1
|
Gantner BN, Palma FR, Kayzuka C, Lacchini R, Foltz DR, Backman V, Kelleher N, Shilatifard A, Bonini MG. Histone oxidation as a new mechanism of metabolic control over gene expression. Trends Genet 2024; 40:739-746. [PMID: 38910033 PMCID: PMC11387142 DOI: 10.1016/j.tig.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
The emergence of aerobic respiration created unprecedented bioenergetic advantages, while imposing the need to protect critical genetic information from reactive byproducts of oxidative metabolism (i.e., reactive oxygen species, ROS). The evolution of histone proteins fulfilled the need to shield DNA from these potentially damaging toxins, while providing the means to compact and structure massive eukaryotic genomes. To date, several metabolism-linked histone post-translational modifications (PTMs) have been shown to regulate chromatin structure and gene expression. However, whether and how PTMs enacted by metabolically produced ROS regulate adaptive chromatin remodeling remain relatively unexplored. Here, we review novel mechanistic insights into the interactions of ROS with histones and their consequences for the control of gene expression regulation, cellular plasticity, and behavior.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Flavio R Palma
- Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cezar Kayzuka
- Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil; Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vadim Backman
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Bioengineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Neil Kelleher
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Chicago, IL, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marcelo G Bonini
- Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Long Y, Wendel JF, Zhang X, Wang M. Evolutionary insights into the organization of chromatin structure and landscape of transcriptional regulation in plants. TRENDS IN PLANT SCIENCE 2024; 29:638-649. [PMID: 38061928 DOI: 10.1016/j.tplants.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 06/09/2024]
Abstract
Development of complex traits necessitates the functioning and coordination of intricate regulatory networks involving multiple genes. Understanding 3D chromatin structure can facilitate insight into the regulation of gene expression by regulatory elements. This potential, of visualizing the role of chromatin organization in the evolution and function of regulatory elements, remains largely unexplored. Here, we describe new perspectives that arise from the dual considerations of sequence variation of regulatory elements and chromatin structure, with a special focus on whole-genome doubling or polyploidy. We underscore the significance of hierarchical chromatin organization in gene regulation during evolution. In addition, we describe strategies for exploring chromatin organization in future investigations of regulatory evolution in plants, enabling insights into the evolutionary influence of regulatory elements on gene expression and, hence, phenotypes.
Collapse
Affiliation(s)
- Yuexuan Long
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
3
|
Zhang B, Long Y, Pei L, Huang X, Li B, Han B, Zhang M, Lindsey K, Zhang X, Wang M, Yang X. Drought response revealed by chromatin organization variation and transcriptional regulation in cotton. BMC Biol 2024; 22:114. [PMID: 38764013 PMCID: PMC11103878 DOI: 10.1186/s12915-024-01906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Cotton is a major world cash crop and an important source of natural fiber, oil, and protein. Drought stress is becoming a restrictive factor affecting cotton production. To facilitate the development of drought-tolerant cotton varieties, it is necessary to study the molecular mechanism of drought stress response by exploring key drought-resistant genes and related regulatory factors. RESULTS In this study, two cotton varieties, ZY007 (drought-sensitive) and ZY168 (drought-tolerant), showing obvious phenotypic differences under drought stress, were selected. A total of 25,898 drought-induced genes were identified, exhibiting significant enrichment in pathways related to plant stress responses. Under drought induction, At subgenome expression bias was observed at the whole-genome level, which may be due to stronger inhibition of Dt subgenome expression. A gene co-expression module that was significantly associated with drought resistance was identified. About 90% of topologically associating domain (TAD) boundaries were stable, and 6613 TAD variation events were identified between the two varieties under drought. We identified 92 genes in ZY007 and 98 in ZY168 related to chromatin 3D structural variation and induced by drought stress. These genes are closely linked to the cotton response to drought stress through canonical hormone-responsive pathways, modulation of kinase and phosphatase activities, facilitation of calcium ion transport, and other related molecular mechanisms. CONCLUSIONS These results lay a foundation for elucidating the molecular mechanism of the cotton drought response and provide important regulatory locus and gene resources for the future molecular breeding of drought-resistant cotton varieties.
Collapse
Affiliation(s)
- Boyang Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuexuan Long
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Liuling Pei
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianhui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Baoqi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Bei Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengmeng Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
4
|
Dong A, Liu J, Lin K, Zeng W, So WK, Hu S, Cheung TH. Global chromatin accessibility profiling analysis reveals a chronic activation state in aged muscle stem cells. iScience 2022; 25:104954. [PMID: 36093058 PMCID: PMC9459695 DOI: 10.1016/j.isci.2022.104954] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/30/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
|
5
|
Levidou G, Palamaris K, Sykaras AG, Andreadakis G, Masaoutis C, Theochari I, Korkolopoulou P, Rontogianni D, Theocharis S. Unraveling the Role of Histone Variant CENP-A and Chaperone HJURP Expression in Thymic Epithelial Neoplasms. Int J Mol Sci 2022; 23:ijms23158339. [PMID: 35955489 PMCID: PMC9368969 DOI: 10.3390/ijms23158339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Recent advances demonstrate the role of chromatin regulators, including histone variants and histone chaperones, in cancer initiation and progression. Methods: Histone H3K4me3, histone variant centromere protein (CENP-A) and histone chaperones Holliday junction recognition protein (HJURP) as well as DAXX expression were examined immunohistochemically in 95 thymic epithelial tumor (TET) specimens. Our results were compared with the expression profile of DAXX, HJURP and CENP-A in gene expression profiling interactive analysis (GEPIA2). Results: The lymphocyte-poor B3- and C-type TETs were more frequently DAXX negative (p = 0.043). B3 and C-Type TETs showed higher cytoplasmic and nuclear CENP-A (p = 0.007 and p = 0.002) and higher cytoplasmic HJURP H-score (p < 0.001). Higher nuclear CENP-A and cytoplasmic HJURP expression was associated with advanced Masaoka−Koga stage (p = 0.048 and p < 0.001). A positive correlation between HJURP and CENP-A was also observed. The presence of cytoplasmic CENP-A expression was correlated with a favorable overall survival (p = 0.03). CENP-A overexpression in survival analysis of TCGA TETs showed similar results. H3K4me3 expression was not associated with any clinicopathological parameters. Conclusions: Our results suggest a significant interaction between CENP-A and HJURP in TETs. Moreover, we confirmed the presence of a cytoplasmic CENP-A immunolocalization, suggesting also a possible favorable prognostic value of this specific immunostaining pattern.
Collapse
Affiliation(s)
- Georgia Levidou
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
- Department of Pathology, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Konstantinos Palamaris
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Alexandros G. Sykaras
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Georgios Andreadakis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Christos Masaoutis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Irene Theochari
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Penelope Korkolopoulou
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Dimitra Rontogianni
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (K.P.); (A.G.S.); (G.A.); (C.M.); (I.T.); (P.K.); (D.R.)
- Correspondence:
| |
Collapse
|
6
|
Dong A, Cheung TH. Deciphering the chromatin organization and dynamics for muscle stem cell function. Curr Opin Cell Biol 2021; 73:124-132. [PMID: 34534837 DOI: 10.1016/j.ceb.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022]
Abstract
The chromatin landscape represents a critical regulatory layer for precise transcriptional control. Chromosome architecture restrains the physical access to the DNA elements and is one of the determinants that specifies cell identity. Adult stem cells possess the unique ability to differentiate into a specific lineage. One of the underexplored areas in skeletal muscle biology is the molecular mechanism guiding the chromatin organization changes in muscle stem cell specification, myogenic determination, and differentiation. In this review, we focus on the regulatory network guiding the progression of muscle stem cells to differentiated progeny. We summarize recent findings regarding the mechanisms directing myogenic cell fate decision and differentiation, with a particular focus on three-dimensional chromosome architecture and long noncoding RNA-associated chromatin accessibility changes.
Collapse
Affiliation(s)
- Anqi Dong
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
7
|
Fortuny A, Chansard A, Caron P, Chevallier O, Leroy O, Renaud O, Polo SE. Imaging the response to DNA damage in heterochromatin domains reveals core principles of heterochromatin maintenance. Nat Commun 2021; 12:2428. [PMID: 33893291 PMCID: PMC8065061 DOI: 10.1038/s41467-021-22575-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023] Open
Abstract
Heterochromatin is a critical chromatin compartment, whose integrity governs genome stability and cell fate transitions. How heterochromatin features, including higher-order chromatin folding and histone modifications associated with transcriptional silencing, are maintained following a genotoxic stress challenge is unknown. Here, we establish a system for targeting UV damage to pericentric heterochromatin in mammalian cells and for tracking the heterochromatin response to UV in real time. We uncover profound heterochromatin compaction changes during repair, orchestrated by the UV damage sensor DDB2, which stimulates linker histone displacement from chromatin. Despite massive heterochromatin unfolding, heterochromatin-specific histone modifications and transcriptional silencing are maintained. We unveil a central role for the methyltransferase SETDB1 in the maintenance of heterochromatic histone marks after UV. SETDB1 coordinates histone methylation with new histone deposition in damaged heterochromatin, thus protecting cells from genome instability. Our data shed light on fundamental molecular mechanisms safeguarding higher-order chromatin integrity following DNA damage.
Collapse
Affiliation(s)
- Anna Fortuny
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Audrey Chansard
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Pierre Caron
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Odile Chevallier
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Olivier Leroy
- Cell and Tissue Imaging Facility, UMR3215 PICT-IBiSA, Institut Curie, Paris, France
| | - Olivier Renaud
- Cell and Tissue Imaging Facility, UMR3215 PICT-IBiSA, Institut Curie, Paris, France
| | - Sophie E Polo
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France.
| |
Collapse
|
8
|
Ray-Gallet D, Almouzni G. The Histone H3 Family and Its Deposition Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:17-42. [PMID: 33155135 DOI: 10.1007/978-981-15-8104-5_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Within the cell nucleus, the organization of the eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. This chromatin organization contributes to the regulation of all DNA template-based reactions impacting genome function, stability, and plasticity. Histones and their variants endow chromatin with unique properties and show a distinct distribution into the genome that is regulated by dedicated deposition machineries. The histone variants have important roles during early development, cell differentiation, and chromosome segregation. Recent progress has also shed light on how mutations and transcriptional deregulation of these variants participate in tumorigenesis. In this chapter we introduce the organization of the genome in chromatin with a focus on the basic unit, the nucleosome, which contains histones as the major protein component. Then we review our current knowledge on the histone H3 family and its variants-in particular H3.3 and CenH3CENP-A-focusing on their deposition pathways and their dedicated histone chaperones that are key players in histone dynamics.
Collapse
Affiliation(s)
- Dominique Ray-Gallet
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France. .,Institut Curie, Sorbonne Université, CNRS UMR3664, Paris, France.
| |
Collapse
|
9
|
Shan Z, Liu L, Shen J, Hao H, Zhang H, Lei L, Liu F, Wang Z. Enhanced UV Resistance Role of Death Domain-Associated Protein in Human MDA-MB-231 Breast Cancer Cells by Regulation of G2 DNA Damage Checkpoint. Cell Transplant 2020; 29:963689720920277. [PMID: 32662684 PMCID: PMC7586275 DOI: 10.1177/0963689720920277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose: Death domain–associated protein (DAXX) is a multifunctional nuclear protein involved in apoptosis, transcription, deoxyribonucleic acid damage response, and tumorigenesis. However, the role of DAXX in breast cancer development and progression remains elusive. In this study, we examined the expression patterns and function of DAXX in human breast cancer samples and cell lines. Methods: Immunohistochemistry was used to analyze the expression and localization patterns of DAXX. Additionally, we investigated whether DAXX played an intrinsic role in the cellular response to damage induced by ultraviolet (UV) irradiation in MDA-MB-231 breast cancer cells (isolated at M D Anderson from a pleural effusion of a patient with invasive ductal carcinoma). Results: Our results showed that nucleus size, chromatin organization, and DAXX localization were altered in breast cancer tissues compared with those in control tissues. Compared with cytoplasmic and nuclear expression in benign breast tissues, DAXX was colocalized with promyelocytic leukemia in nuclei with a granular distribution. Endogenous DAXX messenger ribonucleic acid levels were upregulated upon UV radiation in MDA-MB-231 cells. DAXX-deficient cells tended to be more sensitive to irradiation than control cells. Conversely, DAXX-overexpressing cells exhibited reduced phosphorylated histone H2AX (γ-H2AX) accumulation, increased cell survival, and resistance to UV-induced damage. The protective effects of DAXX may be related to the activation of the ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (ATM-CHK2)-cell division cycle 25c (CDC25c) signaling pathways in Gap2/Mitosis (G2/M) checkpoint and ultimately cell cycle arrest at G2/M phase. Conclusions: Taken together, these results suggested that DAXX may be an essential component in breast cancer initiation, malignant progression, and radioresistance.
Collapse
Affiliation(s)
- Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin, China.,Both the authors contributed equally to this article
| | - Li Liu
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang, China.,Both the authors contributed equally to this article
| | - Jingling Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Haiyue Hao
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Honghong Zhang
- Blood Transfusion Department of Sunshine Union Hospital, Weifang, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Feng Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhipeng Wang
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Histone variant H3.3 residue S31 is essential for Xenopus gastrulation regardless of the deposition pathway. Nat Commun 2020; 11:1256. [PMID: 32152320 PMCID: PMC7062693 DOI: 10.1038/s41467-020-15084-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 02/09/2020] [Indexed: 01/04/2023] Open
Abstract
Vertebrates exhibit specific requirements for replicative H3 and non-replicative H3.3 variants during development. To disentangle whether this involves distinct modes of deposition or unique functions once incorporated into chromatin, we combined studies in Xenopus early development with chromatin assays. Here we investigate the extent to which H3.3 mutated at residues that differ from H3.2 rescue developmental defects caused by H3.3 depletion. Regardless of the deposition pathway, only variants at residue 31-a serine that can become phosphorylated-failed to rescue endogenous H3.3 depletion. Although an alanine substitution fails to rescue H3.3 depletion, a phospho-mimic aspartate residue at position 31 rescues H3.3 function. To explore mechanisms involving H3.3 S31 phosphorylation, we identified factors attracted or repulsed by the presence of aspartate at position 31, along with modifications on neighboring residues. We propose that serine 31-phosphorylated H3.3 acts as a signaling module that stimulates the acetylation of K27, providing a chromatin state permissive to the embryonic development program.
Collapse
|
11
|
Marima R, Hull R, Kandhavelu J, Dlamini Z, Penny C. Pathway mapping reveals antiretroviral treatments' targeted cell cycle regulation in lung cancer. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
12
|
Asymmetric Centromeres Differentially Coordinate with Mitotic Machinery to Ensure Biased Sister Chromatid Segregation in Germline Stem Cells. Cell Stem Cell 2019; 25:666-681.e5. [PMID: 31564548 DOI: 10.1016/j.stem.2019.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022]
Abstract
Many stem cells utilize asymmetric cell division (ACD) to produce a self-renewed stem cell and a differentiating daughter cell. How non-genic information could be inherited differentially to establish distinct cell fates is not well understood. Here, we report a series of spatiotemporally regulated asymmetric components, which ensure biased sister chromatid attachment and segregation during ACD of Drosophila male germline stem cells (GSCs). First, sister centromeres are differentially enriched with proteins involved in centromere specification and kinetochore function. Second, temporally asymmetric microtubule activities and polarized nuclear envelope breakdown allow for the preferential recognition and attachment of microtubules to asymmetric sister kinetochores and sister centromeres. Abolishment of either the asymmetric sister centromeres or the asymmetric microtubule activities results in randomized sister chromatid segregation. Together, these results provide the cellular basis for partitioning epigenetically distinct sister chromatids during stem cell ACDs, which opens new directions to study these mechanisms in other biological contexts.
Collapse
|
13
|
Hoffmann A, Spengler D. Chromatin Remodeling Complex NuRD in Neurodevelopment and Neurodevelopmental Disorders. Front Genet 2019; 10:682. [PMID: 31396263 PMCID: PMC6667665 DOI: 10.3389/fgene.2019.00682] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/01/2019] [Indexed: 01/22/2023] Open
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex presents one of the major chromatin remodeling complexes in mammalian cells. Here, we discuss current evidence for NuRD's role as an important epigenetic regulator of gene expression in neural stem cell (NSC) and neural progenitor cell (NPC) fate decisions in brain development. With the formation of the cerebellar and cerebral cortex, NuRD facilitates experience-dependent cerebellar plasticity and regulates additionally cerebral subtype specification and connectivity in postmitotic neurons. Consistent with these properties, genetic variation in NuRD's subunits emerges as important risk factor in common polygenic forms of neurodevelopmental disorders (NDDs) and neurodevelopment-related psychiatric disorders such as schizophrenia (SCZ) and bipolar disorder (BD). Overall, these findings highlight the critical role of NuRD in chromatin regulation in brain development and in mental health and disease.
Collapse
Affiliation(s)
| | - Dietmar Spengler
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
14
|
Bachu M, Tamura T, Chen C, Narain A, Nehru V, Sarai N, Ghosh SB, Ghosh A, Kavarthapu R, Dufau ML, Ozato K. A versatile mouse model of epitope-tagged histone H3.3 to study epigenome dynamics. J Biol Chem 2018; 294:1904-1914. [PMID: 30552116 DOI: 10.1074/jbc.ra118.005550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/09/2018] [Indexed: 12/26/2022] Open
Abstract
The variant histone H3.3 is incorporated into the genome in a transcription-dependent manner. This histone is thus thought to play a role in epigenetic regulation. However, our understanding of how H3.3 controls gene expression and epigenome landscape has remained incomplete. This is partly because precise localization of H3.3 in the genome has been difficult to decipher particularly for cells in vivo To circumvent this difficulty, we generated knockin mice, by homologous recombination, to replace both of the two H3.3 loci (H3f3a and H3f3b) with the hemagglutinin-tagged H3.3 cDNA cassette, which also contained a GFP gene. We show here that the hemagglutinin-tagged H3.3 and GFP are expressed in the majority of cells in all adult tissues tested. ChIP-seq data, combined with RNA-seq, revealed a striking correlation between the level of transcripts and that of H3.3 accumulation in expressed genes. Finally, we demonstrate that H3.3 deposition is markedly enhanced upon stimulation by interferon on interferon-stimulated genes, highlighting transcription-coupled H3.3 dynamics. Together, these H3.3 knockin mice serve as a useful experimental model to study epigenome regulation in development and in various adult cells in vivo.
Collapse
Affiliation(s)
| | - Tomohiko Tamura
- From the Division of Developmental Biology and.,the Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Chao Chen
- From the Division of Developmental Biology and
| | | | | | | | | | - Anu Ghosh
- From the Division of Developmental Biology and
| | - Raghuveer Kavarthapu
- the Section on Molecular Endocrinology, NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Maria L Dufau
- the Section on Molecular Endocrinology, NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Keiko Ozato
- From the Division of Developmental Biology and
| |
Collapse
|
15
|
Yadav T, Quivy JP, Almouzni G. Chromatin plasticity: A versatile landscape that underlies cell fate and identity. Science 2018; 361:1332-1336. [PMID: 30262494 DOI: 10.1126/science.aat8950] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During development and throughout life, a variety of specialized cells must be generated to ensure the proper function of each tissue and organ. Chromatin plays a key role in determining cellular state, whether totipotent, pluripotent, multipotent, or differentiated. We highlight chromatin dynamics involved in the generation of pluripotent stem cells as well as their influence on cell fate decision and reprogramming. We focus on the capacity of histone variants, chaperones, modifications, and heterochromatin factors to influence cell identity and its plasticity. Recent technological advances have provided tools to elucidate the underlying chromatin dynamics for a better understanding of normal development and pathological conditions, with avenues for potential therapeutic application.
Collapse
Affiliation(s)
- Tejas Yadav
- Institut Curie, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
16
|
Mendiratta S, Gatto A, Almouzni G. Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Biol 2018; 218:39-54. [PMID: 30257851 PMCID: PMC6314538 DOI: 10.1083/jcb.201807179] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mendiratta et al. review the interplay between the different regulatory layers that affect the transcription and dynamics of distinct histone H3 variants along the cell cycle. As the building blocks of chromatin, histones are central to establish and maintain particular chromatin states associated with given cell fates. Importantly, histones exist as distinct variants whose expression and incorporation into chromatin are tightly regulated during the cell cycle. During S phase, specialized replicative histone variants ensure the bulk of the chromatinization of the duplicating genome. Other non-replicative histone variants deposited throughout the cell cycle at specific loci use pathways uncoupled from DNA synthesis. Here, we review the particular dynamics of expression, cellular transit, assembly, and disassembly of replicative and non-replicative forms of the histone H3. Beyond the role of histone variants in chromatin dynamics, we review our current knowledge concerning their distinct regulation to control their expression at different levels including transcription, posttranscriptional processing, and protein stability. In light of this unique regulation, we highlight situations where perturbations in histone balance may lead to cellular dysfunction and pathologies.
Collapse
Affiliation(s)
- Shweta Mendiratta
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Alberto Gatto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Genevieve Almouzni
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France .,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| |
Collapse
|