1
|
Hooijer R, Wang S, Biewald A, Eckel C, Righetto M, Chen M, Xu Z, Blätte D, Han D, Ebert H, Herz LM, Weitz RT, Hartschuh A, Bein T. Overcoming Intrinsic Quantum Confinement and Ultrafast Self-Trapping in Ag-Bi-I- and Cu-Bi-I-Based 2D Double Perovskites through Electroactive Cations. J Am Chem Soc 2024; 146:26694-26706. [PMID: 39311491 DOI: 10.1021/jacs.4c04616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The possibility to combine organic semiconducting materials with inorganic halide perovskites opens exciting pathways toward tuning optoelectronic properties. Exploring stable and nontoxic, double perovskites as a host for electroactive organic cations to form two-dimensional (2D) hybrid materials is an emerging opportunity to create both functional and lead-free materials for optoelectronic applications. By introducing naphthalene and pyrene moieties into Ag-Bi-I and Cu-Bi-I double perovskite lattices, intrinsic electronic challenges of double perovskites are addressed and the electronic anisotropy of 2D perovskites can be modulated. (POE)4AgBiI8 containing pyrene moieties in the 2D layers was selected from a total of eight new 2D double perovskites, exhibiting a favorable electronic band structure with a type IIb multiple quantum well system based on a layer architecture suitable for out-of-plane conductivity and leading to a photocurrent response ratio of almost 3 orders of magnitude under AM1.5G illumination. Finally, an exclusively parallelly oriented thin film of (POE)4AgBiI8 was integrated into a device to construct the first pure n = 1 Ruddlesden-Popper 2D double perovskite solar cell.
Collapse
Affiliation(s)
- Rik Hooijer
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany
| | - Shizhe Wang
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany
| | - Alexander Biewald
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany
| | - Christian Eckel
- First Institute of Physics, Faculty of Physics, Georg-August-University, Göttingen 37073 Germany
| | - Marcello Righetto
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, U.K
| | - Meizhu Chen
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany
| | - Zehua Xu
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany
| | - Dominic Blätte
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany
| | - Dan Han
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany
- School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Hubert Ebert
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany
| | - Laura M Herz
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, U.K
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, Garching D-85748, Germany
| | - R Thomas Weitz
- First Institute of Physics, Faculty of Physics, Georg-August-University, Göttingen 37073 Germany
| | - Achim Hartschuh
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany
| |
Collapse
|
2
|
Du YR, Li XQ, Yang XX, Duan GY, Chen YM, Xu BH. Stabilizing High-Valence Copper(I) Sites with Cu-Ni Interfaces Enhances Electroreduction of CO 2 to C 2+ Products. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402534. [PMID: 38850182 DOI: 10.1002/smll.202402534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Indexed: 06/10/2024]
Abstract
In this study, the copper-nickel (Cu-Ni) bimetallic electrocatalysts for electrochemical CO2 reduction reaction(CO2RR) are fabricated by taking the finely designed poly(ionic liquids) (PIL) containing abundant Salen and imidazolium chelating sites as the surficial layer, wherein Cu-Ni, PIL-Cu and PIL-Ni interaction can be readily regulated by different synthetic scheme. As a proof of concept, Cu@Salen-PIL@Ni(NO3)2 and Cu@Salen-PIL(Ni) hybrids differ significantly in the types and distribution of Ni species and Cu species at the surface, thereby delivering distinct Cu-Ni cooperation fashion for the CO2RR. Remarkably, Cu@Salen-PIL@Ni(NO3)2 provides a C2+ faradaic efficiency (FEC2+) of 80.9% with partial current density (jC 2+) of 262.9 mA cm-2 at -0.80 V (versus reversible hydrogen electrode, RHE) in 1 m KOH in a flow cell, while Cu@Salen-PIL(Ni) delivers the optimal FEC2+ of 63.8% at jC2+ of 146.7 mA cm-2 at -0.78 V. Mechanistic studies indicates that the presence of Cu-Ni interfaces in Cu@Salen-PIL@Ni(NO3)2 accounts for the preserve of high-valence Cu(I) species under CO2RR conditions. It results in a high activity of both CO2-to-CO conversion and C-C coupling while inhibition of the competitive HER.
Collapse
Affiliation(s)
- Yi-Ran Du
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao-Qiang Li
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xian-Xia Yang
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guo-Yi Duan
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yong-Mei Chen
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bao-Hua Xu
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
Zou S, Liang Y, Zhang X, Gu Q, Wang L, Sun H, Liao X, Huang J, Masri AR. Manufacturing Single-Atom Alloy Catalysts for Selective CO 2 Hydrogenation via Refinement of Isolated-Alloy-Islands. Angew Chem Int Ed Engl 2024:e202412835. [PMID: 39172117 DOI: 10.1002/anie.202412835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Single-atom alloy (SAA) catalysts exhibit huge potential in heterogeneous catalysis. Manufacturing SAAs requires complex and expensive synthesis methods to precisely control the atomic scale dispersion to form diluted alloys with less active sites and easy sintering of host metal, which is still in the early stages of development. Here, we address these limitations with a straightforward strategy from a brand-new perspective involving the 'islanding effect' for manufacturing SAAs without dilution: homogeneous RuNi alloys were continuously refined to highly dispersed alloy-islands (~1 nm) with completely single-atom sites where the relative metal loading was as high as 40 %. Characterized by advanced atomic-resolution techniques, single Ru atoms were bonded with Ni as SAAs with extraordinary long-term stability and no sintering of the host metal. The SAAs exhibited 100 % CO selectivity, over 55 times reverse water-gas shift (RWGS) rate than the alloys with Ru cluster sites, and over 3-4 times higher than SAAs by the dilution strategy. This study reports a one-step manufacturing strategy for SAA's using the wetness impregnation method with durable high atomic efficiency and holds promise for large-scale industrial applications.
Collapse
Affiliation(s)
- Sibei Zou
- Department: School of Aerospace, Mechanical and Mechatronic Engineering, Institution: The University of Sydney, J07 The University of Sydney, New South Wales, 2006, Australia
| | - Yuhang Liang
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Xingmo Zhang
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Qinfen Gu
- Institution: Australian Synchrotron, 800 Blackburn Rd, Clayton, Victoria, 3168, Australia
| | - Lizhuo Wang
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Haoyue Sun
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Xiaozhou Liao
- Department: School of Aerospace, Mechanical and Mechatronic Engineering, Institution: The University of Sydney, J07 The University of Sydney, New South Wales, 2006, Australia
| | - Jun Huang
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Assaad R Masri
- Department: School of Aerospace, Mechanical and Mechatronic Engineering, Institution: The University of Sydney, J07 The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
4
|
Quan S, Zhang Y, Liu H, Fan Y, Zhou Q, Feng L. Strain Effects in the Work Function and Charge Transfer of the Au(111) Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39077883 DOI: 10.1021/acs.langmuir.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Work function (WF) is one of the most fundamental physical parameters of metal surfaces, which can not only reflect the electronic structure of metal surfaces but is also very sensitive to the surface microstructure. In this paper, we use first-principles calculations to systematically study the strain effects on the vacuum level, Fermi level, and WF of the Au(111) surface. We find that the vacuum level and Fermi level of the Au(111) surface increase under compressive strain and decrease under tensile strain, and the effects of biaxial strain on the vacuum level and Fermi level can be equivalent to the superposition of two perpendicular uniaxial strains. These strain effects are attributed to the charge transfer induced by the strain. However, the change of WF with strain is the result of the competition between the strain effects of the vacuum level and Fermi level. That leads to the WF increasing with compressive uniaxial strain and decreasing with tensile uniaxial strain. Moreover, because the Fermi level is more responsive to compressive uniaxial strain, the Fermi level changes faster than the vacuum level under compressive biaxial strain. Consequently, the WF decreases with increasing tensile biaxial strain and slightly increases before decreasing with increasing compressive biaxial strain.
Collapse
Affiliation(s)
- Silong Quan
- Jiangxi Province Key Laboratory of Nuclear Physics and Technology, East China University of Technology, Nanchang, Jiangxi 330013, People's Republic of China
- School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang, Jiangxi 330013, People's Republic of China
| | - Yuhua Zhang
- Jiangxi Province Key Laboratory of Nuclear Physics and Technology, East China University of Technology, Nanchang, Jiangxi 330013, People's Republic of China
- Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, Nanning, Guangxi 530003, People's Republic of China
- Engineering Research Center of New Energy Technology and Equipment of Jiangxi Province, East China University of Technology, Nanchang, Jiangxi 330013, People's Republic of China
| | - Haixin Liu
- School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang, Jiangxi 330013, People's Republic of China
| | - Yun Fan
- School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang, Jiangxi 330013, People's Republic of China
| | - Qi Zhou
- School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang, Jiangxi 330013, People's Republic of China
| | - Lin Feng
- School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang, Jiangxi 330013, People's Republic of China
| |
Collapse
|
5
|
Wang X, Yang H, Liu M, Liu Z, Liu K, Mu Z, Zhang Y, Cheng T, Gao C. Locally Varying Surface Binding Affinity on Pd-Au Nanocrystals Enhances Electrochemical Ethanol Oxidation Activity. ACS NANO 2024; 18:18701-18711. [PMID: 38941536 DOI: 10.1021/acsnano.4c06063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Noble metal nanocrystals face challenges in effectively catalyzing electrochemical ethanol oxidation reaction (EOR)-represented multistep, multielectron transfer processes due to the linear scaling relationship among binding energies of intermediates, impeding independent optimization of individual elemental steps. Herein, we develop noble metal nanocrystals with a range of local surface binding affinities in close proximity to overcome this challenge. Experimentally, this is demonstrated by applying tensile strain to a Pd surface and decorating it with discrete Au atoms, forming a diversity of binding sites with varying affinities in close proximity for guest molecules, as evidenced by CO probing and density functional theory calculations. Such a surface enables reaction intermediates to migrate between different binding sites as needed for each elemental step, thereby reducing the energy barrier for the overall EOR when compared to reactions at a single site. On these tailored surfaces, we attain specific and mass activities of 32.7 mA cm-2 and 47.8 A mgPd-1 in EOR, surpassing commercial Pd/C by 10.9 and 43.8 times, respectively, and outperforming state-of-the-art Pd-based catalysts. These results highlight the promise of this approach in improving a variety of multistep, multielectron transfer reactions, which are crucial for energy conversion applications.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Moxuan Liu
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhaojun Liu
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Liu
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zerui Mu
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Chuanbo Gao
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Hua G, Mendez P, Dong X. Temperature-dependent work function, thermionic emission and bulk modulus of TiC: a study on the identification of free valence electrons and localized valence electrons and their roles played in carbides. Phys Chem Chem Phys 2024; 26:18753-18762. [PMID: 38934708 DOI: 10.1039/d4cp01655f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
By analyzing the projected states of valence electrons (fatband structures), the localized valence electrons and the free valence electrons of TiC were identified, respectively. After defining the volumes and the magnitudes of localized valence electrons and free valence electrons, the influences of the temperature, including the thermal expansion and the atomic thermal vibration, on the localized valence electron density and the free valence electron density were investigated, respectively. Based on the metallic plasma model (MPM), the temperature-dependent work functions and the thermionic emission current densities of TiC were calculated in terms of temperature-dependent free valence electron densities. The results were in good agreement with experimental results. Furthermore, as it was observed, the linear dependence of the bulk modulus on the localized valence electron density demonstrated that the bulk modulus of TiC was determined by the localized valence electron density. The different roles played by the free valence electrons and the localized valence electrons in the work function and the bulk modulus of TiC could be attributed to their different contributions to the kinetic energy density of valence electrons. The influences of the temperature on the work function, thermionic emission and bulk modulus of TiC indicated that the transition metal carbides with lower free valence electron density, higher localized valence electron density and heavier atomic mass were desired to achieve lower work function, higher current density and higher stability.
Collapse
Affiliation(s)
- Guomin Hua
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Patricio Mendez
- Canadian Centre for Welding and Joining, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Xinglong Dong
- School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
7
|
Schalenbach M, Tesch R, Kowalski PM, Eichel RA. The electrocatalytic activity for the hydrogen evolution reaction on alloys is determined by element-specific adsorption sites rather than d-band properties. Phys Chem Chem Phys 2024; 26:14171-14185. [PMID: 38713015 DOI: 10.1039/d4cp01084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Trends of the electrocatalytic activities for the hydrogen evolution reaction (HER) across transition metals are typically explained by d-band properties such as center or upper edge positions in relation to Fermi levels. Here, the universality of this relation is questioned for alloys, exemplified for the AuPt system which is examined with electrocatalytic measurements and density functional theory (DFT) calculations. At small overpotentials, linear combinations of the pure-metals' Tafel kinetics normalized to the alloy compositions are found to precisely resemble the measured HER activities. DFT calculations show almost neighbor-independent adsorption energies on Au and Pt surface-sites, respectively, as the adsorbed hydrogen influences the electron density mostly locally at the adsorption site itself. In contrast, the density of states of the d-band describe the delocalized conduction electrons in the alloys, which are unable to portray the local electronic environments at adsorption sites and related bonding strengths. The adsorption energies at element-specific surface sites are related to overpotential-dependent reaction mechanisms in a multidimensional reinterpretation of the volcano plot for alloys, which bridges the found inconsistencies between activity and bonding strength descriptors of the common electrocatalytic theory for alloys.
Collapse
Affiliation(s)
- Maximilian Schalenbach
- Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany.
| | - Rebekka Tesch
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
- Jülich Aachen Research Alliance JARA Energy & Center for Simulation and Data Science (CSD), 52425 Jülich, Germany
| | - Piotr M Kowalski
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
- Jülich Aachen Research Alliance JARA Energy & Center for Simulation and Data Science (CSD), 52425 Jülich, Germany
| | - Rüdiger-A Eichel
- Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany.
- Institute of Physical Chemistry, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
8
|
Meng W, Wu H, Jiao Y, Ma F, Wang S, Liu Y, Liu G, Zhang X. Honeycomb Electron Lattice Induced Dirac Fermion with Trigonal Warping in Bilayer Electrides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309962. [PMID: 38072630 DOI: 10.1002/smll.202309962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Indexed: 05/18/2024]
Abstract
Emergent fermions arising from the excess electrons of electrides provide a new perspective for exploring semimetal states with unique Fermi surface geometries. In this study, a class of unique two-dimensional (2D) highly anisotropic Dirac fermions is designed using a sandwich structure. Based on the structural design and first-principles calculations, 2D electride MB (M = Ca/Sr, B = Cl/Br/I) is an ideal candidate material. The excess electrons of the bilayer MB could be stably localized in the interstitial cavities, constructing a natural zigzag honeycomb electron sublattice that further forms a Dirac fermion. Compared with traditional Dirac semimetals, 2D Dirac electrides exhibited rich physical properties: i) The Fermi surface shows trigonal warping in low-energy regions. In particular, the geometry of the Fermi surface determines the high anisotropy of the Fermi velocity. ii) A pair of Dirac fermions are protected by three-fold rotational symmetry and exhibit strong robustness. iii) Electride MB possesses a lower work function that strongly correlates with the surface area of the emission channel. Based on these properties, an electron-emitting device with multifunctional applications is fabricated. Therefore, this study provides an ideal platform for studying potential entanglement between structures, electrides, and topological states.
Collapse
Affiliation(s)
- Weizhen Meng
- College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang, 050024, China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Hongbo Wu
- College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yalong Jiao
- College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fengxian Ma
- College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shiyao Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering Department, Northwestern Polytechnical University, Shannxi, 710072, China
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Ying Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Guodong Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaoming Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
9
|
Li J, Xu Y, Li P, Völkel A, Saldaña FI, Antonietti M, López-Salas N, Odziomek M. Beyond Conventional Carbon Activation: Creating Porosity without Etching Using Cesium Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311655. [PMID: 38240357 DOI: 10.1002/adma.202311655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/18/2023] [Indexed: 01/30/2024]
Abstract
Facile synthesis of porous carbon with high yield and high specific surface area (SSA) from low-cost molecular precursors offers promising opportunities for their industrial applications. However, conventional activation methods using potassium and sodium hydroxides or carbonates suffer from low yields (<20%) and poor control over porosity and composition especially when high SSAs are targeted (>2000 m2 g-1) because nanopores are typically created by etching. Herein, a non-etching activation strategy is demonstrated using cesium salts of low-cost carboxylic acids as the sole precursor in producing porous carbons with yields of up to 25% and SSAs reaching 3008 m2 g-1. The pore size and oxygen content can be adjusted by tuning the synthesis temperature or changing the molecular precursor. Mechanistic investigation unravels the non-classical role of cesium as an activating agent. The cesium compounds that form in situ, including carbonates, oxides, and metallic cesium, have extremely low work function enabling electron injection into organic/carbonaceous framework, promoting condensation, and intercalation of cesium ions into graphitic stacks forming slit pores. The resulting porous carbons deliver a high capacity of 252 mAh g-1 (567 F g-1) and durability of 100 000 cycles as cathodes of Zn-ion capacitors, showing their potential for electrochemical energy storage.
Collapse
Affiliation(s)
- Jiaxin Li
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Yaolin Xu
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Pengzhou Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Antje Völkel
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | | | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Nieves López-Salas
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
| | - Mateusz Odziomek
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
10
|
Svensson R, Grönbeck H. Spontaneous Charge Separation at the Metal-Water Interface. Chemphyschem 2024; 25:e202400099. [PMID: 38315759 DOI: 10.1002/cphc.202400099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Reactions at the metal-water interface are essential in a range of fundamental and technological processes. Using Density Functional Theory calculations, we demonstrate that water substantially affects the adsorption of H and O2 on Cu(111), Ag(111), Au(111), Pd(111) and Pt(111). In water, H is found to undergo a spontaneous charge separation, where a proton desorbs to the water solution while an electron is donated to the surface. The reaction is exothermic over Au and Pt and associated with low barriers. The process is facile also over Pd, albeit slightly endothermic. For O2, water is found to increase the metal-to-adsorbate charge transfer, enhancing the adsorption energy and O-O bond length as compared to the adsorption in the absence of water. The magnitudes of the effects are system dependent, which implies that calculations should treat water explicitly. The results elucidate previous experimental results and highlights the importance of charge-transfer effects at the metal-water interface; both to describe the potential energy landscape, and to account for alternative reaction routes in the presence of water.
Collapse
Affiliation(s)
- Rasmus Svensson
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
| |
Collapse
|
11
|
Kuo CY, Zhu JH, Chiu YP, Ni IC, Chen MH, Wu YR, Wu CI. Graphene-All-Around Cobalt Interconnect with a Back-End-of-Line Compatible Process. NANO LETTERS 2024; 24:2102-2109. [PMID: 38295289 PMCID: PMC10870778 DOI: 10.1021/acs.nanolett.3c04833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/02/2024]
Abstract
The graphene-all-around (GAA) structure has been verified to grow directly at 380 °C using hot-wire chemical vapor deposition, within the thermal budget of the back end of the line (BEOL). The cobalt (Co) interconnects with the GAA structure have demonstrated a 10.8% increase in current density, a 27% reduction in resistance, and a 36 times longer electromigration lifetime. X-ray photoelectron spectroscopy and density functional theory calculations have revealed the presence of bonding between carbon and Co, which makes the Co atom more stable to resist external forces. The ability of graphene to act as a diffusion barrier in the GAA structure was confirmed through time-dependent dielectric breakdown measurement. The Co interconnect within the GAA structure exhibits enhanced electrical properties and reliability, which indicates compatibility applications as next-generation interconnect materials in CMOS BEOL.
Collapse
Affiliation(s)
- Chi-Yuan Kuo
- Graduate
Institute of Photonics and Optoelectronics and Department of Electrical
Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jia-Heng Zhu
- Graduate
Institute of Photonics and Optoelectronics and Department of Electrical
Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yun-Ping Chiu
- Graduate
Institute of Photonics and Optoelectronics and Department of Electrical
Engineering, National Taiwan University, Taipei 106, Taiwan
| | - I-Chih Ni
- Graduate
Institute of Photonics and Optoelectronics and Department of Electrical
Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Mei-Hsin Chen
- Department
of Electro-Optical Engineering, National
Taipei University of Technology, Taipei 106, Taiwan
| | - Yuh-Renn Wu
- Graduate
Institute of Photonics and Optoelectronics and Department of Electrical
Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chih-I Wu
- Graduate
Institute of Photonics and Optoelectronics and Department of Electrical
Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
12
|
Tao G, Li J, Mu Y, Zhang X. A Three-Dimensional Hydrophobic Surface-Enhanced Raman Scattering Sensor via a Silver-Coated Polytetrafluoroethylene Membrane for the Direct Trace Detection of Molecules in Water. BIOSENSORS 2024; 14:88. [PMID: 38392007 PMCID: PMC10886991 DOI: 10.3390/bios14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
We report a three-dimensional (3D) SERS substrate consisting of a silver nanoparticle (AgNP) coating on the skeleton-fiber surfaces of a polytetrafluoroethylene (PTFE) membrane. Simple thermal evaporation was employed to deposit Ag onto the PTFE membrane to produce grape-shaped AgNPs. The 3D-distributed AgNPs exhibit not only strong localized surface plasmon resonance (LSPR) but also strong hydrophobic performance. High-density hotspots via silver nano-grape structures and nanogaps, the large 3D interaction volume, and the large total surface area, in combination with the hydrophobic enrichment of the specimen, facilitate high-sensitivity sensing performance of such a SERS substrate for the direct detection of low-concentration molecules in water. An enhancement factor of up to 1.97 × 1010 was achieved in the direct detection of R6G molecules in water with a concentration of 10-13 mol/L. The lowest detection limit of 100 ppt was reached in the detection of melamine in water. Such a SERS sensor may have potential applications in food-safety control, environmental water pollution monitoring, and biomedical analysis.
Collapse
Affiliation(s)
- Guanwei Tao
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| | - Jiajun Li
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| | - Yunyun Mu
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| | - Xinping Zhang
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
13
|
Yanagiyama K, Takimoto K, Dinh Le S, Nu Thanh Ton N, Taniike T. High-throughput experimentation for photocatalytic water purification in practical environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:122974. [PMID: 37981181 DOI: 10.1016/j.envpol.2023.122974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
High-throughput screening instrument was developed for photocatalytic water purification, enabling the simultaneous testing of 132 photocatalytic reactions under uniform visible light irradiation, temperature control, and stirring. The instrument was used to investigate the effects of different catalysts (TiO2, ZnO, α-Fe2O3) and environmental waters (seawater, urban wastewater, and industrial wastewater) on dye degradation. It was observed environmental ions, particularly carbonate and phosphate ions, significantly reduced catalyst activity by inhibiting the adsorption of dye molecules. To develop effective catalysts for dye degradation in industrial wastewater, 15 types of noble metal nanoparticles (NPs) were supported on photocatalysts. The study found that noble metal NPs with high work functions and oxidation resistance, such as Au and Pt, exhibited higher activity even in the industrial wastewater, likely converting environmental ions into active species. These findings, based on 432 test results, demonstrate the effectiveness of the developed high-throughput screening instrument for optimizing photocatalytic water purification.
Collapse
Affiliation(s)
- Kyo Yanagiyama
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Ken Takimoto
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Son Dinh Le
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Nhan Nu Thanh Ton
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Toshiaki Taniike
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
| |
Collapse
|
14
|
Alonso-Vante N. Parameters Affecting the Fuel Cell Reactions on Platinum Bimetallic Nanostructures. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Golio N, Gellman AJ. Activation by O 2 of Ag xPd 1-x Alloy Catalysts for Ethylene Hydrogenation. ACS Catal 2023; 13:14548-14561. [PMID: 38026815 PMCID: PMC10660651 DOI: 10.1021/acscatal.3c03253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
A composition spread alloy film (CSAF) spanning all of AgxPd1-x composition space, xPd = 0 → 1, was used to study catalytic ethylene hydrogenation with and without the presence of O2 in the feed gas. High-throughput measurements of the ethylene hydrogenation activity of AgxPd1-x alloys were performed at 100 Pd compositions spanning xPd = 0 → 1. The extent of ethylene hydrogenation was measured versus xPd at reaction temperatures spanning T = 300 → 405 K and inlet hydrogen partial pressures spanning PH2in = 70 → 690 Torr. The inlet ethylene partial pressure was constant at PC2H4in = 25 Torr, and the O2 inlet partial pressure was either PO2in = 0 or 15 Torr. When PO2in = 0 Torr, only those alloys with xPd ≥ 0.90 displayed observable ethylene hydrogenation activity. As expected, the most active catalyst was pure Pd, which yielded a maximum conversion of ∼0.4 at T = 405 K and PH2in = 690 Torr. Adding a constant O2 partial pressure of PO2in = 15 Torr to the feed stream dramatically increased the catalytic activity across the CSAF at all experimental conditions and catalyst compositions without inducing catalytic ethylene combustion and without measurable O2 consumption. The presence of PO2in = 15 Torr more than doubled the maximum achievable conversion on Pd to ∼0.9 and activated alloys with as little as xPd = 0.6 for ethylene hydrogenation. Measurement of the reaction order with respect to hydrogen, nH2, showed that nH2 ≈ 0 when PO2in = 15 Torr on high xPd alloys but that nH2 increases to values between 0.5 and 1 as xPd decreases or when PO2in = 0 Torr. We attribute this PO2in-induced change in nH2 to a change in the reaction mechanism resulting from different functional catalyst surfaces: one that is O2-activated and Pd-rich and one that is Ag-capped with low activity. Both are extremely sensitive to the bulk alloy composition, xPd, and the reaction temperature, T. These results show that the activity of AgPd catalysts for ethylene hydrogenation depends strongly on the operational conditions. Furthermore, we demonstrate that the exposure of AgPd catalysts to 15 Torr of O2 at moderate temperatures leads to enhanced catalyst performance, presumably by stimulating both Pd segregation to the topmost surface and Pd activation for ethylene hydrogenation.
Collapse
Affiliation(s)
- Nicholas Golio
- Department
of Chemical Engineering W.E. Scott Institute for Energy Innovation, Carnegie Mellon University 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Andrew J. Gellman
- Department
of Chemical Engineering W.E. Scott Institute for Energy Innovation, Carnegie Mellon University 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
16
|
Chen YH, Chen CC, Lu LC, Lan CY, Chen HL, Yen TH, Wan D. Wafer-scale fibrous SERS substrates allow label-free, portable detection of food adulteration and diagnosis of pesticide poisoning. SENSORS AND ACTUATORS B: CHEMICAL 2023; 391:134035. [DOI: 10.1016/j.snb.2023.134035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|
17
|
Zhou W, Dong C, Chen D, Wang L, Cheng X, Li X. Exploring the local work function of metallic materials at the nanoscale: the influence of neighboring phases. Phys Chem Chem Phys 2023; 25:23177-23186. [PMID: 37605620 DOI: 10.1039/d3cp01864d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
This paper investigates the local work function distribution of a multi-phase metal material at the nanoscale and examines how it is influenced by its surrounding components. A formula is derived to express the relationship between the local work function and neighboring phases, taking into account the solid angle they form. The study's findings indicate a positive correlation between the local work function and the neighboring phases. Experimental results, DFT calculations, and previous theories are all used to verify the study's conclusions. Additionally, this paper offers predictions for the local work functions of a second phase surrounded by a matrix. These findings have practical implications for materials research at the nanoscale and offer a bridge between DFT calculations and nanoscale experimentation.
Collapse
Affiliation(s)
- Wenjie Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Chaofang Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Dihao Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Li Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
- National and Local Joint Engineering Research Center for Functional Materials Processing, School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
| | - Xuequn Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Xiaogang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| |
Collapse
|
18
|
Zhu Z, Tang R, Li C, An X, He L. Promises of Plasmonic Antenna-Reactor Systems in Gas-Phase CO 2 Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302568. [PMID: 37338243 PMCID: PMC10460874 DOI: 10.1002/advs.202302568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Sunlight-driven photocatalytic CO2 reduction provides intriguing opportunities for addressing the energy and environmental crises faced by humans. The rational combination of plasmonic antennas and active transition metal-based catalysts, known as "antenna-reactor" (AR) nanostructures, allows the simultaneous optimization of optical and catalytic performances of photocatalysts, and thus holds great promise for CO2 photocatalysis. Such design combines the favorable absorption, radiative, and photochemical properties of the plasmonic components with the great catalytic potentials and conductivities of the reactor components. In this review, recent developments of photocatalysts based on plasmonic AR systems for various gas-phase CO2 reduction reactions with emphasis on the electronic structure of plasmonic and catalytic metals, plasmon-driven catalytic pathways, and the role of AR complex in photocatalytic processes are summarized. Perspectives in terms of challenges and future research in this area are also highlighted.
Collapse
Affiliation(s)
- Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Rui Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
19
|
Oh S, Lim SJ, Lee SG, Jeong S, Song C, Kong C, Shon SB, Park H, Lee S, Choi H, Heo Y. Improving Automated TEM Metrology Based on AI Few Shot Learning-DRAM Word Line Patterning Layer and Logic NMOS eSD Seam. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1908. [PMID: 37613988 DOI: 10.1093/micmic/ozad067.985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Seungwoo Oh
- Advanced Analysis Science & Engineering Team, Samsung Electronics, Republic of Korea
| | - Sung Jin Lim
- MI Equipment R&D Team, Samsung Electronics, Republic of Korea
| | - Soon-Gun Lee
- Advanced Analysis Science & Engineering Team, Samsung Electronics, Republic of Korea
| | - SeongHoon Jeong
- Advanced Analysis Science & Engineering Team, Samsung Electronics, Republic of Korea
| | - Changseop Song
- Advanced Analysis Science & Engineering Team, Samsung Electronics, Republic of Korea
| | - Chanwoong Kong
- Advanced Analysis Science & Engineering Team, Samsung Electronics, Republic of Korea
| | - Su-Bong Shon
- MI Equipment R&D Team, Samsung Electronics, Republic of Korea
| | - Hansaem Park
- MI Equipment R&D Team, Samsung Electronics, Republic of Korea
| | - SungHo Lee
- Advanced Analysis Science & Engineering Team, Samsung Electronics, Republic of Korea
| | - Hyunsu Choi
- MI Equipment R&D Team, Samsung Electronics, Republic of Korea
| | - Yumi Heo
- Advanced Analysis Science & Engineering Team, Samsung Electronics, Republic of Korea
| |
Collapse
|
20
|
Jiang Y, Takashima R, Nakao T, Miyazaki M, Lu Y, Sasase M, Niwa Y, Abe H, Kitano M, Hosono H. Boosted Activity of Cobalt Catalysts for Ammonia Synthesis with BaAl 2O 4-xH y Electrides. J Am Chem Soc 2023; 145:10669-10680. [PMID: 37129031 DOI: 10.1021/jacs.3c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Electrides are promising support materials to promote transition metal catalysts for ammonia synthesis due to their strong electron-donating ability. Cobalt (Co) is an alternative non-noble metal catalyst to ruthenium in ammonia synthesis; however, it is difficult to achieve acceptable activity at low temperatures due to the weak Co-N interaction. Here, we report a novel oxyhydride electride, BaAl2O4-xHy, that can significantly promote ammonia synthesis over Co (500 mmol gCo-1 h-1 at 340 °C and 0.90 MPa) with a very low activation energy (49.6 kJ mol-1; 260-360 °C), which outperforms the state-of-the-art Co-based catalysts, being comparable to the latest Ru catalyst at 300 °C. BaAl2O4-xHy with a stuffed tridymite structure has interstitial cage sites where anionic electrons are accommodated. The surface of BaAl2O4-xHy with very low work functions (1.7-2.6 eV) can donate electrons strongly to Co, which largely facilitates N2 reduction into ammonia with the aid of the lattice H- ions. The stuffed tridymite structure of BaAl2O4-xHy with a three-dimensional AlO4-based tetrahedral framework has great chemical stability and protects the accommodated electrons and H- ions from oxidation, leading to robustness toward the ambient atmosphere and good reusability, which is a significant advantage over the reported hydride-based catalysts.
Collapse
Affiliation(s)
- Yihao Jiang
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Ryu Takashima
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Takuya Nakao
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Masayoshi Miyazaki
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yangfan Lu
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Masato Sasase
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yasuhiro Niwa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization,Tsukuba, Ibaraki 305-0801, Japan
| | - Hitoshi Abe
- Institute of Materials Structure Science, High Energy Accelerator Research Organization,Tsukuba, Ibaraki 305-0801, Japan
| | - Masaaki Kitano
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Hideo Hosono
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
21
|
Liu K, Yang H, Jiang Y, Liu Z, Zhang S, Zhang Z, Qiao Z, Lu Y, Cheng T, Terasaki O, Zhang Q, Gao C. Coherent hexagonal platinum skin on nickel nanocrystals for enhanced hydrogen evolution activity. Nat Commun 2023; 14:2424. [PMID: 37105957 PMCID: PMC10140298 DOI: 10.1038/s41467-023-38018-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Metastable noble metal nanocrystals may exhibit distinctive catalytic properties to address the sluggish kinetics of many important processes, including the hydrogen evolution reaction under alkaline conditions for water-electrolysis hydrogen production. However, the exploration of metastable noble metal nanocrystals is still in its infancy and suffers from a lack of sufficient synthesis and electronic engineering strategies to fully stimulate their potential in catalysis. In this paper, we report a synthesis of metastable hexagonal Pt nanostructures by coherent growth on 3d transition metal nanocrystals such as Ni without involving galvanic replacement reaction, which expands the frontier of the phase-replication synthesis. Unlike noble metal substrates, the 3d transition metal substrate owns more crystal phases and lower cost and endows the hexagonal Pt skin with substantial compressive strains and programmable charge density, making the electronic properties particularly preferred for the alkaline hydrogen evolution reaction. The energy barriers are greatly reduced, pushing the activity to 133 mA cmgeo-2 and 17.4 mA μgPt-1 at -70 mV with 1.5 µg of Pt in 1 M KOH. Our strategy paves the way for metastable noble metal catalysts with tailored electronic properties for highly efficient and cost-effective energy conversion.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yilan Jiang
- Center for High-resolution Electron Microscopy (CħEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Zhaojun Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Shumeng Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhixue Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhun Qiao
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yiming Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Osamu Terasaki
- Center for High-resolution Electron Microscopy (CħEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Qing Zhang
- Center for High-resolution Electron Microscopy (CħEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| | - Chuanbo Gao
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
22
|
Kovacevic S, Ali W, Martínez-Pañeda E, LLorca J. Phase-field modeling of pitting and mechanically-assisted corrosion of Mg alloys for biomedical applications. Acta Biomater 2023; 164:641-658. [PMID: 37068554 DOI: 10.1016/j.actbio.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023]
Abstract
A phase-field model is developed to simulate the corrosion of Mg alloys in body fluids. The model incorporates both Mg dissolution and the transport of Mg ions in solution, naturally predicting the transition from activation-controlled to diffusion-controlled bio-corrosion. In addition to uniform corrosion, the presented framework captures pitting corrosion and accounts for the synergistic effect of aggressive environments and mechanical loading in accelerating corrosion kinetics. The model applies to arbitrary 2D and 3D geometries with no special treatment for the evolution of the corrosion front, which is described using a diffuse interface approach. Experiments are conducted to validate the model and a good agreement is attained against in vitro measurements on Mg wires. The potential of the model to capture mechano-chemical effects during corrosion is demonstrated in case studies considering Mg wires in tension and bioabsorbable coronary Mg stents subjected to mechanical loading. The proposed methodology can be used to assess the in vitro and in vivo service life of Mg-based biomedical devices and optimize the design taking into account the effect of mechanical deformation on the corrosion rate. The model has the potential to advocate further development of Mg alloys as a biodegradable implant material for biomedical applications. STATEMENT OF SIGNIFICANCE: A physically-based model is developed to simulate the corrosion of bioabsorbable metals in environments that resemble biological fluids. The model captures pitting corrosion and incorporates the role of mechanical fields in enhancing the corrosion of bioabsorbable metals. Model predictions are validated against dedicated in vitro corrosion experiments on Mg wires. The potential of the model to capture mechano-chemical effects is demonstrated in representative examples. The simulations show that the presence of mechanical fields leads to the formation of cracks accelerating the failure of Mg wires, whereas pitting severely compromises the structural integrity of coronary Mg stents. This work extends phase-field modeling to bioengineering and provides a mechanistic tool for assessing the service life of bioabsorbable metallic biomedical devices.
Collapse
Affiliation(s)
- Sasa Kovacevic
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Wahaaj Ali
- IMDEA Materials Institute, C/Eric Kandel 2, Getafe 28906, Madrid, Spain; Department of Material Science and Engineering, Universidad Carlos III de Madrid, Leganes 28911, Madrid, Spain
| | - Emilio Martínez-Pañeda
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Javier LLorca
- IMDEA Materials Institute, C/Eric Kandel 2, Getafe 28906, Madrid, Spain; Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid, Spain.
| |
Collapse
|
23
|
Zhang X, Meng W, Liu Y, Dai X, Liu G, Kou L. Magnetic Electrides: High-Throughput Material Screening, Intriguing Properties, and Applications. J Am Chem Soc 2023; 145:5523-5535. [PMID: 36823736 DOI: 10.1021/jacs.3c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Electrides are a unique class of electron-rich materials where excess electrons are localized in interstitial lattice sites as anions, leading to a range of unique properties and applications. While hundreds of electrides have been discovered in recent years, magnetic electrides have received limited attention, with few investigations into their fundamental physics and practical applications. In this work, 51 magnetic electrides (12 antiferromagnetic, 13 ferromagnetic, and 26 interstitial-magnetic) were identified using high-throughput computational screening methods and the latest Materials Project database. Based on their compositions, these magnetic electrides can be classified as magnetic semiconductors, metals, or half-metals, each with unique topological states and excellent catalytic performance for N2 fixation due to their low work functions and excess electrons. The novel properties of magnetic electrides suggest potential applications in spintronics, topological electronics, electron emission, and as high-performance catalysts. This work marks the beginning of a new era in the identification, investigation, and practical applications of magnetic electrides.
Collapse
Affiliation(s)
- Xiaoming Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China.,School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Weizhen Meng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China.,School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ying Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China.,School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xuefang Dai
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China.,School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Guodong Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China.,School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Garden Point Campus, Brisbane 4001, Queensland, Australia
| |
Collapse
|
24
|
Alkaline hydrogen oxidation reaction on Ni-based electrocatalysts: From mechanistic study to material development. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
The mechanism insight for improved photocatalysis and interfacial charges transfer of surface-dispersed Ag0 modified layered graphite-phase carbon nitride nanosheets. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Yang Z, Zhang C, Wang S, Xue C, Tian G, Su H, Yan C, Yan Z, Liu X, Wang J. Towards quantum corrosion chemistry: screening perfect Cr, Ni sites and stoichiometry on top of an Fe(110) surface using DFT. RSC Adv 2023; 13:9945-9953. [PMID: 37006345 PMCID: PMC10055913 DOI: 10.1039/d2ra07463j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
For decades, corrosion has been classified into many categories according to the microstructural morphology of the chemical reaction products. Until recently, the development of quantum chemistry has simplified the fundamental corrosion mechanism into only two processes: electrochemical dissolution and hydrogen evolution reaction (HER). Although Cr and Ni elements have been found to segregate towards the surface of stainless steel to form a protective layer and prevent Fe dissolution, the understanding of the exact chemistry on top of the Fe surface has not been reported in previous studies. In this study, we have identified suitable doping sites for simultaneous doping of several Cr and Ni atoms, and quantified the effects of different alloy compositions (Fe12Cr3Ni1, Fe11Cr4Ni1, Fe11Cr3Ni2, Fe10Cr4Ni2, Fe10Cr3Ni3) on the stability from two aspects: electron transfer and atomic dissolution. It was found that the doping atoms are more likely to be dispersed rather than aggregated in solid solution. When Cr atoms are symmetrically distributed and Ni atoms are located in the center, it is the site arrangement with the highest work function and stability. Fe10Cr4Ni2 has been found to possess a higher electron binding capacity and thus higher electrode potentials. This is determined by the change of dipole caused by both electronegativity difference between atoms and polarization between the doped layer and the substrate layer. By calculating the vacancy formation energy, it is shown that Fe11Cr4Ni2 is the perfect chemistry on top of the Fe(110) surface due to its high ability of preventing atomic dissolution. Doping sites of Cr and Ni atoms on top of BCC Fe have been identified to be Fe12Cr3Ni1, Fe11Cr4Ni1, Fe11Cr3Ni2, Fe10Cr4Ni2, Fe10Cr3Ni3 and Fe11Cr4Ni2 is the perfect chemistry on top of the Fe(110) surface due to its high ability of preventing atomic dissolution.![]()
Collapse
Affiliation(s)
- Zhihao Yang
- School of Materials Science and Engineering, Beijing Institute of TechnologyBeijing 100081China+86 10 68915043
| | - Chi Zhang
- School of Materials Science and Engineering, Shenyang University of TechnologyShenyang 110870China
| | - Shuo Wang
- School of Materials Science and Engineering, Beijing Institute of TechnologyBeijing 100081China+86 10 68915043
| | - Chengpeng Xue
- School of Materials Science and Engineering, Beijing Institute of TechnologyBeijing 100081China+86 10 68915043
| | - Guangyuan Tian
- School of Materials Science and Engineering, Beijing Institute of TechnologyBeijing 100081China+86 10 68915043
| | - Hui Su
- School of Materials Science and Engineering, Beijing Institute of TechnologyBeijing 100081China+86 10 68915043
| | - Chengming Yan
- School of Materials Science and Engineering, Beijing Institute of TechnologyBeijing 100081China+86 10 68915043
| | - Zhifei Yan
- China North Industries Group, No. 52 Research InstituteBaotouInner Mongolia014030China
| | - Xiaoguang Liu
- School of Materials Science and Engineering, University of Science & Technology BeijingNo. 30 Xueyuan RoadBeijing100083China
| | - Junsheng Wang
- School of Materials Science and Engineering, Beijing Institute of TechnologyBeijing 100081China+86 10 68915043
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of TechnologyBeijing 100081China
| |
Collapse
|
27
|
Lin YJ, Huang CS, Tsai PC, Hsiao YL, Chen CY, Jou JH. Minor Copper-Doped Aluminum Alloy Enabling Long-Lifetime Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55898-55904. [PMID: 36485031 DOI: 10.1021/acsami.2c18275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aluminum has been extensively used as a conductor material in numerous electronic devices, including solar cells, light-emitting diodes (LEDs), organic LEDs (OLEDs), and thin-film transistors. However, its spiking surface and easy electromigration have limited its performance. To overcome this, a trace amount of nonprecious copper dopant has been proven effective in enhancing device reliability. Nevertheless, a comprehensive investigation regarding the effect of copper doping on the morphology at the aluminum conductor-organic interface is yet to be done. We had hence fabricated a series of green OLED devices to probe how copper doping affected the aluminum conductor, morphologically and electrically, and the corresponding device's efficiency and lifetime performance. We found 4 wt % copper doping to be highly effective in enabling a spike-less and smoother aluminum interface, which in turn enabled the fabrication of devices with much higher efficiency and lifetime. Specifically, the corresponding power efficacy at 1000 cd/m2 was increased from 32 to 42 lm/W and the lifetime increased from 75 to 263 h, an increment of 250%. Atomic force microscopy confirmed that the copper doping did help smooth out the conductor interface as deposited and reduce electromigration upon operation.
Collapse
Affiliation(s)
- Yun-Jie Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Chia-Sheng Huang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Pei-Chung Tsai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Yu-Lun Hsiao
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Cheng-Yu Chen
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
28
|
Jin C, Wang B, Zhou Y, Yang F, Han S, Guo P, Liu Z, Shen W. Gold Atomic Layers and Isolated Atoms on MoC for the Low-Temperature Water Gas Shift Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chuanchuan Jin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beibei Wang
- Center for Transformative Science, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yan Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fan Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shaobo Han
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Peiyao Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhi Liu
- Center for Transformative Science, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
29
|
Progress in the experimental and computational methods of work function evaluation of materials: A review. Heliyon 2022; 8:e11030. [PMID: 36339992 PMCID: PMC9626890 DOI: 10.1016/j.heliyon.2022.e11030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
The work function, which determines the behaviour of electrons in a material, remains a crucial factor in surface science to understand the corrosion rates and interfacial engineering in making photosensitive and electron-emitting devices. The present article reviews the various experimental methods and theoretical models employed for work function measurement along with their merits and demerits are discussed. Reports from the existing methods of work function measurements that Kelvin probe force microscopy (KPFM) is the most suitable measurement technique over other experimental methods. It has been observed from the literature that the computational methods that are capable of predicting the work functions of different metals have a higher computational cost. However, the stabilized Jellium model (SJM) has the potential to predict the work function of transition metals, simple metals, rare-earth metals and inner transition metals. The metallic plasma model (MPM) can predict polycrystalline metals, while the density functional theory (DFT) is a versatile tool for predicting the lowest and highest work function of the material with higher computational cost. The high-throughput density functional theory and machine learning (HTDFTML) tools are suitable for predicting the lowest and highest work functions of extreme material surfaces with cheaper computational cost. The combined Bayesian machine learning and first principle (CBMLFP) is suitable for predicting the lowest and highest work functions of the materials with a very low computational cost. Conclusively, HTDFTML and CBMLFP should be used to explore the work functions and surface energy in complex materials.
Collapse
|
30
|
Scalable spin Seebeck thermoelectric generation using Fe-oxide nanoparticle assembled film on flexible substrate. Sci Rep 2022; 12:16605. [PMID: 36198752 PMCID: PMC9534990 DOI: 10.1038/s41598-022-21200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022] Open
Abstract
We fabricated Fe3O4 nanoparticle (NP)-assembled films on flexible polyimide sheets with Pt or Ta cap layer using a spin coating method and DC sputtering. The films were elaborated for spin Seebeck thermoelectric generator applications, and their spin Seebeck voltages were observed. We showed that the thermoelectric power of [Pt film/Fe3O4 NP]n multilayered films increases with increasing number of stacking n. Additionally, we prepared spin Seebeck thermopile devices in which the Fe3O4 NP-assembled films capped by Pt and Ta are connected alternately in series. We demonstrated that spin Seebeck voltages of the thermopile devices are larger than those of single [Pt or Ta film/Fe3O4 NP]n piece. Our results indicate that the spin Seebeck thermoelectric power of Fe3O4 NPs can be enhanced using a simple fabrication process without lithography technique.
Collapse
|
31
|
Maarisetty D, Mary R, Hang DR, Mohapatra P, Baral SS. The role of material defects in the photocatalytic CO2 reduction: Interfacial properties, thermodynamics, kinetics and mechanism. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Dean J, Chantler C, Ganly B. Ab initio calculations of Auger electron kinetic energies: Breadth and depth. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Kim S, Yoon C, Oh G, Lee YW, Shin M, Kee EH, Park BH, Lee JH, Park S, Kang BS, Kim YH. Progressive and Stable Synaptic Plasticity with Femtojoule Energy Consumption by the Interface Engineering of a Metal/Ferroelectric/Semiconductor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201502. [PMID: 35611436 PMCID: PMC9353489 DOI: 10.1002/advs.202201502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Indexed: 06/01/2023]
Abstract
In the era of "big data," the cognitive system of the human brain is being mimicked through hardware implementation of highly accurate neuromorphic computing by progressive weight update in synaptic electronics. Low-energy synaptic operation requires both low reading current and short operation time to be applicable to large-scale neuromorphic computing systems. In this study, an energy-efficient synaptic device is implemented comprising a Ni/Pb(Zr0.52 Ti0.48 )O3 (PZT)/0.5 wt.% Nb-doped SrTiO3 (Nb:STO) heterojunction with a low reading current of 10 nA and short operation time of 20-100 ns. Ultralow femtojoule operation below 9 fJ at a synaptic event, which is comparable to the energy required for synaptic events in the human brain (10 fJ), is achieved by adjusting the Schottky barrier between the top electrode and ferroelectric film. Moreover, progressive domain switching in ferroelectric PZT successfully induces both low nonlinearity/asymmetry and good stability of the weight update. The synaptic device developed here can facilitate the development of large-scale neuromorphic arrays for artificial neural networks with low energy consumption and high accuracy.
Collapse
Affiliation(s)
- Sohwi Kim
- Division of Quantum Phases & DevicesDepartment of PhysicsKonkuk UniversitySeoul05029South Korea
| | - Chansoo Yoon
- Division of Quantum Phases & DevicesDepartment of PhysicsKonkuk UniversitySeoul05029South Korea
| | - Gwangtaek Oh
- Division of Quantum Phases & DevicesDepartment of PhysicsKonkuk UniversitySeoul05029South Korea
| | - Young Woong Lee
- Division of Quantum Phases & DevicesDepartment of PhysicsKonkuk UniversitySeoul05029South Korea
| | - Minjeong Shin
- Division of Quantum Phases & DevicesDepartment of PhysicsKonkuk UniversitySeoul05029South Korea
| | - Eun Hee Kee
- Division of Quantum Phases & DevicesDepartment of PhysicsKonkuk UniversitySeoul05029South Korea
| | - Bae Ho Park
- Division of Quantum Phases & DevicesDepartment of PhysicsKonkuk UniversitySeoul05029South Korea
| | - Ji Hye Lee
- Center for Correlated Electron Systems (CCES)Institute of Basic Science (IBS)Seoul08826South Korea
- Department of Physics and AstronomySeoul National UniversitySeoul08826South Korea
| | - Sanghyun Park
- Department of Applied PhysicsHanyang UniversityGyeonggi‐do15588South Korea
| | - Bo Soo Kang
- Department of Applied PhysicsHanyang UniversityGyeonggi‐do15588South Korea
| | - Young Heon Kim
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejoen34134South Korea
| |
Collapse
|
34
|
Hsiao M, Chen SH, Li JY, Hsiao PH, Chen CY. Unveiling the detection kinetics and quantitative analysis of colorimetric sensing for sodium salts using surface-modified Au-nanoparticle probes. NANOSCALE ADVANCES 2022; 4:3172-3181. [PMID: 36132823 PMCID: PMC9417546 DOI: 10.1039/d2na00211f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/24/2022] [Indexed: 06/16/2023]
Abstract
Rapid, reliable, and sensitive colorimetric detection has been regarded as a highly potential technique for visually monitoring the cation ions. Yet, insight into detection kinetics and quantitative analysis for colorimetric sensing of sodium ions has rarely been revealed. Herein, in-depth kinetic investigations of colorimetric detection using surface-modified Au-nanoparticle (AuNP) probes were performed for interpreting the correlation of salt concentration, reaction duration, and light absorbance. To envision these undisclosed issues, modification of AuNP surfaces with ascorbic acid was found to be highly essential for boosting the detection sensitivity due to adjusting the zeta potential of AuNP colloids towards a slightly positive value. Next, modeling the light absorbance of AuNPs under various aggregation circumstances was employed, which visually elucidated the color change so that it was visible to the naked eye, due to the intense field localization on the edges of aggregated AuNPs. In addition, the involved activation energy of AuNP aggregation was found to follow the first-order Arrhenius formula, with the extracted value of 22.5 kJ mol-1. Finally, quantitative visualization of colorimetric Na+ ion sensing was realized, and the experimental relation was obtained for explicitly determining the unknown concentration of Na+ ions in a visual manner.
Collapse
Affiliation(s)
- Min Hsiao
- Department of Materials Science and Engineering, National Cheng-Kung University Tainan 701 Taiwan
| | - Shih-Hsiu Chen
- Department of Materials Science and Engineering, National Cheng-Kung University Tainan 701 Taiwan
| | - Jheng-Yi Li
- Department of Materials Science and Engineering, National Cheng-Kung University Tainan 701 Taiwan
| | - Po-Hsuan Hsiao
- Department of Materials Science and Engineering, National Cheng-Kung University Tainan 701 Taiwan
| | - Chia-Yun Chen
- Department of Materials Science and Engineering, National Cheng-Kung University Tainan 701 Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Centre, National Cheng Kung University No. 1 University Road Tainan 701 Taiwan
| |
Collapse
|
35
|
Montserrat-Sisó G, Wickman B. PdNi thin films for hydrogen oxidation reaction and oxygen reduction reaction in alkaline media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Engineering gold-platinum core-shell nanoparticles by self-limitation in solution. Commun Chem 2022; 5:71. [PMID: 36697905 PMCID: PMC9814372 DOI: 10.1038/s42004-022-00680-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/04/2022] [Indexed: 01/28/2023] Open
Abstract
Core-shell particles with thin noble metal shells represent an attractive material class with potential for various applications ranging from catalysis to biomedical and pharmaceutical applications to optical crystals. The synthesis of well-defined core-shell architectures remains, however, highly challenging. Here, we demonstrate that atomically-thin and homogeneous platinum shells can be grown via a colloidal synthesis method on a variety of gold nanostructures ranging from spherical nanoparticles to nanorods and nanocubes. The synthesis is based on the exchange of low binding citrate ligands on gold, the reduction of platinum and the subsequent kinetically hindered growth by carbon monoxide as strong binding ligand. The prerequisites for homogeneous growth are low core-binding ligands with moderate fast ligand exchange in solution, a mild reducing agent to mitigate homonucleation and a strong affinity of a second ligand system that can bind to the shell's surface. The simplicity of the described synthetic route can potentially be adapted to various other material libraries to obtain atomically smooth core-shell systems.
Collapse
|
37
|
Ou L. Theoretical insights into effect of surface composition of Pt-Ru bimetallic catalysts on CH 3OH oxidation: mechanistic considerations. J Mol Model 2022; 28:149. [PMID: 35552840 DOI: 10.1007/s00894-022-05150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
A deeper mechanistic understanding on CH3OH oxidation on Pt-Ru alloys with different Ru surface compositions is provided by DFT-based theoretical studies in this paper. The present results show that alloying and surface compositions of Ru can change CH3OH oxidation pathway and activity. The optimal surface composition of Ru is speculated to be ca. 50% since the higher Ru surface composition can lead to formation of carbonaceous species that can poison surface. Our present calculated Ru surface composition of ca. 50% exhibits excellent consistency with experimental studies. The origin of enhanced catalytic activity of Pt-Ru alloys is determined. The significantly decreased surface work functions after alloying suggest more electrons are transferred into adsorbates. The calculated lower electrode potentials after alloying imply that lower overpotentials are required for CH3OH oxidation. The excellent consistency with experimental study on decreased onset potentials after alloying further confirms accuracy of our present calculated results. It is hoped that a systematic understanding of the atomic- and molecular-level processes on CH3OH oxidation mechanisms on Pt-Ru alloys will result in the ultimate goal of the explanation of origin of enhanced electrocatalytic activity and design of improved Pt-based alloy electrocatalysts for DMFCs.
Collapse
Affiliation(s)
- Lihui Ou
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecologic Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China.
| |
Collapse
|
38
|
Sato T, Milne ZB, Nomura M, Sasaki N, Carpick RW, Fujita H. Ultrahigh strength and shear-assisted separation of sliding nanocontacts studied in situ. Nat Commun 2022; 13:2551. [PMID: 35538085 PMCID: PMC9091249 DOI: 10.1038/s41467-022-30290-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/12/2022] [Indexed: 11/27/2022] Open
Abstract
The behavior of materials in sliding contact is challenging to determine since the interface is normally hidden from view. Using a custom microfabricated device, we conduct in situ, ultrahigh vacuum transmission electron microscope measurements of crystalline silver nanocontacts under combined tension and shear, permitting simultaneous observation of contact forces and contact width. While silver classically exhibits substantial sliding-induced plastic junction growth, the nanocontacts exhibit only limited plastic deformation despite high applied stresses. This difference arises from the nanocontacts’ high strength, as we find the von Mises stresses at yield points approach the ideal strength of silver. We attribute this to the nanocontacts’ nearly defect-free nature and small size. The contacts also separate unstably, with pull-off forces well below classical predictions for rupture under pure tension. This strongly indicates that shearing reduces nanoscale pull-off forces, predicted theoretically at the continuum level, but not directly observed before. To understand and predict friction, it is crucial to observe sliding at the nanoscale to uncover the mechanisms at play. Here, the authors show that nano-contacts exhibit strength near the ideal limit, and find that pull-off forces predicted by continuum models are reduced by shearing.
Collapse
Affiliation(s)
- Takaaki Sato
- University of Pennsylvania, Department of Mechanical Engineering and Applied Mechanics, Philadelphia, PA, USA.
| | - Zachary B Milne
- Sandia National Laboratories, Nanostructure Physics, Albuquerque, NM, USA
| | - Masahiro Nomura
- University of Tokyo, Institute of Industrial Science, Tokyo, JP, Japan
| | - Naruo Sasaki
- The University of Electro-Communications, Department of Engineering Science, Tokyo, JP, Japan
| | - Robert W Carpick
- University of Pennsylvania, Department of Mechanical Engineering and Applied Mechanics, Philadelphia, PA, USA
| | - Hiroyuki Fujita
- University of Tokyo, Institute of Industrial Science, Tokyo, JP, Japan.,Tokyo city university, Graduate school of integrative science and engineering electrical and electronic engineering, Tokyo, JP, Japan
| |
Collapse
|
39
|
Hydrogen photo-production from glycerol on platinum, gold and silver-modified TiO2-USY62 catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
40
|
Kowalec I, Kabalan L, Catlow CRA, Logsdail AJ. A computational study of direct CO 2 hydrogenation to methanol on Pd surfaces. Phys Chem Chem Phys 2022; 24:9360-9373. [PMID: 35383806 DOI: 10.1039/d2cp01019d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanism of direct CO2 hydrogenation to methanol is investigated in detail on Pd (111), (100) and (110) surfaces using density functional theory (DFT), supporting investigations into emergent Pd-based catalysts. Hydrogen adsorption and surface mobility are firstly considered, with high-coordination surface sites having the largest adsorption energy and being connected by diffusion channels with low energy barriers. Surface chemisorption of CO2, forming a partially charged CO2δ-, is weakly endothermic on a Pd (111) whilst slightly exothermic on Pd (100) and (110), with adsorption enthalpies of 0.09, -0.09 and -0.19 eV, respectively; the low stability of CO2δ- on the Pd (111) surface is attributed to negative charge accumulating on the surface Pd atoms that interact directly with the CO2δ- adsorbate. Detailed consideration for sequential hydrogenation of the CO2 shows that HCOOH hydrogenation to H2COOH would be the rate determining step in the conversion to methanol, for all surfaces, with activation barriers of 1.41, 1.51, and 0.84 eV on Pd (111), (100) and (110) facets, respectively. The Pd (110) surface exhibits overall lower activation energies than the most studied Pd (111) and (100) surfaces, and therefore should be considered in more detail in future Pd catalytic studies.
Collapse
Affiliation(s)
- Igor Kowalec
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| | - Lara Kabalan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| | - C Richard A Catlow
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK. .,UK Catalysis Hub, Research Complex at Harwell, RAL, Oxford, OX11 0FA, UK.,Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
41
|
Luo X, Jiang R, Ma Z, Yang T, Liu H, Deng H, Wu W, Dong C, Du XW. Regulating the work function of silver catalysts via surface engineering for enhanced CO 2 electroreduction. Phys Chem Chem Phys 2022; 24:9188-9195. [PMID: 35383804 DOI: 10.1039/d2cp00702a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The work function can serve as a characteristic quantity to evaluate the catalytic activity due to its relationship with the surface structure of a material. However, what factors determine the influence of the work function on the electrochemical performance are still unclear. Herein, we elucidate the effect of the work function of Ag on the electrochemical reduction of CO2 to CO by controlling the ratio of exposed crystalline planes. To this end, the exposed surface of Ag powder was regulated by high-energy ball milling and its influence on CO2 reduction was investigated. The surface structure with more Ag(110) surface achieves higher activity and selectivity for CO production, resulting from the lower work function of Ag(110), which dramatically enhances the electron tunnelling probability during CO2 electroreduction. We found that a higher ratio of Ag(110) to Ag(100) leads to a lower work function and thus better electrochemical activity and selectivity. This study demonstrates a promising strategy to enhance the electrochemical performance of metal catalysts through tuning their work functions via regulating exposed crystalline planes.
Collapse
Affiliation(s)
- Xifeng Luo
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 30072, P. R. China.
| | - Ran Jiang
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 30072, P. R. China.
| | - Ziang Ma
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 30072, P. R. China.
| | - Tiantian Yang
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 30072, P. R. China.
| | - Hui Liu
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 30072, P. R. China.
| | - Hui Deng
- The 718th research institute of China State Shipbuilding Corporation Limited, Handan City, Hebei Province 56027, P. R. China.
| | - Wenhong Wu
- The 718th research institute of China State Shipbuilding Corporation Limited, Handan City, Hebei Province 56027, P. R. China.
| | - Cunku Dong
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 30072, P. R. China.
| | - Xi-Wen Du
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 30072, P. R. China.
| |
Collapse
|
42
|
Jun M, Kwon T, Son Y, Kim B, Lee K. Chemical Fields: Directing Atom Migration in the Multiphasic Nanocrystal. Acc Chem Res 2022; 55:1015-1024. [PMID: 35263076 DOI: 10.1021/acs.accounts.1c00745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ConspectusAtoms in a bulk solid phase are usually trapped to fixed positions and can change their position only under certain conditions (e.g., at a melting point) due to the high energy barrier of migration between positions within the crystal lattice. Contrary to the atoms in the bulk solid phase, however, atoms in nanoparticles can migrate and change their local positions rather easily, enabled by the high surface energies. The energy states of surface atoms of nanoparticles can be altered by surface-binding moieties, which in turn influence the intrananoparticle migration of atoms at the subsurface of nanoparticles. In 2008, this possibility of intrananoparticle migration was demonstrated with RhPd alloy nanoparticles under the different gas environments of reductive CO or oxidative NO. We envisaged that the explosive expansion of well-defined, multiphasic nanoparticle libraries might be realized by specifically dictating the atom migration direction, by modulating the energy state of specific atoms in the multiphasic nanocrystals. The nanoparticle surface energy is a function of a myriad of factors, namely, surface binding moiety, structural features affecting coordination number of atoms such as nanoparticle geometry, steps, and kinks, and the existence of heterointerface with lattice mismatch. Therefore, all these factors affecting atom energy state in the nanoparticle, categorically termed as "chemical field" (CF), can serve as the driving force for purposeful directional movement of atoms within nanoparticles and subsequent reaction. Geometrically well-defined multiphasic nanocrystals present great promises toward various applications with special emphasis on catalysis and thus are worthy synthetic targets. In recent years, we have demonstrated that manipulation of CFs is an effective synthetic strategy for a variety of geometrically well-defined multiphasic nanocrystals. Herein, we classified multiphasic nanocrystals into metallic alloy systems and ionic systems (metal compounds) because the modes of CF are rather different between these two systems. The migration-directing CFs for neutral metallic atoms are mostly based on the local distribution of elements, degree of alloying, or highly energetic structural features. On the other hand, for the ionic system, structural parameters originating from the discrepancy between cations and anions should be more considered; ionic radii, phase stability, lattice strain, anionic frameworks, cation vacancies, etc. can react as CFs affecting atom migration behavior in the multiphasic ionic nanocrystals. We expect that the limits and potentials of CF-based synthesis of multiphasic nanocrystals described in this work will open a wide avenue to diverse material compositions and geometries, which have been difficult or impossible to approach via conventional nanoparticle synthesis schemes.
Collapse
Affiliation(s)
- Minki Jun
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea
| | - Taehyun Kwon
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea
| | - Yunchang Son
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea
| | - Byeongyoon Kim
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
43
|
Lee JD, Miller JB, Shneidman AV, Sun L, Weaver JF, Aizenberg J, Biener J, Boscoboinik JA, Foucher AC, Frenkel AI, van der Hoeven JES, Kozinsky B, Marcella N, Montemore MM, Ngan HT, O'Connor CR, Owen CJ, Stacchiola DJ, Stach EA, Madix RJ, Sautet P, Friend CM. Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chem Rev 2022; 122:8758-8808. [PMID: 35254051 DOI: 10.1021/acs.chemrev.1c00967] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.
Collapse
Affiliation(s)
- Jennifer D Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jeffrey B Miller
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Anna V Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lixin Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jason F Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Juergen Biener
- Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - J Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.,Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jessi E S van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Matthew M Montemore
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Christopher R O'Connor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cameron J Owen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert J Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
44
|
Xu D, Lin X, Li QY, Zhang SN, Xia SY, Zhai GY, Chen JS, Li XH. Boosting Mass Exchange between Pd/NC and MoC/NC Dual Junctions via Electron Exchange for Cascade CO 2 Fixation. J Am Chem Soc 2022; 144:5418-5423. [PMID: 35230846 DOI: 10.1021/jacs.1c12986] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Merging existing catalysts together as a cascade catalyst may achieve "one-pot" synthesis of complex but functional molecules by simplifying multistep reactions, which is the blueprint of sustainable chemistry with low pollutant emission and consumption of energy and materials only when the smooth mass exchange between different catalysts is ensured. Effective strategies to facilitate the mass exchange between different active centers, which may dominate the final activity of various cascade catalysts, have not been reached until now, even though charged interfaces due to work function driven electron exchange have been widely observed. Here, we successfully constructed mass (reactants and intermediates) exchange paths between Pd/N-doped carbon and MoC/N-doped carbon induced by interfacial electron exchange to trigger the mild and cascade methylation of amines using CO2 and H2. Theoretical and experimental results have demonstrated that the mass exchange between electron-rich MoC and electron-deficient Pd could prominently improve the production of N,N-dimethyl tertiary amine, which results in a remarkably high turnover frequency value under mild conditions, outperforming the state-of-the-art catalysts in the literature by a factor of 5.9.
Collapse
Affiliation(s)
- Dong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiu Lin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qi-Yuan Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shi-Nan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Si-Yuan Xia
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Guang-Yao Zhai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
45
|
Sarker S, Macharia DK, Zhang Y, Zhu Y, Li X, Wen M, Meng R, Yu N, Chen Z, Zhu M. Synthesis of MnO 2-Ag Nanojunctions with Plasmon-Enhanced Photocatalytic and Photothermal Effects for Constructing Rewritable Mono-/Multi-Color Fabrics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5545-5557. [PMID: 35041399 DOI: 10.1021/acsami.1c19731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Semiconductor-mediated photoreversible color switching systems (PCSSs) have great potential to replace traditional photochromic materials, and the key is to obtain semiconductors with unique photocatalytic and photothermal features. Herein, we have developed MnO2-Ag nanojunctions with plasmon-enhanced photocatalytic and photothermal effects for PCSSs. MnO2-Ag nanojunctions are solvothermally synthesized with Mn(CH3COO)3, KMnO4, and AgNO3 in diethylene glycol as precursors, and they are composed of MnO2 nanoparticles (∼30 nm) that are decorated by Ag nanodots (∼6 nm). The presence of Ag confers an enhanced visible photoabsorption with a narrow band gap for MnO2 (Eg = 1.82 eV) and a weak/broad photoabsorption tail (∼875 nm) compared to that of pure MnO2 (2.45 eV, ∼625 nm). By coupling MnO2-Ag nanojunctions with various redox dyes, some PCSS inks can be obtained, and especially, the inks containing hydroxyethyl cellulose could be used to prepare rewritable fabrics. When inks and fabrics are irradiated by 475 nm light, rapid discoloration can occur, resulting from the photocatalytic reduction of the dye. Contrarily, the irradiation of 808 nm light promotes the rapid recoloration since Ag nanodots with plasmonic effects in the nanojunctions can absorb light to generate heat, which facilitates the oxidization of leuco dyes in air. Consequently, remote printing of figures was attained on the rewritable fabrics via 475 nm light illumination, and then, the erasure was performed by 808 nm light illumination in an O2 atmosphere, with high reversibility and cycling stability. Therefore, MnO2-Ag nanojunctions have tremendous promise for rewritable media, and the introduction of metal-semiconductor junctions as a nanophotocatalyst offers new insights for PCSSs.
Collapse
Affiliation(s)
- Shamima Sarker
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Daniel K Macharia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yan Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China
| | - Yu Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiaolong Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Ruru Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
46
|
Experimental, Theoretical Modeling and Optimization of Inhibitive Action of Ocimum basilicum Essential Oil as Green Corrosion Inhibitor for C38 Steel in 0.5 M H2SO4 Medium. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-021-00289-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Panaritis C, Yan S, Couillard M, Baranova EA. Electrochemical study of the metal-support interaction between FeOx nanoparticles and cobalt oxide support for the reverse water gas shift reaction. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Tuning the properties of the cobalt-zeolite nanocomposite catalyst by potassium: switching between dehydration and dehydrogenation of ethanol. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Shetty S, Gayen M, Agarwal S, Chatterjee D, Singh A, Ravishankar N. Tuning Catalytic Activity in Ultrathin Bimetallic Nanowires via Surface Segregation: Some Insights. J Phys Chem Lett 2022; 13:770-776. [PMID: 35041416 DOI: 10.1021/acs.jpclett.1c03852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The efficiency of heterogeneous catalysts critically depends on the nature of the surface. We present results on controlling the composition in ultrathin bimetallic AuPd. AuPd wires were grown using Au nanowire templates; the surface composition could be tuned by increasing the amount of Pd. Further, segregation of Pd to the surface could be induced in alloyed nanowires by annealing under a controlled CO atmosphere. Electrocatalytic activity of these bimetallic systems is assessed for the methanol oxidation reaction (MOR). While the MOR potential shows a monotonic increase with Pd content, the specific activity displays a typical volcano-type behavior. The CO-annealed nanowires show a lowering of potential owing to a higher Pd content on the surface while still maintaining the specific activity. These findings provide clear strategies to independently control the reaction potential and the activities of nanocatalysts. The experimental findings are well supported by the theoretical investigations using density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Shwetha Shetty
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Meghabarna Gayen
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Sakshi Agarwal
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | | | - Abhishek Singh
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - N Ravishankar
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
50
|
Hua M, Tian X, Li S, Zhang X, Shao A, Song L, Lin X. A casting combined quenching strategy to prepare PdAg single atom alloys designed using the cluster expansion combined Monte Carlo method. Phys Chem Chem Phys 2022; 24:2251-2264. [PMID: 35014663 DOI: 10.1039/d1cp05046j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the surface structure of a PdAg alloy is investigated by cluster expansion (CE) combined Monte Carlo (MC) simulations. All systems with different component proportions show an obvious component segregation corresponding to the depth from the surface. A significant amount of Ag is observed on the first layer, and Pd is concentrated significantly on the second layer. The Pd distribution on the PdAg surfaces is closely related to the temperature and composition ascribed to the concentration and configurational entropy effects, which are explicitly treated in MC simulations. The vacancies mainly distribute separately. The simulation results show good agreement with the experimental evidence. Moreover, we demonstrated a general and highly effective casting combined quenching strategy for controlling the ensemble size and chemical composition of alloy surfaces which could successfully be applied to the large-scale production of SAA.
Collapse
Affiliation(s)
- Minghao Hua
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, China.
| | - Xuelei Tian
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, China.
| | - Shuo Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, China.
| | - Xiaofu Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, China. .,School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Anchen Shao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, China.
| | - Lin Song
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, China. .,Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, Shandong Province, 2640000, China
| | - Xiaohang Lin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, China.
| |
Collapse
|