1
|
Gurkok S, Ozdal M, Cakici T, Kurbanoglu EB. Antimicrobial, antibiofilm, and antiurease activities of green-synthesized Zn, Se, and ZnSe nanoparticles against Streptococcus salivarius and Proteus mirabilis. Bioprocess Biosyst Eng 2025; 48:589-603. [PMID: 39907738 PMCID: PMC11928436 DOI: 10.1007/s00449-025-03130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
This study assesses the antimicrobial, antibiofilm, and antiurease properties of selenium (Se), zinc (Zn), and zinc selenide (ZnSe) nanoparticles (NPs) against clinically pathogenic strains of Streptococcus salivarius and Proteus mirabilis. The Se, Zn, and ZnSe NPs, synthesized by Pseudomonas aeruginosa OG1, were characterized using transmission electron microscopy (TEM) revealing average sizes of approximately 30 ± 10 nm, 30 ± 15 nm, and 40 ± 10 nm, respectively. Atomic force microscopy (AFM) was used to examine the morphological and topological characteristics of the NPs. The structural and crystal characteristics were investigated using X-ray diffraction (XRD). Among the evaluated NPs, Zn NPs at a concentration of 200 mg/mL exhibited the most substantial growth inhibition zone against S. salivarius. Conversely, the highest antibiofilm activity was observed against P. mirabilis, notably with 200 µg/mL Zn NPs. In the context of antiurease activity, both 100 μg Zn and ZnSe NPs caused complete urease inhibition (100%) in P. mirabilis within the initial 5 h, with notable inhibition rates of 94% and 80%, respectively, observed against S. salivarius. Significantly, in the current landscape of NP research primarily focused on antimicrobial and antibiofilm properties, our study stands out due to its pioneering exploration of antiurease activities with these NPs. This distinctive emphasis on antiurease effects contributes original and unique value to our study, offering novel insights into the broader spectrum of NP applications, and paving the way for potential therapeutic advancements.
Collapse
Affiliation(s)
- Sumeyra Gurkok
- Department of Biology, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Murat Ozdal
- Department of Biology, Science Faculty, Ataturk University, 25240, Erzurum, Turkey.
| | - Tuba Cakici
- Department of Electrical and Energy, Ispir Hamza Polat Vocational School of Higher Education, Ataturk University, Erzurum, Turkey
| | | |
Collapse
|
2
|
Cao X, Li J, Qian X, Li C, Peng X. Nucleation and Growth of Monodisperse and Monocrystalline Wurtzite CdSe Nanocrystals: Zinc Alkanoates as Neutral Ligands. J Am Chem Soc 2025; 147:3679-3691. [PMID: 39829123 DOI: 10.1021/jacs.4c15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Here, we demonstrate that monocrystalline (free of stacking faults) wurtzite CdSe nanocrystals with monodisperse size, shape (dots, rods, or wires), and facet structure are synthesized in both strongly confined and weakly confined size regimes. Considering the unique c-axis of wurtzite CdSe, we introduce a new type of neutral ligand (e.g., zinc-alkanoate ones) to pair with their dominating nonpolar low-index facets. Nucleation of the stacking fault-free wurtzite seeds instead of zinc-blende tetrahedrons is identified as the key step, which is optimized by a set of conditions matching the neutral zinc-alkanoate ligands. In the following growth stage, conditions are much less stringent, although the neutral zinc-alkanoate ligands are still critical in achieving nearly atomically flat facets of those monocrystalline nanocrystals. In the strongly confined size regime, the ensemble photoluminescence (PL) full-width-at-half-maximum (FWHM) of wurtzite CdSe nanocrystals reaches a record low (59 meV). In the weakly confined size regime, dual-peak PL caused by thermal population is observed. Monodisperse and monocrystalline wurtzite CdSe nanocrystals show distinctively size-dependent optical properties, in comparison with their zinc-blende counterparts. Results here suggest that the atomically precise synthesis of colloidal semiconductor nanocrystals is feasible, implying an advanced class of nanomaterials for exploring various optical and optoelectronic applications.
Collapse
Affiliation(s)
- Xu Cao
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiongzhao Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xudong Qian
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chuyue Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiaogang Peng
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Andersen CRY, Tornberg M, Lehmann S, Jacobsson D, Dick KA, Mølhave KS. Microheater Controlled Crystal Phase Engineering of Nanowires Using In Situ Transmission Electron Microscopy. SMALL METHODS 2025; 9:e2400728. [PMID: 39308195 PMCID: PMC11740929 DOI: 10.1002/smtd.202400728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/29/2024] [Indexed: 01/19/2025]
Abstract
Crystal Phase Quantum Dots (CPQDs) offer promising properties for quantum communication. How CPQDs can be formed in Au-catalyzed GaAs nanowires using different precursor flows and temperatures by in situ environmental transmission electron microscopy (ETEM) experiments is studied. A III-V gas supply system controls the precursor flow and custom-built micro electro-mechanical system (MEMS) chips with monocrystalline Si-cantilevers are used for temperature control, forming a micrometer-scale metal-organic vapor phase epitaxy (µMOVPE) system. The preferentially formed crystal phases are mapped at different precursor flows and temperatures to determine optimal growth parameters for either crystal phase. To control the position and length of CPQDs, the time scale for crystal phase change is investigated. The micrometer size of the cantilevers allows temperature shifts of more than 100 °C within 0.1 s at the nanowire growth temperature, which can be much faster than the growth time for a single lattice layer. For controlling the crystal phase, the temperature change is found to be superior to precursor flow, which takes tens of seconds for the crystal phase formation to react. This µMOVPE approach may ultimately provide faster temperature control than bulk MOVPE systems and hence enable engineering sequences of CPQDs with quantum dot lengths and positions defined with atomic precision.
Collapse
Affiliation(s)
- Christopher R. Y. Andersen
- DTU NanolabTechnical University of DenmarkKgs. Lyngby2800Denmark
- Centre for Analysis and SynthesisNanoLundLund UniversityBox 124LundS‐221 00Sweden
- DTU ElectroTechnical University of DenmarkKgs. Lyngby2800Denmark
- Quantum DTUTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Marcus Tornberg
- Centre for Analysis and SynthesisNanoLundLund UniversityBox 124LundS‐221 00Sweden
| | | | - Daniel Jacobsson
- Centre for Analysis and SynthesisNanoLundLund UniversityBox 124LundS‐221 00Sweden
- nCHREMLund UniversityBox 124LundS‐221 00Sweden
| | - Kimberly A. Dick
- Centre for Analysis and SynthesisNanoLundLund UniversityBox 124LundS‐221 00Sweden
| | | |
Collapse
|
4
|
Pavel MR, Chen Y, Santhiran A, Gi E, Ochoa-Romero K, Miller GJ, Guirado G, Rossini AJ, Vela J. Coloring Tetrahedral Semiconductors: Synthesis and Photoluminescence Enhancement of Ternary II-III 2-VI 4 Colloidal Nanocrystals. ACS ENERGY LETTERS 2024; 9:5012-5018. [PMID: 39416674 PMCID: PMC11474945 DOI: 10.1021/acsenergylett.4c02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Ternary tetrahedral II-III2-VI4 semiconductors, where II is Zn or Cd, III In or Ga, and VI S, Se, or Te, are of interest in UV radiation detectors in medicine and space physics as well as CO2 photoreduction under visible light. We synthesize colloidal II-III2-VI4 semiconductor nanocrystals from readily available precursors and ascertain their ternary nature by structural and spectroscopic methods, including 77Se solid-state NMR spectroscopy. The pyramidally shaped nanocrystals range between 2 and 12 nm and exhibit optical gaps of 2-3.9 eV. In the presence of excess anions on the particle surface, treatment with Lewis acidic, Z-type ligands results in better passivation and enhanced photoluminescence. Electronic structure calculations reveal the most stable, lowest energy polymorphs and coloring patterns. This work will pave the way toward more environmentally friendly, ternary semiconductors for optoelectronics and electrocatalysis.
Collapse
Affiliation(s)
| | - Yunhua Chen
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011 United States
- Ames
National Laboratory, Ames, Iowa 50011 United States
| | - Anuluxan Santhiran
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011 United States
- Ames
National Laboratory, Ames, Iowa 50011 United States
| | - Eunbyeol Gi
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011 United States
- Ames
National Laboratory, Ames, Iowa 50011 United States
| | - Kerly Ochoa-Romero
- Departament
de Química, Universitat Autonòma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Gordon J. Miller
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011 United States
| | - Gonzalo Guirado
- Departament
de Química, Universitat Autonòma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Aaron J. Rossini
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011 United States
- Ames
National Laboratory, Ames, Iowa 50011 United States
| | - Javier Vela
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011 United States
- Ames
National Laboratory, Ames, Iowa 50011 United States
| |
Collapse
|
5
|
Wu L, Li Y, Liu GQ, Yu SH. Polytypic metal chalcogenide nanocrystals. Chem Soc Rev 2024; 53:9832-9873. [PMID: 39212091 DOI: 10.1039/d3cs01095c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
By engineering chemically identical but structurally distinct materials into intricate and sophisticated polytypic nanostructures, which often surpass their pure phase objects and even produce novel physical and chemical properties, exciting applications in the fields of photovoltaics, electronics and photocatalysis can be achieved. In recent decades, various methods have been developed for synthesizing a library of polytypic nanocrystals encompassing IV, III-V and II-VI polytypic semiconductors. The exceptional performances of polytypic metal chalcogenide nanocrystals have been observed, making them highly promising candidates for applications in photonics and electronics. However, achieving high-precision control over the morphology, composition, crystal structure, size, homojunctions, and periodicity of polytypic metal chalcogenide nanostructures remains a significant synthetic challenge. This review article offers a comprehensive overview of recent progress in the synthesis and control of polytypic metal chalcogenide nanocrystals using colloidal synthetic strategies. Starting from a concise introduction on the crystal structures of metal chalcogenides, the subsequent discussion delves into the colloidal synthesis of polytypic metal chalcogenide nanocrystals, followed by an in-depth exploration of the key factors governing polytypic structure construction. Subsequently, we provide comprehensive insights into the physical properties of polytypic metal chalcogenide nanocrystals, which exhibit strong correlations with their applications. Thereafter, we emphasize the significance of polytypic nanostructures in various applications, such as photovoltaics, photocatalysis, transistors, thermoelectrics, stress sensors, and the electrocatalytic hydrogen evolution. Finally, we present a summary of the recent advancements in this research field and provide insightful perspectives on the forthcoming challenges, opportunities, and future research directions.
Collapse
Affiliation(s)
- Liang Wu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yi Li
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Guo-Qiang Liu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- Department of Chemistry, Institute of Innovative Materials, Department of Materials Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China.
| |
Collapse
|
6
|
Rütten M, Lang L, Wagler H, Lach M, Mucke N, Laugks U, Seuring C, Keller TF, Stierle A, Ginn HM, Beck T. Assembly of Differently Sized Supercharged Protein Nanocages into Superlattices for Construction of Binary Nanoparticle-Protein Materials. ACS NANO 2024; 18:25325-25336. [PMID: 39189351 PMCID: PMC11394343 DOI: 10.1021/acsnano.4c09551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
This study focuses on the design and characterization of binary nanoparticle superlattices: Two differently sized, supercharged protein nanocages are used to create a matrix for nanoparticle arrangement. We have previously established the assembly of protein nanocages of the same size. Here, we present another approach for multicomponent biohybrid material synthesis by successfully assembling two differently sized supercharged protein nanocages with different symmetries. Typically, the ordered assembly of objects with nonmatching symmetry is challenging, but our electrostatic-based approach overcomes the symmetry mismatch by exploiting electrostatic interactions between oppositely charged cages. Moreover, our study showcases the use of nanoparticles as a contrast enhancer in an elegant way to gain insights into the structural details of crystalline biohybrid materials. The assembled materials were characterized with various methods, including transmission electron microscopy (TEM) and single-crystal small-angle X-ray diffraction (SC-SAXD). We employed cryo-plasma-focused ion beam milling (cryo-PFIB) to prepare lamellae for the investigation of nanoparticle sublattices via electron cryo-tomography. Importantly, we refined superlattice structure data obtained from single-crystal SAXD experiments, providing conclusive evidence of the final assembly type. Our findings highlight the versatility of protein nanocages for creating distinctive types of binary superlattices. Because the nanoparticles do not influence the type of assembly, protein cage matrices can combine various nanoparticles in the solid state. This study not only contributes to the expanding repertoire of nanoparticle assembly methods but also demonstrates the power of advanced characterization techniques in elucidating the structural intricacies of these biohybrid materials.
Collapse
Affiliation(s)
- Michael Rütten
- Institute of Physical Chemistry, Department of Chemistry, University of Hamburg, Hamburg 20146, Germany
| | - Laurin Lang
- Institute of Physical Chemistry, Department of Chemistry, University of Hamburg, Hamburg 20146, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg 20146, Germany
| | - Henrike Wagler
- Institute of Physical Chemistry, Department of Chemistry, University of Hamburg, Hamburg 20146, Germany
| | - Marcel Lach
- Institute of Physical Chemistry, Department of Chemistry, University of Hamburg, Hamburg 20146, Germany
| | - Niklas Mucke
- Institute of Physical Chemistry, Department of Chemistry, University of Hamburg, Hamburg 20146, Germany
| | - Ulrike Laugks
- Centre for Structureal Systems Biology (CSSB), Hamburg 22607, Germany
- Department of Structural Cell Biology of Viruses, Leibniz Institute of Virology, Hamburg 20251, Germany
- Department of Chemistry, University of Hamburg, Hamburg 20146, Germany
| | - Carolin Seuring
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg 20146, Germany
- Centre for Structureal Systems Biology (CSSB), Hamburg 22607, Germany
- Department of Structural Cell Biology of Viruses, Leibniz Institute of Virology, Hamburg 20251, Germany
- Department of Chemistry, University of Hamburg, Hamburg 20146, Germany
| | - Thomas F Keller
- Centre for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Department of Physics, University of Hamburg, Hamburg 22607, Germany
| | - Andreas Stierle
- Centre for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Department of Physics, University of Hamburg, Hamburg 22607, Germany
| | - Helen M Ginn
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Institute for Nanostructure and Solid State Physics, Department of Physics, University of Hamburg, Hamburg 22761, Germany
| | - Tobias Beck
- Institute of Physical Chemistry, Department of Chemistry, University of Hamburg, Hamburg 20146, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg 20146, Germany
| |
Collapse
|
7
|
Robson ME, Johnson AL. Zinc and cadmium thioamidate complexes: rational design of single-source precursors for the AACVD of ZnS. Dalton Trans 2024; 53:11380-11392. [PMID: 38896487 DOI: 10.1039/d4dt01278j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A series of zinc(II) thioamidate complexes [Zn{SC(iPr)NR}2]n for R = iPr (n = 2) (2), tBu (3) (n = 1), Ph (4) (n = 2) and Cy (5) (n = 2) and one cadmium(II) thioamidate complex [Cd{SC(iPr)NtBu}2]3, (6), were designed and synthesised as single-source precursors for AACVD ZnS and CdS. Solid-state structures of all four zinc(II) compounds revealed distorted tetrahedral or trigonal bipyramidal geometries, with varying tendencies for dimeric association, mediated by {Zn-S} bridging bonds. The thermogravimetric analysis identified the {tBu} derivertive, 3, as the most promising precursor based on its low decomposition onset (118 °C) and clean conversion to ZnS. This was attributed to the greater availability of β-hydrogen atoms promoting the pyrolysis mechanism. The corresponding cadmium thioamide 6 was found to crystallise as a trimetallic molecule which lacked the thermal stability to be considered viable for AACVD. Hence, 3 was used to deposit ZnS thin films by AACVD at 200-300 °C. Powder X-ray diffraction confirmed phase-pure growth of hexagonal wurtzite ZnS, with approximate crystallite sizes of 15-20 nm. Scanning electron microscopy revealed densely packed spherical nanoclusters. The morphology and crystallinity were most consistent for depositions between 250-300 °C. Energy dispersive X-ray spectroscopy indicated slightly sulfur-deficient stoichiometries.
Collapse
Affiliation(s)
- Max E Robson
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
- Centre of Doctoral Training in Aerosol Science, University of Bristol, School of Chemistry, Cantock's Close, BS8 1TS, UK
| | - Andrew L Johnson
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
8
|
Radouane G, Rafik C. Simulation and experimental study of InN nanoparticles synthesized by ion implantation technology. J Mol Model 2024; 30:236. [PMID: 38951282 DOI: 10.1007/s00894-024-06036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
CONTEXT In order to synthesize InN nanoparticles (NPs), we have simulated the co-implantation of indium (In) and nitrogen (N) ions on silicon (Si) and silicon oxide (SiO2) substrates with flat-top profiles. The choice of flat-top profile is to increase the possibility of creating homogeneous zone with well-distributed InN nanoparticles over the entire implanted layer. In this view and to obtain these flat-top profiles, we must do several implantations with different doses and energies optimized by our program. The simulation results performed on a silicon substrate < 111 > , give an average dose of 4.30 × 1016 at./cm2 and the implantation energies were In (10, 46, and 180 keV) and N (13 and 35 keV). But for the SiO2 substrate, the total mean dose is about 5.20 × 1016at./cm2 for each Indium and nitrogen ion. The respective implantation energies were In (23, 63, and 120 keV) and N (12 and 28 keV) in an average depth of approximately 100 nm. The implantations were performed in a 206-nm-thick (SiO2) layer thermally grown on < 100 > silicon. Subsequent thermal treatments (500-900 °C) lead to the formation of nanoparticles precipitates of the compound semiconductor (InN) and to cure the oxide defects during different periods of time. To verify that indium (In) and nitrogen (N) ions were located according to flat curves, we used RBS technical and study the formation (InN) stoichiometric compound several techniques, were used such as X-ray diffraction, UV-visible-IR, and photoluminescence (PL) spectroscopy. METHODS The simulated profiles have been chosen with the aim that the implanted element not exceeding 5-10 at %maximum concentration for each species. We have elaborated our program to simulate these profiles using data as input values from SRIM2008 code taking into account the sputtering factor. The optimal conditions are determined, which are the expected depth impact energies (Rp), the standard deviation (ΔRp) and the sputtering corrosion factor (Fs). Through these results, a simulation program has been created which allows building flat "distribution" curves for ion implantation for each element (In and N), so that each curve is obtained from three Gaussian functions whose values are carefully chosen in relation to the optimal experimental conditions.
Collapse
Affiliation(s)
- Graine Radouane
- Research Center in Industrial Technologies, CRTI, Cheraga, P.O. Box 64, 16014, Algiers, Algeria.
| | - Chemam Rafik
- Laboratoire LPR, Département de Physique, Faculté Des Sciences, Université de Annaba, BP 12, 23000, Annaba, Algeria
| |
Collapse
|
9
|
Haddad L, Gianolio D, Dunstan DJ, Liu Y, Rankine C, Sapelkin A. Quantifying intuition: Bayesian approach to figures of merit in EXAFS analysis of magic size clusters. NANOSCALE 2024. [PMID: 38414278 DOI: 10.1039/d3nr05110b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Analysis of the extended X-ray absorption fine structure (EXAFS) can yield local structural information in magic size clusters even when other structural methods (such as X-ray diffraction) fail, but typically requires an initial guess - an atomistic model. Model comparison is thus one of the most crucial steps in establishing atomic structure of nanoscale systems and relies critically on the corresponding figures of merit (delivered by the data analysis) to make a decision on the most suitable model of atomic arrangements. However, none of the currently used statistical figures of merit take into account the significant factor of parameter correlations. Here we show that ignoring such correlations may result in a selection of an incorrect structural model. We then report on a new metric based on Bayes theorem that addresses this problem. We show that our new metric is superior to the currently used in EXAFS analysis as it reliably yields correct structural models even in cases when other statistical criteria may fail. We then demonstrate the utility of the new figure of merit in comparison of structural models for CdS magic-size clusters using EXAFS data.
Collapse
Affiliation(s)
- Lucy Haddad
- QMUL, Mile End Road, London E1 4NS, UK.
- Diamond Light Source, Diamond House Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Diego Gianolio
- Diamond Light Source, Diamond House Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | | | - Ying Liu
- QMUL, Mile End Road, London E1 4NS, UK.
| | - Conor Rankine
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | |
Collapse
|
10
|
Pitfield J, Taylor NT, Hepplestone SP. Predicting Phase Stability at Interfaces. PHYSICAL REVIEW LETTERS 2024; 132:066201. [PMID: 38394598 DOI: 10.1103/physrevlett.132.066201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Accepted: 12/22/2023] [Indexed: 02/25/2024]
Abstract
We present the RAFFLE methodology for structural prediction of the interface between two materials and demonstrate its effectiveness by applying it to MgO encapsulated by two layers of graphene. To address the challenge of interface structure prediction, our methodology combines physical insights derived from morphological features observed in related systems with an iterative machine learning technique. This employs physical-based methods, including void-filling and n-body distribution functions to predict interface structures. For the carbon-MgO encapsulated system, we have shown the rocksalt and hexagonal phases of MgO to be the two most energetically stable in the few-layer regime. We demonstrate that monolayer rocksalt is heavily stabilized by interfacing with graphene, becoming more energetically favorable than the graphenelike monolayer hexagonal MgO. The RAFFLE methodology provides valuable insights into interface behavior, and a route to finding new materials at interfaces.
Collapse
Affiliation(s)
- J Pitfield
- University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - N T Taylor
- University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - S P Hepplestone
- University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| |
Collapse
|
11
|
Parashchuk T, Cherniushok O, Smitiukh O, Marchuk O, Wojciechowski KT. Structure Evolution and Bonding Inhomogeneity toward High Thermoelectric Performance in Cu 2CoSnS 4-xSe x Materials. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:4772-4785. [PMID: 37396683 PMCID: PMC10311630 DOI: 10.1021/acs.chemmater.3c00586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Lightweight diamond-like structure (DLS) materials are excellent candidates for thermoelectric (TE) applications due to their low costs, eco-friendly nature, and property stability. The main obstacles restricting the energy-conversion performance by the lightweight DLS materials are high lattice thermal conductivity and relatively low carrier mobility. By investigating the anion substitution effect on the structural, microstructural, electronic, and thermal properties of Cu2CoSnS4-xSex, we show that the simultaneous enhancement of the crystal symmetry and bonding inhomogeneity engineering are effective approaches to enhance the TE performance in lightweight DLS materials. Particularly, the increase of x in Cu2CoSnS4-xSex makes the DLS structure with the ideal tetrahedral bond angles of 109.5° favorable, leading to better crystal symmetry and higher carrier mobility in samples with higher selenium content. In turn, the phonon transport in the investigated DLS materials is strongly disturbed due to the bonding inhomogeneity between anions and three sorts of cations inducing large lattice anharmonicity. The increase of Se content in Cu2CoSnS4-xSex only intensified this effect resulting in a lower lattice component of the thermal conductivity (κL) for Se-rich samples. As a result of the enhanced power factor S2ρ-1 and the low κL, the dimensionless thermoelectric figure of merit ZT achieves a high value of 0.75 for Cu2CoSnSe4 DLS material. This work demonstrates that crystal symmetry and bonding inhomogeneity play an important role in the transport properties of DLS materials and provide a path for the development of new perspective materials for TE energy conversion.
Collapse
Affiliation(s)
- Taras Parashchuk
- Thermoelectric
Research Laboratory, Department of Inorganic Chemistry, Faculty of
Materials Science and Ceramics, AGH University
of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland
| | - Oleksandr Cherniushok
- Thermoelectric
Research Laboratory, Department of Inorganic Chemistry, Faculty of
Materials Science and Ceramics, AGH University
of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland
| | - Oleksandr Smitiukh
- Department
of Chemistry and Technology, Volyn National
University, Voli Ave 13, Lutsk 43025, Ukraine
| | - Oleg Marchuk
- Department
of Chemistry and Technology, Volyn National
University, Voli Ave 13, Lutsk 43025, Ukraine
| | - Krzysztof T. Wojciechowski
- Thermoelectric
Research Laboratory, Department of Inorganic Chemistry, Faculty of
Materials Science and Ceramics, AGH University
of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland
| |
Collapse
|
12
|
Guo K, Xu D, Xu L, Li Y, Tang Y. Noble metal nanodendrites: growth mechanisms, synthesis strategies and applications. MATERIALS HORIZONS 2023; 10:1234-1263. [PMID: 36723011 DOI: 10.1039/d2mh01408d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inorganic nanodendrites (NDs) have become a kind of advanced nanomaterials with broad application prospects because of their unique branched architecture. The structural characteristics of nanodendrites include highly branched morphology, abundant tips/edges and high-index crystal planes, and a high atomic utilization rate, which give them great potential for usage in the fields of electrocatalysis, sensing, and therapeutics. Therefore, the rational design and controlled synthesis of inorganic (especially noble metals) nanodendrites have attracted widespread attention nowadays. The development of synthesis strategies and characterization methodology provides unprecedented opportunities for the preparation of abundant nanodendrites with interesting crystallographic structures, morphologies, and application performances. In this review, we systematically summarize the formation mechanisms of noble metal nanodendrites reported in recent years, with a special focus on surfactant-mediated mechanisms. Some typical examples obtained by innovative synthetic methods are then highlighted and recent advances in the application of noble metal nanodendrites are carefully discussed. Finally, we conclude and present the prospects for the future development of nanodendrites. This review helps to deeply understand the synthesis and application of noble metal nanodendrites and may provide some inspiration to develop novel functional nanomaterials (especially electrocatalysts) with enhanced performance.
Collapse
Affiliation(s)
- Ke Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
13
|
Lozano MS, Gómez VJ. Epitaxial growth of crystal phase quantum dots in III-V semiconductor nanowires. NANOSCALE ADVANCES 2023; 5:1890-1909. [PMID: 36998660 PMCID: PMC10044505 DOI: 10.1039/d2na00956k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Crystal phase quantum dots (QDs) are formed during the axial growth of III-V semiconductor nanowires (NWs) by stacking different crystal phases of the same material. In III-V semiconductor NWs, both zinc blende (ZB) and wurtzite (WZ) crystal phases can coexist. The band structure difference between both crystal phases can lead to quantum confinement. Thanks to the precise control in III-V semiconductor NW growth conditions and the deep knowledge on the epitaxial growth mechanisms, it is nowadays possible to control, down to the atomic level, the switching between crystal phases in NWs forming the so-called crystal phase NW-based QDs (NWQDs). The shape and size of the NW bridge the gap between QDs and the macroscopic world. This review is focused on crystal phase NWQDs based on III-V NWs obtained by the bottom-up vapor-liquid-solid (VLS) method and their optical and electronic properties. Crystal phase switching can be achieved in the axial direction. In contrast, in the core/shell growth, the difference in surface energies between different polytypes can enable selective shell growth. One reason for the very intense research in this field is motivated by their excellent optical and electronic properties both appealing for applications in nanophotonics and quantum technologies.
Collapse
Affiliation(s)
- Miguel Sinusia Lozano
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n Building 8F, 2a Floor 46022 Valencia Spain
| | - Víctor J Gómez
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n Building 8F, 2a Floor 46022 Valencia Spain
| |
Collapse
|
14
|
Arsad AZ, Zuhdi AWM, Abdullah SF, Chau CF, Ghazali A, Ahmad I, Abdullah WSW. Effect of Chemical Bath Deposition Variables on the Properties of Zinc Sulfide Thin Films: A Review. Molecules 2023; 28:molecules28062780. [PMID: 36985752 PMCID: PMC10055924 DOI: 10.3390/molecules28062780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Zinc sulfide (ZnS) thin films prepared using the chemical bath deposition (CBD) method have demonstrated great viability in various uses, encompassing photonics, field emission devices, field emitters, sensors, electroluminescence devices, optoelectronic devices, and are crucial as buffer layers of solar cells. These semiconducting thin films for industrial and research applications are popular among researchers. CBD appears attractive due to its simplicity, cost-effectiveness, low energy consumption, low-temperature compatibility, and superior uniformity for large-area deposition. However, numerous parameters influence the CBD mechanism and the quality of the thin films. This study offers a comprehensive review of the impact of various parameters that can affect different properties of ZnS films grown on CBD. This paper provides an extensive review of the film growth and structural and optical properties of ZnS thin films influenced by various parameters, which include complexing agents, the concentration ratio of the reactants, stirring speed, humidity, deposition temperature, deposition time, pH value, precursor types, and annealing temperature environments. Various studies screened the key influences on the CBD parameters concerning the quality of the resulting films. This work will motivate researchers to provide additional insight into the preparation of ZnS thin films using CBD to optimize this deposition method to its fullest potential.
Collapse
Affiliation(s)
- Akmal Zaini Arsad
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Kajang 43000, Malaysia
| | | | | | - Chien Fat Chau
- College of Engineering, Universiti Tenaga Nasional (UNITEN), Kajang 43000, Malaysia
| | - Azrul Ghazali
- College of Engineering, Universiti Tenaga Nasional (UNITEN), Kajang 43000, Malaysia
| | - Ibrahim Ahmad
- UNITEN R&D, Universiti Tenaga Nasional (UNITEN), Kajang 43000, Malaysia
| | | |
Collapse
|
15
|
Del Canale E, Fornari L, Coppi C, Spaggiari G, Mezzadri F, Trevisi G, Ferro P, Gilioli E, Mazzer M, Delmonte D. High-Pressure Bulk Synthesis of InN by Solid-State Reaction of Binary Oxide in a Multi-Anvil Apparatus. Inorg Chem 2023; 62:5016-5022. [PMID: 36926858 DOI: 10.1021/acs.inorgchem.3c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
We present a new method to synthesize bulk indium nitride by means of a simple solid-state chemical reaction carried out under hydrostatic high-pressure/high-temperature conditions in a multi-anvil apparatus, not involving gases or solvents during the process. The reaction occurs between the binary oxide In2O3 and the highly reactive Li3N as the nitrogen source, in the powder form. The formation of the hexagonal phase of InN, occurring at 350 °C and P ≥ 3 GPa, was successfully confirmed by powder X-ray diffraction, with the presence of Li2O as a unique byproduct. A simple washing process in weak acidic solution followed by centrifugation allowed us to obtain pure InN polycrystalline powders as a precipitate. With an analogous procedure, it was possible to obtain pure bulk GaN, from Ga2O3 and Li3N at T ≥ 600 °C and P ≥ 2.5 GPa. These results point out, particularly for InN, a clean, and innovative way to produce significant quantities of one of the most promising nitrides in the field of electronics and energy technologies.
Collapse
Affiliation(s)
- Elena Del Canale
- CNR - IMEM, 43124 Parma, Italy.,SCVSA Department, Università degli Studi di Parma, 43124 Parma, Italy
| | - Lorenzo Fornari
- CNR - IMEM, 43124 Parma, Italy.,SCVSA Department, Università degli Studi di Parma, 43124 Parma, Italy
| | - Chiara Coppi
- CNR - IMEM, 43124 Parma, Italy.,SCVSA Department, Università degli Studi di Parma, 43124 Parma, Italy
| | - Giulia Spaggiari
- CNR - IMEM, 43124 Parma, Italy.,Department of Mathematical, Physical and Computer Sciences, Università degli Studi di Parma, 43124 Parma, Italy
| | - Francesco Mezzadri
- CNR - IMEM, 43124 Parma, Italy.,SCVSA Department, Università degli Studi di Parma, 43124 Parma, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Shulenberger KE, Jilek MR, Sherman SJ, Hohman BT, Dukovic G. Electronic Structure and Excited State Dynamics of Cadmium Chalcogenide Nanorods. Chem Rev 2023; 123:3852-3903. [PMID: 36881852 DOI: 10.1021/acs.chemrev.2c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The cylindrical quasi-one-dimensional shape of colloidal semiconductor nanorods (NRs) gives them unique electronic structure and optical properties. In addition to the band gap tunability common to nanocrystals, NRs have polarized light absorption and emission and high molar absorptivities. NR-shaped heterostructures feature control of electron and hole locations as well as light emission energy and efficiency. We comprehensively review the electronic structure and optical properties of Cd-chalcogenide NRs and NR heterostructures (e.g., CdSe/CdS dot-in-rods, CdSe/ZnS rod-in-rods), which have been widely investigated over the last two decades due in part to promising optoelectronic applications. We start by describing methods for synthesizing these colloidal NRs. We then detail the electronic structure of single-component and heterostructure NRs and follow with a discussion of light absorption and emission in these materials. Next, we describe the excited state dynamics of these NRs, including carrier cooling, carrier and exciton migration, radiative and nonradiative recombination, multiexciton generation and dynamics, and processes that involve trapped carriers. Finally, we describe charge transfer from photoexcited NRs and connect the dynamics of these processes with light-driven chemistry. We end with an outlook that highlights some of the outstanding questions about the excited state properties of Cd-chalcogenide NRs.
Collapse
Affiliation(s)
| | - Madison R Jilek
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Skylar J Sherman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin T Hohman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States.,Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
17
|
Ströh J, Hess T, Ohrt L, Fritzsch H, Etter M, Dippel AC, Nyamen LD, Terraschke H. Detailed insights into the formation pathway of CdS and ZnS in solution: a multi-modal in situ characterisation approach. Phys Chem Chem Phys 2023; 25:4489-4500. [PMID: 36655628 DOI: 10.1039/d2cp02707k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The high stability, high availability, and wide size-dependent bandgap energy of sulphidic semiconductor nanoparticles (NPs) render them promising for applications in optoelectronic devices and solar cells. However, the tunability of their optical properties depends on the strict control of their crystal structure and crystallisation process. Herein, we studied the structural evolution during the formation of CdS and ZnS in solution by combining in situ luminescence spectroscopy, synchrotron-based X-ray diffraction (XRD) and pair distribution function (PDF) analyses for the first time. The influence of precursor type, concentration, temperature and heating program on the product formation and on the bandgap or trap emission were investigated in detail. In summary, for CdS, single-source precursor (SSP) polyol strategies using the dichlorobis(thiourea)cadmium(II) complex and double-source precursor approaches combining Cd(CH3COO)2·2H2O and thiourea led to the straightforward product at 100 °C, while the catena((m2-acetato-O,O')-(acetate-O,O')-(m2-thiourea)-cadmium) complex was formed at 25 and 80 °C. For ZnS, the reaction between Zn(CH3COO)2·2H2O and thiourea at 100 °C led to the product formation after the crystallisation and dissolution of an unknown intermediate. At 180 °C, besides an unknown phase, the acetato-bis(thiourea)-zinc(II) complex was also detected as a reaction intermediate. The formation of such reaction intermediates, which generally remain undetected applying only ex situ characterisation approaches, reinforce the importance of in situ analysis for promoting the advance on the production of tailored semiconductor materials.
Collapse
Affiliation(s)
- J Ströh
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany.
| | - T Hess
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany.
| | - L Ohrt
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany.
| | - H Fritzsch
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany.
| | - M Etter
- DESY Photon Science, Notkestr. 85, 22607 Hamburg, Germany
| | - A-C Dippel
- DESY Photon Science, Notkestr. 85, 22607 Hamburg, Germany
| | - L D Nyamen
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany. .,Department of Inorganic Chemistry, University of Yaoundé I, P. O. Box 812, Yaoundé, Cameroon
| | - H Terraschke
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany.
| |
Collapse
|
18
|
Cherepanova S, Kozlova E. (Cd,Mn)S in the Composite Photocatalyst: Zinc Blende and Wurtzite Particles or Integrowth of These Two Modifications? MATERIALS (BASEL, SWITZERLAND) 2023; 16:692. [PMID: 36676428 PMCID: PMC9864465 DOI: 10.3390/ma16020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/24/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
In this study, the crystalline structure and particle shape of Cd1-xMnxS (x~0.3) in the composite photocatalysts prepared by hydrothermal synthesis at different temperatures (T = 80, 100, 120, and 140 °C) were analyzed. Along with mixed Cd-Mn sulfide, the catalysts contain a small amount of β-Mn3O4. XRD patterns of (Cd,Mn)S have features inherent to both cubic zinc blende and hexagonal wurtzite structure. Moreover, XRD peaks are anisotropically broadened. First, the heterogeneous (or two-phased) model was considered by the commonly used Rietveld method. Phase ratio, average crystallite sizes, and strains for both phases were formally determined. However, it was shown that this model is not correct because relatively narrow and broad peaks cannot be fitted simultaneously. Then, the homogeneous model was tested by Debye Function Analysis. This model assumes that particles are statistically homogeneous, but each particle contains lamellar intergrowth of zinc blende and wurtzite modifications. The probability of stacking faults, as well as the average radii of spherical and ellipsoidal particles, were varied. It was shown that nanocrystalline Cd0.7Mn0.3S particles have an ellipsoidal shape. Ellipsoids are elongated along the direction normal to the plane of defects. An increase in the hydrothermal synthesis temperature from 80 °C to 140 °C leads to an enlargement of particles and a gradual decrease in the probability of stacking faults in the wurtzite structure from 0.47 to 0.36. Therefore, with increasing temperature, the structure of (Cd,Mn)S nanoparticles transforms from almost random polytype cubic/hexagonal (ZB:WZ = 47:53) to a preferably hexagonal structure (ZB:WZ = 36:64). Mn2+ ions facilitate CdS phase transformation from zinc blende to wurtzite structure. There is no direct correlation between the structure and photocatalytic activity.
Collapse
|
19
|
High-Temperature Interactions of Silicon-Aluminum Oxynitrides (Sialons) with Sodium Fluoride. INORGANICS 2022. [DOI: 10.3390/inorganics10090140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The high-temperature interactions of β-SiAlONs with sodium fluoride NaF at 1650 °C under a nitrogen atmosphere are described in this paper. It was found that in case of Si5AlON7 the formation of phases enriched with aluminum occurred, including Si4Al2O2N6 at an NaF loading of 0.5 wt.% and Si4Al2O2N6 and Si3.1Al2.9O2.9N5.1 at an NaF loading of 2.0 wt.%, although Si5AlON7 still was a major phase. For Si4Al2O2N6, a kind of disproportionation was observed, and Si5AlON7 formed together with Si3Al3O3N5 and Si3.1Al2.9O2.9N5.1. Moreover, the initial phase Si4Al2O2N6 was not identified at all, while Si5AlON7 was found to be a major phase at an NaF loading of 0.5 wt.% and Si3.1Al2.9O2.9N5.1 prevailed at an NaF loading of 2.0 wt.%. All the samples showed a high degree of densification when studied with scanning electronic microscopy.
Collapse
|
20
|
Patera M, Zieliński M. Crystal field splitting and spontaneous polarization in InP crystal phase quantum dots. Sci Rep 2022; 12:15561. [PMID: 36114259 PMCID: PMC9481640 DOI: 10.1038/s41598-022-19076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022] Open
Abstract
Crystal phase quantum dots are formed by vertically stacking zinc-blende and wurtzite phases during nanowire growth. In this work, we show, using an atomistic many-body approach, that crystal field splitting in the wurtzite phase, as well as spontaneous polarization originating from the phase interfaces, will strongly affect the properties of lowest hole states in InP crystal phase quantum dots, and in turn the excitonic optical spectra. We also show that the artifact-free modeling of crystal phase quantum dots should incorporate any additional potentials on equal footing with the electron-hole interaction. In this paper, we discuss a reliable theoretical framework that can be applied to investigate the electronic and optical properties of InP-based crystal phase quantum dots. The importance of accurate excitonic calculations for such systems is highlighted in view of their potential applications in nanowire photonics, yet further research is necessary for bringing theory and experiment in agreement.
Collapse
Affiliation(s)
- Martyna Patera
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Michał Zieliński
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| |
Collapse
|
21
|
Zhang S, Ou X, Xiang Q, Carabineiro SAC, Fan J, Lv K. Research progress in metal sulfides for photocatalysis: From activity to stability. CHEMOSPHERE 2022; 303:135085. [PMID: 35618060 DOI: 10.1016/j.chemosphere.2022.135085] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Metal sulfides are a type of reduction semiconductor photocatalysts with narrow bandgap and negative conduction band potential, which make them have unique photocatalytic performance in solar-to-fuel conversion and environmental purification. However, metal sulfides also suffer from low quantum efficiency and photocorrosion. In this review, the strategies to improve the photocatalytic activity of metal sulfide photocatalysts by stimulating the charge separation and improving light-harvesting ability are introduced, including morphology control, semiconductor coupling and surface modification. In addition, the recent research progress aiming at improving their photostability is also illustrated, such as, construction of hole transfer heterojunctions and deposition of hole transfer cocatalysts. Based on the electronic band structures, the applications of metal sulfides in photocatalysis, namely, hydrogen production, degradation of organic pollutants and reduction of CO2, are summarized. Finally, the perspectives of the promising future of metal-sulfide based photocatalysts and the challenges remaining to overcome are also presented.
Collapse
Affiliation(s)
- Sushu Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Xiaoyu Ou
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Qian Xiang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Sónia A C Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal.
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Kangle Lv
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China.
| |
Collapse
|
22
|
Li J, Zheng H, Zheng Z, Rong H, Zeng Z, Zeng H. Synthesis of CdSe and CdSe/ZnS Quantum Dots with Tunable Crystal Structure and Photoluminescent Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2969. [PMID: 36080006 PMCID: PMC9457710 DOI: 10.3390/nano12172969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/06/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Mastery over the structure of nanocrystals is a powerful tool for the control of their fluorescence properties and to broaden the range of their applications. In this work, the crystalline structure of CdSe can be tuned by the precursor concentration and the dosage of tributyl phosphine, which is verified by XRD, photoluminescence and UV-vis spectra, TEM observations, and time-correlated single photon counting (TCSPC) technology. Using a TBP-assisted thermal-cycling technique coupled with the single precursor method, core-shell QDs with different shell thicknesses were then prepared. The addition of TBP improves the isotropic growth of the shell, resulting in a high QY value, up to 91.4%, and a single-channel decay characteristic of CdSe/ZnS quantum dots. This work not only provides a facile synthesis route to precisely control the core-shell structures and fluorescence properties of CdSe nanocrystals but also builds a link between ligand chemistry and crystal growth theory.
Collapse
Affiliation(s)
- Jingling Li
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Haixin Zheng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Ziming Zheng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Haibo Rong
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
- School of Light Industry and Materials, Guangdong Polytechnic, Foshan 528041, China
| | - Zhidong Zeng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Hui Zeng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| |
Collapse
|
23
|
Zagorac J, Zagorac D, Babić B, Prikhna T, Matović B. Effect of aluminum addition on the structure and electronic properties of boron nitride. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Smieja-Król B, Pawlyta M, Gałka M. Ultrafine multi-metal (Zn, Cd, Pb) sulfide aggregates formation in periodically water-logged organic soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153308. [PMID: 35065111 DOI: 10.1016/j.scitotenv.2022.153308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
This study investigates authigenic metal (Zn, Cd, and Pb) sulfides formed in the upper (4-20 cm) layer of severely degraded soil close to ZnPb smelter in CE Europe (southern Poland). The soil layer is circumneutral (pH 6.0-6.8), organic, occasionally water-logged, and contains on average 26,400 mg kg-1 Zn, 18,800 mg kg-1 Pb, 1300 mg kg-1 Cd, and 2500 mg kg-1 of sulfur. The distribution of the authigenic sulfide mineralization is uneven, showing close association with the remains of vascular plants (Equisetaceae, Carex, and herbs). A combination of focused ion beam (FIB) technology with scanning (SEM) and transmission electron microscopy (TEM) is used to reveal the structure and organization of the metal sulfides at micro- and nanoscale resolution. The sulfides form spheroidal and botryoidal porous aggregates composed of nanocrystalline (<5 nm) ZnCd sulfide solid solution and minor discrete PbS (galena) crystals up to 15 nm. The solid solution exists in a cubic (sphalerite) polytype over a whole Zn/Cd range. An intricate core-shell structure is found to be a characteristic feature of the aggregates in which high-Zn outer layers encapsulate Cd-rich sulfide core. PbS resides between the Cd-rich and Cd poor sulfide within nano sites of increased porosity. The study highlights the importance of nanoscale analyses for the prediction of metal behavior in soils. The sulfide self-organization into complex structures and Cd encapsulation inside high-Zn sulfide indicate the occurrence of a self-sustainable mechanism specific to polluted periodically water-logged soil that limits Cd mobility. However, as the reduced Cd mobility is obtained at the Zn expense, the soil gets Cd enriched relative to Zn over extended periods. Although the study proves PbS crystallization in the soil, the process seems environmentally irrelevant even at high Pb contents, being suppressed by other soil processes (e.g., Pb sorption on organic matter). Our findings are valuable in remediation strategies and the management of contaminated soils rich in organic matter that address the mobility of toxic metals and their transfer into living organisms.
Collapse
Affiliation(s)
- Beata Smieja-Król
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, 60 Będzińska Str., 41-200 Sosnowiec, Poland.
| | - Mirosława Pawlyta
- Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18A Konarskiego Str., 44-100 Gliwice, Poland.
| | - Mariusz Gałka
- Department of Biogeography, Palaeoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, 1/3 Banacha Str., 90-237 Łódź, Poland.
| |
Collapse
|
25
|
Kimura S, Gamo H, Katsumi Y, Motohisa J, Tomioka K. InP nanowire light-emitting diodes with different pn-junction structures. NANOTECHNOLOGY 2022; 33:305204. [PMID: 35395650 DOI: 10.1088/1361-6528/ac659a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
We report on the characterization of wurtzite (WZ) InP nanowire (NW) light-emitting diodes (LEDs) with different pn junctions (axial and radial). The series resistance tended to be smaller in the NW-LED using core-shell InP NWs with a radial pn junction than in the NW-LED using InP NWs with an axial pn junction, indicating that radial pn junctions are more suitable for current injection. The electroluminescence (EL) properties of both NW LEDs revealed that the EL had three peaks originating from the zinc-blende (ZB) phase, WZ phase, and ZB/WZ heterojunction. Transmission electron microscopy showed that the dominant EL in the radial pn junction originated from the ZB/WZ interface across the stacking faults.
Collapse
Affiliation(s)
- S Kimura
- Graduate School of Information Science and Technology and Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, Japan
| | - H Gamo
- Graduate School of Information Science and Technology and Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, Japan
| | - Y Katsumi
- Graduate School of Information Science and Technology and Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, Japan
| | - J Motohisa
- Graduate School of Information Science and Technology and Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, Japan
| | - K Tomioka
- Graduate School of Information Science and Technology and Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, Japan
| |
Collapse
|
26
|
Bissuel D, Albaret T, Niehaus TA. Critical assessment of machine-learned repulsive potentials for the Density Functional based Tight-Binding method: a case study for pure silicon. J Chem Phys 2022; 156:064101. [DOI: 10.1063/5.0081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Structural and Optical Characterizations of Cadmium Chalcogenide Layers on Polyamide Formed Using Monotelluropentathionic Acid. MATERIALS 2022; 15:ma15030787. [PMID: 35160733 PMCID: PMC8836557 DOI: 10.3390/ma15030787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022]
Abstract
Mixed cadmium tellurides–cadmium sulfide thin layers were formed on the polyamide PA 6. Monotelluropentathionic acid (H2TeS4O6) was used as a precursor of tellurium and sulfur. A low-temperature, nontoxic, and cost-effective SILAR method was applied. Cadmium telluride (CdTe) and sulfide (CdS) layers were formed through the consecutive reactions of sorbed/diffused chalcogens species from telluropentathionate anion (TeS4O62−) with functional groups of polyamide and alkaline cadmium sulfate. The pseudo-second-order rate and Elovich kinetic models were the best fit to quantify an uptake of chalcogens and cadmium on PA 6. The effects of chalcogens and Cd on the structure and optical properties of PA 6 were characterized using UV-Vis and IR spectra. The clear changes of these properties depended on the concentration and exposure time in the precursor solutions. Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy were applied in order to evaluate the effect of the chalcogen species on the changes in structure of polyamide 6 films, depending on the exposure time in the solution of the chalcogens precursor and its concentration. The optical bandgap energy of the formed layers was found to be in the order of 1.52–2.36 eV. Studies by scanning electron microscopy and atomic force microscopy reveal that the diameter of the average grain is approximately 30 nm. The grains are conical in shape and unevenly distributed all over the surface of the substrate.
Collapse
|
28
|
Liu Z, Yang X, Zhang B, Li W. High Thermal Conductivity of Wurtzite Boron Arsenide Predicted by Including Four-Phonon Scattering with Machine Learning Potential. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53409-53415. [PMID: 34415723 DOI: 10.1021/acsami.1c11595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Materials with high thermal conductivity are of great importance to the thermal management of modern electronic devices. Recently, it was found that cubic boron arsenide (c-BAs) is a high thermal conductivity (κ) material with a value of ∼1300 W/(m·K) at room temperature (RT), where four-phonon scattering plays a crucial role in limiting the κ. In this work, with four-phonon scattering included, we find that the κ of wurtzite BAs (w-BAs) reaches as high as 1036 W/(m·K) along the a-b plane at RT, decreasing by 43% compared to the calculation without considering four-phonon scattering. The similar phonon transport properties between c-BAs and w-BAs can be understood in terms of similar projected density of states and scattering rates, which have the origin in crystal structural resemblance. To accelerate the calculation, the moment tensor potential derived from machine learning is adopted and proven to be a reliable and efficient method to obtain high-order interatomic force constants.
Collapse
Affiliation(s)
- Zhichao Liu
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
- Institute of Microscale Optoelectronics, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Xiaolong Yang
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
- Institute of Microscale Optoelectronics, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Bo Zhang
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Wu Li
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| |
Collapse
|
29
|
Dasan A, Ożóg P, Kraxner J, Elsayed H, Colusso E, Grigolato L, Savio G, Galusek D, Bernardo E. Up-Cycling of LCD Glass by Additive Manufacturing of Porous Translucent Glass Scaffolds. MATERIALS 2021; 14:ma14175083. [PMID: 34501173 PMCID: PMC8434035 DOI: 10.3390/ma14175083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
Additive manufacturing technologies, compared to conventional shaping methods, offer great opportunities in design versatility, for the manufacturing of highly porous ceramic components. However, the application to glass powders, later subjected to viscous flow sintering, involves significant challenges, especially in shape retention and in the achievement of a substantial degree of translucency in the final products. The present paper disclosed the potential of glass recovered from liquid crystal displays (LCD) for the manufacturing of highly porous scaffolds by direct ink writing and masked stereolithography of fine powders mixed with suitable organic additives, and sintered at 950 °C, for 1-1.5 h, in air. The specific glass, featuring a relatively high transition temperature (Tg~700 °C), allowed for the complete burn-out of organics before viscous flow sintering could take place; in addition, translucency was favored by the successful removal of porosity in the struts and by the resistance of the used glass to crystallization.
Collapse
Affiliation(s)
- Arish Dasan
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; (A.D.); (P.O.); (J.K.); (D.G.)
| | - Paulina Ożóg
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; (A.D.); (P.O.); (J.K.); (D.G.)
| | - Jozef Kraxner
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; (A.D.); (P.O.); (J.K.); (D.G.)
| | - Hamada Elsayed
- Ceramics Department, National Research Centre, Cairo 12622, Egypt;
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.C.); (L.G.)
| | - Elena Colusso
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.C.); (L.G.)
| | - Luca Grigolato
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.C.); (L.G.)
- Department of Civil, Environmental and Architectural Engineering: Dept. ICEA, University of Padova, 35131 Padova, Italy;
| | - Gianpaolo Savio
- Department of Civil, Environmental and Architectural Engineering: Dept. ICEA, University of Padova, 35131 Padova, Italy;
| | - Dusan Galusek
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; (A.D.); (P.O.); (J.K.); (D.G.)
- Joint glass centre of the IIC SAS, TnUAD, and FChFT STU, FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia
| | - Enrico Bernardo
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.C.); (L.G.)
- Correspondence: ; Tel.: +39-049-8275510
| |
Collapse
|
30
|
Tappan BA, Chu W, Mecklenburg M, Prezhdo OV, Brutchey RL. Discovery of a Wurtzite-like Cu 2FeSnSe 4 Semiconductor Nanocrystal Polymorph and Implications for Related CuFeSe 2 Materials. ACS NANO 2021; 15:13463-13474. [PMID: 34346226 DOI: 10.1021/acsnano.1c03974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
I2-II-IV-VI4 and I-III-VI2 semiconductor nanocrystals have found applications in photovoltaics and other optoelectronic technologies because of their low toxicity and efficient light absorption into the near-infrared. Herein, we report the discovery of a metastable wurtzite-like polymorph of Cu2FeSnSe4, a member of the I2-II-IV-VI4 family of semiconductors containing only earth-abundant metals. Density functional theory calculations on this metastable polymorph of Cu2FeSnSe4 indicate that it may be a superior semiconductor for solar energy and optoelectronics applications compared to the thermodynamically preferred stannite polymorph, since the former displays a sharper dispersion of energy levels near the conduction band minimum that can enhance electron mobility and suppress hot electron cooling. The experimental optical band gap was measured by the inverse logarithmic derivative method to be direct, in agreement with theory, and in the range of 1.48-1.59 eV. Mechanistic studies reveal that this metastable phase derives from intermediate Cu3Se2 nanocrystals that serve as a structural template for the final hexagonal wurtzite-like product. We compare the chemistry of wurtzite-like Cu2FeSnSe4 to the related CuFeSe2 material system. Our experimental and computational comparisons between Cu2FeSnSe4 and CuFeSe2 help explain both the crystal chemistry of CuFeSe2 that prevents it from forming wurtzite-like polymorphs and the essential role of Sn in stabilizing the metastable structure of Cu2FeSnSe4. This work provides insight into the importance of elemental composition when designing syntheses for metastable materials.
Collapse
Affiliation(s)
- Bryce A Tappan
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Weibin Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Matthew Mecklenburg
- Core Center of Excellence in Nano Imaging, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Richard L Brutchey
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
31
|
Gang GW, Lee JH, Kim SY, Jeong T, Bin Kim K, Thi Hong Men N, Kim YR, Ahn SJ, Kim CS, Kim YH. Microstructural evolution in self-catalyzed GaAs nanowires during in-situ TEM study. NANOTECHNOLOGY 2021; 32:145709. [PMID: 33326944 DOI: 10.1088/1361-6528/abd437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The microstructural evolutions in self-catalyzed GaAs nanowires (NWs) were investigated by using in situ heating transmission electron microscopy (TEM). The morphological changes of the self-catalyst metal gallium (Ga) droplet, the GaAs NWs, and the atomic behavior at the interface between the self-catalyst metal gallium and GaAs NWs were carefully studied by analysis of high-resolution TEM images. The microstructural change of the Ga-droplet/GaAs-NWs started at a low temperature of ∼200 °C. Formation and destruction of atomic layers were observed at the Ga/GaAs interface and slow depletion of the Ga droplet was detected in the temperature range investigated. Above 300 °C, the evolution process dramatically changed with time: The Ga droplet depleted rapidly and fast growth of zinc-blende (ZB) GaAs structures were observed in the droplet. The Ga droplet was completely removed with time and temperature. When the temperature reached ∼600 °C, the decomposition of GaAs was detected. This process began in the wurtzite (WZ) structure and propagated to the ZB structure. The morphological and atomistic behaviors in self-catalyzed GaAs NWs were demonstrated based on thermodynamic considerations, in addition to the effect of the incident electron beam in TEM. Finally, GaAs decomposition was demonstrated in terms of congruent vaporization.
Collapse
Affiliation(s)
- Geun Won Gang
- Department of Physics, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
| | - Jong Hoon Lee
- UNIST Central Research Facilities (UCRF), UNIST, Ulsan 44919, Republic of Korea
| | - Su Yeon Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Taehyeon Jeong
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Kyung Bin Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Nguyen Thi Hong Men
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Yu Ra Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sang Jung Ahn
- Korea Research Institute of Standard and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
- Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chung Soo Kim
- Korea Institute of Ceramic Engineering and Technology, 101 Soho-ro, Jinju 52851, Republic of Korea
| | - Young Heon Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
32
|
Lim B, Cui XY, Ringer SP. Strain-mediated bandgap engineering of straight and bent semiconductor nanowires. Phys Chem Chem Phys 2021; 23:5407-5414. [PMID: 33646229 DOI: 10.1039/d1cp00457c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate simulation of semiconductor nanowires (NWs) under strain is challenging, especially for bent NWs. Here, we propose a simple yet efficient unit-cell model to simulate strain-mediated bandgap modulation in both straight and bent NWs. This is with consideration that uniaxlly bent NWs experience continuous compressive and tensile strains through their cross-sections. A systematic investigation of a series of III-V and II-VI semiconductors NWs in both wurtzite and zinc blende polytypes is performed using hybrid density functional theory methods. The results reveal three common trend in bandgap evolution upon application of strain. Existing experimental measurements corroborate with our predictions concerning bandgap evolution as well as direct-indirect bandgap transitions upon strain. By examining the variation of previous theoretical studies, our result further highlights the significance of geometrical relaxtion in NW simulation. This simplified model is expected to be applicable to investigations of the electronic, optoelectronic, and sensorial properties of all semiconductor NWs.
Collapse
Affiliation(s)
- Bryan Lim
- The University of Sydney, School of Aeronautical, Mechanical and Mechatronic Engineering and Australian Centre for Microscopy and Microanalysis, Sydney, New South Wales 2006, Australia.
| | - Xiang Yuan Cui
- The University of Sydney, School of Aeronautical, Mechanical and Mechatronic Engineering and Australian Centre for Microscopy and Microanalysis, Sydney, New South Wales 2006, Australia.
| | - Simon P Ringer
- The University of Sydney, School of Aeronautical, Mechanical and Mechatronic Engineering and Australian Centre for Microscopy and Microanalysis, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
33
|
Gasmi FZ, Chemam R, Graine R, Boubir B, Meradji H. Structural, electronic, and optical properties of the gallium nitride semiconductor by means of the FP-LAPW method. J Mol Model 2020; 26:356. [PMID: 33245412 DOI: 10.1007/s00894-020-04614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 11/24/2022]
Abstract
In the present paper, the structural, electronic, and linear optical properties of different phases of the gallium nitride (GaN) have been investigated. The zinc blende and wurtzite phases of the GaN have been studied using the full-potential linearized augmented plane wave method (FP-LAPW). In our study, many approximations have been used, such as the local density approximation (LDA), the generalized gradient approximation (GGA), the Engel and Vosko generalized gradient approximation (EV-GGA), and the modified Becke-Johnson (mBJ) potential exchange. As a result, we found a very good agreement with literature experimental results for the energy band gap using the mBJ approximation with a scaling factor of 98% and 80% for the zinc blende and wurtzite phases, respectively.
Collapse
Affiliation(s)
- F Z Gasmi
- Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, Sidi Amar, Annaba, Algeria.,Research Center in Industrial Technologies, CRTI, Cheraga, P.O. Box 64, 16014, Algiers, Algeria
| | - R Chemam
- Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, Sidi Amar, Annaba, Algeria
| | - R Graine
- Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, Sidi Amar, Annaba, Algeria. .,Research Center in Industrial Technologies, CRTI, Cheraga, P.O. Box 64, 16014, Algiers, Algeria.
| | - B Boubir
- Research Center in Industrial Technologies, CRTI, Cheraga, P.O. Box 64, 16014, Algiers, Algeria
| | - H Meradji
- Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, Sidi Amar, Annaba, Algeria
| |
Collapse
|
34
|
Shevchenko EV, Podsiadlo P, Wu X, Lee B, Rajh T, Morin R, Pelton M. Visualizing Heterogeneity of Monodisperse CdSe Nanocrystals by Their Assembly into Three-Dimensional Supercrystals. ACS NANO 2020; 14:14989-14998. [PMID: 33073574 DOI: 10.1021/acsnano.0c04864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We show that the self-assembly of monodisperse CdSe nanocrystals synthesized at lower temperature (∼310 °C) into three-dimensional supercrystals results in the formation of separate regions within the supercrystals that display photoluminescence at two distinctly different wavelengths. Specifically, the central portions of the supercrystals display photoluminescence and absorption in the orange region of the spectrum, around 585 nm, compared to the 575 nm photoluminescence maximum for the nanocrystals dispersed in toluene. Distinct domains on the surfaces and edges of the supercrystals, by contrast, display photoluminescence and absorption in the green region of the spectrum, around 570 nm. We attribute the different-colored domains to two subpopulations of NCs in the monodisperse ensemble: the nanocrystals in the "orange" regions are chemically stable, whereas the nanocrystals in the "green" regions are partially oxidized. The susceptibility of the "green" nanocrystals to oxidation indicates a lower coverage of capping molecules on these nanocrystals. We propose that the two subpopulations correspond to nanocrystals with different surfaces that we attribute to the polytypism of CdSe.
Collapse
Affiliation(s)
- Elena V Shevchenko
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Paul Podsiadlo
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
- ExxonMobil Research and Engineering Company, Fuels, Process & Optimization Technology Process Engineering Division, 22777 Springwoods Village, Parkway Spring, Texas 77389, United States
| | - Xiaohua Wu
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
- Mindray, Mindray Building, Hitech Industrial Park, Nanshan District, Shenzhen 518057, China
| | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Tijana Rajh
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Rachel Morin
- Department of Physics, UMBC (University of Maryland, Baltimore County), 1000 Hilltop Circle, Baltimore, Maryland 20912, United States
| | - Matthew Pelton
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
- Department of Physics, UMBC (University of Maryland, Baltimore County), 1000 Hilltop Circle, Baltimore, Maryland 20912, United States
| |
Collapse
|
35
|
Cipriano LA, Di Liberto G, Tosoni S, Pacchioni G. Quantum confinement in group III-V semiconductor 2D nanostructures. NANOSCALE 2020; 12:17494-17501. [PMID: 32808618 DOI: 10.1039/d0nr03577g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work we investigate the role of quantum confinement in group III-V semiconductor thin films (2D nanostructures). To this end we have studied the electronic structure of nine materials (AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs and InSb) by means of Density Functional Theory (DFT) calculations using a screened hybrid functional (HSE06). We focus on the structural and electronic properties of bulk and the (110) surfaces, for which we evaluate and rationalize the impact of system size to the band gap and band edge positions. Our results indicate that when the quantum confinement is strong, it mainly affects the position of the Conduction Band Minimum (CBM) of the semiconductor, while the Valence Band Maximum (VBM) is almost insensitive to the system size. The results can be rationalized in terms of electron and hole effective masses. Our conclusions, based on slabs, can be generalized to other cases of quantum confinement such as quantum dots, overcoming the need for an explicit consideration and calculation of the properties of semiconductor nanoparticles.
Collapse
Affiliation(s)
- Luis A Cipriano
- Dipartimento di Scienza dei Materiali, Università di Milano - Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | | | | | | |
Collapse
|
36
|
López NN, Rodríguez-Melgarejo F, Hernández-Landaverde M, Flores-Ruiz FJ, Jiménez-Sandoval S. Dual-doped CdSe:Cu:O films grown by sputtering using CdSe-CuO composite targets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:195701. [PMID: 31952049 DOI: 10.1088/1361-648x/ab6d0e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effects of the simultaneous incorporation of Cu and O in CdSe films grown by sputtering are presented. The Cu and O contents varied between 1 and 5 at.% in films deposited at 150, 200, 250 and 300 °C. Concentrations of 2, 3, 4 and 5 at.% of CuO in the target promoted the formation of copper selenide clusters immersed within the CdSe:Cu:O host. Energy considerations (enthalpy of formation and bond dissociation energy) were used to discuss the absence of copper oxide and the formation of copper selenide aggregates, as well as the film thickness dependence on the concentration of CuO in the target. The band gap of the films ranged from 1.21 to 2.07 eV, depending upon growth conditions. Significant below-band-gap absorption was observed which was ascribed to the copper selenide micro and nano clusters. Good crystalline quality of the films, for high substrate temperatures, was evidenced through the appearance of overtones of the vibrational longitudinal optic modes detected by Raman micro spectroscopy. It was determined that the electronic properties, optical transmission and electrical conductivity depended on the chemical composition and crystalline structure. This characteristic is relevant because through copper and oxygen co-doping is possible to control these technologically important physical properties of CdSe in a simple and reliable manner.
Collapse
Affiliation(s)
- Ninfa Navarro López
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Libramiento Norponiente No. 2000, Frac. Real de Juriquilla, Querétaro, Qro. C.P. 76230, Mexico
| | | | | | | | | |
Collapse
|
37
|
Cunningham PD, Coropceanu I, Mulloy K, Cho W, Talapin DV. Quantized Reaction Pathways for Solution Synthesis of Colloidal ZnSe Nanostructures: A Connection between Clusters, Nanowires, and Two-Dimensional Nanoplatelets. ACS NANO 2020; 14:3847-3857. [PMID: 32105062 DOI: 10.1021/acsnano.9b09051] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The morphology of nanocrystals serves as a powerful handle to modulate their functional properties. For semiconducting nanostructures, the shape is no less important than the size and composition, in terms of determining the electronic structure. For example, in the case of nanoplatelets (NPLs), their two-dimensional (2D) electronic structure and atomic precision along the axis of quantum confinement makes them well-suited as pure color emitters and optical gain media. In this study, we describe synthetic efforts to develop ZnSe NPLs emitting in the ultraviolet part of the spectrum. We focus on two populations of NPLs, the first having a sharp absorption onset at 345 nm and a previously unreported species with an absorption onset at 380 nm. Interestingly, we observe that the nanoplatelets are one step in a quantized reaction pathway that starts with (zero-dimensional (0D)) magic-sized clusters, then proceeds through the formation of (one-dimensional (1D)) nanowires toward the (2D) "345 nm" species of NPLs, which finally interconvert into the "380 nm" NPL species. We seek to rationalize this evolution of the morphology, in terms of a general free-energy landscape, which, under reaction control, allows for the isolation of well-defined structures, while thermodynamic control leads to the formation of three-dimensional (3D) nanocrystals.
Collapse
Affiliation(s)
- Patrick D Cunningham
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Igor Coropceanu
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Kavan Mulloy
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Wooje Cho
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
38
|
Sun AA, Gao SP, Gu G. Peculiar bond characters of fivefold coordinated octet compound crystals. Chem Sci 2020; 11:4340-4350. [PMID: 34122892 PMCID: PMC8152722 DOI: 10.1039/d0sc00292e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/26/2020] [Indexed: 11/22/2022] Open
Abstract
The present work exemplifies complementary perspectives offered by the band and bond pictures of solids, with an emphasis on the chemical intuition pertaining to the latter, especially in the presence of interfaces. The modern computational method of constructing a unique set of maximally localized Wannier functions from delocalized band states imparts new interpretations to the familiar concept of chemical bonds in the context of crystalline solids. By bridging the band and bond pictures using advanced computational tools, we reveal for the first time the unusual bond characters of a long-predicted fivefold coordinated structure of binary octet compounds A N B8-N consisting of AA' stacked planar AB honeycombs. While the isolated monolayer retains the familiar p z -π bonding in a honeycomb framework as in graphene and hexagonal boron nitride, the bulk foregoes in-plane π bonding and embraces out-of-plane ⋯A-B-A-B⋯ chain bonding via overlapping p z orbitals. Not only does the chemical intuition gained by invoking the bond picture clarify the chemical nature of the fivefold coordination, but it also facilely explains a salient discrepancy in theoretical predictions in otherwise sound ample experimental evidence in the form of epitaxial thin films, paving the way towards rational synthesis of such thin films for optoelectronic applications. On the other hand, we show that the conduction band minimum, important in determining the electrical and optical properties, is a distinctly extended state that can only be properly described within the band picture.
Collapse
Affiliation(s)
- An-An Sun
- Department of Materials Science, Fudan University Shanghai 200433 China
| | - Shang-Peng Gao
- Department of Materials Science, Fudan University Shanghai 200433 China
| | - Gong Gu
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee Knoxville Tennessee 37996 USA
| |
Collapse
|
39
|
Loghina L, Kaderavkova A, Chylii M, Frumarova B, Svec P, Slang S, Vlcek M. The systematic study of the precursor ratio effect in the Cd–Zn–S quantum dot synthesis. CrystEngComm 2020. [DOI: 10.1039/d0ce00597e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The controllable synthesis of highly photoluminescent Cd–Zn–S QDs with application of novel N-phenylmorpholine-4-carbothioamide as an eco-friendly sulphur source.
Collapse
Affiliation(s)
- Liudmila Loghina
- Center of Materials and Nanotechnologies
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 530 02
- Czech Republic
| | - Anastasia Kaderavkova
- Center of Materials and Nanotechnologies
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 530 02
- Czech Republic
| | - Maksym Chylii
- Center of Materials and Nanotechnologies
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 530 02
- Czech Republic
| | - Bozena Frumarova
- Center of Materials and Nanotechnologies
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 530 02
- Czech Republic
| | - Petr Svec
- Department of General and Inorganic Chemistry
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 532 10
- Czech Republic
| | - Stanislav Slang
- Center of Materials and Nanotechnologies
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 530 02
- Czech Republic
| | - Miroslav Vlcek
- Center of Materials and Nanotechnologies
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice 530 02
- Czech Republic
| |
Collapse
|
40
|
Ning J, Kershaw SV, Rogach AL. Synthesis and Optical Properties of Cubic Chalcopyrite/Hexagonal Wurtzite Core/Shell Copper Indium Sulfide Nanocrystals. J Am Chem Soc 2019; 141:20516-20524. [DOI: 10.1021/jacs.9b11498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiajia Ning
- Department of Materials Science and Engineering, and Centre for Functional Photonics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People’s Republic of China
| | - Stephen V. Kershaw
- Department of Materials Science and Engineering, and Centre for Functional Photonics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People’s Republic of China
| | - Andrey L. Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
41
|
Park JH, Chung CH. Raman Spectroscopic Characterizations of Self-Catalyzed InP/InAs/InP One-Dimensional Nanostructures on InP(111)B Substrate using a Simple Substrate-Tilting Method. NANOSCALE RESEARCH LETTERS 2019; 14:355. [PMID: 31781969 PMCID: PMC6883012 DOI: 10.1186/s11671-019-3193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
We report optical phonon vibration modes in ensembles of self-catalyzed InP/InAs/InP multi core-shell one-dimensional nanostructures (nanopillars and nanocones) grown on InP(111)B substrates using liquid indium droplets as a catalyst via metal-organic chemical vapor deposition. We characterized the Raman vibration modes of InAs E1(TO), InAs A1(TO), InAs E1(LO), InP E1(TO), InP A1(LO), and InP E1(LO) from the ensemble of as-grown nanostructures. We also identified second-order Raman vibration modes, associated with InP E1(2TO), E1(LO+TO), and E1(2LO), in the InP/InAs/InP core-shell nanopillars and nanocones. Raman spectra of InP/InAs/InP nanopillars showed redshift and broadening of LO modes at low-frequency branches of InAs and InP. Due to the polar nature in groups III-V nanowires, we observed strong frequency splitting between InAs E1(TO) and InAs A1(LO) in InP/InAs/InP nanocones. The Raman resonance intensities of InP and InAs LO modes are found to be changed linearly with an excitation power. By tilting the substrate relative to the incoming laser beam, we observed strong suppression of low-frequency branch of InP and InAs LO phonon vibrations from InP/InAs/InP nanocones. The integrated intensity ratio of InP E1(TO)/E1(LO) for both nanostructures is almost constant at 0-degree tilt, but the ratio of the nanocones is dramatically increased at 30-degree tilt. Our results suggest that Raman spectroscopy characterization with a simple substrate tilting method can provide new insights into non-destructive characterization of the shape, structure, and composition of the as-grown nanostructures for the wafer-scale growth and integration processing of groups III-V semiconducting hetero-nanostructures into nanoelectronics and photonics applications.
Collapse
Affiliation(s)
- Jeung Hun Park
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA.
| | - Choong-Heui Chung
- Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea.
| |
Collapse
|
42
|
Vilela Oliveira D, Laun J, Peintinger MF, Bredow T. BSSE-correction scheme for consistent gaussian basis sets of double- and triple-zeta valence with polarization quality for solid-state calculations. J Comput Chem 2019; 40:2364-2376. [PMID: 31260123 DOI: 10.1002/jcc.26013] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/14/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
Revised versions of our published pob-TZVP [Peintinger, M. F.; Oliveira, D. V. and Bredow, T., J. Comput. Chem., 2013, 34 (6), 451-459.] and unpublished pob-DZVP basis sets, denoted as pob-TZVP-rev2 and pob-DZVP-rev2, have been derived for the elements HBr. It was observed that the pob basis sets suffer from the basis set superposition error (BSSE). In order to reduce this effect, we took into account the counterpoise energy of hydride dimers as an additional parameter in the basis set optimization. The overall performance, portability, and SCF stability of the resulting rev2 basis sets are significantly improved compared to the original pob basis sets. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel Vilela Oliveira
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, University of Bonn, Beringstr. 4, D-53115, Bonn, Germany
| | - Joachim Laun
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, University of Bonn, Beringstr. 4, D-53115, Bonn, Germany
| | - Michael F Peintinger
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, University of Bonn, Beringstr. 4, D-53115, Bonn, Germany
| | - Thomas Bredow
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, University of Bonn, Beringstr. 4, D-53115, Bonn, Germany
| |
Collapse
|
43
|
Jia G, Pang Y, Ning J, Banin U, Ji B. Heavy-Metal-Free Colloidal Semiconductor Nanorods: Recent Advances and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900781. [PMID: 31063615 DOI: 10.1002/adma.201900781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Indexed: 05/10/2023]
Abstract
Quasi-1D colloidal semiconductor nanorods (NRs) are at the forefront of nanoparticle (NP) research owing to their intriguing size-dependent and shape-dependent optical and electronic properties. The past decade has witnessed significant advances in both fundamental understanding of the growth mechanisms and applications of these stimulating materials. Herein, the state-of-the-art of colloidal semiconductor NRs is reviewed, with special emphasis on heavy-metal-free materials. The main growth mechanisms of heavy-metal-free colloidal semiconductor NRs are first elaborated, including anisotropic-controlled growth, oriented attachment, solution-liquid-solid method, and cation exchange. Then, structural engineering and properties of semiconductor NRs are discussed, with a comprehensive overview of core/shell structures, alloying, and doping, as well as semiconductor-metal hybrid nanostructures, followed by highlighted practical applications in terms of photocatalysis, photodetectors, solar cells, and biomedicine. Finally, challenges and future opportunities in this fascinating research area are proposed.
Collapse
Affiliation(s)
- Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, WA, 6845, Australia
| | - Yingping Pang
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, WA, 6845, Australia
| | - Jiajia Ning
- Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Botao Ji
- School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
- Institute of Advanced Technology Westlake Institute for Advanced Study, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| |
Collapse
|
44
|
Chen D, Wang A, Li H, Abad Galán L, Su C, Yin Z, Massi M, Suvorova A, Saunders M, Li J, Sitt A, Jia G. Colloidal quasi-one-dimensional dual semiconductor core/shell nanorod couple heterostructures with blue fluorescence. NANOSCALE 2019; 11:10190-10197. [PMID: 31112179 DOI: 10.1039/c9nr02443c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein we report a nanorod couple heterostructure made of dual semiconductors, in which two parallelly aligned ZnSe nanorods are connected by the growth of ZnS on both end and side facets, producing hetero-ZnS (short arms)-ZnSe (long arms)/ZnS shell nanorod couples. As evidenced by electronic structure studies, both experimental and theoretical, such core/shell nanorod couple heterostructures can act as a platform to precisely tailor the quantum confinement of charge carriers between the constituting components within a single nano-object, generating blue fluorescence after the overgrowth of an alloyed ZnCdS layer on the heterostructures. We foresee the mechanistic insights gained and electronic structures revealed in this work would shed light on the rational design of more complex heterostructures with novel functionalities.
Collapse
Affiliation(s)
- Dechao Chen
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, WA 6845, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yip S, Shen L, Ho JC. Recent advances in III-Sb nanowires: from synthesis to applications. NANOTECHNOLOGY 2019; 30:202003. [PMID: 30625448 DOI: 10.1088/1361-6528/aafcce] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The excellent properties of III-V semiconductors make them intriguing candidates for next-generation electronics and optoelectronics. Their nanowire (NW) counterparts further provide interesting geometry and a quantum confinement effect which benefits various applications. Among the many members of all the III-V semiconductors, III-antimonide NWs have attracted significant research interest due to their narrow, direct bandgap and high carrier mobility. However, due to the difficulty of NW fabrication, the development of III-antimonide NWs and their corresponding applications are always a step behind the other III-V semiconductors. Until recent years, because of advances in understanding and fabrication techniques, electronic and optoelectronic devices based on III-antimonide NWs with novel performance have been fabricated. In this review, we will focus on the development of the synthesis of III-antimonide NWs using different techniques and strategies for fine-tuning the crystal structure and composition as well as fabricating their corresponding heterostructures. With such development, the recent progress in the applications of III-antimonide NWs in electronics and optoelectronics is also surveyed. All these discussions provide valuable guidelines for the design of III-antimonide NWs for next-generation device utilization.
Collapse
Affiliation(s)
- SenPo Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China. Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, People's Republic of China
| | | | | |
Collapse
|
46
|
Battiato S, Wu S, Zannier V, Bertoni A, Goldoni G, Li A, Xiao S, Han XD, Beltram F, Sorba L, Xu X, Rossella F. Polychromatic emission in a wide energy range from InP-InAs-InP multi-shell nanowires. NANOTECHNOLOGY 2019; 30:194004. [PMID: 30634180 DOI: 10.1088/1361-6528/aafde4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
InP-InAs-InP multi-shell nanowires (NWs) were grown in the wurtzite (WZ) or zincblende (ZB) crystal phase and their photoluminescence (PL) properties were investigated at low temperature (≈6 K) for different measurement geometries. PL emissions from the NWs were carefully studied in a wide energy range from 0.7 to 1.6 eV. The different features observed in the PL spectra for increasing energies are attributed to four distinct emitting domains of these nano-heterostructures: the InAs island (axially grown), the thin InAs capping shell (radially grown), the crystal-phase quantum disks arising from the coexistence of InP ZB and WZ segments in the same NW, and the InP portions of the NW. These results provide a useful frame for the rational implementation of InP-InAs-InP multi-shell NWs containing various quantum confined domains as polychromatic optically active components in nanodevices for quantum information and communication technologies.
Collapse
Affiliation(s)
- S Battiato
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56217 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lehmann S, Wallentin J, Mårtensson EK, Ek M, Deppert K, Dick KA, Borgström MT. Simultaneous Growth of Pure Wurtzite and Zinc Blende Nanowires. NANO LETTERS 2019; 19:2723-2730. [PMID: 30888174 DOI: 10.1021/acs.nanolett.9b01007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The opportunity to engineer III-V nanowires in wurtzite and zinc blende crystal structure allows for exploring properties not conventionally available in the bulk form as well as opening the opportunity for use of additional degrees of freedom in device fabrication. However, the fundamental understanding of the nature of polytypism in III-V nanowire growth is still lacking key ingredients to be able to connect the results of modeling and experiments. Here we show InP nanowires of both pure wurtzite and pure zinc blende grown simultaneously on the same InP [100]-oriented substrate. We find wurtzite nanowires to grow along [Formula: see text] and zinc blende counterparts along [Formula: see text]. Further, we discuss the nucleation, growth, and polytypism of our nanowires against the background of existing theory. Our results demonstrate, first, that the crystal growth conditions for wurtzite and zinc blende nanowire growth are not mutually exclusive and, second, that the interface energies predominantly determine the crystal structure of the nanowires.
Collapse
Affiliation(s)
- Sebastian Lehmann
- Solid State Physics and NanoLund , Lund University , Box 118, S-221 00 Lund , Sweden
| | - Jesper Wallentin
- Solid State Physics and NanoLund , Lund University , Box 118, S-221 00 Lund , Sweden
- Synchrotron Radiation Research and NanoLund , Box 118, S-221 00 Lund , Sweden
| | - Erik K Mårtensson
- Solid State Physics and NanoLund , Lund University , Box 118, S-221 00 Lund , Sweden
| | - Martin Ek
- Centre for Analysis and Synthesis , Lund University , Box 124, 221 00 , Lund , Sweden
| | - Knut Deppert
- Solid State Physics and NanoLund , Lund University , Box 118, S-221 00 Lund , Sweden
| | - Kimberly A Dick
- Solid State Physics and NanoLund , Lund University , Box 118, S-221 00 Lund , Sweden
- Centre for Analysis and Synthesis , Lund University , Box 124, 221 00 , Lund , Sweden
| | - Magnus T Borgström
- Solid State Physics and NanoLund , Lund University , Box 118, S-221 00 Lund , Sweden
| |
Collapse
|
48
|
Amato M, Ossicini S, Canadell E, Rurali R. Preferential Positioning, Stability, and Segregation of Dopants in Hexagonal Si Nanowires. NANO LETTERS 2019; 19:866-876. [PMID: 30608707 DOI: 10.1021/acs.nanolett.8b04083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We studied the physics of common p- and n-type dopants in hexagonal-diamond Si, a Si polymorph that can be synthesized in nanowire geometry without the need of extreme pressure conditions, by means of first-principles electronic structure calculations and compared our results with those for the well-known case of cubic-diamond nanowires. We showed that (i) as observed in recent experiments, at larger diameters (beyond the quantum confinement regime) p-type dopants prefer the hexagonal-diamond phase with respect to the cubic one as a consequence of the stronger degree of three-fold coordination of the former, while n-type dopants are at a first approximation indifferent to the polytype of the host lattice; (ii) in ultrathin nanowires, because of the lower symmetry with respect to bulk systems and the greater freedom of structural relaxation, the order is reversed and both types of dopant slightly favor substitution at cubic lattice sites; (iii) the difference in formation energies leads, particularly in thicker nanowires, to larger concentration differences in different polytypes, which can be relevant for cubic-hexagonal homojunctions; (iv) ultrasmall diameters exhibit, regardless of the crystal phase, a pronounced surface segregation tendency for p-type dopants. Overall these findings shed light on the role of crystal phase in the doping mechanism at the nanoscale and could have a great potential in view of the recent experimental works on group IV nanowires polytypes.
Collapse
Affiliation(s)
- Michele Amato
- Laboratoire de Physique des Solides (LPS) , CNRS, Université Paris-Sud, Université Paris-Saclay, Centre Scientifique d'Orsay , F91405 Orsay cedex , France
| | - Stefano Ossicini
- "Centro S3", CNR-Istituto di Nanoscienze , Via Campi 213/A , 41125 Modena , Italy
- Dipartimento di Scienze e Metodi dell'Ingegneria, Centro Interdipartimentale En&Tech , Universitá di Modena e Reggio Emilia , Via Amendola 2 Pad. Morselli , I-42100 Reggio Emilia , Italy
| | - Enric Canadell
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de Bellaterra , 08193 Bellaterra, Barcelona , Spain
| | - Riccardo Rurali
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de Bellaterra , 08193 Bellaterra, Barcelona , Spain
| |
Collapse
|
49
|
Sullivan HSI, Parish JD, Thongchai P, Kociok-Köhn G, Hill MS, Johnson AL. Aerosol-Assisted Chemical Vapor Deposition of ZnS from Thioureide Single Source Precursors. Inorg Chem 2019; 58:2784-2797. [PMID: 30715864 DOI: 10.1021/acs.inorgchem.8b03363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A family of 12 zinc(II) thoureide complexes, of the general form [{L}ZnMe], [{L}Zn{N(SiMe3)2}], and [{L}2Zn], have been synthesized by direct reaction of the thiourea pro-ligands iPrN(H)CS(NMe2) H[L1], CyN(H)CS(NMe2) H[L3], tBuN(H)CS(NMe2) H[L2], and MesN(H)CS(NMe2) H[L4] with either ZnMe2 (1:1) or Zn{N(SiMe3)2}2 (1:1 and 2:1) and characterized by elemental analysis, NMR spectroscopy, and thermogravimetric analysis (TGA). The molecular structures of complexes [{L1}ZnMe]2 (1), [{L2}ZnMe]2] (2), [{L3}ZnMe]∞ (3), [{L4}ZnMe]2] (4), [{L1}Zn{N(SiMe3)2}]2 (5), [{L2}Zn{N(SiMe3)2}]2 (6), [{L3}Zn{N(SiMe3)2}]2] (7), [{L4}Zn{N(SiMe3)2}]2] (8), [{L1}2Zn]2 (9), and [{L4}2Zn]2 (12) have been unambiguously determined using single crystal X-ray diffraction studies. Thermogravimetric analysis has been used to assess the viability of complexes 1-12 as single source precursors for the formation of ZnS. On the basis of TGA data compound 9 was investigated for its utility as a single source precursor to deposit ZnS films on silica-coated glass and crystalline silicon substrates at 150, 200, 250, and 300 °C using an aerosol assisted chemical vapor deposition (AACVD) method. The resultant films were confirmed to be hexagonal-ZnS by Raman spectroscopy and PXRD, and the surface morphologies were examined by SEM and AFM analysis. Thin films deposited from (9) at 250 and 300 °C were found to be comprised of more densely packed and more highly crystalline ZnS than films deposited at lower temperatures. The electronic properties of the ZnS thin films were deduced by UV-Vis spectroscopy to be very similar and displayed absorption behavior and band gap (Eg = 3.711-3.772 eV) values between those expected for bulk cubic-ZnS (Eg = 3.54 eV) and hexagonal-ZnS (Eg = 3.91 eV).
Collapse
Affiliation(s)
- Hannah S I Sullivan
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| | - James D Parish
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| | - Prem Thongchai
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| | - Gabriele Kociok-Köhn
- Materials and Chemical Characterisation Facility (MC2), Department of Chemistry , University of Bath . Claverton Down , Bath , BA2 7AY , U.K
| | - Michael S Hill
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| | - Andrew L Johnson
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| |
Collapse
|
50
|
Avilés MA, Córdoba JM, Sayagués MJ, Gotor FJ. Tailoring the Band Gap in the ZnS/ZnSe System: Solid Solutions by a Mechanically Induced Self-Sustaining Reaction. Inorg Chem 2019; 58:2565-2575. [DOI: 10.1021/acs.inorgchem.8b03183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miguel A. Avilés
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), 41092 Sevilla, Spain
| | - José M. Córdoba
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), 41092 Sevilla, Spain
- Departamento de Química Inorgánica, Universidad de Sevilla, 41012 Sevilla, Spain
| | - María J. Sayagués
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), 41092 Sevilla, Spain
| | - Francisco J. Gotor
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), 41092 Sevilla, Spain
| |
Collapse
|