1
|
Hua Y, Zhang J, Yang MY, Ren JY, Suo F, Liang L, Dong MQ, Ye K, Du LL. Structural duality enables a single protein to act as a toxin-antidote pair for meiotic drive. Proc Natl Acad Sci U S A 2024; 121:e2408618121. [PMID: 39485800 DOI: 10.1073/pnas.2408618121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 11/03/2024] Open
Abstract
In sexual reproduction, selfish genetic elements known as killer meiotic drivers (KMDs) bias inheritance by eliminating gametes that do not carry them. The selective killing behavior of most KMDs can be explained by a toxin-antidote model, where a toxin harms all gametes while an antidote provides resistance to the toxin in carriers. This study investigates whether and how the KMD element tdk1 in the fission yeast Schizosaccharomyces pombe deploys this strategy. Intriguingly, tdk1 relies on a single protein product, Tdk1, for both killing and resistance. We show that Tdk1 exists in a nontoxic tetrameric form during vegetative growth and meiosis but transforms into a distinct toxic form in spores. This toxic form acquires the ability to interact with the histone reader Bdf1 and assembles into supramolecular foci that disrupt mitosis in noncarriers after spore germination. In contrast, Tdk1 synthesized during germination of carrier spores is nontoxic and acts as an antidote, dismantling the preformed toxic Tdk1 assemblies. Replacement of the N-terminal region of Tdk1 with a tetramer-forming peptide reveals its dual roles in imposing an autoinhibited tetrameric conformation and facilitating the assembly of supramolecular foci when autoinhibition is released. Moreover, we successfully reconstituted a functional KMD element by combining a construct that exclusively expresses Tdk1 during meiosis ("toxin-only") with another construct that expresses Tdk1 specifically during germination ("antidote-only"). This work uncovers a remarkable example of a single protein employing structural duality to form a toxin-antidote pair, expanding our understanding of the mechanisms underlying toxin-antidote systems.
Collapse
Affiliation(s)
- Yu Hua
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jianxiu Zhang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Man-Yun Yang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jing-Yi Ren
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lingfei Liang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
2
|
Wang K, Nagai H, Rajib SA, Satou Y, Ueno M. Decreased mitochondrial translation confers 3,3'-Diindolylmethane resistance to Schizosaccharomyces pombe. Biochem Biophys Res Commun 2024; 736:150864. [PMID: 39461006 DOI: 10.1016/j.bbrc.2024.150864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
3,3'-Diindolylmethane (DIM), a compound derived from natural fruits and vegetables, is widely recognized for its anti-cancer activity. However, its action mechanisms remain ambiguous. In this study, to study the molecular mechanism of 3,3'-Diindolylmethane, we identified a novel mutation in the gene of mitochondrial translation elongation factor EF-Ts (tsf1+), a key factor in mitochondrial protein translation, that conferred DIM resistance to Schizosaccharomyces pombe. The tsf1Δ also conferred DIM resistance. Decreased mitochondrial translation was found to be responsible for conferring DIM resistance to Schizosaccharomyces pombe, as the cells gained DIM resistance after treatment with chloramphenicol, a specific mitochondrial translation inhibitor. Notably, tsf1Δ conferred DIM resistance in the absence of either autophagy-related protein, Atg7, or nuclear envelope protein, Lem2, two proteins that have been reported to be required for cell survival in the presence of DIM. Overall, this study revealed novel biological functions of DIM and highlighted its potential as an anti-cancer agent.
Collapse
Affiliation(s)
- Kaiyu Wang
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Hideto Nagai
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Samiul Alam Rajib
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan.
| |
Collapse
|
3
|
Zeng S, Ekwall K. Epigenome Mapping in Quiescent Cells Reveals a Key Role for H3K4me3 in Regulation of RNA Polymerase II Activity. EPIGENOMES 2024; 8:39. [PMID: 39449363 PMCID: PMC11503321 DOI: 10.3390/epigenomes8040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024] Open
Abstract
(1) Background: Quiescent cells are those that have stopped dividing and show strongly reduced levels of gene expression during dormancy. In response to appropriate signals, the cells can wake up and start growing again. Many histone modifications are regulated in quiescence, but their exact functions remain to be determined. (2) Methods: Here, we map the different histone modifications, H3K4me3, H3K9ac, H3K9me2, and H3K9me3, and the histone variant H2A.Z, comparing vegetative and quiescent fission yeast (S. pombe) cells. We also map histone H3 as a control and RNA polymerase II (phosphorylated at S2 and S5) to enable comparisons of their occupancies within genes. We use ChIP-seq methodology and several different bioinformatics tools. (3) Results: The histone modification mapping data show that H3K4me3 changes stand out as being the most significant. Changes in occupancy of histone variant H2A.Z were also significant, consistent with earlier studies. Regarding gene expression changes in quiescence, we found that changes in mRNA levels were associated with changes in occupancy of RNA polymerase II (S2 and S5). Analysis of quiescence genes showed that increased H3K4me3 levels and RNA polymerase II occupancy were super-significant in a small set of core quiescence genes that are continuously upregulated during dormancy. We demonstrate that several of these genes were require Set1C/COMPASS activity for their strong induction during quiescence. (4) Conclusions: Our results imply that regulation of gene expression in quiescent cells involves epigenome changes with a key role for H3K4me3 in regulation of RNA polymerase II activity, and that different gene activation mechanisms control early and core quiescence genes. Thus, our data give further insights into important epigenome changes in quiescence using fission yeast as an experimental model.
Collapse
Affiliation(s)
| | - Karl Ekwall
- Department of Medicine Huddinge, Division of Biosciences and Nutrition, Karolinska Institute, NEO Building, SE-141-83 Huddinge, Sweden;
| |
Collapse
|
4
|
Chen L, Chen X, Kashina A. Amino acid-level differences in alpha tubulin sequences are uniquely required for meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617919. [PMID: 39416131 PMCID: PMC11482916 DOI: 10.1101/2024.10.11.617919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Tubulin is the major structural constituent of the microtubule cytoskeleton. Yeast Schizosaccharomyces pombe contain two α- tubulins genes, nda2 and atb2, that are highly functionally distinct: nda2 deletion is lethal, while lack of atb2 does not interfere with cell viability. The functional determinants underlying this distinction are unknown. Here we used CRISPR-Cas9 gene editing to generate a yeast strain expressing Atb2 amino acid sequence utilizing Nda2 codon usage in the native Nda2 locus. Such Nda2-coded Atb2 (NCA) yeast, unlike Nda2 knockout, were viable and displayed no visible abnormalities in cell morphology or vegetative life cycle. However, these NCA yeast showed strong impairments in sporulation and meiosis, including major meiotic delays and high rates of abnormal chromosome segregation. Our data indicate that the amino acid sequence of Nda2 is uniquely required for normal meiosis, and identify a novel determinant that underlies functional distinction between closely related tubulin isoforms.
Collapse
|
5
|
Sivakova B, Wagner A, Kretova M, Jakubikova J, Gregan J, Kratochwill K, Barath P, Cipak L. Quantitative proteomics and phosphoproteomics profiling of meiotic divisions in the fission yeast Schizosaccharomyces pombe. Sci Rep 2024; 14:23105. [PMID: 39367033 PMCID: PMC11452395 DOI: 10.1038/s41598-024-74523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
In eukaryotes, chromosomal DNA is equally distributed to daughter cells during mitosis, whereas the number of chromosomes is halved during meiosis. Despite considerable progress in understanding the molecular mechanisms that regulate mitosis, there is currently a lack of complete understanding of the molecular mechanisms regulating meiosis. Here, we took advantage of the fission yeast Schizosaccharomyces pombe, for which highly synchronous meiosis can be induced, and performed quantitative proteomics and phosphoproteomics analyses to track changes in protein expression and phosphorylation during meiotic divisions. We compared the proteomes and phosphoproteomes of exponentially growing mitotic cells with cells harvested around meiosis I, or meiosis II in strains bearing either the temperature-sensitive pat1-114 allele or conditional ATP analog-sensitive pat1-as2 allele of the Pat1 kinase. Comparing pat1-114 with pat1-as2 also allowed us to investigate the impact of elevated temperature (25 °C versus 34 °C) on meiosis, an issue that sexually reproducing organisms face due to climate change. Using TMTpro 18plex labeling and phosphopeptide enrichment strategies, we performed quantification of a total of 4673 proteins and 7172 phosphosites in S. pombe. We found that the protein level of 2680 proteins and the rate of phosphorylation of 4005 phosphosites significantly changed during progression of S. pombe cells through meiosis. The proteins exhibiting changes in expression and phosphorylation during meiotic divisions were represented mainly by those involved in the meiotic cell cycle, meiotic recombination, meiotic nuclear division, meiosis I, centromere clustering, microtubule cytoskeleton organization, ascospore formation, organonitrogen compound biosynthetic process, carboxylic acid metabolic process, gene expression, and ncRNA processing, among others. In summary, our findings provide global overview of changes in the levels and phosphorylation of proteins during progression of S. pombe cells through meiosis at normal and elevated temperatures, laying the groundwork for further elucidation of the functions and importance of specific proteins and their phosphorylation in regulating meiotic divisions in this yeast.
Collapse
Affiliation(s)
- Barbara Sivakova
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Anja Wagner
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Miroslava Kretova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Jana Jakubikova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Juraj Gregan
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, 1030, Austria
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
| | - Peter Barath
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia.
- Medirex Group Academy, Novozamocka 67, Nitra, 949 05, Slovakia.
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia.
| |
Collapse
|
6
|
Ohtsuka H, Ohara K, Shimasaki T, Hatta Y, Maekawa Y, Aiba H. A novel transcription factor Sdr1 involving sulfur depletion response in fission yeast. Genes Cells 2024; 29:667-680. [PMID: 39105351 DOI: 10.1111/gtc.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024]
Abstract
In the fission yeast Schizosaccharomyces pombe, the response to sulfur depletion has been less studied compared to the response to nitrogen depletion. Our study reveals that the fission yeast gene, SPCC417.09c, plays a significant role in the sulfur depletion response. This gene encodes a protein with a Zn2Cys6 fungal-type DNA-binding domain and a transcription factor domain, and we have named it sdr1+ (sulfur depletion response 1). Interestingly, while sulfur depletion typically induces autophagy akin to nitrogen depletion, we found that autophagy was not induced under sulfur depletion in the absence of sdr1+. This suggests that sdr1+ is necessary for the induction of autophagy under conditions of sulfur depletion. Although sdr1+ is not essential for the growth of fission yeast, its overexpression, driven by the nmt1 promoter, inhibits growth. This implies that Sdr1 may possess cell growth-inhibitory capabilities. In addition, our analysis of Δsdr1 cells revealed that sdr1+ also plays a role in regulating the expression of genes associated with the phosphate depletion response. In conclusion, our study introduces Sdr1 as a novel transcription factor that contributes to an appropriate cellular nutrient starvation response. It does so by inhibiting inappropriate cell growth and inducing autophagy in response to sulfur depletion.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Kotaro Ohara
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoshiko Hatta
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yasukichi Maekawa
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
7
|
Ohtsuka H, Shimasaki T, Aiba H. Low-Molecular Weight Compounds that Extend the Chronological Lifespan of Yeasts, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Adv Biol (Weinh) 2024; 8:e2400138. [PMID: 38616173 DOI: 10.1002/adbi.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Yeast is an excellent model organism for research for regulating aging and lifespan, and the studies have made many contributions to date, including identifying various factors and signaling pathways related to aging and lifespan. More than 20 years have passed since molecular biological perspectives are adopted in this research field, and intracellular factors and signal pathways that control aging and lifespan have evolutionarily conserved from yeast to mammals. Furthermore, these findings have been applied to control the aging and lifespan of various model organisms by adjustment of the nutritional environment, genetic manipulation, and drug treatment using low-molecular weight compounds. Among these, drug treatment is easier than the other methods, and research into drugs that regulate aging and lifespan is consequently expected to become more active. Chronological lifespan, a definition of yeast lifespan, refers to the survival period of a cell population under nondividing conditions. Herein, low-molecular weight compounds are summarized that extend the chronological lifespan of Saccharomyces cerevisiae and Schizosaccharomyces pombe, along with their intracellular functions. The low-molecular weight compounds are also discussed that extend the lifespan of other model organisms. Compounds that have so far only been studied in yeast may soon extend lifespan in other organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
8
|
Yu W, Yuan R, Liu M, Liu K, Ding X, Hou Y. Effects of rpl1001 Gene Deletion on Cell Division of Fission Yeast and Its Molecular Mechanism. Curr Issues Mol Biol 2024; 46:2576-2597. [PMID: 38534780 DOI: 10.3390/cimb46030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
The rpl1001 gene encodes 60S ribosomal protein L10, which is involved in intracellular protein synthesis and cell growth. However, it is not yet known whether it is involved in the regulation of cell mitosis dynamics. This study focuses on the growth, spore production, cell morphology, the dynamics of microtubules, chromosomes, actin, myosin, and mitochondria of fission yeast (Schizosaccharomyces pombe) to investigate the impact of rpl1001 deletion on cell mitosis. RNA-Seq and bioinformatics analyses were also used to reveal key genes, such as hsp16, mfm1 and isp3, and proteasome pathways. The results showed that rpl1001 deletion resulted in slow cell growth, abnormal spore production, altered cell morphology, and abnormal microtubule number and length during interphase. The cell dynamics of the rpl1001Δ strain showed that the formation of a monopolar spindle leads to abnormal chromosome segregation with increased rate of spindle elongation in anaphase of mitosis, decreased total time of division, prolonged formation time of actin and myosin loops, and increased expression of mitochondrial proteins. Analysis of the RNA-Seq sequencing results showed that the proteasome pathway, up-regulation of isp3, and down-regulation of mfm1 and mfm2 in the rpl1001Δ strain were the main factors underpinning the increased number of spore production. Also, in the rpl1001Δ strain, down-regulation of dis1 caused the abnormal microtubule and chromosome dynamics, and down-regulation of hsp16 and pgk1 were the key genes affecting the delay of actin ring and myosin ring formation. This study reveals the effect and molecular mechanism of rpl1001 gene deletion on cell division, which provides the scientific basis for further clarifying the function of the Rpl1001 protein in cell division.
Collapse
Affiliation(s)
- Wen Yu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
| | - Rongmei Yuan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
| | - Mengnan Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
| | - Ke Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
| | - Xiang Ding
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Yiling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
| |
Collapse
|
9
|
Zheng S, Zheng B, Fu C. The Roles of Septins in Regulating Fission Yeast Cytokinesis. J Fungi (Basel) 2024; 10:115. [PMID: 38392788 PMCID: PMC10890454 DOI: 10.3390/jof10020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Cytokinesis is required to separate two daughter cells at the end of mitosis, and septins play crucial roles in many aspects of cytokinesis. While septins have been intensively studied in many model organisms, including the budding yeast Saccharomyces cerevisiae, septins have been relatively less characterized in the fission yeast Schizosaccharomyces pombe, which has proven to be an excellent model organism for studying fundamental cell biology. In this review, we summarize the findings of septins made in fission yeasts mainly from four aspects: the domain structure of septins, the localization of septins during the cell cycle, the roles of septins in regulating cytokinesis, and the regulatory proteins of septins.
Collapse
Affiliation(s)
- Shengnan Zheng
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Biyu Zheng
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
10
|
Otsubo Y, Yamashita A, Goto Y, Sakai K, Iida T, Yoshimura S, Johzuka K. Cellular responses to compound stress induced by atmospheric-pressure plasma in fission yeast. J Cell Sci 2023; 136:jcs261292. [PMID: 37990810 DOI: 10.1242/jcs.261292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
The stress response is one of the most fundamental cellular processes. Although the molecular mechanisms underlying responses to a single stressor have been extensively studied, cellular responses to multiple stresses remain largely unknown. Here, we characterized fission yeast cellular responses to a novel stress inducer, non-thermal atmospheric-pressure plasma. Plasma irradiation generates ultraviolet radiation, electromagnetic fields and a variety of chemically reactive species simultaneously, and thus can impose multiple stresses on cells. We applied direct plasma irradiation to fission yeast and showed that strong plasma irradiation inhibited fission yeast growth. We demonstrated that mutants lacking sep1 and ace2, both of which encode transcription factors required for proper cell separation, were resistant to plasma irradiation. Sep1-target transcripts were downregulated by mild plasma irradiation. We also demonstrated that plasma irradiation inhibited the target of rapamycin kinase complex 1 (TORC1). These observations indicate that two pathways, namely the Sep1-Ace2 cell separation pathway and TORC1 pathway, operate when fission yeast cope with multiple stresses induced by plasma irradiation.
Collapse
Affiliation(s)
- Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Keiichiro Sakai
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Tetsushi Iida
- Gene Engineering Division, RIKEN BioResource Research Center (BRC), 3-1-1 Koyadai, Tsukuba-shi, Ibaraki 305-0074, Japan
| | - Shinji Yoshimura
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
- National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, Japan
| | - Katsuki Johzuka
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Astrobiology Center, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji, Aichi 444-8585, Japan
| |
Collapse
|
11
|
Lera-Ramírez M, Bähler J, Mata J, Rutherford K, Hoffman CS, Lambert S, Oliferenko S, Martin SG, Gould KL, Du LL, Sabatinos SA, Forsburg SL, Nielsen O, Nurse P, Wood V. Revised fission yeast gene and allele nomenclature guidelines for machine readability. Genetics 2023; 225:iyad143. [PMID: 37758508 PMCID: PMC10627252 DOI: 10.1093/genetics/iyad143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 09/30/2023] Open
Abstract
Standardized nomenclature for genes, gene products, and isoforms is crucial to prevent ambiguity and enable clear communication of scientific data, facilitating efficient biocuration and data sharing. Standardized genotype nomenclature, which describes alleles present in a specific strain that differ from those in the wild-type reference strain, is equally essential to maximize research impact and ensure that results linking genotypes to phenotypes are Findable, Accessible, Interoperable, and Reusable (FAIR). In this publication, we extend the fission yeast clade gene nomenclature guidelines to support the curation efforts at PomBase (www.pombase.org), the Schizosaccharomyces pombe Model Organism Database. This update introduces nomenclature guidelines for noncoding RNA genes, following those set forth by the Human Genome Organisation Gene Nomenclature Committee. Additionally, we provide a significant update to the allele and genotype nomenclature guidelines originally published in 1987, to standardize the diverse range of genetic modifications enabled by the fission yeast genetic toolbox. These updated guidelines reflect a community consensus between numerous fission yeast researchers. Adoption of these rules will improve consistency in gene and genotype nomenclature, and facilitate machine-readability and automated entity recognition of fission yeast genes and alleles in publications or datasets. In conclusion, our updated guidelines provide a valuable resource for the fission yeast research community, promoting consistency, clarity, and FAIRness in genetic data sharing and interpretation.
Collapse
Affiliation(s)
- Manuel Lera-Ramírez
- University College London, Department of Genetics Evolution and Environment, Darwin Building, 99-105 Gower Street, London WC1E 6BT, UK
| | - Jürg Bähler
- University College London, Department of Genetics Evolution and Environment, Darwin Building, 99-105 Gower Street, London WC1E 6BT, UK
| | - Juan Mata
- University of Cambridge, Department of Biochemistry, Cambridge CB2 1GA, UK
| | - Kim Rutherford
- University of Cambridge, Department of Biochemistry, Cambridge CB2 1GA, UK
| | | | - Sarah Lambert
- Institut Curie, Université Paris-Saclay, CNRS UMR3348, Orsay 91400, France
| | - Snezhana Oliferenko
- The Francis Crick Institute, London NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London SE1 1UL, UK
| | - Sophie G Martin
- University of Geneva, Department of Molecular and Cellular Biology, Geneva 1211, Switzerland
| | - Kathleen L Gould
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, Nashville, TN 37232, USA
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
| | - Sarah A Sabatinos
- Toronto Metropolitan University, Department of Chemistry & Biology, Toronto M5B 2K3, Canada
| | - Susan L Forsburg
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Olaf Nielsen
- Department of Biology, Cell cycle and genome stability Group, University of Copenhagen, Copenhagen N DK2100, Denmark
| | - Paul Nurse
- The Francis Crick Institute, London NW1 1AT, UK
| | - Valerie Wood
- University of Cambridge, Department of Biochemistry, Cambridge CB2 1GA, UK
| |
Collapse
|
12
|
Jain I, Rao M, Tran PT. Reliable and robust control of nucleus centering is contingent on nonequilibrium force patterns. iScience 2023; 26:106665. [PMID: 37182105 PMCID: PMC10173738 DOI: 10.1016/j.isci.2023.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/23/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Cell centers their division apparatus to ensure symmetric cell division, a challenging task when the governing dynamics is stochastic. Using fission yeast, we show that the patterning of nonequilibrium polymerization forces of microtubule (MT) bundles controls the precise localization of spindle pole body (SPB), and hence the division septum, at the onset of mitosis. We define two cellular objectives, reliability, the mean SPB position relative to the geometric center, and robustness, the variance of the SPB position, which are sensitive to genetic perturbations that change cell length, MT bundle number/orientation, and MT dynamics. We show that simultaneous control of reliability and robustness is required to minimize septum positioning error achieved by the wild type (WT). A stochastic model for the MT-based nucleus centering, with parameters measured directly or estimated using Bayesian inference, recapitulates the maximum fidelity of WT. Using this, we perform a sensitivity analysis of the parameters that control nuclear centering.
Collapse
Affiliation(s)
- Ishutesh Jain
- Institut Curie, PSL Universite, Sorbonne Universite, CNRS UMR 144, 75005 Paris, France
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences - TIFR, Bangalore 560065, India
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences - TIFR, Bangalore 560065, India
- Corresponding author
| | - Phong T. Tran
- Institut Curie, PSL Universite, Sorbonne Universite, CNRS UMR 144, 75005 Paris, France
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
13
|
Jia GS, Zhang WC, Liang Y, Liu XH, Rhind N, Pidoux A, Brysch-Herzberg M, Du LL. A high-quality reference genome for the fission yeast Schizosaccharomyces osmophilus. G3 (BETHESDA, MD.) 2023; 13:jkad028. [PMID: 36748990 PMCID: PMC10085805 DOI: 10.1093/g3journal/jkad028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
Fission yeasts are an ancient group of fungal species that diverged from each other from tens to hundreds of million years ago. Among them is the preeminent model organism Schizosaccharomyces pombe, which has significantly contributed to our understandings of molecular mechanisms underlying fundamental cellular processes. The availability of the genomes of S. pombe and 3 other fission yeast species S. japonicus, S. octosporus, and S. cryophilus has enabled cross-species comparisons that provide insights into the evolution of genes, pathways, and genomes. Here, we performed genome sequencing on the type strain of the recently identified fission yeast species S. osmophilus and obtained a complete mitochondrial genome and a nuclear genome assembly with gaps only at rRNA gene arrays. A total of 5,098 protein-coding nuclear genes were annotated and orthologs for more than 95% of them were identified. Genome-based phylogenetic analysis showed that S. osmophilus is most closely related to S. octosporus and these 2 species diverged around 16 million years ago. To demonstrate the utility of this S. osmophilus reference genome, we conducted cross-species comparative analyses of centromeres, telomeres, transposons, the mating-type region, Cbp1 family proteins, and mitochondrial genomes. These analyses revealed conservation of repeat arrangements and sequence motifs in centromere cores, identified telomeric sequences composed of 2 types of repeats, delineated relationships among Tf1/sushi group retrotransposons, characterized the evolutionary origins and trajectories of Cbp1 family domesticated transposases, and discovered signs of interspecific transfer of 2 types of mitochondrial selfish elements.
Collapse
Affiliation(s)
- Guo-Song Jia
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wen-Cai Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yue Liang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xi-Han Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alison Pidoux
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Michael Brysch-Herzberg
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Heilbronn 74081, Germany
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
14
|
Weidemann DE, Singh A, Grima R, Hauf S. The minimal intrinsic stochasticity of constitutively expressed eukaryotic genes is sub-Poissonian. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531283. [PMID: 36945401 PMCID: PMC10028819 DOI: 10.1101/2023.03.06.531283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Stochastic variation in gene products ("noise") is an inescapable by-product of gene expression. Noise must be minimized to allow for the reliable execution of cellular functions. However, noise cannot be suppressed beyond an intrinsic lower limit. For constitutively expressed genes, this limit is believed to be Poissonian, meaning that the variance in mRNA numbers cannot be lower than their mean. Here, we show that several cell division genes in fission yeast have mRNA variances significantly below this limit, which cannot be explained by the classical gene expression model for low-noise genes. Our analysis reveals that multiple steps in both transcription and mRNA degradation are essential to explain this sub-Poissonian variance. The sub-Poissonian regime differs qualitatively from previously characterized noise regimes, a hallmark being that cytoplasmic noise is reduced when the mRNA export rate increases. Our study re-defines the lower limit of eukaryotic gene expression noise and identifies molecular requirements for ultra-low noise which are expected to support essential cell functions.
Collapse
Affiliation(s)
- Douglas E Weidemann
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JR, Scotland, UK
| | - Silke Hauf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
15
|
Cryo-EM structure and function of S. pombe complex IV with bound respiratory supercomplex factor. Commun Chem 2023; 6:32. [PMID: 36797353 PMCID: PMC9935853 DOI: 10.1038/s42004-023-00827-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Fission yeast Schizosaccharomyces pombe serves as model organism for studying higher eukaryotes. We combined the use of cryo-EM and spectroscopy to investigate the structure and function of affinity purified respiratory complex IV (CIV) from S. pombe. The reaction sequence of the reduced enzyme with O2 proceeds over a time scale of µs-ms, similar to that of the mammalian CIV. The cryo-EM structure of CIV revealed eleven subunits as well as a bound hypoxia-induced gene 1 (Hig1) domain of respiratory supercomplex factor 2 (Rcf2). These results suggest that binding of Rcf2 does not require the presence of a CIII-CIV supercomplex, i.e. Rcf2 is a component of CIV. An AlphaFold-Multimer model suggests that the Hig1 domains of both Rcf1 and Rcf2 bind at the same site of CIV suggesting that their binding is mutually exclusive. Furthermore, the differential functional effect of Rcf1 or Rcf2 is presumably caused by interactions of CIV with their different non-Hig1 domain parts.
Collapse
|
16
|
Navrátilová A, Kovár M, Kopčeková J, Mrázová J, Trakovická A, Požgajová M. Protective effect of Aronia melanocarpa juice against acrylamide-induced cellular toxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:139-149. [PMID: 36734814 DOI: 10.1080/03601234.2023.2172287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Acrylamide (AA) a widely used industrial chemical is also formed during food processing by the Maillard reaction, which makes its exposure to humans almost unavoidable. In this study, we used Schizosaccharomyces pombe as a model organism to investigate AA toxicity (10 or 20 mM concentration) in eukaryotes. In S. pombe, AA delays cell growth causes oxidative stress by enhancement of ROS production and triggers excitement of the antioxidant defence system resulting in the division arrest. Aronia fruit contains a variety of health-promoting substances with considerable antioxidant potential. Therefore, Aronia juice supplementation was tested to evaluate its protective effect against AA-derived perturbations of the organism. Cell treatment with several Aronia juice concentrations ranging from 0 to 2% revealed the best protective effect of 1 or 2% Aronia juice solutions. Both chosen Aronia juice concentrations alleviated AA toxicity through the improvement of the antioxidant cell capacity and metabolic activity by their strong ROS scavenging property. Efficiency of Aronia juice cell protection is dose dependent as the 2% solution led to significantly higher cellular defence compared with 1%. Due to the high similarity of biological processes of S. pombe with higher eukaryotes, the protective effect of Aronia juice against AA toxicity might also apply to higher organisms.
Collapse
Affiliation(s)
- Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Jana Kopčeková
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Jana Mrázová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Anna Trakovická
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
17
|
Jian Y, Nie L, Liu S, Jiang Y, Dou Z, Liu X, Yao X, Fu C. The fission yeast kinetochore complex Mhf1-Mhf2 regulates the spindle assembly checkpoint and faithful chromosome segregation. J Cell Sci 2023; 136:286678. [PMID: 36537249 DOI: 10.1242/jcs.260124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The outer kinetochore serves as a platform for the initiation of the spindle assembly checkpoint (SAC) and for mediating kinetochore-microtubule attachments. How the inner kinetochore subcomplex CENP-S-CENP-X is involved in regulating the SAC and kinetochore-microtubule attachments has not been well characterized. Using live-cell microscopy and yeast genetics, we found that Mhf1-Mhf2, the CENP-S-CENP-X counterpart in the fission yeast Schizosaccharomyces pombe, plays crucial roles in promoting the SAC and regulating chromosome segregation. The absence of Mhf2 attenuates the SAC, impairs the kinetochore localization of most of the components in the constitutive centromere-associated network (CCAN), and alters the localization of the kinase Ark1 (yeast homolog of Aurora B) to the kinetochore. Hence, our findings constitute a model in which Mhf1-Mhf2 ensures faithful chromosome segregation by regulating the accurate organization of the CCAN complex, which is required for promoting SAC signaling and for regulating kinetochore-microtubule attachments. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yanze Jian
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Lingyun Nie
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Sikai Liu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Yueyue Jiang
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| |
Collapse
|
18
|
Hinterndorfer K, Laporte MH, Mikus F, Tafur L, Bourgoint C, Prouteau M, Dey G, Loewith R, Guichard P, Hamel V. Ultrastructure expansion microscopy reveals the cellular architecture of budding and fission yeast. J Cell Sci 2022; 135:286062. [PMID: 36524422 PMCID: PMC10112979 DOI: 10.1242/jcs.260240] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT
The budding and fission yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have served as invaluable model organisms to study conserved fundamental cellular processes. Although super-resolution microscopy has in recent years paved the way to a better understanding of the spatial organization of molecules in cells, its wide use in yeasts has remained limited due to the specific know-how and instrumentation required, contrasted with the relative ease of endogenous tagging and live-cell fluorescence microscopy. To facilitate super-resolution microscopy in yeasts, we have extended the ultrastructure expansion microscopy (U-ExM) method to both S. cerevisiae and S. pombe, enabling a 4-fold isotropic expansion. We demonstrate that U-ExM allows imaging of the microtubule cytoskeleton and its associated spindle pole body, notably unveiling the Sfi1p–Cdc31p spatial organization on the appendage bridge structure. In S. pombe, we validate the method by monitoring the homeostatic regulation of nuclear pore complex number through the cell cycle. Combined with NHS-ester pan-labelling, which provides a global cellular context, U-ExM reveals the subcellular organization of these two yeast models and provides a powerful new method to augment the already extensive yeast toolbox.
This article has an associated First Person interview with Kerstin Hinterndorfer and Felix Mikus, two of the joint first authors of the paper.
Collapse
Affiliation(s)
- Kerstin Hinterndorfer
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Marine H. Laporte
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Felix Mikus
- European Molecular Biology Laboratory 2 Cell Biology and Biophysics , , Heidelberg , Germany
| | - Lucas Tafur
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Clélia Bourgoint
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Manoel Prouteau
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Gautam Dey
- European Molecular Biology Laboratory 2 Cell Biology and Biophysics , , Heidelberg , Germany
| | - Robbie Loewith
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Paul Guichard
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Virginie Hamel
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| |
Collapse
|
19
|
Kovár M, Navrátilová A, Kolláthová R, Trakovická A, Požgajová M. Acrylamide-Derived Ionome, Metabolic, and Cell Cycle Alterations Are Alleviated by Ascorbic Acid in the Fission Yeast. Molecules 2022; 27:molecules27134307. [PMID: 35807551 PMCID: PMC9268660 DOI: 10.3390/molecules27134307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Acrylamide (AA), is a chemical with multiple industrial applications, however, it can be found in foods that are rich in carbohydrates. Due to its genotoxic and cytotoxic effects, AA has been classified as a potential carcinogen. With the use of spectrophotometry, ICP-OES, fluorescence spectroscopy, and microscopy cell growth, metabolic activity, apoptosis, ROS production, MDA formation, CAT and SOD activity, ionome balance, and chromosome segregation were determined in Schizosaccharomyces pombe. AA caused growth and metabolic activity retardation, enhanced ROS and MDA production, and modulated antioxidant enzyme activity. This led to damage to the cell homeostasis due to ionome balance disruption. Moreover, AA-induced oxidative stress caused alterations in the cell cycle regulation resulting in chromosome segregation errors, as 4.07% of cells displayed sister chromatid non-disjunction during mitosis. Ascorbic acid (AsA, Vitamin C), a strong natural antioxidant, was used to alleviate the negative impact of AA. Cell pre-treatment with AsA significantly improved AA impaired growth, and antioxidant capacity, and supported ionome balance maintenance mainly due to the promotion of calcium uptake. Chromosome missegregation was reduced to 1.79% (44% improvement) by AsA pre-incubation. Results of our multiapproach analyses suggest that AA-induced oxidative stress is the major cause of alteration to cell homeostasis and cell cycle regulation.
Collapse
Affiliation(s)
- Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.N.); (A.T.)
| | - Renata Kolláthová
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Anna Trakovická
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.N.); (A.T.)
| | - Miroslava Požgajová
- AgroBioTech Research Center, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Correspondence: ; Tel.: +421-37-641-4919
| |
Collapse
|
20
|
Ohtsuka H, Imada K, Shimasaki T, Aiba H. Sporulation: A response to starvation in the fission yeast Schizosaccharomyces pombe. Microbiologyopen 2022; 11:e1303. [PMID: 35765188 PMCID: PMC9214231 DOI: 10.1002/mbo3.1303] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe employs two main strategies to adapt to the environment and survive when starved for nutrients. The strategies employ sporulation via sexual differentiation and extension of the chronological lifespan. When a cell is exposed to nutrient starvation in the presence of a cell of the opposite sex, the cells undergo fusion through conjugation and sporulation through meiosis. S. pombe spores are highly resistant to diverse stresses and may survive for a very long time. In this minireview, among the various sexual differentiation processes induced by starvation, we focused on and summarized the findings of the molecular mechanisms of spore formation in fission yeast. Furthermore, comparative measurements of the chronological lifespan of stationary phase cells and G0 cells and the survival period of spore cells revealed that the spore cells survived for a long period, indicating the presence of an effective mechanism for survival. Currently, many molecules involved in sporulation and their functions are being discovered; however, our understanding of these is not complete. Further understanding of spores may not only deepen our comprehension of sexual differentiation but may also provide hints for sustaining life.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistryNational Institute of Technology (KOSEN), Suzuka CollegeSuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversitySumiyoshi‐kuOsakaJapan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| |
Collapse
|
21
|
Bhardwaj V, Sharma N. Absence of the Rpb9 subunit of RNA polymerase II reduces the chronological life span in fission yeast. J Basic Microbiol 2022; 62:900-910. [PMID: 35618649 DOI: 10.1002/jobm.202200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/04/2022] [Accepted: 05/14/2022] [Indexed: 11/07/2022]
Abstract
Fission yeast RNA polymerase II consists of 12 subunits, Rpb1-Rpb12. Among these subunits, Rpb9 is the only subunit whose absence does not cause lethality under optimum growth conditions in fission yeast. However, an rpb9 null fission yeast mutant exhibits a slow-growth phenotype under optimum growth conditions and a defect in survival under environmental and genotoxic stress conditions. To further gain an understanding of its physiological roles, in the present study we have elucidated the role of the Rpb9 subunit in chronological aging using fission yeast as the model organism. Our results provide evidence that the absence of Rpb9 reduces the chronological life span in fission yeast. Our data further shows that lack of Rpb9 in fission yeast causes oxidative stress sensitivity and accumulation of reactive oxygen species during the stationary phase. Our domain mapping experiments have demonstrated that the Rpb9 region encompassing its amino-terminal zinc finger domain and the central linker region is important for the role of Rpb9 in chronological aging. Finally, we also show that expression of the budding yeast or human Rpb9 ortholog can functionally complement the reduced chronological life span phenotype of the fission yeast rpb9 deletion mutant. Taken together, our study has identified a new role of the Rpb9 subunit in chronological aging.
Collapse
Affiliation(s)
- Vaibhav Bhardwaj
- University School of Biotechnology (USBT), Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Nimisha Sharma
- University School of Biotechnology (USBT), Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| |
Collapse
|
22
|
Brysch-Herzberg M, Jia GS, Seidel M, Assali I, Du LL. Insights into the ecology of Schizosaccharomyces species in natural and artificial habitats. Antonie van Leeuwenhoek 2022; 115:661-695. [PMID: 35359202 PMCID: PMC9007792 DOI: 10.1007/s10482-022-01720-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
The fission yeast genus Schizosaccharomyces contains important model organisms for biological research. In particular, S. pombe is a widely used model eukaryote. So far little is known about the natural and artificial habitats of species in this genus. Finding out where S. pombe and other fission yeast species occur and how they live in their habitats can promote better understanding of their biology. Here we investigate in which substrates S. pombe, S. octosporus, S. osmophilus and S. japonicus are present. To this end about 2100 samples consisting of soil, tree sap fluxes, fresh fruit, dried fruit, honey, cacao beans, molasses and other substrates were analyzed. Effective isolation methods that allow efficient isolation of the above mentioned species were developed. Based on the frequency of isolating different fission yeast species in various substrates and on extensive literature survey, conclusions are drawn on their ecology. The results suggest that the primary habitat of S. pombe and S. octosporus is honeybee honey. Both species were also frequently detected on certain dried fruit like raisins, mango or pineapple to which they could be brought by the honey bees during ripening or during drying. While S. pombe was regularly isolated from grape mash and from fermented raw cacao beans S. octosporus was never isolated from fresh fruit. The main habitat of S. osmophilus seems to be solitary bee beebread. It was rarely isolated from raisins. S. japonicus was mainly found in forest substrates although it occurs on fruit and in fruit fermentations, too.
Collapse
Affiliation(s)
- Michael Brysch-Herzberg
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Guo-Song Jia
- National Institute of Biological Sciences, Beijing, 102206 China
| | - Martin Seidel
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Imen Assali
- Department of Bioengineering, National Engineering School of Sfax, University of Sfax, Soukra, km 4, 3038 Sfax, Tunisia
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206 China
| |
Collapse
|
23
|
Shraim R, Nieuwenhuis BPS. The search for Schizosaccharomyces fission yeasts in environmental meta-transcriptomes. Yeast 2021; 39:83-94. [PMID: 34967063 DOI: 10.1002/yea.3689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 11/07/2022] Open
Abstract
Fission yeast is an important model organism in evolutionary genetics and cell biology research. Nevertheless, most research is limited to a single laboratory strain and knowledge of its natural occurrence is limited, which reduces our understanding of its life history and hinders isolation of new strains from nature. Understanding the natural diversity of fission yeast can provide insight into its genetic and phenotypic diversity and the evolutionary processes that shaped these. Here we aimed to identify candidate natural habitats of fission yeasts by searching through a large collection of publicly available environmental metatranscriptomic datasets. Using a custom pipeline, we processed over 13,000 NCBI SRA accessions, from a wide range of 34 different environmental categories. Overall, we found a very low abundance of putative yeast transcripts, with most fission yeast signatures coming from the categories of 'food' and 'terrestrial arthropods'. Additionally, a signal could be found in a variety of marine and fresh aquatic habitats. Our results do not provide a conclusive answer on the natural habitat of fission yeasts, but our analysis further narrows the range of locations where fission yeasts naturally occur.
Collapse
Affiliation(s)
- Rasha Shraim
- The SFI Centre for Research Training in Genomics Data Sciences, National University of Ireland Galway and Department of Public Health and Primary Care, School of Medicine, Trinity College Dublin, Republic of Ireland.,Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Germany
| | - Bart P S Nieuwenhuis
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
24
|
Genome Comparisons of the Fission Yeasts Reveal Ancient Collinear Loci Maintained by Natural Selection. J Fungi (Basel) 2021; 7:jof7100864. [PMID: 34682285 PMCID: PMC8537764 DOI: 10.3390/jof7100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Fission yeasts have a unique life history and exhibit distinct evolutionary patterns from other yeasts. Besides, the species demonstrate stable genome structures despite the relatively fast evolution of their genomic sequences. To reveal what could be the reason for that, comparative genomic analyses were carried out. Our results provided evidence that the structural and sequence evolution of the fission yeasts were correlated. Moreover, we revealed ancestral locally collinear blocks (aLCBs), which could have been inherited from their last common ancestor. These aLCBs proved to be the most conserved regions of the genomes as the aLCBs contain almost eight genes/blocks on average in the same orientation and order across the species. Gene order of the aLCBs is mainly fission-yeast-specific but supports the idea of filamentous ancestors. Nevertheless, the sequences and gene structures within the aLCBs are as mutable as any sequences in other parts of the genomes. Although genes of certain Gene Ontology (GO) categories tend to cluster at the aLCBs, those GO enrichments are not related to biological functions or high co-expression rates, they are, rather, determined by the density of essential genes and Rec12 cleavage sites. These data and our simulations indicated that aLCBs might not only be remnants of ancestral gene order but are also maintained by natural selection.
Collapse
|
25
|
Ohtsuka H, Shimasaki T, Aiba H. Response to sulfur in Schizosaccharomyces pombe. FEMS Yeast Res 2021; 21:6324000. [PMID: 34279603 PMCID: PMC8310684 DOI: 10.1093/femsyr/foab041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Sulfur is an essential component of various biologically important molecules, including methionine, cysteine and glutathione, and it is also involved in coping with oxidative and heavy metal stress. Studies using model organisms, including budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe), have contributed not only to understanding various cellular processes but also to understanding the utilization and response mechanisms of each nutrient, including sulfur. Although fission yeast can use sulfate as a sulfur source, its sulfur metabolism pathway is slightly different from that of budding yeast because it does not have a trans-sulfuration pathway. In recent years, it has been found that sulfur starvation causes various cellular responses in S. pombe, including sporulation, cell cycle arrest at G2, chronological lifespan extension, autophagy induction and reduced translation. This MiniReview identifies two sulfate transporters in S. pombe, Sul1 (encoded by SPBC3H7.02) and Sul2 (encoded by SPAC869.05c), and summarizes the metabolic pathways of sulfur assimilation and cellular response to sulfur starvation. Understanding these responses, including metabolism and adaptation, will contribute to a better understanding of the various stress and nutrient starvation responses and chronological lifespan regulation caused by sulfur starvation.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
26
|
Wang X, Xu R, Wang Y, Liu Z, Lou R, Sugiyama T. Yesprit and Yeaseq: Applications for designing primers and browsing sequences for research using the four Schizosaccharomyces species. Yeast 2021; 38:583-591. [PMID: 34251689 DOI: 10.1002/yea.3660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 11/05/2022] Open
Abstract
The polymerase chain reaction (PCR)-based gene targeting method, which can delete a specific gene or introduce tags, has been widely utilized to study gene function in fission yeast. One of the critical steps in this method is to design primers for amplifying DNA fragments of deletion or tagging modules and for checking the integration of those DNA fragments at designated loci. Although the primer design tool Pombe PCR Primer Program (PPPP) is available for Schizosaccharomyces pombe, there is no such publicly available application for the other three fission yeast species, S. cryophilus, S. japonicus, and S. octosporus. Likewise, no application enabling DNA/protein sequence retrieval for these three fission yeast species is available either. Therefore, access to such functionality would substantially assist in retrieval of gene sequences of interest and primer design in these fission yeast species. In this report, we describe two applications for fission yeast study: Yesprit and Yeaseq. Yesprit is a primer design tool for strain construction using the PCR-based method, and Yeaseq is a sequence viewer that can acquire the DNA/protein sequences of specific genes. Both tools can be run on the Windows, macOS, and Linux platforms. We believe that the Yesprit and Yeaseq will facilitate research using the four fission yeast species.
Collapse
Affiliation(s)
- Xindi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ruoming Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yichen Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ziyue Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ronghui Lou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Tomoyasu Sugiyama
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
27
|
Ohtsuka H, Shimasaki T, Aiba H. Extension of chronological lifespan in Schizosaccharomyces pombe. Genes Cells 2021; 26:459-473. [PMID: 33977597 PMCID: PMC9290682 DOI: 10.1111/gtc.12854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023]
Abstract
There are several examples in the nature wherein the mechanism of longevity control of unicellular organisms is evolutionarily conserved with that of higher multicellular organisms. The present microreview focuses on aging and longevity studies, particularly on chronological lifespan (CLS) concerning the unicellular eukaryotic fission yeast Schizosaccharomyces pombe. In S. pombe, >30 compounds, 8 types of nutrient restriction, and >80 genes that extend CLS have been reported. Several CLS control mechanisms are known to be involved in nutritional response, energy utilization, stress responses, translation, autophagy, and sexual differentiation. In unicellular organisms, the control of CLS is directly linked to the mechanism by which cells are maintained in limited‐resource environments, and their genetic information is left to posterity. We believe that this important mechanism may have been preserved as a lifespan control mechanism for higher organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
28
|
Jiménez-Saucedo T, Berlanga JJ, Rodríguez-Gabriel M. Translational control of gene expression by eIF2 modulates proteostasis and extends lifespan. Aging (Albany NY) 2021; 13:10989-11009. [PMID: 33901016 PMCID: PMC8109070 DOI: 10.18632/aging.203018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/31/2021] [Indexed: 01/14/2023]
Abstract
Although the stress response in eukaryotes depends on early events triggered in cells by environmental insults, long-term processes such as aging are also affected. The loss of cellular proteostasis greatly impacts aging, which is regulated by the balancing of protein synthesis and degradation systems. As translation is the input event in proteostasis, we decided to study the role of translational activity on cell lifespan. Our hypothesis was that a reduction on translational activity or specific changes in translation may increase cellular longevity. Using mutant strains of Schizosaccharomyces pombe and various stress conditions, we showed that translational reduction caused by phosphorylation of eukaryotic translation initiation factor 2 (eIF2) during the exponential growth phase enhances chronological lifespan (CLS). Furthermore, through next-generation sequence analysis, we found eIF2α phosphorylation-dependent translational activation of some specific genes, especially those involved in autophagy. This fact, together with the observed regulation of autophagy, points to a conserved mechanism involving general and specific control of translation and autophagy as mediators of the role of eIF2α phosphorylation in aging.
Collapse
Affiliation(s)
- Tamara Jiménez-Saucedo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan José Berlanga
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Rodríguez-Gabriel
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
29
|
Histone transcription regulator Slm9 is required for cytoophidium biogenesis. Exp Cell Res 2021; 403:112582. [PMID: 33812868 DOI: 10.1016/j.yexcr.2021.112582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/23/2022]
Abstract
The cytoophidium, a subcellular structure composed of CTP synthase, can be observed during the division of Schizosaccharomyces pombe. Cytoophidium formation changes periodically with the cell cycle of yeast cells. Here, we find that histone chaperone Slm9 is required for the integrity of cytoophidia in fission yeast. When the slm9 gene is knocked out, we observe that morphological characteristics, the abundance of cytoophidia and the division of the yeast cells are significantly affected. Fragmented cytoophidia occur in slm9 mutant cells, a phenomenon rarely observed in wild-type cells. Our study reveals a potential link between a chromosomal regulatory factor and cytoophidium biogenesis.
Collapse
|
30
|
Singh P, Halova L, Hagan IM. Highly Synchronous Mitotic Progression in Schizosaccharomyces pombe Upon Relief of Transient Cdc2-asM17 Inhibition. Methods Mol Biol 2021; 2329:123-142. [PMID: 34085220 DOI: 10.1007/978-1-0716-1538-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Synchronized progression of a cell population through the cell division cycle supports the biochemical and functional dissection of cell cycle controls and execution. The concerted behaviour of the population reflects the attributes of each cell within that population. The reversible imposition of a block to cell cycle progression at the G2-M boundary through transient inactivation of the Cdk1-Cyclin B activating phosphatase, Cdc25, with the temperature sensitive cdc25-22 mutant, has been widely used to study fission yeast mitosis and DNA replication. However, the biology of the compromised Cdc25-22 phosphatase generates significant division abnormalities upon release from mitotic arrest. We show how reversible inhibition of Cdc2-asM17, with the ATP analog 3-BrB-PP1, generates higher levels of synchrony with timing and morphology much more reminiscent of a normal division. We also describe a version of the H1 kinase assay of Cdk1-Cyclin B activity that is widely used to monitor mitotic progression which does not require radiolabeled ATP.
Collapse
Affiliation(s)
- Pawan Singh
- Cell Division Group, CRUK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Lenka Halova
- Cell Division Group, CRUK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Iain Michael Hagan
- Cell Division Group, CRUK Manchester Institute, The University of Manchester, Alderley Park, UK.
| |
Collapse
|
31
|
Ohtsuka H, Shimasaki T, Aiba H. Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast). Mol Microbiol 2020; 115:623-642. [PMID: 33064911 PMCID: PMC8246873 DOI: 10.1111/mmi.14627] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
So far, more than 70 genes involved in the chronological lifespan (CLS) of Schizosaccharomyces pombe (fission yeast) have been reported. In this mini‐review, we arrange and summarize these genes based on the reported genetic interactions between them and the physical interactions between their products. We describe the signal transduction pathways that affect CLS in S. pombe: target of rapamycin complex 1, cAMP‐dependent protein kinase, Sty1, and Pmk1 pathways have important functions in the regulation of CLS extension. Furthermore, the Php transcription complex, Ecl1 family proteins, cyclin Clg1, and the cyclin‐dependent kinase Pef1 are important for the regulation of CLS extension in S. pombe. Most of the known genes involved in CLS extension are related to these pathways and genes. In this review, we focus on the individual genes regulating CLS extension in S. pombe and discuss the interactions among them.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
32
|
Garg A. A lncRNA-regulated gene expression system with rapid induction kinetics in the fission yeast Schizosaccharomyces pombe. RNA (NEW YORK, N.Y.) 2020; 26:1743-1752. [PMID: 32788323 PMCID: PMC7566572 DOI: 10.1261/rna.076000.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
The fission yeast Schizosaccharomyces pombe is an excellent model organism for the study of eukaryotic cellular physiology. The organism is genetically tractable and several tools to study the functions of individual genes are available. One such tool is regulatable gene expression and overproduction of proteins. Limitations of currently available overexpression systems include delay in expression after induction, narrow dynamic range, and system-wide changes due to induction conditions. Here I describe a new long noncoding RNA (lncRNA)-regulated, thiamine-inducible expression system that integrates lncRNA-based transcriptional interference at the fission yeast tgp1 promoter with the fast repression kinetics of the thiamine-repressible nmt1 promoter. This hybrid system has rapid induction kinetics, broad dynamic range, and tunable expression via thiamine concentration. The lncRNA-regulated thiamine-inducible system will be advantageous for the study of individual genes and for potential applications in the production of heterologous proteins in fission yeast.
Collapse
Affiliation(s)
- Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
33
|
Požgajová M, Navrátilová A, Šebová E, Kovár M, Kačániová M. Cadmium-Induced Cell Homeostasis Impairment is Suppressed by the Tor1 Deficiency in Fission Yeast. Int J Mol Sci 2020; 21:ijms21217847. [PMID: 33105893 PMCID: PMC7660220 DOI: 10.3390/ijms21217847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Cadmium has no known physiological function in the body; however, its adverse effects are associated with cancer and many types of organ system damage. Although much has been shown about Cd toxicity, the underlying mechanisms of its responses to the organism remain unclear. In this study, the role of Tor1, a catalytic subunit of the target of rapamycin complex 2 (TORC2), in Cd-mediated effects on cell proliferation, the antioxidant system, morphology, and ionome balance was investigated in the eukaryotic model organism Schizosaccharomyces pombe. Surprisingly, spectrophotometric and biochemical analyses revealed that the growth rate conditions and antioxidant defense mechanisms are considerably better in cells lacking the Tor1 signaling. The malondialdehyde (MDA) content of Tor1-deficient cells upon Cd treatment represents approximately half of the wild-type content. The microscopic determination of the cell morphological parameters indicates the role for Tor1 in cell shape maintenance. The ion content, determined by inductively coupled plasma optical emission spectroscopy (ICP-OES), showed that the Cd uptake potency was markedly lower in Tor1-depleted compared to wild-type cells. Conclusively, we show that the cadmium-mediated cell impairments in the fission yeast significantly depend on the Tor1 signaling. Additionally, the data presented here suggest the yet-undefined role of Tor1 in the transport of ions.
Collapse
Affiliation(s)
- Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia
- Correspondence: ; Tel.: +421-37-641-4919
| | - Alica Navrátilová
- Department of Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
| | - Eva Šebová
- Institute of Experimental Medicine, Czech Academy of Science, 14220 Prague, Czech Republic;
| | - Marek Kovár
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 35-601 Rzeszow, Poland
| |
Collapse
|
34
|
Baybay EK, Esposito E, Hauf S. Pomegranate: 2D segmentation and 3D reconstruction for fission yeast and other radially symmetric cells. Sci Rep 2020; 10:16580. [PMID: 33024177 PMCID: PMC7538417 DOI: 10.1038/s41598-020-73597-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 11/09/2022] Open
Abstract
Three-dimensional (3D) segmentation of cells in microscopy images is crucial to accurately capture signals that extend across optical sections. Using brightfield images for segmentation has the advantage of being minimally phototoxic and leaving all other channels available for signals of interest. However, brightfield images only readily provide information for two-dimensional (2D) segmentation. In radially symmetric cells, such as fission yeast and many bacteria, this 2D segmentation can be computationally extruded into the third dimension. However, current methods typically make the simplifying assumption that cells are straight rods. Here, we report Pomegranate, a pipeline that performs the extrusion into 3D using spheres placed along the topological skeletons of the 2D-segmented regions. The diameter of these spheres adapts to the cell diameter at each position. Thus, Pomegranate accurately represents radially symmetric cells in 3D even if cell diameter varies and regardless of whether a cell is straight, bent or curved. We have tested Pomegranate on fission yeast and demonstrate its ability to 3D segment wild-type cells as well as classical size and shape mutants. The pipeline is available as a macro for the open-source image analysis software Fiji/ImageJ. 2D segmentations created within or outside Pomegranate can serve as input, thus making this a valuable extension to the image analysis portfolio already available for fission yeast and other radially symmetric cell types.
Collapse
Affiliation(s)
- Erod Keaton Baybay
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| | - Eric Esposito
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Silke Hauf
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
35
|
RecQ DNA Helicase Rqh1 Promotes Rad3 ATR Kinase Signaling in the DNA Replication Checkpoint Pathway of Fission Yeast. Mol Cell Biol 2020; 40:MCB.00145-20. [PMID: 32541066 DOI: 10.1128/mcb.00145-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Rad3 is the orthologue of ATR and the sensor kinase of the DNA replication checkpoint in Schizosaccharomyces pombe Under replication stress, it initiates checkpoint signaling at the forks necessary for maintaining genome stability and cell survival. To better understand the checkpoint initiation process, we have carried out a genetic screen in fission yeast by random mutation of the genome, looking for mutants defective in response to the replication stress induced by hydroxyurea. In addition to the previously reported mutant with a C-to-Y change at position 307 encoded by tel2 (tel2-C307Y mutant) (Y.-J. Xu, S. Khan, A. C. Didier, M. Wozniak, et al., Mol Cell Biol 39:e00175-19, 2019, https://doi.org/10.1128/MCB.00175-19), this screen has identified six mutations in rqh1 encoding a RecQ DNA helicase. Surprisingly, these rqh1 mutations, except for a start codon mutation, are all in the helicase domain, indicating that the helicase activity of Rqh1 plays an important role in the replication checkpoint. In support of this notion, integration of two helicase-inactive mutations or deletion of rqh1 generated a similar Rad3 signaling defect, and heterologous expression of human RECQ1, BLM, and RECQ4 restored the Rad3 signaling and partially rescued a rqh1 helicase mutant. Therefore, the replication checkpoint function of Rqh1 is highly conserved, and mutations in the helicase domain of these human enzymes may cause the checkpoint defect and contribute to the cancer predisposition syndromes.
Collapse
|
36
|
Tao YT, Suo F, Tusso S, Wang YK, Huang S, Wolf JBW, Du LL. Intraspecific Diversity of Fission Yeast Mitochondrial Genomes. Genome Biol Evol 2020; 11:2312-2329. [PMID: 31364709 PMCID: PMC6736045 DOI: 10.1093/gbe/evz165] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
The fission yeast Schizosaccharomyces pombe is an important model organism, but its natural diversity and evolutionary history remain under-studied. In particular, the population genomics of the S. pombe mitochondrial genome (mitogenome) has not been thoroughly investigated. Here, we assembled the complete circular-mapping mitogenomes of 192 S. pombe isolates de novo, and found that these mitogenomes belong to 69 nonidentical sequence types ranging from 17,618 to 26,910 bp in length. Using the assembled mitogenomes, we identified 20 errors in the reference mitogenome and discovered two previously unknown mitochondrial introns. Analyzing sequence diversity of these 69 types of mitogenomes revealed two highly distinct clades, with only three mitogenomes exhibiting signs of inter-clade recombination. This diversity pattern suggests that currently available S. pombe isolates descend from two long-separated ancestral lineages. This conclusion is corroborated by the diversity pattern of the recombination-repressed K-region located between donor mating-type loci mat2 and mat3 in the nuclear genome. We estimated that the two ancestral S. pombe lineages diverged about 31 million generations ago. These findings shed new light on the evolution of S. pombe and the data sets generated in this study will facilitate future research on genome evolution.
Collapse
Affiliation(s)
- Yu-Tian Tao
- National Institute of Biological Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing, China
| | - Sergio Tusso
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany.,Science for Life Laboratories, Department of Evolutionary Biology, Uppsala University, Sweden
| | - Yan-Kai Wang
- National Institute of Biological Sciences, Beijing, China
| | - Song Huang
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany.,Science for Life Laboratories, Department of Evolutionary Biology, Uppsala University, Sweden
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
37
|
Tuite MF. Yeast models of neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:351-379. [DOI: 10.1016/bs.pmbts.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|