1
|
Su H, Li X, Huang L, Cao J, Zhang M, Vedarethinam V, Di W, Hu Z, Qian K. Plasmonic Alloys Reveal a Distinct Metabolic Phenotype of Early Gastric Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007978. [PMID: 33742513 DOI: 10.1002/adma.202007978] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Indexed: 05/20/2023]
Abstract
Gastric cancer (GC) is a multifactorial process, accompanied by alterations in metabolic pathways. Non-invasive metabolic profiling facilitates GC diagnosis at early stage leading to an improved prognostic outcome. Herein, mesoporous PdPtAu alloys are designed to characterize the metabolic profiles in human blood. The elemental composition is optimized with heterogeneous surface plasmonic resonance, offering preferred charge transfer for photoinduced desorption/ionization and enhanced photothermal conversion for thermally driven desorption. The surface structure of PdPtAu is further tuned with controlled mesopores, accommodating metabolites only, rather than large interfering compounds. Consequently, the optimized PdPtAu alloy yields direct metabolic fingerprints by laser desorption/ionization mass spectrometry in seconds, consuming 500 nL of native plasma. A distinct metabolic phenotype is revealed for early GC by sparse learning, resulting in precise GC diagnosis with an area under the curve of 0.942. It is envisioned that the plasmonic alloy will open up a new era of minimally invasive blood analysis to improve the surveillance of cancer patients in the clinical setting.
Collapse
Affiliation(s)
- Haiyang Su
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xinxing Li
- Department of Gastrointestinal Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai, 200065, P. R. China
- Department of General Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Jing Cao
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Mengji Zhang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Vadanasundari Vedarethinam
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Wen Di
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zhiqian Hu
- Department of Gastrointestinal Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai, 200065, P. R. China
- Department of General Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
2
|
Valev VK, Silhanek AV, Jeyaram Y, Denkova D, De Clercq B, Petkov V, Zheng X, Volskiy V, Gillijns W, Vandenbosch GAE, Aktsipetrov OA, Ameloot M, Moshchalkov VV, Verbiest T. Hotspot decorations map plasmonic patterns with the resolution of scanning probe techniques. PHYSICAL REVIEW LETTERS 2011; 106:226803. [PMID: 21702624 DOI: 10.1103/physrevlett.106.226803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/23/2011] [Indexed: 05/31/2023]
Abstract
In high definition mapping of the plasmonic patterns on the surfaces of nanostructures, the diffraction limit of light remains an important obstacle. Here we demonstrate that this diffraction limit can be completely circumvented. We show that upon illuminating nanostructures made of nickel and palladium, the resulting surface-plasmon pattern is imprinted on the structures themselves; the hotspots (regions of local field enhancement) are decorated with overgrowths, allowing for their subsequent imaging with scanning-probe techniques. The resulting resolution of plasmon pattern imaging is correspondingly improved.
Collapse
Affiliation(s)
- V K Valev
- Molecular Electronics and Photonics, INPAC, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Castellana ET, Gamez RC, Gómez ME, Russell DH. Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6066-6070. [PMID: 20302283 DOI: 10.1021/la904467b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A "strategy" for analyte capture/ionization based on chemical derivatization of gold nanorods and infrared laser desorption ionization (IR-LDI) is described. This is the first example of laser desorption/ionization of biomolecules using gold nanorods irradiated with an IR laser. LDI is performed at wavelengths (1064 nm) that overlap with the longitudinal surface plasmon resonance (LSPR) mode of gold nanorods. The absorbed energy from the laser facilitates desorption and ionization of the analyte. The wavelength of the LSPR band can be tuned by controlling the aspect ratio (length-to-diameter) of the nanorod. For example, the SPR band for Au nanorods having an aspect ratio of 5:1 is centered at approximately 840 nm, and this band overlaps with the 1064 nm output of a Nd:YAG laser. We show that a variety of biomolecules can be efficiently desorbed and ionized by 1064 nm irradiation of nanorods. We also show that analyte capture can be controlled by surface chemistry of the nanorods. The results of these studies are important for designing nanomaterial-based capture assays for mass spectrometry and interfacing nanomaterials with imaging/spatial profiling mass spectrometry experiments.
Collapse
Affiliation(s)
- Edward T Castellana
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
4
|
Chen LC, Yonehama J, Ueda T, Hori H, Hiraoka K. Visible-laser desorption/ionization on gold nanostructures. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:346-53. [PMID: 17199254 DOI: 10.1002/jms.1165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In this report, we describe the visible-laser desorption/ionization of biomolecules deposited on gold-coated porous silicon and gold nanorod arrays. The porous silicon made by electrochemical etching was coated with gold using argon ion sputtering. The gold nanorod arrays were fabricated by electrodepositing gold onto a porous alumina template, and the subsequent partial removal of the alumina template. A frequency-doubled/tripled Nd : YAG laser was used to irradiate the gold nanostructured substrate, and the desorbed molecular ions were mass-analyzed by a time-of-flight mass spectrometer. The desorption/ionization of biomolecules for both substrates was favored by the use of the 532-nm visible-laser, which is in the range of the localized surface plasmon resonance of the gold nanostructure. The present technique offers a potential analytical method for low-molecular-weight analytes that are rather difficult to handle in the conventional matrix-assisted laser desorption/ionization (MALDI) mass spectrometry.
Collapse
Affiliation(s)
- L C Chen
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Japan
| | | | | | | | | |
Collapse
|
5
|
Reid SA, Ho W, Lamelas FJ. Pulsed Laser Ablation of Sn and SnO2 Targets: Neutral Composition, Energetics, and Wavelength Dependence. J Phys Chem B 2000. [DOI: 10.1021/jp000369a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Scott A. Reid
- Department of Chemistry and Department of Physics, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881
| | - Wei Ho
- Department of Chemistry and Department of Physics, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881
| | - F. J. Lamelas
- Department of Chemistry and Department of Physics, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881
| |
Collapse
|
10
|
Gerlach R, Manson JR, Rubahn HG. Near-field time-of-flight spectroscopy of sodium atoms desorbing from surface-bound clusters. OPTICS LETTERS 1996; 21:1183-1185. [PMID: 19876293 DOI: 10.1364/ol.21.001183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Delayed photodesorption of Na atoms from large, surface-bound Na clusters is investigated with a novel technique that includes pulsed plasmon excitation and continuous Doppler-free two-photon evanescent wave detection of desorbing atoms. The spatial confinement of the laser beams within the evanescent wave, the Doppler-free nature of the detection mode, and an accurate evaluation of the kinetic energy of the desorbing atoms in terms of a multiphonon time-of-flight distribution allows temporal information on the decay mechanisms within the cluster to be obtained.
Collapse
|