1
|
Lau AYT, Xie Y, Cheung MK, Cheung PCK, Kwan HS. Genome-wide mRNA and miRNA analysis in the early stages of germ tube outgrowth in Coprinopsis cinerea. Fungal Genet Biol 2020; 142:103416. [PMID: 32522620 DOI: 10.1016/j.fgb.2020.103416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 01/28/2023]
Abstract
Coprinopsis cinerea is a model mushroom-forming basidiomycete which produces basidiospores during sexual reproduction. This fungus is widely used to study fruiting body formation and development. Molecular mechanisms controlling its growth from vegetative mycelium to multicellular mature fruiting body have been studied extensively. However, little is known about the underlying biological processes during germ tube outgrowth or the transition from basidiospores to multinucleate hyphae. To better understand sexual spore germination in fungi, here we examined the time-dependent cellular events at resting, germinating and fully germinated basidiospores of C. cinerea by genome-wide transcriptional and post-transcriptional analyses and by carbohydrate composition analysis. Our results revealed a high demand of protein degradation, and biosynthesis of various compounds at the early stage of basidiospore gemination and dynamic changes of carbohydrate metabolism throughout the germination process. Seven microRNA-like RNAs (milRNAs) were identified in the resting basidiospores of C. cinerea, six of which were basidiospore-specific. Glycogen and trehalose were shown to be the carbon sources supporting the initiation of germ tube outgrowth. One basidiospore-specific milRNA, cci-milR-37, was found to be a potential regulator of glycogen metabolic pathways related to vegetative hyphal growth. Our results demonstrated the mRNA and miRNA-mediated regulation on energy production, protein and carbohydrate metabolisms at the early developmental stages of germ tube to form totipotent hyphae. To our knowledge, this is the first study to show the roles of miRNAs in mushroom basidiospore germination and out-growth.
Collapse
Affiliation(s)
- Amy Yuet Ting Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Man Kit Cheung
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; CUHK Shenzhen Research Institute, Shenzhen, China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; HSK GeneTech Limited, Science Park, Shatin, New Territories, Hong Kong; Probiolife Limited, Science Park, Shatin, New Territories, Hong Kong; Mushroom-X Limited, Cheung Sha Wan Plaza, Lai Chi Kok, Kowloon, Hong Kong.
| |
Collapse
|
2
|
Zhang C, Xie B, Zou Y, Zhu D, Lei L, Zhao D, Nie H. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional biomaterials for cell fate regulation. Adv Drug Deliv Rev 2018; 132:33-56. [PMID: 29964080 DOI: 10.1016/j.addr.2018.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/01/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
The interaction of biological cells with artificial biomaterials is one of the most important issues in tissue engineering and regenerative medicine. The interaction is strongly governed by physical and chemical properties of the materials and displayed with differentiated cellular behaviors, including cell self-renewal, differentiation, reprogramming, dedifferentiation, or transdifferentiation as a result. A number of engineered biomaterials with micro- or nano-structures have been developed to mimic structural components of cell niche and specific function of extra cellular matrix (ECM) over past two decades. In this review article, we briefly introduce the fabrication of biomaterials and their classification into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) ones. More importantly, the influence of different biomaterials on inducing cell self-renewal, differentiation, reprogramming, dedifferentiation, and transdifferentiation was discussed based on the progress at 0D, 1D, 2D and 3D levels, following which the current research limitations and research perspectives were provided.
Collapse
Affiliation(s)
- Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Bei Xie
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yujian Zou
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Dan Zhu
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Lei Lei
- Department of Orthodontics, Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.
| | - Dapeng Zhao
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China.
| | - Hemin Nie
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China; Shenzhen Research Institute of Hunan University, Nanshan Hi-new Technology and Industry Park, Shenzhen 518057, China.
| |
Collapse
|
3
|
Totipotency segregates between the sister blastomeres of two-cell stage mouse embryos. Sci Rep 2017; 7:8299. [PMID: 28811525 PMCID: PMC5557898 DOI: 10.1038/s41598-017-08266-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/06/2017] [Indexed: 11/09/2022] Open
Abstract
Following fertilization in mammals, it is generally accepted that totipotent cells are exclusive to the zygote and to each of the two blastomeres originating from the first mitotic division. This model of totipotency was inferred from a minority of cases in which blastomeres produced monozygotic twins in mice. Was this due to experimental limitation or biological constraint? Here we removed experimental obstacles and achieved reliable quantification of the prevalence of dual totipotency among mouse two-cell stage blastomeres. We separated the blastomeres of 1,252 two-cell embryos, preserving 1,210 of the pairs. Two classes of monozygotic twins became apparent at the blastocyst stage: 27% formed a functional epiblast in both members (concordant), and 73% did so in only one member of the pair (discordant) - a partition that proved insensitive to oocyte quality, sperm-entry point, culture environment and pattern of cleavage. In intact two-cell embryos, the ability of sister blastomeres to generate epiblast was also skewed. Class discovery clustering of the individual blastomeres' and blastocysts' transcriptomes points to an innate origin of concordance and discordance rather than developmental acquisition. Our data place constraints on the commonly accepted idea that totipotency is allocated equally between the two-cell stage blastomeres in mice.
Collapse
|
4
|
Evsikov AV, Marín de Evsikova C. Friend or Foe: Epigenetic Regulation of Retrotransposons in Mammalian Oogenesis and Early Development. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:487-497. [PMID: 28018140 PMCID: PMC5168827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epigenetics is the study of phenotypic variation arising from developmental and environmental factors regulating gene transcription at molecular, cellular, and physiological levels. A naturally occurring biological process driven by epigenetics is the egg-to-embryo developmental transition when two fully differentiated adult cells - egg and sperm - revert to an early stem cell type with totipotency but subsequently differentiates into pluripotent embryonic stem cells that give rise to any cell type. Transposable elements (TEs) are active in mammalian oocytes and early embryos, and this activity, albeit counterintuitive because TEs can lead to genomic instability in somatic cells, correlates to successful development. TEs bridge genetic and epigenetic landscapes because TEs are genetic elements whose silencing and de-repression are regulated by epigenetic mechanisms that are sensitive to environmental factors. Ultimately, transposition events can change size, content, and function of mammalian genomes. Thus, TEs act beyond mutagenic agents reshuffling the genomes, and epigenetic regulation of TEs may act as a proximate mechanism by which evolutionary forces increase a species' hidden reserve of epigenetic and phenotypic variability facilitating the adaptation of genomes to their environment.
Collapse
Affiliation(s)
- Alexei V. Evsikov
- To whom all correspondence should be addressed: Caralina Marín de Evsikova, Alexei V. Evsikov, Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., MDC07, Tampa, FL 33612, CMdE: ; (813) 974 2248; AVE: ; (813) 974 6922, Fax: 813-974-7357
| | - Caralina Marín de Evsikova
- To whom all correspondence should be addressed: Caralina Marín de Evsikova, Alexei V. Evsikov, Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., MDC07, Tampa, FL 33612, CMdE: ; (813) 974 2248; AVE: ; (813) 974 6922, Fax: 813-974-7357
| |
Collapse
|
5
|
Tackling Societal Challenges Related to Ageing and Transport Transition: An Introduction to Philosophical Principles of Causation Adapted to the Biopsychosocial Model. Geriatrics (Basel) 2015; 1:geriatrics1010003. [PMID: 31022799 PMCID: PMC6371111 DOI: 10.3390/geriatrics1010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 11/17/2022] Open
Abstract
In geriatrics, driving cessation is addressed within the biopsychosocial model. This has broadened the scope of practitioners, not only in terms of assessing fitness to drive, but also by helping to maintain social engagements and provide support for transport transition. Causes can be addressed at different levels by adapting medication, improving physical health, modifying behaviour, adapting lifestyle, or bringing changes to the environment. This transdisciplinary approach requires an understanding of how different disciplines are linked to each other. This article reviews the philosophical principles of causality between fields and provides a framework for understanding causality within the biopsychosocial model. Understanding interlevel constraints should help practitioners overcome their differences, and favor transversal approaches to driving cessation.
Collapse
|
6
|
Jedrusik A. Making the first decision: lessons from the mouse. Reprod Med Biol 2015; 14:135-150. [PMID: 29259411 PMCID: PMC5715835 DOI: 10.1007/s12522-015-0206-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/31/2015] [Indexed: 01/06/2023] Open
Abstract
Pre-implantation development encompasses a period of 3-4 days over which the mammalian embryo has to make its first decision: to separate the pluripotent inner cell mass (ICM) from the extra-embryonic epithelial tissue, the trophectoderm (TE). The ICM gives rise to tissues mainly building the body of the future organism, while the TE contributes to the extra-embryonic tissues that support embryo development after implantation. This review provides an overview of the cellular and molecular mechanisms that control the critical aspects of this first decision, and highlights the role of critical events, namely zytotic genome activation, compaction, polarization, asymmetric cell divisions, formation of the blastocyst cavity and expression of key transcription factors.
Collapse
Affiliation(s)
- Agnieszka Jedrusik
- Wellcome Trust/CR UK Gurdon InstituteTennis Court RoadCB2 1QNCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeDowning StreetCB2 3DYCambridgeUK
| |
Collapse
|
7
|
El-Badawy A, El-Badri N. Regulators of pluripotency and their implications in regenerative medicine. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:67-80. [PMID: 25960670 PMCID: PMC4410894 DOI: 10.2147/sccaa.s80157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ultimate goal of regenerative medicine is to replace damaged tissues with new functioning ones. This can potentially be accomplished by stem cell transplantation. While stem cell transplantation for blood diseases has been increasingly successful, widespread application of stem cell therapy in the clinic has shown limited results. Despite successful efforts to refine existing methodologies and to develop better ones for reprogramming, clinical application of stem cell therapy suffers from issues related to the safety of the transplanted cells, as well as the low efficiency of reprogramming technology. Better understanding of the underlying mechanism(s) involved in pluripotency should accelerate the clinical application of stem cell transplantation for regenerative purposes. This review outlines the main decision-making factors involved in pluripotency, focusing on the role of microRNAs, epigenetic modification, signaling pathways, and toll-like receptors. Of special interest is the role of toll-like receptors in pluripotency, where emerging data indicate that the innate immune system plays a vital role in reprogramming. Based on these data, we propose that nongenetic mechanisms for reprogramming provide a novel and perhaps an essential strategy to accelerate application of regenerative medicine in the clinic.
Collapse
Affiliation(s)
- Ahmed El-Badawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
8
|
Wang B, Pfeiffer MJ, Schwarzer C, Araúzo-Bravo MJ, Boiani M. DNA replication is an integral part of the mouse oocyte's reprogramming machinery. PLoS One 2014; 9:e97199. [PMID: 24836291 PMCID: PMC4023938 DOI: 10.1371/journal.pone.0097199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/14/2014] [Indexed: 11/26/2022] Open
Abstract
Many of the structural and mechanistic requirements of oocyte-mediated nuclear reprogramming remain elusive. Previous accounts that transcriptional reprogramming of somatic nuclei in mouse zygotes may be complete in 24–36 hours, far more rapidly than in other reprogramming systems, raise the question of whether the mere exposure to the activated mouse ooplasm is sufficient to enact reprogramming in a nucleus. We therefore prevented DNA replication and cytokinesis, which ensue after nuclear transfer, in order to assess their requirement for transcriptional reprogramming of the key pluripotency genes Oct4 (Pou5f1) and Nanog in cloned mouse embryos. Using transcriptome and allele-specific analysis, we observed that hundreds of mRNAs, but not Oct4 and Nanog, became elevated in nucleus-transplanted oocytes without DNA replication. Progression through the first round of DNA replication was essential but not sufficient for transcriptional reprogramming of Oct4 and Nanog, whereas cytokinesis and thereby cell-cell interactions were dispensable for transcriptional reprogramming. Responses similar to clones also were observed in embryos produced by fertilization in vitro. Our results link the occurrence of reprogramming to a previously unappreciated requirement of oocyte-mediated nuclear reprogramming, namely DNA replication. Nuclear transfer alone affords no immediate transition from a somatic to a pluripotent gene expression pattern unless DNA replication is also in place. This study is therefore a resource to appreciate that the quest for always faster reprogramming methods may collide with a limit that is dictated by the cell cycle.
Collapse
Affiliation(s)
- Bingyuan Wang
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | - Marcos J. Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- * E-mail:
| |
Collapse
|
9
|
Tahmasebi S, Alain T, Rajasekhar VK, Zhang JP, Prager-Khoutorsky M, Khoutorsky A, Dogan Y, Gkogkas CG, Petroulakis E, Sylvestre A, Ghorbani M, Assadian S, Yamanaka Y, Vinagolu-Baur JR, Teodoro JG, Kim K, Yang XJ, Sonenberg N. Multifaceted regulation of somatic cell reprogramming by mRNA translational control. Cell Stem Cell 2014; 14:606-16. [PMID: 24630793 DOI: 10.1016/j.stem.2014.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 12/29/2013] [Accepted: 02/14/2014] [Indexed: 01/29/2023]
Abstract
Translational control plays a pivotal role in the regulation of the pluripotency network in embryonic stem cells, but its effect on reprogramming somatic cells to pluripotency has not been explored. Here, we show that eukaryotic translation initiation factor 4E (eIF4E) binding proteins (4E-BPs), which are translational repressors, have a multifaceted effect on the reprogramming of mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells (iPSCs). Loss of 4E-BP expression attenuates the induction of iPSCs at least in part through increased translation of p21, a known inhibitor of somatic cell reprogramming. However, MEFs lacking both p53 and 4E-BPs show greatly enhanced reprogramming resulting from a combination of reduced p21 transcription and enhanced translation of endogenous mRNAs such as Sox2 and Myc and can be reprogrammed through the expression of only exogenous Oct4. Thus, 4E-BPs exert both positive and negative effects on reprogramming, highlighting the key role that translational control plays in regulating this process.
Collapse
Affiliation(s)
- Soroush Tahmasebi
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Vinagolu K Rajasekhar
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jiang-Ping Zhang
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Medicine, McGill University Health Center, Montréal, QC H3A 1A3, Canada
| | - Masha Prager-Khoutorsky
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montréal General Hospital, Montréal, QC H3G 1A4, Canada
| | - Arkady Khoutorsky
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Yildirim Dogan
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christos G Gkogkas
- Patrick Wild Centre, Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Emmanuel Petroulakis
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Annie Sylvestre
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Mohammad Ghorbani
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Medicine, McGill University Health Center, Montréal, QC H3A 1A3, Canada
| | - Sarah Assadian
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Yojiro Yamanaka
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Human Genetics, McGill University, Montréal, QC H3A 1A3, Canada
| | - Julia R Vinagolu-Baur
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jose G Teodoro
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Kitai Kim
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiang-Jiao Yang
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada; Department of Medicine, McGill University Health Center, Montréal, QC H3A 1A3, Canada.
| | - Nahum Sonenberg
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada; Department of Medicine, McGill University Health Center, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
10
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
11
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
12
|
Chen H, Zeng Y, Liu W, Zhao S, Wu J, Du Y. Multifaceted applications of nanomaterials in cell engineering and therapy. Biotechnol Adv 2012; 31:638-53. [PMID: 22922117 DOI: 10.1016/j.biotechadv.2012.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 12/13/2022]
Abstract
Nanomaterials with superior physiochemical properties have been rapidly developed and integrated in every aspect of cell engineering and therapy for translating their great promise to clinical success. Here we demonstrate the multifaceted roles played by innovatively-designed nanomaterials in addressing key challenges in cell engineering and therapy such as cell isolation from heterogeneous cell population, cell instruction in vitro to enable desired functionalities, and targeted cell delivery to therapeutic sites for prompting tissue repair. The emerging trends in this interdisciplinary and dynamic field are also highlighted, where the nanomaterial-engineered cells constitute the basis for establishing in vitro disease model; and nanomaterial-based in situ cell engineering are accomplished directly within the native tissue in vivo. We will witness the increasing importance of nanomaterials in revolutionizing the concept and toolset of cell engineering and therapy which will enrich our scientific understanding of diseases and ultimately fulfill the therapeutic demand in clinical medicine.
Collapse
Affiliation(s)
- Hui Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
13
|
Hemmrich G, Khalturin K, Boehm AM, Puchert M, Anton-Erxleben F, Wittlieb J, Klostermeier UC, Rosenstiel P, Oberg HH, Domazet-Loso T, Sugimoto T, Niwa H, Bosch TCG. Molecular signatures of the three stem cell lineages in hydra and the emergence of stem cell function at the base of multicellularity. Mol Biol Evol 2012; 29:3267-80. [PMID: 22595987 DOI: 10.1093/molbev/mss134] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
How distinct stem cell populations originate and whether there is a clear stem cell "genetic signature" remain poorly understood. Understanding the evolution of stem cells requires molecular profiling of stem cells in an animal at a basal phylogenetic position. In this study, using transgenic Hydra polyps, we reveal for each of the three stem cell populations a specific signature set of transcriptions factors and of genes playing key roles in cell type-specific function and interlineage communication. Our data show that principal functions of stem cell genes, such as maintenance of stemness and control of stem cell self-renewal and differentiation, arose very early in metazoan evolution. They are corroborating the view that stem cell types shared common, multifunctional ancestors, which achieved complexity through a stepwise segregation of function in daughter cells.
Collapse
Affiliation(s)
- Georg Hemmrich
- Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Suh N, Blelloch R. Small RNAs in early mammalian development: from gametes to gastrulation. Development 2011; 138:1653-61. [PMID: 21486922 DOI: 10.1242/dev.056234] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Small non-coding RNAs, including microRNAs (miRNAs), endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs), play essential roles in mammalian development. The function and timing of expression of these three classes of small RNAs differ greatly. piRNAs are expressed and play a crucial role during male gametogenesis, whereas endo-siRNAs are essential for oocyte meiosis. By contrast, miRNAs are ubiquitously expressed in somatic tissues and function throughout post-implantation development. Surprisingly, however, miRNAs are non-essential during pre-implantation embryonic development and their function is suppressed during oocyte meiosis. Here, we review the roles of small non-coding RNAs during the early stages of mammalian development, from gamete maturation through to gastrulation.
Collapse
Affiliation(s)
- Nayoung Suh
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, and Department of Urology, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
15
|
Gopalakrishnan V, Bie B, Sinnappah-Kang ND, Adams H, Fuller GN, Pan ZZ, Majumder S. Myoblast-derived neuronal cells form glutamatergic neurons in the mouse cerebellum. Stem Cells 2011; 28:1839-47. [PMID: 20799335 DOI: 10.1002/stem.509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Production of neurons from non-neural cells has far-reaching clinical significance. We previously found that myoblasts can be converted to a physiologically active neuronal phenotype by transferring a single recombinant transcription factor, REST-VP16, which directly activates target genes of the transcriptional repressor, REST. However, the neuronal subtype of M-RV cells and whether they can establish synaptic communication in the brain have remained unknown. M-RV cells engineered to express green fluorescent protein (M-RV-GFP) had functional ion channels but did not establish synaptic communication in vitro. However, when transplanted into newborn mice cerebella, a site of extensive postnatal neurogenesis, these cells expressed endogenous cerebellar granule precursors and neuron proteins, such as transient axonal glycoprotein-1, neurofilament, type-III β-tubulin, superior cervical ganglia-clone 10, glutamate receptor-2, and glutamate decarboxylase. Importantly, they exhibited action potentials and were capable of receiving glutamatergic synaptic input, similar to the native cerebellar granule neurons. These results suggest that M-RV-GFP cells differentiate into glutamatergic neurons, an important neuronal subtype, in the postnatal cerebellar milieu. Our findings suggest that although activation of REST-target genes can reprogram myoblasts to assume a general neuronal phenotype, the subtype specificity may then be directed by the brain microenvironment.
Collapse
Affiliation(s)
- Vidya Gopalakrishnan
- Department of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Jopling C, Boue S, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 2011; 12:79-89. [PMID: 21252997 DOI: 10.1038/nrm3043] [Citation(s) in RCA: 486] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ultimate goal of regenerative medicine is to replace lost or damaged cells. This can potentially be accomplished using the processes of dedifferentiation, transdifferentiation or reprogramming. Recent advances have shown that the addition of a group of genes can not only restore pluripotency in a fully differentiated cell state (reprogramming) but can also induce the cell to proliferate (dedifferentiation) or even switch to another cell type (transdifferentiation). Current research aims to understand how these processes work and to eventually harness them for use in regenerative medicine.
Collapse
Affiliation(s)
- Chris Jopling
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | | | | |
Collapse
|
17
|
Zheng H, Gourronc F, Buckwalter JA, Martin JA. Nanog maintains human chondrocyte phenotype and function in vitro. J Orthop Res 2010; 28:516-21. [PMID: 19834952 DOI: 10.1002/jor.20989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous work showed that Nanog, a homeobox family transcription factor, maintains embryonic stem cell pluripotency, suggesting that it has a role in stabilizing cell phenotype. Human chondrocytes lose their phenotype and dedifferentiate after relatively few passages in culture, changes that may limit their value in restoring damaged articular cartilage. We hypothesized that Nanog could stabilize the phenotype of cultured human chondrocytes in long-term monolayer cultures. To test this hypothesis, the human Nanog gene was stably transduced into human chondrocytes using a retroviral vector. Chondrocyte-specific gene expression (collagen type II, aggrecan, cartilage link protein, and Sox9) was measured by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR in monolayer cultured chondrocytes transduced with Nanog and in control chondrocytes transduced with empty vector. In vitro cartilage matrix protein formation by Nanog-transduced and control cells was compared using Safranin-O and immunofluorescence stains. We found that after 25 passages, Nanog-transduced chondrocytes maintained significantly higher expression of collagen type II, aggrecan, and cartilage link protein genes than controls. Under chondrogenic conditions, Nanog-transduced cells produced significantly more cartilage-specific matrix than control cells. These findings support the hypothesis that Nanog maintains the human chondrocyte phenotype and function after long-term monolayer culture. Preservation of the chondrocyte phenotype may improve the ability of cultured chondrocytes to repair or restore articular cartilage.
Collapse
Affiliation(s)
- Hongjun Zheng
- Department of Orthopaedics and Rehabilitation, 1182 ML, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|