1
|
Sun YB, Gou JN, Cao CY, Wang C, Zeng RH. Rayleigh-Taylor instability in magnetohydrodynamics with finite resistivity in a horizontal magnetic field. Phys Rev E 2023; 108:065208. [PMID: 38243492 DOI: 10.1103/physreve.108.065208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/16/2023] [Indexed: 01/21/2024]
Abstract
Recent studies have revealed the significant influence of finite resistivity on high-energy-density plasmas, contrary to the previous findings of Jukes [J. Fluid Mech. 16, 177 (1963)0022-112010.1017/S0022112063000677]. This paper reexamines Jukes' theory in the context of magneto-Rayleigh-Taylor instability in magnetohydrodynamics with finite resistivity represented by η. The inadequacy of Jukes' approach due to an erroneous boundary condition is demonstrated, and it is shown that although the theory provides some physical insights, it fails to capture crucial features. The dispersion relation proposed in this study highlights that larger growth rates tend to diffuse the magnetic field rapidly, negating its suppressive effect. Moreover, the Atwood number has a significant influence on the growth-rate curves' shape, which differs from those of viscous or elastic flows and ideal magnetohydrodynamics. Additionally, long wavelengths grow proportionally to η^{1/3}, while α indicating growth rates behaves classically when the magnetic field is entirely diffused.
Collapse
Affiliation(s)
- Y B Sun
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - J N Gou
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - C Y Cao
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - C Wang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - R H Zeng
- Fujian Key Laboratory of Wind Disasters and Wind Engineering, Xiamen University of Technology, Xiamen 361024, China
| |
Collapse
|
2
|
Walsh CA, Clark DS. Nonlinear ablative Rayleigh-Taylor instability: Increased growth due to self-generated magnetic fields. Phys Rev E 2023; 107:L013201. [PMID: 36797872 DOI: 10.1103/physreve.107.l013201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The growth rate of the nonlinear ablative Rayleigh-Taylor (RT) instability is enhanced by magnetic fields self-generated by the Biermann battery mechanism; a scaling for this effect with perturbation height and wavelength is proposed and validated with extended-magnetohydrodynamic simulations. The magnetic flux generation rate around a single RT spike is found to scale with the spike height. The Hall parameter, which quantifies electron magnetization, is found to be strongly enhanced for short-wavelength spikes due to Nernst compression of the magnetic field at the spike tip. The impact of the magnetic field on spike growth is through both the suppressed thermal conduction into the unstable spike and the Righi-Leduc heat flow deflecting heat from the spike tip to the base. Righi-Leduc is found to be the dominant effect for small Hall parameters, while suppressed thermal conduction dominates for large Hall parameters. These results demonstrate the importance of considering magnetic fields in all perturbed inertial confinement fusion hot spots.
Collapse
Affiliation(s)
- C A Walsh
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D S Clark
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
3
|
Moody JD, Pollock BB, Sio H, Strozzi DJ, Ho DDM, Walsh CA, Kemp GE, Lahmann B, Kucheyev SO, Kozioziemski B, Carroll EG, Kroll J, Yanagisawa DK, Angus J, Bachmann B, Bhandarkar SD, Bude JD, Divol L, Ferguson B, Fry J, Hagler L, Hartouni E, Herrmann MC, Hsing W, Holunga DM, Izumi N, Javedani J, Johnson A, Khan S, Kalantar D, Kohut T, Logan BG, Masters N, Nikroo A, Orsi N, Piston K, Provencher C, Rowe A, Sater J, Skulina K, Stygar WA, Tang V, Winters SE, Zimmerman G, Adrian P, Chittenden JP, Appelbe B, Boxall A, Crilly A, O'Neill S, Davies J, Peebles J, Fujioka S. Increased Ion Temperature and Neutron Yield Observed in Magnetized Indirectly Driven D_{2}-Filled Capsule Implosions on the National Ignition Facility. PHYSICAL REVIEW LETTERS 2022; 129:195002. [PMID: 36399755 DOI: 10.1103/physrevlett.129.195002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The application of an external 26 Tesla axial magnetic field to a D_{2} gas-filled capsule indirectly driven on the National Ignition Facility is observed to increase the ion temperature by 40% and the neutron yield by a factor of 3.2 in a hot spot with areal density and temperature approaching what is required for fusion ignition [1]. The improvements are determined from energy spectral measurements of the 2.45 MeV neutrons from the D(d,n)^{3}He reaction, and the compressed central core B field is estimated to be ∼4.9 kT using the 14.1 MeV secondary neutrons from the D(T,n)^{4}He reactions. The experiments use a 30 kV pulsed-power system to deliver a ∼3 μs current pulse to a solenoidal coil wrapped around a novel high-electrical-resistivity AuTa_{4} hohlraum. Radiation magnetohydrodynamic simulations are consistent with the experiment.
Collapse
Affiliation(s)
- J D Moody
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - B B Pollock
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - H Sio
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D J Strozzi
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D D-M Ho
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C A Walsh
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - G E Kemp
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - B Lahmann
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S O Kucheyev
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - B Kozioziemski
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - E G Carroll
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J Kroll
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D K Yanagisawa
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J Angus
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - B Bachmann
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S D Bhandarkar
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J D Bude
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - L Divol
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - B Ferguson
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J Fry
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - L Hagler
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - E Hartouni
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M C Herrmann
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - W Hsing
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D M Holunga
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N Izumi
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J Javedani
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A Johnson
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S Khan
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D Kalantar
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - T Kohut
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - B G Logan
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N Masters
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A Nikroo
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N Orsi
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - K Piston
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C Provencher
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A Rowe
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J Sater
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - K Skulina
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - W A Stygar
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - V Tang
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S E Winters
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - G Zimmerman
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - P Adrian
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - J P Chittenden
- Centre for Inertial Fusion Studies, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - B Appelbe
- Centre for Inertial Fusion Studies, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - A Boxall
- Centre for Inertial Fusion Studies, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - A Crilly
- Centre for Inertial Fusion Studies, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - S O'Neill
- Centre for Inertial Fusion Studies, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - J Davies
- University of Rochester, New York 14623, USA
| | - J Peebles
- Laboratory for Laser Energetics, New York 14623, USA
| | - S Fujioka
- Institute for Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Zhang TH, Wang WM, Li YT, Zhang J. Magnetization of high-density plasma with a jet velocity of hundreds of km/s. Phys Rev E 2022; 106:055211. [PMID: 36559445 DOI: 10.1103/physreve.106.055211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
High magnetic fields at the kilotesla scale have been experimentally generated and finding methods to fully embed such fields into high-density plasma is interesting for magnetically assisted a fast ignition scheme of inertial confinement fusion, laboratory astrophysics, and magnetically guided fast electron beam for broad applications. We investigate diffusion and embedment of an external magnetic field inwards a high-density plasma by analysis and simulation. By introducing the magnetic Péclet number, dimensional analysis indicates that the magnetizing process is sensitive to the jet velocity, temperature, and size of the plasma and gives a phenomenological scaling law of the magnetic field embedment time with an arbitrary jet velocity. The analytical results are verified by magnetic field simulation and applied in 100-g/cm^{3}, 100-μm-radius plasmas with a jet velocity of 0-400 km/s and a temperature of 50-500 eV, typically adopted in experiments. Attributed to an effective electric field from frame transformation, the magnetic field embedment time can be significantly reduced by one order of magnitude when a jetting plasma is adopted with a velocity of hundreds of kilometers per second, e.g., from 5.5 ns in a static plasma to a 0.5 ns timescale in a jetting plasma of 200 km/s. The promoted embedment process favors for various applications mentioned above.
Collapse
Affiliation(s)
- Tie-Huai Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Min Wang
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
- IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Tong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Jie Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
- IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory for Laser Plasmas (MoE) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Pérez-Callejo G, Vlachos C, Walsh CA, Florido R, Bailly-Grandvaux M, Vaisseau X, Suzuki-Vidal F, McGuffey C, Beg FN, Bradford P, Ospina-Bohórquez V, Batani D, Raffestin D, Colaïtis A, Tikhonchuk V, Casner A, Koenig M, Albertazzi B, Fedosejevs R, Woolsey N, Ehret M, Debayle A, Loiseau P, Calisti A, Ferri S, Honrubia J, Kingham R, Mancini RC, Gigosos MA, Santos JJ. Cylindrical implosion platform for the study of highly magnetized plasmas at Laser MegaJoule. Phys Rev E 2022; 106:035206. [PMID: 36266806 DOI: 10.1103/physreve.106.035206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
Investigating the potential benefits of the use of magnetic fields in inertial confinement fusion experiments has given rise to experimental platforms like the Magnetized Liner Inertial Fusion approach at the Z-machine (Sandia National Laboratories) or its laser-driven equivalent at OMEGA (Laboratory for Laser Energetics). Implementing these platforms at MegaJoule-scale laser facilities, such as the Laser MegaJoule (LMJ) or the National Ignition Facility (NIF), is crucial to reaching self-sustained nuclear fusion and enlarges the level of magnetization that can be achieved through a higher compression. In this paper, we present a complete design of an experimental platform for magnetized implosions using cylindrical targets at LMJ. A seed magnetic field is generated along the axis of the cylinder using laser-driven coil targets, minimizing debris and increasing diagnostic access compared with pulsed power field generators. We present a comprehensive simulation study of the initial B field generated with these coil targets, as well as two-dimensional extended magnetohydrodynamics simulations showing that a 5 T initial B field is compressed up to 25 kT during the implosion. Under these circumstances, the electrons become magnetized, which severely modifies the plasma conditions at stagnation. In particular, in the hot spot the electron temperature is increased (from 1 keV to 5 keV) while the density is reduced (from 40g/cm^{3} to 7g/cm^{3}). We discuss how these changes can be diagnosed using x-ray imaging and spectroscopy, and particle diagnostics. We propose the simultaneous use of two dopants in the fuel (Ar and Kr) to act as spectroscopic tracers. We show that this introduces an effective spatial resolution in the plasma which permits an unambiguous observation of the B-field effects. Additionally, we present a plan for future experiments of this kind at LMJ.
Collapse
Affiliation(s)
- G Pérez-Callejo
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain
| | - C Vlachos
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France
- Institute of Plasma Physics & Lasers, Hellenic Mediterranean University Research Centre, 74100 Rethymno, Greece
| | - C A Walsh
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - R Florido
- iUNAT-Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - M Bailly-Grandvaux
- Center for Energy Research, University of California-San Diego, La Jolla, California 92093, USA
| | | | - F Suzuki-Vidal
- Plasma Physics Group, The Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | - C McGuffey
- General Atomics, San Diego, California 92121, USA
| | - F N Beg
- Center for Energy Research, University of California-San Diego, La Jolla, California 92093, USA
| | - P Bradford
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France
| | - V Ospina-Bohórquez
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France
- CEA, DAM, DIF, F-91297 Arpajon, France
- University of Salamanca, 37008 Salamanca, Spain
- Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France
| | - D Batani
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France
| | - D Raffestin
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France
| | - A Colaïtis
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France
| | - V Tikhonchuk
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France
- ELI-Beamlines, Institute of Physics, Czech Academy of Sciences, 25241 Dolní Brezany, Czech Republic
| | - A Casner
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France
- CEA-CESTA, CS 60001, 33116 Le Barp Cedex, France
| | - M Koenig
- LULI-CNRS, CEA, Sorbonne Universites, Ecole Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau Cedex, France
| | - B Albertazzi
- LULI-CNRS, CEA, Sorbonne Universites, Ecole Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau Cedex, France
| | - R Fedosejevs
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6G1R1 Alberta, Canada
| | - N Woolsey
- Department of Physics, University of York, Heslington YO10 5DD, United Kingdom
| | - M Ehret
- Centro de Laseres Pulsados, Building M5, Science Park, 37185 Villamayor, Salamanca, Spain
| | - A Debayle
- CEA, DAM, DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France
| | - P Loiseau
- CEA, DAM, DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France
| | - A Calisti
- Aix Marseille Université, CNRS, PIIM, F-13013 Marseille, France
| | - S Ferri
- Aix Marseille Université, CNRS, PIIM, F-13013 Marseille, France
| | - J Honrubia
- ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - R Kingham
- Plasma Physics Group, The Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | - R C Mancini
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - M A Gigosos
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain
| | - J J Santos
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, F-33405 Talence, France
| |
Collapse
|
6
|
Kochurin E, Ricard G, Zubarev N, Falcon E. Three-dimensional direct numerical simulation of free-surface magnetohydrodynamic wave turbulence. Phys Rev E 2022; 105:L063101. [PMID: 35854484 DOI: 10.1103/physreve.105.l063101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
We report on three-dimensional direct numerical simulation of wave turbulence on the free surface of a magnetic fluid subjected to an external horizontal magnetic field. A transition from capillary-wave turbulence to anisotropic magneto-capillary wave turbulence is observed for an increasing field. At high enough field, wave turbulence becomes highly anisotropic, cascading mainly perpendicularly to the field direction, in good agreement with the prediction of a phenomenological model, and with anisotropic Alfvén wave turbulence. Although surface waves on a magnetic fluid are different from Alfvén waves in plasma, a strong analogy is found with similar wave spectrum scalings and similar magnetic-field dependent dispersionless wave velocities.
Collapse
Affiliation(s)
- Evgeny Kochurin
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Institute of Electrophysics, Ural Division, Russian Academy of Sciences, 620016 Yekaterinburg, Russia
| | - Guillaume Ricard
- Université Paris Cité, CNRS, MSC, UMR 7057, F-75013 Paris, France
| | - Nikolay Zubarev
- Institute of Electrophysics, Ural Division, Russian Academy of Sciences, 620016 Yekaterinburg, Russia
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Eric Falcon
- Université Paris Cité, CNRS, MSC, UMR 7057, F-75013 Paris, France
| |
Collapse
|
7
|
Moody JD, Pollock BB, Sio H, Strozzi DJ, Ho DDM, Walsh C, Kemp GE, Kucheyev SO, Kozioziemski B, Carroll EG, Kroll J, Yanagisawa DK, Angus J, Bhandarkar SD, Bude JD, Divol L, Ferguson B, Fry J, Hagler L, Hartouni E, Herrmann MC, Hsing W, Holunga DM, Javedani J, Johnson A, Kalantar D, Kohut T, Logan BG, Masters N, Nikroo A, Orsi N, Piston K, Provencher C, Rowe A, Sater J, Skulina K, Stygar WA, Tang V, Winters SE, Chittenden JP, Appelbe B, Boxall A, Crilly A, O’Neill S, Davies J, Peebles J, Fujioka S. The Magnetized Indirect Drive Project on the National Ignition Facility. JOURNAL OF FUSION ENERGY 2022. [DOI: 10.1007/s10894-022-00319-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|