To use these molecules for different applications, it is essential to know their structure, concentrations, and biological activity potential. In vitro techniques that evaluate the biological activity of the molecules of interest have been developed since the 1950s. Currently, different methodologies have emerged to overcome some of the limitations of these traditional techniques, mainly via reductions in time and costs. These emerging technologies continue to appear due to the urgent need to expand the analysis capacity of a growing number of reported biomolecules. This review presents an updated summary of the conventional and relevant methods to evaluate the natural compounds' biological activity in vitro.
Collapse
Affiliation(s)
- Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Benjamin Arias-Almeida
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| |
Collapse
|
5
|
Fru PN, Nweke EE, Mthimkhulu N, Mvango S, Nel M, Pilcher LA, Balogun M. Anti-Cancer and Immunomodulatory Activity of a Polyethylene Glycol-Betulinic Acid Conjugate on Pancreatic Cancer Cells. Life (Basel) 2021; 11:462. [PMID: 34063891 PMCID: PMC8223974 DOI: 10.3390/life11060462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/09/2022] Open
Abstract
Drug delivery systems involving polymer therapeutics enhance drug potency by improved solubility and specificity and may assist in circumventing chemoresistance in pancreatic cancer (PC). We compared the effectiveness of the naturally occurring drug, betulinic acid (BA), alone and in a polymer conjugate construct of polyethylene glycol (PEG), (PEG-BA), on PC cells (MIA PaCa-2), a normal cell line (Vero) and on peripheral blood mononuclear cells (PBMCs). PEG-BA, was tested for its effect on cell death, immunomodulation and chemoresistance-linked signalling pathways. The conjugate was significantly more toxic to PC cells (p < 0.001, IC50 of 1.35 ± 0.11 µM) compared to BA (IC50 of 12.70 ± 0.34 µM), with a selectivity index (SI) of 7.28 compared to 1.4 in Vero cells. Cytotoxicity was confirmed by increased apoptotic cell death. PEG-BA inhibited the production of IL-6 by 4-5.5 fold compared to BA-treated cells. Furthermore, PEG-BA treatment of MIA PaCa-2 cells resulted in the dysregulation of crucial chemoresistance genes such as WNT3A, TXNRD1, SLC2A1 and GATA3. The dysregulation of chemoresistance-associated genes and the inhibition of cytokines such as IL-6 by the model polymer construct, PEG-BA, holds promise for further exploration in PC treatment.
Collapse
Affiliation(s)
- Pascaline Nanga Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (E.E.N.); (N.M.); (M.N.)
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (E.E.N.); (N.M.); (M.N.)
| | - Nompumelelo Mthimkhulu
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (E.E.N.); (N.M.); (M.N.)
| | - Sindisiwe Mvango
- Biopolymer Modification and Therapeutics Laboratory, Chemicals Cluster, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria 0001, South Africa; (S.M.); (M.B.)
- Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa;
| | - Marietha Nel
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (E.E.N.); (N.M.); (M.N.)
| | | | - Mohammed Balogun
- Biopolymer Modification and Therapeutics Laboratory, Chemicals Cluster, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria 0001, South Africa; (S.M.); (M.B.)
| |
Collapse
|
6
|
Peppers: A "Hot" Natural Source for Antitumor Compounds. Molecules 2021; 26:molecules26061521. [PMID: 33802144 PMCID: PMC8002096 DOI: 10.3390/molecules26061521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022] Open
Abstract
Piper, Capsicum, and Pimenta are the main genera of peppers consumed worldwide. The traditional use of peppers by either ancient civilizations or modern societies has raised interest in their biological applications, including cytotoxic and antiproliferative effects. Cellular responses upon treatment with isolated pepper-derived compounds involve mechanisms of cell death, especially through proapoptotic stimuli in tumorigenic cells. In this review, we highlight naturally occurring secondary metabolites of peppers with cytotoxic effects on cancer cell lines. Available mechanisms of cell death, as well as the development of analogues, are also discussed.
Collapse
|
7
|
Rastogi A, Robert PA, Halle S, Meyer-Hermann M. Evaluation of CD8 T cell killing models with computer simulations of 2-photon imaging experiments. PLoS Comput Biol 2020; 16:e1008428. [PMID: 33370254 PMCID: PMC7793284 DOI: 10.1371/journal.pcbi.1008428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/08/2021] [Accepted: 10/09/2020] [Indexed: 02/01/2023] Open
Abstract
In vivo imaging of cytotoxic T lymphocyte (CTL) killing activity revealed that infected cells have a higher observed probability of dying after multiple contacts with CTLs. We developed a three-dimensional agent-based model to discriminate different hypotheses about how infected cells get killed based on quantitative 2-photon in vivo observations. We compared a constant CTL killing probability with mechanisms of signal integration in CTL or infected cells. The most likely scenario implied increased susceptibility of infected cells with increasing number of CTL contacts where the total number of contacts was a critical factor. However, when allowing in silico T cells to initiate new interactions with apoptotic target cells (zombie contacts), a contact history independent killing mechanism was also in agreement with experimental datasets. The comparison of observed datasets to simulation results, revealed limitations in interpreting 2-photon data, and provided readouts to distinguish CTL killing models.
Collapse
Affiliation(s)
- Ananya Rastogi
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Philippe A. Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail: (PAR); (SH); (MM-H)
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- * E-mail: (PAR); (SH); (MM-H)
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CIIM), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- * E-mail: (PAR); (SH); (MM-H)
| |
Collapse
|
8
|
Chaudhry ZL, Klenja D, Janjua N, Cami-Kobeci G, Ahmed BY. COVID-19 and Parkinson's Disease: Shared Inflammatory Pathways Under Oxidative Stress. Brain Sci 2020; 10:brainsci10110807. [PMID: 33142819 PMCID: PMC7693814 DOI: 10.3390/brainsci10110807] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
The current coronavirus pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a serious global health crisis. It is a major concern for individuals living with chronic disorders such as Parkinson’s disease (PD). Increasing evidence suggests an involvement of oxidative stress and contribution of NFκB in the development of both COVID-19 and PD. Although, it is early to identify if SARS-CoV-2 led infection enhances PD complications, it is likely that oxidative stress may exacerbate PD progression in COVID-19 affected individuals and/or vice versa. In the current study, we sought to investigate whether NFκB-associated inflammatory pathways following oxidative stress in SARS-CoV-2 and PD patients are correlated. Toward this goal, we have integrated bioinformatics analysis obtained from Basic Local Alignment Search Tool of Protein Database (BLASTP) search for similarities of SARS-CoV-2 proteins against human proteome, literature review, and laboratory data obtained in a human cell model of PD. A Parkinson’s like state was created in 6-hydroxydopamine (6OHDA)-induced differentiated dopamine-containing neurons (dDCNs) obtained from an immortalized human neural progenitor cell line derived from the ventral mesencephalon region of the brain (ReNVM). The results indicated that SARS-CoV-2 infection and 6OHDA-induced toxicity triggered stimulation of caspases-2, -3 and -8 via the NFκB pathway resulting in the death of dDCNs. Furthermore, specific inhibitors for NFκB and studied caspases reduced the death of stressed dDCNs. The findings suggest that knowledge of the selective inhibition of caspases and NFκB activation may contribute to the development of potential therapeutic approaches for the treatment of COVID-19 and PD.
Collapse
Affiliation(s)
- Zahara L. Chaudhry
- Institute of Biomedical & Environmental Science and Technology, School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University Square, University of Bedfordshire, Luton LU1 3JU, UK; (Z.L.C.); (G.C.-K.)
| | - Donika Klenja
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK;
| | - Najma Janjua
- Faculty of Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan;
| | - Gerta Cami-Kobeci
- Institute of Biomedical & Environmental Science and Technology, School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University Square, University of Bedfordshire, Luton LU1 3JU, UK; (Z.L.C.); (G.C.-K.)
| | - Bushra Y. Ahmed
- Institute of Biomedical & Environmental Science and Technology, School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University Square, University of Bedfordshire, Luton LU1 3JU, UK; (Z.L.C.); (G.C.-K.)
- Correspondence:
| |
Collapse
|
9
|
Groborz K, Gonzalez Ramirez ML, Snipas SJ, Salvesen GS, Drąg M, Poręba M. Exploring the prime site in caspases as a novel chemical strategy for understanding the mechanisms of cell death: a proof of concept study on necroptosis in cancer cells. Cell Death Differ 2019; 27:451-465. [PMID: 31209360 DOI: 10.1038/s41418-019-0364-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 05/02/2019] [Accepted: 05/23/2019] [Indexed: 11/09/2022] Open
Abstract
Caspases participate in regulated cell death mechanisms and are divided into apoptotic and proinflammatory caspases. The main problem in identifying the unique role of a particular caspase in the mechanisms of regulated cell death is their overlapping substrate specificity; caspases recognize and hydrolyze similar peptide substrates. Most studies focus on examining the non-prime sites of the caspases, yet there is a need for novel and more precise chemical tools to identify the molecular participants and mechanisms of programmed cell death pathways. Therefore, we developed an innovative chemical approach that examines the prime area of the caspase active sites. This method permits the agile parallel solid-phase synthesis of caspase inhibitors with a high yield and purity. Using synthesized compounds we have shown the similarities and differences in the prime area of the caspase active site and, as a proof of concept, we demonstrated the exclusive role of caspase-8 in necroptosis.
Collapse
Affiliation(s)
- Katarzyna Groborz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Monica L Gonzalez Ramirez
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Scott J Snipas
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Guy S Salvesen
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Marcin Drąg
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland. .,NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Marcin Poręba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland. .,NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
10
|
Cell-Based Methods for Determination of Efficacy for Candidate Therapeutics in the Clinical Management of Cancer. Diseases 2018; 6:diseases6040085. [PMID: 30249005 PMCID: PMC6313784 DOI: 10.3390/diseases6040085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022] Open
Abstract
Determination of therapeutic efficacy is a major challenge in developing treatment options for cancer. Prior to in vivo studies, candidate therapeutics are evaluated using cell-based in vitro methods to assess their anti-cancer potential. This review describes the utility and limitations of evaluating therapeutic efficacy using human tumor-derived cell lines. Indicators for therapeutic efficacy using tumor-derived cell lines include cell viability, cell proliferation, colony formation, cytotoxicity, cytostasis, induction of apoptosis, and cell cycle arrest. Cell panel screens, 3D tumor spheroid models, drug-drug/drug-radiation combinatorial analysis, and invasion/migration assays reveal analogous in vitro information. In animal models, cellular assays can assess tumor micro-environment and therapeutic delivery. The utility of tumor-derived cell lines for efficacy determination is manifest in numerous commercially approved drugs that have been applied in clinical management of cancer. Studies reveal most tumor-derived cell lines preserve the genomic signature of the primary tumor source and cell line-based data is highly predictive of subsequent clinical studies. However, cell-based data often disregards natural system components, resulting in cell autonomous outcomes. While 3D cell culture platforms can counter such limitations, they require additional time and cost. Despite the limitations, cell-based methods remain essential in early stages of anti-cancer drug development.
Collapse
|
11
|
Abstract
Glucocorticoid eye drops are one of the most widely used medications in ophthalmology. However, little is known about the effects of glucocorticoids on corneal epithelial cells that are directly exposed to topically-administered glucocorticoids. Here we investigated the effects of prednisolone, a synthetic glucocorticoid analogue frequently used in the clinic, on corneal epithelial cells. Results showed that prednisolone decreased survival of corneal epithelial cells by inhibiting proliferation and inducing apoptosis in a dose-dependent manner. The levels of mitochondrial reactive oxygen species (mtROS), cleaved caspase-3, and -9 were increased by prednisolone. The effects of prednisolone on apoptosis and mtROS were blocked 1) by the glucocorticoid receptor (GR) antagonist RU-38486, 2) in cells with GR siRNA knockdown, and 3) by treatment with N-acetylcysteine. Transcript levels of pro-inflammatory cytokines were increased in corneal epithelial cells upon hyperosmolar stress, but repressed by prednisolone. In NOD.B10.H2b mice, topical administration of 1% prednisolone increased apoptotic cells in the corneal epithelium. Together, data indicate that prednisolone induces apoptosis in corneal epithelial cells through GR and the intrinsic pathway involving mtROS, caspase-9, and -3. The pro-apoptotic effects of glucocorticoids along with their anti-inflammatory effects should be considered when glucocorticoid eye drops are used in patients with ocular surface disease.
Collapse
|
12
|
Han X, Han Y, Zheng Y, Sun Q, Ma T, Zhang J, Xu L. Chaetocin induces apoptosis in human melanoma cells through the generation of reactive oxygen species and the intrinsic mitochondrial pathway, and exerts its anti-tumor activity in vivo. PLoS One 2017; 12:e0175950. [PMID: 28419143 PMCID: PMC5395229 DOI: 10.1371/journal.pone.0175950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/03/2017] [Indexed: 01/13/2023] Open
Abstract
Chaetocin is a small-molecule natural product produced by Chaetomium species fungi, and it has a potent anti-proliferative pharmacological activity on various cancer cells. However, the effect of chaetocin on anti-melanoma pharmacological role has not been investigated. Therefore, in this study, we explored the effect of chaetocin on cell proliferation in the human melanoma Sk-Mel-28 and A375 cells and the growth of tumor xenografts in nude mice. The results indicated that chaetocin treatment significantly suppressed cell proliferation and induced apoptosis in the Sk-Mel-28 and A375 cells in a dose- and time-dependent manner. Furthermore, chaetocin treatment resulted in an increased level of cellular reactive oxygen species (ROS), and pre-incubation of cells with N-acetylcysteine (NAC) significantly abrogated chaetocin-induced apoptosis in the melanoma cells. A significant reduction of mitochondrial membrane potential and the release of cytochrome c were observed after chaetocin treatment. Additionally, chaetocin treatment significantly up-regulated the protein levels of Bax, cleaved caspase-9/-3, simultaneously down-regulated the protein levels of Bcl-2, procaspase-9/-3, and activated caspase-9/-3 activity in the melanoma cells. The in vivo data demonstrated that chaetocin treatment significantly inhibited the growth of melanoma tumor xenografts in nude mice, which was closely associated with apoptosis induction, a reduced level of PCNA (proliferating cell nuclear antigen) expression, and activation of capase-9/-3 in tumor xenografts. These are the first data to demonstrate that chaetocin exerts a proapoptotic activity on human melanoma cells through ROS generation and the intrinsic mitochondrial pathway. Therefore, chaetocin might represent an effective candidate for melanoma chemotherapy.
Collapse
Affiliation(s)
- Xinming Han
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing, China
- Medical Cosmetic Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing, China
- * E-mail:
| | - Yongsheng Zheng
- Medical Cosmetic Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qiang Sun
- Medical Cosmetic Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Tao Ma
- Medical Cosmetic Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junyi Zhang
- Medical Cosmetic Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lianji Xu
- Medical Cosmetic Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Silke J, Johnstone RW. In the Midst of Life-Cell Death: What Is It, What Is It Good for, and How to Study It. Cold Spring Harb Protoc 2016; 2016:2016/12/pdb.top070508. [PMID: 27934692 DOI: 10.1101/pdb.top070508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell death, one of the most fundamental biological processes, has not made it into the public consciousness in the same way that genetic inheritance, cell division, or DNA replication has. Everyone knows they get their genes from their parents, but few would be aware that even before they were born a lot of essential cell death has shaped their development. The greater population, for the most part, is blissfully unaware that every day millions of their own cells die in a programmed way and that this is essential for normal human physiology-their well-being, in fact. Nowhere is the burial liturgy, "In the midst of life we are in death," more apt. Despite this public underappreciation, cell death research is a major industry. A search in PubMed for "apoptosis," a special form of cell death that is caused by caspases, returns approximately 280,000 hits. The intense research interest arises from the realization that abnormal cell death responses play an important role in two of the biggest killers in the western world: cancer and cardio/cerebrovascular disease. Furthermore, the manner in which cells die can also influence the development of autoimmune and autoinflammatory diseases. It is therefore of paramount importance to ensure that experiments accurately quantitate and correctly identify cell death in all its guises. That is the goal of this protocol collection.
Collapse
Affiliation(s)
- John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Parkville, Victoria 3050, Australia
| | - Ricky W Johnstone
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3052, Australia
| |
Collapse
|
14
|
Microcystin-LR induced liver injury in mice and in primary human hepatocytes is caused by oncotic necrosis. Toxicon 2016; 125:99-109. [PMID: 27889601 DOI: 10.1016/j.toxicon.2016.11.254] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 11/22/2022]
Abstract
Microcystins are a group of toxins produced by freshwater cyanobacteria. Uptake of microcystin-leucine arginine (MC-LR) by organic anion transporting polypeptide 1B2 in hepatocytes results in inhibition of protein phosphatase 1A and 2A, and subsequent cell death. Studies performed in primary rat hepatocytes demonstrate prototypical apoptosis after MC-LR exposure; however, no study has directly tested whether apoptosis is critically involved in vivo in the mouse, or in human hepatocytes. MC-LR (120 μg/kg) was administered to C57BL/6J mice and cell death was evaluated by alanine aminotransferase (ALT) release, caspase-3 activity in the liver, and histology. Mice exposed to MC-LR had increases in plasma ALT values, and hemorrhage in the liver, but no increase in capase-3 activity in the liver. Pre-treatment with the pan-caspase inhibitor z-VAD-fmk failed to protect against cell death measured by ALT, glutathione depletion, or hemorrhage. Administration of MC-LR to primary human hepatocytes resulted in significant toxicity at concentrations between 5 nM and 1 μM. There were no elevated caspase-3 activities and pretreatment with z-VAD-fmk failed to protect against cell death in human hepatocytes. MC-LR treated human hepatocytes stained positive for propidium iodide, indicating membrane instability, a marker of necrosis. Of note, both increases in PI positive cells, and increases in lactate dehydrogenase release, occurred before the onset of complete actin filament collapse. In conclusion, apoptosis does not contribute to MC-LR-induced cell death in the in vivo mouse model or in primary human hepatocytes in vitro. Thus, targeting necrotic cell death mechanisms will be critical for preventing microcystin-induced liver injury.
Collapse
|
15
|
Parsons MJ, Bouchier-Hayes L. Measuring initiator caspase activation by bimolecular fluorescence complementation. Cold Spring Harb Protoc 2015; 2015:pdb.prot082552. [PMID: 25561623 DOI: 10.1101/pdb.prot082552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Initiator caspases, including caspase-2, -8, and -9, are activated by the proximity-driven dimerization that occurs after their recruitment to activation platforms. Here we describe the use of caspase bimolecular fluorescence complementation (caspase BiFC) to measure this induced proximity. BiFC assays rely on the use of a split fluorescent protein to identify protein-protein interactions in cells. When fused to interacting proteins, the fragments of the split fluorescent protein (which do not fluoresce on their own) can associate and fluoresce. In this protocol, we use the fluorescent protein Venus, a brighter and more photostable variant of yellow fluorescent protein (YFP), to detect the induced proximity of caspase-2. Plasmids encoding two fusion products (caspase-2 fused to either the amino- or carboxy-terminal halves of Venus) are transfected into cells. The cells are then treated with an activating (death) stimulus. The induced proximity (and subsequent activation) of caspase-2 in the cells is visualized as Venus fluorescence. The proportion of Venus-positive cells at a single time point can be determined using fluorescence microscopy. Alternatively, the increase in fluorescence intensity over time can be evaluated by time-lapse confocal microscopy. The caspase BiFC strategy described here should also work for other initiator caspases, such as caspase-8 or -9, as long as the correct controls are used.
Collapse
Affiliation(s)
- Melissa J Parsons
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, Texas 77030
| | - Lisa Bouchier-Hayes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
16
|
Parsons MJ, Rehm M, Bouchier-Hayes L. Imaging-based methods for assessing caspase activity in single cells. Cold Spring Harb Protoc 2015; 2015:pdb.top070342. [PMID: 25561626 DOI: 10.1101/pdb.top070342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Caspases, a family of proteases that are essential mediators of apoptosis, are divided into two groups: initiator caspases and executioner caspases. Each initiator caspase is activated at the apex of its respective pathway, which generally leads to the cleavage and activation of executioner caspases. Executioner caspases in turn cleave numerous substrates in the cell, leading to its demise. Initiator caspases are activated when inactive monomers undergo induced proximity to form an active caspase. In contrast, executioner caspases are activated by cleavage. Based on this key difference, different imaging techniques have been developed to measure caspase activation and activity on a single-cell basis. Bimolecular fluorescence complementation (BiFC) is used to measure induced proximity of initiator caspases, whereas Förster resonance energy transfer (FRET) permits the investigation of caspase-mediated substrate cleavage in real time. Because many of the events in apoptosis, including caspase activation, are asynchronous in nature, these single-cell imaging techniques have proven to be immensely powerful in ordering and dissecting caspase pathways. When coupled with parallel detection of additional hallmark events of apoptosis, they provide detailed and quantitative kinetic and positional insights into the signal transduction pathways that regulate cell death. Here we provide a brief introduction into BiFC- and FRET-based imaging of caspase activation and activity in single cells.
Collapse
Affiliation(s)
- Melissa J Parsons
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, Texas 77030
| | - Markus Rehm
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Lisa Bouchier-Hayes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
17
|
Rehm M, Parsons MJ, Bouchier-Hayes L. Measuring caspase activity by Förster resonance energy transfer. Cold Spring Harb Protoc 2015; 2015:pdb.prot082560. [PMID: 25561624 DOI: 10.1101/pdb.prot082560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Förster resonance energy transfer (FRET) occurs across very short distances (in the nanometer range) between donor and acceptor fluorophores that overlap in their emission and absorption spectra. FRET-compatible green fluorescent protein (GFP) variants that are fused to short peptide linkers containing caspase cleavage sites can be used to measure caspase activity. In the intact probes, the donor and acceptor fluorophores are in close proximity, and FRET is highly efficient. On caspase activation, proteolysis of the linker occurs, and the donor is separated from the acceptor. This results in a disruption of resonance energy transfer and an increase in donor fluorescence quantum yield; this event is typically referred to as sensitized emission or donor unquenching. A number of highly sensitive FRET probes based on the cyan fluorescent protein-yellow fluorescent protein (CFP-YFP) pair, or improved variants thereof, have been developed to detect intracellular caspase activities. In this protocol we describe how to use FRET-based caspase substrates and time-lapse imaging to measure caspase activity in cells undergoing apoptosis.
Collapse
Affiliation(s)
- Markus Rehm
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Melissa J Parsons
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, Texas 77030
| | - Lisa Bouchier-Hayes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|