1
|
Trajkova S, Di Gregorio E, Ferrero GB, Carli D, Pavinato L, Delplancq G, Kuentz P, Brusco A. New Insights into Potocki-Shaffer Syndrome: Report of Two Novel Cases and Literature Review. Brain Sci 2020; 10:brainsci10110788. [PMID: 33126574 PMCID: PMC7693731 DOI: 10.3390/brainsci10110788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022] Open
Abstract
Potocki-Shaffer syndrome (PSS) is a rare non-recurrent contiguous gene deletion syndrome involving chromosome 11p11.2. Current literature implies a minimal region with haploinsufficiency of three genes, ALX4 (parietal foramina), EXT2 (multiple exostoses), and PHF21A (craniofacial anomalies, and intellectual disability). The rest of the PSS phenotype is still not associated with a specific gene. We report a systematic review of the literature and included two novel cases. Because deletions are highly variable in size, we defined three groups of patients considering the PSS-genes involved. We found 23 full PSS cases (ALX4, EXT2, and PHF21A), 14 cases with EXT2-ALX4, and three with PHF21A only. Among the latter, we describe a novel male child showing developmental delay, café-au-lait spots, liner postnatal overgrowth and West-like epileptic encephalopathy. We suggest PSS cases may have epileptic spasms early in life, and PHF21A is likely to be the causative gene. Given their subtle presentation these may be overlooked and if left untreated could lead to a severe type or deterioration in the developmental plateau. If our hypothesis is correct, a timely therapy may ameliorate PSS phenotype and improve patients’ outcomes. Our analysis also shows PHF21A is a candidate for the overgrowth phenotype.
Collapse
Affiliation(s)
- Slavica Trajkova
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy; (S.T.); (L.P.)
| | - Eleonora Di Gregorio
- Medical Genetics Unit, Città della Salute e della Scienza, University Hospital, 10126 Turin, Italy; (E.D.)
| | - Giovanni Battista Ferrero
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy; (G.B.F.); (D.C.)
| | - Diana Carli
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy; (G.B.F.); (D.C.)
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy; (S.T.); (L.P.)
| | - Geoffroy Delplancq
- Centre de Génétique Humaine, Université de Franche-Comté, 25000 Besançon, France; (G.D.)
- Service de Pédiatrie, CHU, 25000 Besançon, France
| | - Paul Kuentz
- Oncobiologie Génétique Bioinformatique, PCBio, Centre Hospitalier Universitaire de Besançon, 25000 Besançon, France; (P.K.)
- UMR-Inserm 1231 GAD, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, 21000 Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), Centre Hospitalier Universitaire de Dijon et Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy; (S.T.); (L.P.)
- Medical Genetics Unit, Città della Salute e della Scienza, University Hospital, 10126 Turin, Italy; (E.D.)
- Correspondence: (A.B.)
| |
Collapse
|
2
|
Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling. Proc Natl Acad Sci U S A 2015; 112:14918-23. [PMID: 26578810 DOI: 10.1073/pnas.1507669112] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Whole-genome duplication (WGD) is believed to be a significant source of major evolutionary innovation. Redundant genes resulting from WGD are thought to be lost or acquire new functions. However, the rates of gene loss and thus temporal process of genome reshaping after WGD remain unclear. The WGD shared by all teleost fish, one-half of all jawed vertebrates, was more recent than the two ancient WGDs that occurred before the origin of jawed vertebrates, and thus lends itself to analysis of gene loss and genome reshaping. Using a newly developed orthology identification pipeline, we inferred the post-teleost-specific WGD evolutionary histories of 6,892 protein-coding genes from nine phylogenetically representative teleost genomes on a time-calibrated tree. We found that rapid gene loss did occur in the first 60 My, with a loss of more than 70-80% of duplicated genes, and produced similar genomic gene arrangements within teleosts in that relatively short time. Mathematical modeling suggests that rapid gene loss occurred mainly by events involving simultaneous loss of multiple genes. We found that the subsequent 250 My were characterized by slow and steady loss of individual genes. Our pipeline also identified about 1,100 shared single-copy genes that are inferred to have become singletons before the divergence of clupeocephalan teleosts. Therefore, our comparative genome analysis suggests that rapid gene loss just after the WGD reshaped teleost genomes before the major divergence, and provides a useful set of marker genes for future phylogenetic analysis.
Collapse
|
3
|
Jiang YH, Wang Y, Xiu X, Choy KW, Pursley AN, Cheung SW. Genetic diagnosis of autism spectrum disorders: the opportunity and challenge in the genomics era. Crit Rev Clin Lab Sci 2014; 51:249-62. [PMID: 24878448 PMCID: PMC5937018 DOI: 10.3109/10408363.2014.910747] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A genetic etiology for autism spectrum disorders (ASDs) was first suggested from twin studies reported in the 1970s. The identification of gene mutations in syndromic ASDs provided evidence to support a genetic cause of ASDs. More recently, genome-wide copy number variant and sequence analyses have uncovered a list of rare and highly penetrant copy number variants (CNVs) or single nucleotide variants (SNVs) associated with ASDs, which has strengthened the claim of a genetic etiology for ASDs. Findings from research studies in the genetics of ASD now support an important role for molecular diagnostics in the clinical genetics evaluation of ASDs. Various molecular diagnostic assays including single gene tests, targeted multiple gene panels and copy number analysis should all be considered in the clinical genetics evaluation of ASDs. Whole exome sequencing could also be considered in selected clinical cases. However, the challenge that remains is to determine the causal role of genetic variants identified through molecular testing. Variable expressivity, pleiotropic effects and incomplete penetrance associated with CNVs and SNVs also present significant challenges for genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Yong-Hui Jiang
- Department of Pediatrics and Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Division of Neurology, The Children’s Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Yi Wang
- Division of Neurology, The Children’s Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Xu Xiu
- Division of Child Development and Health, The Children’s Hospital of Fudan University Shanghai, People’s Republic of China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynecology, and Joint Centre with Utrecht University Genetic core, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Amber Nolen Pursley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sau W. Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Cheng YW, Tan CA, Minor A, Arndt K, Wysinger L, Grange DK, Kozel BA, Robin NH, Waggoner D, Fitzpatrick C, Das S, Del Gaudio D. Copy number analysis of NIPBL in a cohort of 510 patients reveals rare copy number variants and a mosaic deletion. Mol Genet Genomic Med 2013; 2:115-23. [PMID: 24689074 PMCID: PMC3960053 DOI: 10.1002/mgg3.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/11/2013] [Indexed: 12/24/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a genetically heterogeneous disorder characterized by growth retardation, intellectual disability, upper limb abnormalities, hirsutism, and characteristic facial features. In this study we explored the occurrence of intragenic NIPBL copy number variations (CNVs) in a cohort of 510 NIPBL sequence-negative patients with suspected CdLS. Copy number analysis was performed by custom exon-targeted oligonucleotide array-comparative genomic hybridization and/or MLPA. Whole-genome SNP array was used to further characterize rearrangements extending beyond the NIPBL gene. We identified NIPBL CNVs in 13 patients (2.5%) including one intragenic duplication and a deletion in mosaic state. Breakpoint sequences in two patients provided further evidence of a microhomology-mediated replicative mechanism as a potential predominant contributor to CNVs in NIPBL. Patients for whom clinical information was available share classical CdLS features including craniofacial and limb defects. Our experience in studying the frequency of NIBPL CNVs in the largest series of patients to date widens the mutational spectrum of NIPBL and emphasizes the clinical utility of performing NIPBL deletion/duplication analysis in patients with CdLS.
Collapse
Affiliation(s)
- Yu-Wei Cheng
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Christopher A Tan
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Agata Minor
- Department of Pathology, University of Chicago Chicago, Illinois
| | - Kelly Arndt
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Latrice Wysinger
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Dorothy K Grange
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine St. Louis, Missouri
| | - Beth A Kozel
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine St. Louis, Missouri
| | - Nathaniel H Robin
- Department of Genetics, University of Alabama at Birmingham Birmingham, Alabama
| | - Darrel Waggoner
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | | | - Soma Das
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | | |
Collapse
|
5
|
Arlt MF, Rajendran S, Birkeland SR, Wilson TE, Glover TW. De novo CNV formation in mouse embryonic stem cells occurs in the absence of Xrcc4-dependent nonhomologous end joining. PLoS Genet 2012; 8:e1002981. [PMID: 23028374 PMCID: PMC3447954 DOI: 10.1371/journal.pgen.1002981] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/01/2012] [Indexed: 11/20/2022] Open
Abstract
Spontaneous copy number variant (CNV) mutations are an important factor in genomic structural variation, genomic disorders, and cancer. A major class of CNVs, termed nonrecurrent CNVs, is thought to arise by nonhomologous DNA repair mechanisms due to the presence of short microhomologies, blunt ends, or short insertions at junctions of normal and de novo pathogenic CNVs, features recapitulated in experimental systems in which CNVs are induced by exogenous replication stress. To test whether the canonical nonhomologous end joining (NHEJ) pathway of double-strand break (DSB) repair is involved in the formation of this class of CNVs, chromosome integrity was monitored in NHEJ–deficient Xrcc4−/− mouse embryonic stem (ES) cells following treatment with low doses of aphidicolin, a DNA replicative polymerase inhibitor. Mouse ES cells exhibited replication stress-induced CNV formation in the same manner as human fibroblasts, including the existence of syntenic hotspot regions, such as in the Auts2 and Wwox loci. The frequency and location of spontaneous and aphidicolin-induced CNV formation were not altered by loss of Xrcc4, as would be expected if canonical NHEJ were the predominant pathway of CNV formation. Moreover, de novo CNV junctions displayed a typical pattern of microhomology and blunt end use that did not change in the absence of Xrcc4. A number of complex CNVs were detected in both wild-type and Xrcc4−/− cells, including an example of a catastrophic, chromothripsis event. These results establish that nonrecurrent CNVs can be, and frequently are, formed by mechanisms other than Xrcc4-dependent NHEJ. Copy number variants (CNVs) are a major factor in genetic variation and are a common and important class of mutation in genomic disorders, yet there is limited understanding of how many CNVs arise and the risk factors involved. One DNA damage response pathway implicated in CNV formation is nonhomologous end joining (NHEJ), which repairs broken DNA ends by Xrcc4-dependent direct ligation. We examined the effects of loss of Xrcc4 and NHEJ on CNV formation following replication stress in mouse cells. Cells lacking NHEJ displayed unaltered CNV frequencies, locations, and breakpoint structures compared to normal cells. These results establish that CNV mutations in a cell model system, and likely in vivo, arise by a mutagenic mechanism other than canonical NHEJ, a pattern similar to that reported for model translocation events. Potential roles of alternative end joining and template switching are discussed.
Collapse
Affiliation(s)
- Martin F. Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sountharia Rajendran
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shanda R. Birkeland
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas E. Wilson
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (TEW); (TWG)
| | - Thomas W. Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (TEW); (TWG)
| |
Collapse
|
6
|
Arlt MF, Wilson TE, Glover TW. Replication stress and mechanisms of CNV formation. Curr Opin Genet Dev 2012; 22:204-10. [PMID: 22365495 DOI: 10.1016/j.gde.2012.01.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/11/2022]
Abstract
Copy number variants (CNVs) are widely distributed throughout the human genome, where they contribute to genetic variation and phenotypic diversity. De novo CNVs are also a major cause of numerous genetic and developmental disorders. However, unlike many other types of mutations, little is known about the genetic and environmental risk factors for new and deleterious CNVs. DNA replication errors have been implicated in the generation of a major class of CNVs, the nonrecurrent CNVs. We have found that agents that perturb normal replication and create conditions of replication stress, including hydroxyurea and aphidicolin, are potent inducers of nonrecurrent CNVs in cultured human cells. These findings have broad implications for identifying CNV risk factors and for hydroxyurea-related therapies in humans.
Collapse
Affiliation(s)
- Martin F Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, United States
| | | | | |
Collapse
|
7
|
Bacino CA, Cheung SW. Introductory comments on special section-genomic microduplications: When adding may equal subtracting. Am J Med Genet A 2010; 152A:1063-5. [PMID: 20425812 DOI: 10.1002/ajmg.a.33346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The clinical implementation of array-based comparative genomic hybridization (aCGH) has allowed detection of copy number variations (CNVs) from megabases in size to those involving only a single exon. One major challenge that followed the clinical implementation of array CGH technology has been the interpretation of CNVs whose clinical significance can be elusive. The copy number gains resulting from genomic rearrangements are often more difficult to interpret than the copy number losses. Some of the CNV gains can be pathogenic, while others can be unrelated to disease since CNVs are often polymorphic in the normal population. The challenge faced by clinicians is how to differentiate between the disease causing CNVs and the nonpathogenic polymorphisms. Therefore, it is critical to systematically collect phenotypic information associated with CNVs and deposit it in searchable and publicly accessible databases. (c) 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
8
|
Abstract
During the last quarter of the twentieth century, our knowledge about human genetic variation was limited mainly to the heterochromatin polymorphisms, large enough to be visible in the light microscope, and the single nucleotide polymorphisms (SNPs) identified by traditional PCR-based DNA sequencing. In the past five years, the rapid development and expanded use of microarray technologies, including oligonucleotide array comparative genomic hybridization and SNP genotyping arrays, as well as next-generation sequencing with “paired-end” methods, has enabled a whole-genome analysis with essentially unlimited resolution. The discovery of submicroscopic copy-number variations (CNVs) present in our genomes has changed dramatically our perspective on DNA structural variation and disease. It is now thought that CNVs encompass more total nucleotides and arise more frequently than SNPs. CNVs, to a larger extent than SNPs, have been shown to be responsible for human evolution, genetic diversity between individuals, and a rapidly increasing number of traits or susceptibility to traits; such conditions have been referred to as genomic disorders. In addition to well-known sporadic chromosomal microdeletion syndromes and Mendelian diseases, many common complex traits including autism and schizophrenia can result from CNVs. Both recombination- and replication-based mechanisms for CNV formation have been described.
Collapse
Affiliation(s)
| | - James R. Lupski
- Departments of Molecular and Human Genetics, Houston, Texas 77030
- Departments of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
- Departments of Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
9
|
Evolution in health and medicine Sackler colloquium: Genomic disorders: a window into human gene and genome evolution. Proc Natl Acad Sci U S A 2010; 107 Suppl 1:1765-71. [PMID: 20080665 DOI: 10.1073/pnas.0906222107] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene duplications alter the genetic constitution of organisms and can be a driving force of molecular evolution in humans and the great apes. In this context, the study of genomic disorders has uncovered the essential role played by the genomic architecture, especially low copy repeats (LCRs) or segmental duplications (SDs). In fact, regardless of the mechanism, LCRs can mediate or stimulate rearrangements, inciting genomic instability and generating dynamic and unstable regions prone to rapid molecular evolution. In humans, copy-number variation (CNV) has been implicated in common traits such as neuropathy, hypertension, color blindness, infertility, and behavioral traits including autism and schizophrenia, as well as disease susceptibility to HIV, lupus nephritis, and psoriasis among many other clinical phenotypes. The same mechanisms implicated in the origin of genomic disorders may also play a role in the emergence of segmental duplications and the evolution of new genes by means of genomic and gene duplication and triplication, exon shuffling, exon accretion, and fusion/fission events.
Collapse
|
10
|
Chien SC, Li YC, Ho M, Hsu PC, Teng RH, Lin WD, Tsai FJ, Lin CC. Rare rearrangements: A âjumping satelliteâ in one family and autosomal location of theSRYgene in an XX male. Am J Med Genet A 2009; 149A:2775-81. [DOI: 10.1002/ajmg.a.32958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Arlt MF, Mulle JG, Schaibley VM, Ragland RL, Durkin SG, Warren ST, Glover TW. Replication stress induces genome-wide copy number changes in human cells that resemble polymorphic and pathogenic variants. Am J Hum Genet 2009; 84:339-50. [PMID: 19232554 PMCID: PMC2667984 DOI: 10.1016/j.ajhg.2009.01.024] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/23/2009] [Accepted: 01/30/2009] [Indexed: 11/28/2022] Open
Abstract
Copy number variants (CNVs) are an important component of genomic variation in humans and other mammals. Similar de novo deletions and duplications, or copy number changes (CNCs), are now known to be a major cause of genetic and developmental disorders and to arise somatically in many cancers. A major mechanism leading to both CNVs and disease-associated CNCs is meiotic unequal crossing over, or nonallelic homologous recombination (NAHR), mediated by flanking repeated sequences or segmental duplications. Others appear to involve nonhomologous end joining (NHEJ) or aberrant replication suggesting a mitotic cell origin. Here we show that aphidicolin-induced replication stress in normal human cells leads to a high frequency of CNCs of tens to thousands of kilobases across the human genome that closely resemble CNVs and disease-associated CNCs. Most deletion and duplication breakpoint junctions were characterized by short (<6 bp) microhomologies, consistent with the hypothesis that these rearrangements were formed by NHEJ or a replication-coupled process, such as template switching. This is a previously unrecognized consequence of replication stress and suggests that replication fork stalling and subsequent error-prone repair are important mechanisms in the formation of CNVs and pathogenic CNCs in humans.
Collapse
Affiliation(s)
- Martin F. Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer G. Mulle
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | - Ryan L. Ragland
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sandra G. Durkin
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen T. Warren
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Thomas W. Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Zhang Y, Malekpour M, Al-Madani N, Kahrizi K, Zanganeh M, Mohseni M, Mojahedi F, Daneshi A, Najmabadi H, Smith RJH. Sensorineural deafness and male infertility: a contiguous gene deletion syndrome. BMJ Case Rep 2009; 2009:bcr08.2008.0645. [PMID: 21686705 DOI: 10.1136/bcr.08.2008.0645] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Syndromic hearing loss that results from contiguous gene deletions is uncommon.Three families with a novel syndrome characterised by deafness and infertility are described. Linkage was established by completing a genome-wide scan and candidate genes in the linked region were screened by direct sequencing. The deleted region is about 100 kb long and involves four genes (KIAA0377, CKMT1B, STRC and CATSPER2), each of which has a telomeric duplicate. This genomic architecture underlies the mechanism by which these deletions occur. CATSPER2 and STRC are expressed in the sperm and inner ear, respectively, consistent with the phenotype in persons homozygous for this deletion. A deletion of this region has been reported in one other family segregating male infertility and sensorineural deafness. We have identified three families segregating an autosomal recessive contiguous gene deletion syndrome characterised by deafness and sperm dysmotility. This new syndrome is caused by the deletion of contiguous genes at 15q15.3.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Molecular Otolaryngology Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Copy number variations in the NF1 gene region are infrequent and do not predispose to recurrent type-1 deletions. Eur J Hum Genet 2008; 16:572-80. [PMID: 18212816 DOI: 10.1038/sj.ejhg.5202002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gross deletions of the NF1 gene at 17q11.2 belong to the group of 'genomic disorders' characterized by local sequence architecture that predisposes to genomic rearrangements. Segmental duplications within regions associated with genomic disorders are prone to non-allelic homologous recombination (NAHR), which mediates gross rearrangements. Copy number variants (CNVs) without obvious phenotypic consequences also occur frequently in regions of genomic disorders. In the NF1 gene region, putative CNVs have been reportedly detected by array comparative genomic hybridization (array CGH). These variants include duplications and deletions within the NF1 gene itself (CNV1) and a duplication that encompasses the SUZ12 gene, the distal NF1-REPc repeat and the RHOT1 gene (CNV2). To explore the possibility that these CNVs could have played a role in promoting deletion mutagenesis in type-1 deletions (the most common type of gross NF1 deletion), non-affected transmitting parents of patients with type-1 NF1 deletions were investigated by multiplex ligation-dependent probe amplification (MLPA). However, neither CNV1 nor CNV2 were detected. This would appear to exclude these variants as frequent mediators of NAHR giving rise to type-1 deletions. Using MLPA, we were also unable to confirm CNV1 in healthy controls as previously reported. We conclude that locus-specific techniques should be used to independently confirm putative CNVs, originally detected by array CGH, to avoid false-positive results. In one patient with an atypical deletion, a duplication in the region of CNV2 was noted. This duplication could have occurred concomitantly with the deletion as part of a complex rearrangement or may alternatively have preceded the deletion.
Collapse
|
14
|
del Gaudio D, Fang P, Scaglia F, Ward PA, Craigen WJ, Glaze DG, Neul JL, Patel A, Lee JA, Irons M, Berry SA, Pursley AA, Grebe TA, Freedenberg D, Martin RA, Hsich GE, Khera JR, Friedman NR, Zoghbi HY, Eng CM, Lupski JR, Beaudet AL, Cheung SW, Roa BB. Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males. Genet Med 2007; 8:784-92. [PMID: 17172942 DOI: 10.1097/01.gim.0000250502.28516.3c] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Mutations in the MECP2 gene are associated with Rett syndrome, an X-linked mental retardation disorder in females. Mutations also cause variable neurodevelopmental phenotypes in rare affected males. Recent clinical testing for MECP2 gene rearrangements revealed that entire MECP2 gene duplication occurs in some males manifesting a progressive neurodevelopmental syndrome. METHODS Clinical testing through quantitative DNA methods and chromosomal microarray analysis in our laboratories identified seven male patients with increased MECP2 gene copy number. RESULTS Duplication of the entire MECP2 gene was found in six patients, and MECP2 triplication was found in one patient with the most severe phenotype. The Xq28 duplications observed in these males are unique and vary in size from approximately 200 kb to 2.2 Mb. Three of the mothers who were tested were asymptomatic duplication carriers with skewed X-inactivation. In silico analysis of the Xq28 flanking region showed numerous low-copy repeats with potential roles in recombination. CONCLUSIONS These collective data suggest that increased MECP2 gene copy number is mainly responsible for the neurodevelopmental phenotypes in these males. These findings underscore the allelic and phenotypic heterogeneity associated with the MECP2 gene and highlight the value of molecular analysis for patient diagnosis, family members at risk, and genetic counseling.
Collapse
Affiliation(s)
- Daniela del Gaudio
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang Y, Malekpour M, Al-Madani N, Kahrizi K, Zanganeh M, Lohr NJ, Mohseni M, Mojahedi F, Daneshi A, Najmabadi H, Smith RJH. Sensorineural deafness and male infertility: a contiguous gene deletion syndrome. J Med Genet 2006; 44:233-40. [PMID: 17098888 PMCID: PMC2598039 DOI: 10.1136/jmg.2006.045765] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Syndromic hearing loss that results from contiguous gene deletions is uncommon. Deafness-infertility syndrome (DIS) is caused by large contiguous gene deletions at 15q15.3. METHODS Three families with a novel syndrome characterised by deafness and infertility are described. These three families do not share a common ancestor and do not share identical deletions. Linkage was established by completing a genome-wide scan and candidate genes in the linked region were screened by direct sequencing. RESULTS The deleted region is about 100 kb long and involves four genes (KIAA0377, CKMT1B, STRC and CATSPER2), each of which has a telomeric duplicate. This genomic architecture underlies the mechanism by which these deletions occur. CATSPER2 and STRC are expressed in the sperm and inner ear, respectively, consistent with the phenotype in persons homozygous for this deletion. A deletion of this region has been reported in one other family segregating male infertility and sensorineural deafness, although congenital dyserythropoietic anaemia type I (CDAI) was also present, presumably due to a second deletion in another genomic region. CONCLUSION We have identified three families segregating an autosomal recessive contiguous gene deletion syndrome characterised by deafness and sperm dysmotility. This new syndrome is caused by the deletion of contiguous genes at 15q15.3.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Molecular Otolaryngology Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, Iowa 52240, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fink SR, Smoley SA, Stockero KJ, Paternoster SF, Thorland EC, Van Dyke DL, Shanafelt TD, Zent CS, Call TG, Kay NE, Dewald GW. Loss of TP53 is due to rearrangements involving chromosome region 17p10 approximately p12 in chronic lymphocytic leukemia. ACTA ACUST UNITED AC 2006; 167:177-81. [PMID: 16737921 DOI: 10.1016/j.cancergencyto.2006.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 01/20/2006] [Indexed: 11/22/2022]
Abstract
Loss of tumor protein 53 (TP53) has been associated with aggressive disease and poor response to therapy in B-cell chronic lymphocytic leukemia (B-CLL). TP53 is located at chromosome band 17p13 and its absence can be detected by fluorescence in situ hybridization (FISH) in the interphase nuclei of 8-10% patients with B-CLL. To study the cytogenetic mechanism for loss of TP53, metaphase and interphase FISH studies were conducted on 16 B-CLL patients to investigate 17p10 to 17p12, a chromosome region known to be rich in low-copy DNA repeats. Loss of TP53 was caused by an isochromosome with breakpoints between 17p10 and 17p11.2 in four patients, an unbalanced translocation involving 17p10 to 17p11.2 in nine patients, and an unbalanced translocation involving 17p11.2 to 17p12 in three patients. These findings indicate that loss of TP53 results from the absence of nearly the entire chromosome 17 p-arm rather than to monosomy 17 or deletions of TP53. Translocations or isochromosome formations at sites of low-copy DNA repeats in 17p10 to 17p12 appear to be the mechanism for the loss of TP53 in B-CLL.
Collapse
Affiliation(s)
- Stephanie R Fink
- Cytogenetics Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Goidts V, Cooper DN, Armengol L, Schempp W, Conroy J, Estivill X, Nowak N, Hameister H, Kehrer-Sawatzki H. Complex patterns of copy number variation at sites of segmental duplications: an important category of structural variation in the human genome. Hum Genet 2006; 120:270-84. [PMID: 16838144 DOI: 10.1007/s00439-006-0217-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
The structural diversity of the human genome is much higher than previously assumed although its full extent remains unknown. To investigate the association between segmental duplications that display constitutive copy number differences (CNDs) between humans and the great apes and those which exhibit polymorphic copy number variations (CNVs) between humans, we analysed a BAC array enriched with segmental duplications displaying such CNDs. This study documents for the first time that in addition to human-specific gains common to all humans, these duplication clusters (DCs) also exhibit polymorphic CNVs > 40 kb. Segmental duplication is known to have been a frequent event during human genome evolution. Importantly, among the CNV-associated genes identified here, those involved in transcriptional regulation were found to be significantly overrepresented. Complex patterns of variation were evident at sites of DCs, manifesting as inter-individual differentially sized copy number alterations at the same genomic loci. Thus, CNVs associated with segmental duplications do not simply represent insertion/deletion polymorphisms, but rather constitute a wide variety of rearrangements involving differential amplification and partial gains and losses with high inter-individual variability. Although the number of CNVs was not found to differ between Africans and Caucasians/Asians, the average number of variant patterns per locus was significantly lower in Africans. Thus, complex variation patterns characterizing segmental duplications result from relatively recent genomic rearrangements. The high number of these rearrangements, some of which are potentially recurrent, together with differences in population size and expansion dynamics, may account for the greater diversity of CNV in Caucasians/Asians as compared with Africans.
Collapse
Affiliation(s)
- Violaine Goidts
- Department of Human Genetics, University of Ulm, Albert Einstein Allee 11, 89081, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kuryshev VY, Vorobyov E, Zink D, Schmitz J, Rozhdestvensky TS, Münstermann E, Ernst U, Wellenreuther R, Moosmayer P, Bechtel S, Schupp I, Horst J, Korn B, Poustka A, Wiemann S. An anthropoid-specific segmental duplication on human chromosome 1q22. Genomics 2006; 88:143-51. [PMID: 16545939 DOI: 10.1016/j.ygeno.2006.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 01/23/2006] [Accepted: 02/05/2006] [Indexed: 11/27/2022]
Abstract
Segmental duplications (SDs) play a key role in genome evolution by providing material for gene diversification and creation of variant or novel functions. They also mediate recombinations, resulting in microdeletions, which have occasionally been associated with human genetic diseases. Here, we present a detailed analysis of a large genomic region (about 240 kb), located on human chromosome 1q22, that contains a tandem SD, SD1q22. This duplication occurred about 37 million years ago in a lineage leading to anthropoid primates, after their separation from prosimians but before the Old and New World monkey split. We reconstructed the hypothetical unduplicated ancestral locus and compared it with the extant SD1q22 region. Our data demonstrate that, as a consequence of the duplication, new anthropoid-specific genetic material has evolved in the resulting paralogous segments. We describe the emergence of two new genes, whose new functions could contribute to the speciation of anthropoid primates. Moreover, we provide detailed information regarding structure and evolution of the SD1q22 region that is a prerequisite for future studies of its anthropoid-specific functions and possible linkage to human genetic disorders.
Collapse
Affiliation(s)
- Vladimir Yu Kuryshev
- Department of Molecular Genome Analysis, DKFZ-German Cancer Research Center, INF 580, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Jugessur A, Murray JC. Orofacial clefting: recent insights into a complex trait. Curr Opin Genet Dev 2005; 15:270-8. [PMID: 15917202 PMCID: PMC2442458 DOI: 10.1016/j.gde.2005.03.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 03/18/2005] [Indexed: 11/20/2022]
Abstract
Orofacial clefts are common birth defects of multifactorial etiology. Several novel approaches have recently been applied to investigate the causes of clefts. These include examining Mendelian forms of clefting to identify genes that might also be implicated in isolated clefting, analyzing chromosomal rearrangements in which clefting is part of the resultant phenotype, studying animal models in which clefts arise either spontaneously or as a result of mutagenesis experiments, exploring how expression patterns correlate with gene function and examining the effects of gene-environment interactions. Together, these complementary strategies are providing researchers with new clues as to what mechanisms underlie orofacial clefting.
Collapse
Affiliation(s)
- Astanand Jugessur
- Department of Paediatrics, University of Iowa, Iowa City, IA 52242, USA
- Section for Epidemiology and Medical Statistics, Department of Public Health and Primary Health Care, University of Bergen, Norway
| | - Jeffrey C Murray
- Department of Paediatrics, University of Iowa, Iowa City, IA 52242, USA
- The Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Corresponding author: Murray, Jeffrey C ()
| |
Collapse
|
21
|
Bien-Willner GA, Stankiewicz P, Lupski JR, Northup JK, Velagaleti GVN. Interphase FISH screening for the LCR-mediated common rearrangement of isochromosome 17q in primary myelofibrosis. Am J Hematol 2005; 79:309-13. [PMID: 16044457 DOI: 10.1002/ajh.20366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Non-allelic homologous recombination (NAHR) between low-copy repeats (LCRs) has been implicated recently in somatic rearrangements including isochromosome i(17q), which is associated with hematologic malignancies as well as solid tumors. In hematological malignancies, the most common i(17q) breakpoint results from LCR-mediated NAHR, which creates a dicentric chromosome, idic(17)(p11.2). We report an elderly patient who presented with primary myelofibrosis (MF) with myeloid metaplasia (MMM), associated with idic(17)(p11.2) as the sole chromosomal abnormality, making this the first idic(17)(p11.2) myeloproliferative case reported in which the breakpoints are mapped to the breakpoint cluster region in proximal 17p. The rearrangement breakpoint maps to the previously defined LCR cluster, further suggesting that the genomic architecture of proximal 17p may be responsible for the formation of the majority of i(17q) cases. We describe our development of a rapid screening test using interphase FISH to detect idic(17)(p11.2), discuss the potential prognostic value of this molecular diagnostic test, and examine the relevance of LCR-mediated NAHR to common rearrangements in neoplasms.
Collapse
Affiliation(s)
- Gabriel A Bien-Willner
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
22
|
Mao R, Pevsner J. The use of genomic microarrays to study chromosomal abnormalities in mental retardation. ACTA ACUST UNITED AC 2005; 11:279-85. [PMID: 16240409 DOI: 10.1002/mrdd.20082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mental retardation affects 2 to 3% of the US population. It is defined by broad criteria, including significantly subaverage intelligence, onset by age 18, and impaired function in a group of adaptive skills. A myriad of genetic and environmental causes have been described, but for approximately half of individuals diagnosed with mental retardation the molecular basis remains unknown. Genomic microarrays, also called array comparative genomic hybridization (array CGH), represent one of several novel technologies that allow the detection of chromosomal abnormalities, such as microdeletions and microduplications, in a rapid, high throughput fashion from genomic DNA samples. In one early application of this technology, genomic microarrays have been used to characterize the extent of chromosomal changes in a group of patients diagnosed with one particular type of disorder that causes mental retardation, such as deletion 1p36 syndrome. In another application, DNA samples from individuals with idiopathic mental retardation have been assayed to scan the entire genome in attempts to identify chromosomal changes. Genomic microarrays offer both a genome-wide perspective of chromosomal aberrations as well as higher resolution (to the level of approximately one megabase) compared to alternative available technologies.
Collapse
Affiliation(s)
- Rong Mao
- Program in Biochemistry, Molecular, and Cellular Biology, Johns Hopkins School of Medicine, and Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA
| | | |
Collapse
|