1
|
Campbell AJ, Anijärv TE, Pace T, Treacy C, Lagopoulos J, Hermens DF, Levenstein JM, Andrews SC. Resting-state EEG correlates of sustained attention in healthy ageing: Cross-sectional findings from the LEISURE study. Neurobiol Aging 2024; 144:68-77. [PMID: 39288668 DOI: 10.1016/j.neurobiolaging.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
While structural and biochemical brain changes are well-documented in ageing, functional neuronal network differences, as indicated by electrophysiological markers, are less clear. Moreover, age-related changes in sustained attention and their associated electrophysiological correlates are still poorly understood. To address this, we analysed cross-sectional baseline electroencephalography (EEG) and cognitive data from the Lifestyle Intervention Study for Dementia Risk Reduction (LEISURE). Participants were 96 healthy older adults, aged 50-84. We examined resting-state EEG periodic (individual alpha frequency [IAF], aperiodic-adjusted individual alpha power [aIAP]) and aperiodic (exponent and offset) activity, and their associations with age and sustained attention. Results showed associations between older age and slower IAF, but not aIAP or global aperiodic exponent and offset. Additionally, hierarchical linear regression revealed that after controlling for demographic variables, faster IAF was associated with better Sustained Attention to Response Task performance, and mediation analysis confirmed IAF as a mediator between age and sustained attention performance. These findings indicate that IAF may be an important marker of ageing, and a slower IAF may signal diminished cognitive processing capacity for sustained attention in older adults.
Collapse
Affiliation(s)
- Alicia J Campbell
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia.
| | - Toomas Erik Anijärv
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Thomas Pace
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Ciara Treacy
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare Ltd, Birtinya, QLD, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Jacob M Levenstein
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Sophie C Andrews
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| |
Collapse
|
2
|
Serio B, Hettwer MD, Wiersch L, Bignardi G, Sacher J, Weis S, Eickhoff SB, Valk SL. Sex differences in functional cortical organization reflect differences in network topology rather than cortical morphometry. Nat Commun 2024; 15:7714. [PMID: 39231965 PMCID: PMC11375086 DOI: 10.1038/s41467-024-51942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Differences in brain size between the sexes are consistently reported. However, the consequences of this anatomical difference on sex differences in intrinsic brain function remain unclear. In the current study, we investigate whether sex differences in intrinsic cortical functional organization may be associated with differences in cortical morphometry, namely different measures of brain size, microstructure, and the geodesic distance of connectivity profiles. For this, we compute a low dimensional representation of functional cortical organization, the sensory-association axis, and identify widespread sex differences. Contrary to our expectations, sex differences in functional organization do not appear to be systematically associated with differences in total surface area, microstructural organization, or geodesic distance, despite these morphometric properties being per se associated with functional organization and differing between sexes. Instead, functional sex differences in the sensory-association axis are associated with differences in functional connectivity profiles and network topology. Collectively, our findings suggest that sex differences in functional cortical organization extend beyond sex differences in cortical morphometry.
Collapse
Affiliation(s)
- Bianca Serio
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Meike D Hettwer
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lisa Wiersch
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Brain-Based Predictive Modeling Lab, Feinstein Institutes for Medical Research, Glen Oaks, New York, NY, USA
| | - Giacomo Bignardi
- Max Planck School of Cognition, Leipzig, Germany
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Julia Sacher
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig Center for Female Health & Gender Medicine, Medical Faculty, University Clinic Leipzig, Leipzig, Germany
- Clinic for Cognitive Neurology, University Medical Center Leipzig, Leipzig, Germany
| | - Susanne Weis
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
3
|
El Zghir RK, Gabay NC, Robinson PA. Unified theory of alpha, mu, and tau rhythms via eigenmodes of brain activity. Front Comput Neurosci 2024; 18:1335130. [PMID: 39286332 PMCID: PMC11403587 DOI: 10.3389/fncom.2024.1335130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
A compact description of the frequency structure and topography of human alpha-band rhythms is obtained by use of the first four brain activity eigenmodes previously derived from corticothalamic neural field theory. Just two eigenmodes that overlap in frequency are found to reproduce the observed topography of the classical alpha rhythm for subjects with a single, occipitally concentrated alpha peak in their electroencephalograms. Alpha frequency splitting and relative amplitudes of double alpha peaks are explored analytically and numerically within this four-mode framework using eigenfunction expansion and perturbation methods. These effects are found to result primarily from the different eigenvalues and corticothalamic gains corresponding to the eigenmodes. Three modes with two non-overlapping frequencies suffice to reproduce the observed topography for subjects with a double alpha peak, where the appearance of a distinct second alpha peak requires an increase of the corticothalamic gain of higher eigenmodes relative to the first. Conversely, alpha blocking is inferred to be linked to a relatively small attention-dependent reduction of the gain of the relevant eigenmodes, whose effect is enhanced by the near-critical state of the brain and whose sign is consistent with inferences from neural field theory. The topographies and blocking of the mu and tau rhythms within the alpha-band are explained analogously via eigenmodes. Moreover, the observation of three rhythms in the alpha band is due to there being exactly three members of the first family of spatially nonuniform modes. These results thus provide a simple, unified description of alpha band rhythms and enable experimental observations of spectral structure and topography to be linked directly to theory and underlying physiology.
Collapse
Affiliation(s)
- Rawan Khalil El Zghir
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Natasha C Gabay
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
- Northern Sydney Cancer Center, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - P A Robinson
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Chandran KS, Ghosh K. A deep learning based cognitive model to probe the relation between psychophysics and electrophysiology of flicker stimulus. Brain Inform 2024; 11:18. [PMID: 38987386 PMCID: PMC11236830 DOI: 10.1186/s40708-024-00231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
The flicker stimulus is a visual stimulus of intermittent illumination. A flicker stimulus can appear flickering or steady to a human subject, depending on the physical parameters associated with the stimulus. When the flickering light appears steady, flicker fusion is said to have occurred. This work aims to bridge the gap between the psychophysics of flicker fusion and the electrophysiology associated with flicker stimulus through a Deep Learning based computational model of flicker perception. Convolutional Recurrent Neural Networks (CRNNs) were trained with psychophysics data of flicker stimulus obtained from a human subject. We claim that many of the reported features of electrophysiology of the flicker stimulus, including the presence of fundamentals and harmonics of the stimulus, can be explained as the result of a temporal convolution operation on the flicker stimulus. We further show that the convolution layer output of a CRNN trained with psychophysics data is more responsive to specific frequencies as in human EEG response to flicker, and the convolution layer of a trained CRNN can give a nearly sinusoidal output for 10 hertz flicker stimulus as reported for some human subjects.
Collapse
Affiliation(s)
- Keerthi S Chandran
- Center for Soft Computing Research, Indian Statistical Institue, 203 BT Road, Kolkata, West Bengal, 700108, India.
- Machine Intelligence Unit, Indian Statistical Institute, 203 BT Road, Kolkata, West Bengal, 700108, India.
| | - Kuntal Ghosh
- Center for Soft Computing Research, Indian Statistical Institue, 203 BT Road, Kolkata, West Bengal, 700108, India
- Machine Intelligence Unit, Indian Statistical Institute, 203 BT Road, Kolkata, West Bengal, 700108, India
| |
Collapse
|
5
|
Polyakov D, Robinson PA, Muller EJ, Shriki O. Recruiting neural field theory for data augmentation in a motor imagery brain-computer interface. Front Robot AI 2024; 11:1362735. [PMID: 38694882 PMCID: PMC11061403 DOI: 10.3389/frobt.2024.1362735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/20/2024] [Indexed: 05/04/2024] Open
Abstract
We introduce a novel approach to training data augmentation in brain-computer interfaces (BCIs) using neural field theory (NFT) applied to EEG data from motor imagery tasks. BCIs often suffer from limited accuracy due to a limited amount of training data. To address this, we leveraged a corticothalamic NFT model to generate artificial EEG time series as supplemental training data. We employed the BCI competition IV '2a' dataset to evaluate this augmentation technique. For each individual, we fitted the model to common spatial patterns of each motor imagery class, jittered the fitted parameters, and generated time series for data augmentation. Our method led to significant accuracy improvements of over 2% in classifying the "total power" feature, but not in the case of the "Higuchi fractal dimension" feature. This suggests that the fit NFT model may more favorably represent one feature than the other. These findings pave the way for further exploration of NFT-based data augmentation, highlighting the benefits of biophysically accurate artificial data.
Collapse
Affiliation(s)
- Daniel Polyakov
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Agricultural, Biological, Cognitive Robotics Initiative, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | | | - Eli J. Muller
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Agricultural, Biological, Cognitive Robotics Initiative, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
6
|
Lefebvre J, Hutt A. Induced synchronization by endogenous noise modulation in finite-size random neural networks: A stochastic mean-field study. CHAOS (WOODBURY, N.Y.) 2023; 33:123110. [PMID: 38055720 DOI: 10.1063/5.0167771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Event-related synchronization and desynchronization (ERS/ERD) are well-known features found experimentally in brain signals during cognitive tasks. Their understanding promises to have much better insights into neural information processes in cognition. Under the hypothesis that neural information affects the endogenous neural noise level in populations, we propose to employ a stochastic mean-field model to explain ERS/ERD in the γ-frequency range. The work extends previous mean-field studies by deriving novel effects from finite network size. Moreover, numerical simulations of ERS/ERD and their analytical explanation by the mean-field model suggest several endogenous noise modulation schemes, which may modulate the system's synchronization.
Collapse
Affiliation(s)
- J Lefebvre
- Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - A Hutt
- ICube, MLMS, University of Strasbourg, MIMESIS Team, Inria Nancy-Grand Est, 67000 Strasbourg, France
| |
Collapse
|
7
|
Serio B, Hettwer MD, Wiersch L, Bignardi G, Sacher J, Weis S, Eickhoff SB, Valk SL. Sex differences in intrinsic functional cortical organization reflect differences in network topology rather than cortical morphometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568437. [PMID: 38045320 PMCID: PMC10690290 DOI: 10.1101/2023.11.23.568437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Brain size robustly differs between sexes. However, the consequences of this anatomical dimorphism on sex differences in intrinsic brain function remain unclear. We investigated the extent to which sex differences in intrinsic cortical functional organization may be explained by differences in cortical morphometry, namely brain size, microstructure, and the geodesic distances of connectivity profiles. For this, we computed a low dimensional representation of functional cortical organization, the sensory-association axis, and identified widespread sex differences. Contrary to our expectations, observed sex differences in functional organization were not fundamentally associated with differences in brain size, microstructural organization, or geodesic distances, despite these morphometric properties being per se associated with functional organization and differing between sexes. Instead, functional sex differences in the sensory-association axis were associated with differences in functional connectivity profiles and network topology. Collectively, our findings suggest that sex differences in functional cortical organization extend beyond sex differences in cortical morphometry.
Collapse
Affiliation(s)
- Bianca Serio
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Meike D. Hettwer
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Lisa Wiersch
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Giacomo Bignardi
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Julia Sacher
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University Medical Center Leipzig, Leipzig, Germany
| | - Susanne Weis
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Simon B. Eickhoff
- Max Planck School of Cognition, Leipzig, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sofie L. Valk
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Müller EJ, Munn BR, Redinbaugh MJ, Lizier J, Breakspear M, Saalmann YB, Shine JM. The non-specific matrix thalamus facilitates the cortical information processing modes relevant for conscious awareness. Cell Rep 2023; 42:112844. [PMID: 37498741 DOI: 10.1016/j.celrep.2023.112844] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/25/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
The neurobiological mechanisms of arousal and anesthesia remain poorly understood. Recent evidence highlights the key role of interactions between the cerebral cortex and the diffusely projecting matrix thalamic nuclei. Here, we interrogate these processes in a whole-brain corticothalamic neural mass model endowed with targeted and diffusely projecting thalamocortical nuclei inferred from empirical data. This model captures key features seen in propofol anesthesia, including diminished network integration, lowered state diversity, impaired susceptibility to perturbation, and decreased corticocortical coherence. Collectively, these signatures reflect a suppression of information transfer across the cerebral cortex. We recover these signatures of conscious arousal by selectively stimulating the matrix thalamus, recapitulating empirical results in macaque, as well as wake-like information processing states that reflect the thalamic modulation of large-scale cortical attractor dynamics. Our results highlight the role of matrix thalamocortical projections in shaping many features of complex cortical dynamics to facilitate the unique communication states supporting conscious awareness.
Collapse
Affiliation(s)
- Eli J Müller
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; School of Computer Science, The University of Sydney, Sydney, NSW, Australia.
| | - Brandon R Munn
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | | | - Joseph Lizier
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | | | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin National Primate Research Centre, Madison, WI, USA
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Pang JC, Aquino KM, Oldehinkel M, Robinson PA, Fulcher BD, Breakspear M, Fornito A. Geometric constraints on human brain function. Nature 2023; 618:566-574. [PMID: 37258669 PMCID: PMC10266981 DOI: 10.1038/s41586-023-06098-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/18/2023] [Indexed: 06/02/2023]
Abstract
The anatomy of the brain necessarily constrains its function, but precisely how remains unclear. The classical and dominant paradigm in neuroscience is that neuronal dynamics are driven by interactions between discrete, functionally specialized cell populations connected by a complex array of axonal fibres1-3. However, predictions from neural field theory, an established mathematical framework for modelling large-scale brain activity4-6, suggest that the geometry of the brain may represent a more fundamental constraint on dynamics than complex interregional connectivity7,8. Here, we confirm these theoretical predictions by analysing human magnetic resonance imaging data acquired under spontaneous and diverse task-evoked conditions. Specifically, we show that cortical and subcortical activity can be parsimoniously understood as resulting from excitations of fundamental, resonant modes of the brain's geometry (that is, its shape) rather than from modes of complex interregional connectivity, as classically assumed. We then use these geometric modes to show that task-evoked activations across over 10,000 brain maps are not confined to focal areas, as widely believed, but instead excite brain-wide modes with wavelengths spanning over 60 mm. Finally, we confirm predictions that the close link between geometry and function is explained by a dominant role for wave-like activity, showing that wave dynamics can reproduce numerous canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge prevailing views and identify a previously underappreciated role of geometry in shaping function, as predicted by a unifying and physically principled model of brain-wide dynamics.
Collapse
Affiliation(s)
- James C Pang
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
| | - Kevin M Aquino
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
- BrainKey Inc., San Francisco, CA, USA
| | - Marianne Oldehinkel
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Peter A Robinson
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| | - Ben D Fulcher
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, New South Wales, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Müller EJ, Munn BR, Aquino KM, Shine JM, Robinson PA. The music of the hemispheres: Cortical eigenmodes as a physical basis for large-scale brain activity and connectivity patterns. Front Hum Neurosci 2022; 16:1062487. [PMID: 36504620 PMCID: PMC9729350 DOI: 10.3389/fnhum.2022.1062487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Neuroscience has had access to high-resolution recordings of large-scale cortical activity and structure for decades, but still lacks a generally adopted basis to analyze and interrelate results from different individuals and experiments. Here it is argued that the natural oscillatory modes of the cortex-cortical eigenmodes-provide a physically preferred framework for systematic comparisons across experimental conditions and imaging modalities. In this framework, eigenmodes are analogous to notes of a musical instrument, while commonly used statistical patterns parallel frequently played chords. This intuitive perspective avoids problems that often arise in neuroimaging analyses, and connects to underlying mechanisms of brain activity. We envisage this approach will lead to novel insights into whole-brain function, both in existing and prospective datasets, and facilitate a unification of empirical findings across presently disparate analysis paradigms and measurement modalities.
Collapse
Affiliation(s)
- Eli J. Müller
- School of Physics, The University of Sydney, Sydney, NSW, Australia,Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, Australia,Brain and Mind Center, The University of Sydney, Sydney, NSW, Australia,*Correspondence: Eli J. Müller
| | - Brandon R. Munn
- School of Physics, The University of Sydney, Sydney, NSW, Australia,Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, Australia,Brain and Mind Center, The University of Sydney, Sydney, NSW, Australia
| | - Kevin M. Aquino
- School of Physics, The University of Sydney, Sydney, NSW, Australia,Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, Australia
| | - James M. Shine
- Brain and Mind Center, The University of Sydney, Sydney, NSW, Australia
| | - Peter A. Robinson
- School of Physics, The University of Sydney, Sydney, NSW, Australia,Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Huiskamp M, Kiljan S, Kulik S, Witte ME, Jonkman LE, Gjm Bol J, Schenk GJ, Hulst HE, Tewarie P, Schoonheim MM, Geurts JJ. Inhibitory synaptic loss drives network changes in multiple sclerosis: An ex vivo to in silico translational study. Mult Scler 2022; 28:2010-2019. [PMID: 36189828 PMCID: PMC9574900 DOI: 10.1177/13524585221125381] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background: Synaptic and neuronal loss contribute to network dysfunction and disability
in multiple sclerosis (MS). However, it is unknown whether excitatory or
inhibitory synapses and neurons are more vulnerable and how their losses
impact network functioning. Objective: To quantify excitatory and inhibitory synapses and neurons and to investigate
how synaptic loss affects network functioning through computational
modeling. Methods: Using immunofluorescent staining and confocal microscopy, densities of
glutamatergic and GABAergic synapses and neurons were compared between
post-mortem MS and non-neurological control cases. Then, a corticothalamic
biophysical model was employed to study how MS-induced excitatory and
inhibitory synaptic loss affect network functioning. Results: In layer VI of normal-appearing MS cortex, excitatory and inhibitory synaptic
densities were significantly lower than controls (reductions up to 14.9%),
but demyelinated cortex showed larger losses of inhibitory synapses (29%).
In our computational model, reducing inhibitory synapses impacted the
network most, leading to a disinhibitory increase in neuronal activity and
connectivity. Conclusion: In MS, excitatory and inhibitory synaptic losses were observed, predominantly
for inhibitory synapses in demyelinated cortex. Inhibitory synaptic loss
affected network functioning most, leading to increased neuronal activity
and connectivity. As network disinhibition relates to cognitive impairment,
inhibitory synaptic loss seems particularly relevant in MS.
Collapse
Affiliation(s)
- Marijn Huiskamp
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Svenja Kiljan
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Shanna Kulik
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Maarteen E Witte
- Molecular Cell Biology and Inflammation, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - John Gjm Bol
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Geert J Schenk
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Hanneke E Hulst
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands/Health, Medical and Neuropsychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Prejaas Tewarie
- Neurology, MS center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands/Clinical Neurophysiology and MEG Center, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Jeroen Jg Geurts
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Merkin A, Sghirripa S, Graetz L, Smith AE, Hordacre B, Harris R, Pitcher J, Semmler J, Rogasch NC, Goldsworthy M. Do age-related differences in aperiodic neural activity explain differences in resting EEG alpha? Neurobiol Aging 2022; 121:78-87. [DOI: 10.1016/j.neurobiolaging.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 08/12/2022] [Accepted: 09/08/2022] [Indexed: 11/15/2022]
|
13
|
Biophysical mechanism underlying compensatory preservation of neural synchrony over the adult lifespan. Commun Biol 2022; 5:567. [PMID: 35681107 PMCID: PMC9184644 DOI: 10.1038/s42003-022-03489-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
We propose that the preservation of functional integration, estimated from measures of neural synchrony, is a key objective of neurocompensatory mechanisms associated with healthy human ageing. To support this proposal, we demonstrate how phase-locking at the peak alpha frequency in Magnetoencephalography recordings remains invariant over the lifespan in a large cohort of human participants, aged 18-88 years. Using empirically derived connection topologies from diffusion tensor imaging data, we create an in-silico model of whole-brain alpha dynamics. We show that enhancing inter-areal coupling can cancel the effect of increased axonal transmission delays associated with age-related degeneration of white matter tracts, albeit at slower network frequencies. By deriving analytical solutions for simplified connection topologies, we further establish the theoretical principles underlying compensatory network re-organization. Our findings suggest that frequency slowing with age- frequently observed in the alpha band in diverse populations- may be viewed as an epiphenomenon of the underlying compensatory mechanism. Analysis of MEG data from healthy participants and whole-brain network modeling suggests that the brain compensates for age-related disruptions in connectivity by slowing down the frequency of neural synchronization.
Collapse
|
14
|
Mathematical Model Insights into EEG Origin under Transcranial Direct Current Stimulation (tDCS) in the Context of Psychosis. J Clin Med 2022; 11:jcm11071845. [PMID: 35407453 PMCID: PMC8999473 DOI: 10.3390/jcm11071845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a psychotic disease that develops progressively over years with a transition from prodromal to psychotic state associated with a disruption in brain activity. Transcranial Direct Current Stimulation (tDCS), known to alleviate pharmaco-resistant symptoms in patients suffering from schizophrenia, promises to prevent such a psychotic transition. To understand better how tDCS affects brain activity, we propose a neural cortico-thalamo-cortical (CTC) circuit model involving the Ascending Reticular Arousal System (ARAS) that permits to describe major impact features of tDCS, such as excitability for short-duration stimulation and electroencephalography (EEG) power modulation for long-duration stimulation. To this end, the mathematical model relates stimulus duration and Long-Term Plasticity (LTP) effect, in addition to describing the temporal LTP decay after stimulus offset. This new relation promises to optimize future stimulation protocols. Moreover, we reproduce successfully EEG-power modulation under tDCS in a ketamine-induced psychosis model and confirm the N-methyl-d-aspartate (NMDA) receptor hypofunction hypothesis in the etiopathophysiology of schizophrenia. The model description points to an important role of the ARAS and the δ-rhythm synchronicity in CTC circuit in early-stage psychosis.
Collapse
|
15
|
Robinson PA. Discrete spectral eigenmode-resonance network of brain dynamics and connectivity. Phys Rev E 2021; 104:034411. [PMID: 34654199 DOI: 10.1103/physreve.104.034411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022]
Abstract
The problem of finding a compact natural representation of brain dynamics and connectivity is addressed using an expansion in terms of physical spatial eigenmodes and their frequency resonances. It is demonstrated that this discrete expansion via the system transfer function enables linear and nonlinear dynamics to be analyzed in compact form in terms of natural dynamic "atoms," each of which is a frequency resonance of an eigenmode. Because these modal resonances are determined by the system dynamics, not the investigator, they are privileged over widely used phenomenological patterns, and obviate the need for artificial discretizations and thresholding in coordinate space. It is shown that modal resonances participate as nodes of a discrete spectral network, are noninteracting in the linear regime, but are linked nonlinearly by wave-wave coalescence and decay processes. The modal resonance formulation is shown to be capable of speeding numerical calculations of strongly nonlinear interactions. Recent work in brain dynamics, especially based on neural field theory (NFT) approaches, allows eigenmodes and their resonances to be estimated from data without assuming a specific brain model. This means that dynamic equations can be inferred using system identification methods from control theory, rather than being assumed, and resonances can be interpreted as control-systems data filters. The results link brain activity and connectivity with control-systems functions such as prediction and attention via gain control and can also be linked to specific NFT predictions if desired, thereby providing a convenient bridge between physiologically based theories and experiment. Amplitudes of modes and resonances can also be tracked to provide a more direct and temporally localized representation of the dynamics than correlations and covariances, which are widely used in the field. By synthesizing many different lines of research, this work provides a way to link quantitative electrophysiological and imaging measurements, connectivity, brain dynamics, and function. This underlines the need to move between coordinate and spectral representations as required. Moreover, standard theoretical-physics approaches and mathematical methods can be used in place of ad hoc statistical measures such as those based on graph theory of artificially discretized and decimated networks, which are highly prone to selection effects and artifacts.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
16
|
Olejarczyk E, Sobieszek A. Commentary: Is So-Called "Split Alpha" in EEG Spectral Analysis a Result of Methodological and Interpretation Errors? Front Neurosci 2021; 15:726912. [PMID: 34630016 PMCID: PMC8497753 DOI: 10.3389/fnins.2021.726912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Elzbieta Olejarczyk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksander Sobieszek
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
17
|
Progress in modelling of brain dynamics during anaesthesia and the role of sleep-wake circuitry. Biochem Pharmacol 2021; 191:114388. [DOI: 10.1016/j.bcp.2020.114388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022]
|
18
|
Robinson PA, Henderson JA, Gabay NC, Aquino KM, Babaie-Janvier T, Gao X. Determination of Dynamic Brain Connectivity via Spectral Analysis. Front Hum Neurosci 2021; 15:655576. [PMID: 34335207 PMCID: PMC8323754 DOI: 10.3389/fnhum.2021.655576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Spectral analysis based on neural field theory is used to analyze dynamic connectivity via methods based on the physical eigenmodes that are the building blocks of brain dynamics. These approaches integrate over space instead of averaging over time and thereby greatly reduce or remove the temporal averaging effects, windowing artifacts, and noise at fine spatial scales that have bedeviled the analysis of dynamical functional connectivity (FC). The dependences of FC on dynamics at various timescales, and on windowing, are clarified and the results are demonstrated on simple test cases, demonstrating how modes provide directly interpretable insights that can be related to brain structure and function. It is shown that FC is dynamic even when the brain structure and effective connectivity are fixed, and that the observed patterns of FC are dominated by relatively few eigenmodes. Common artifacts introduced by statistical analyses that do not incorporate the physical nature of the brain are discussed and it is shown that these are avoided by spectral analysis using eigenmodes. Unlike most published artificially discretized “resting state networks” and other statistically-derived patterns, eigenmodes overlap, with every mode extending across the whole brain and every region participating in every mode—just like the vibrations that give rise to notes of a musical instrument. Despite this, modes are independent and do not interact in the linear limit. It is argued that for many purposes the intrinsic limitations of covariance-based FC instead favor the alternative of tracking eigenmode coefficients vs. time, which provide a compact representation that is directly related to biophysical brain dynamics.
Collapse
Affiliation(s)
- Peter A Robinson
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - James A Henderson
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Natasha C Gabay
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Kevin M Aquino
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Tara Babaie-Janvier
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Xiao Gao
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia.,Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
19
|
El-Zghir RK, Gabay NC, Robinson PA. Modal-Polar Representation of Evoked Response Potentials in Multiple Arousal States. Front Hum Neurosci 2021; 15:642479. [PMID: 34163339 PMCID: PMC8215109 DOI: 10.3389/fnhum.2021.642479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
An expansion of the corticothalamic transfer function into eigenmodes and resonant poles is used to derive a simple formula for evoked response potentials (ERPs) in various states of arousal. The transfer function corresponds to the cortical response to an external stimulus, which encodes all the information and properties of the linear system. This approach links experimental observations of resonances and characteristic timescales in brain activity with physically based neural field theory (NFT). The present work greatly simplifies the formula of the analytical ERP, and separates its spatial part (eigenmodes) from the temporal part (poles). Within this framework, calculations involve contour integrations that yield an explicit expression for ERPs. The dominant global mode is considered explicitly in more detail to study how the ERP varies with time in this mode and to illustrate the method. For each arousal state in sleep and wake, the resonances of the system are determined and it is found that five poles are sufficient to study the main dynamics of the system in waking eyes-open and eyes-closed states. Similarly, it is shown that six poles suffice to reproduce ERPs in rapid-eye movement sleep, sleep state 1, and sleep state 2 states, whereas just four poles suffice to reproduce the dynamics in slow wave sleep. Thus, six poles are sufficient to preserve the main global ERP dynamics of the system for all states of arousal. These six poles correspond to the dominant resonances of the system at slow-wave, alpha, and beta frequencies. These results provide the basis for simplified analytic treatment of brain dynamics and link observations more closely to theory.
Collapse
Affiliation(s)
- Rawan K. El-Zghir
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Natasha C. Gabay
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Peter A. Robinson
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Glomb K, Cabral J, Cattani A, Mazzoni A, Raj A, Franceschiello B. Computational Models in Electroencephalography. Brain Topogr 2021; 35:142-161. [PMID: 33779888 PMCID: PMC8813814 DOI: 10.1007/s10548-021-00828-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
Computational models lie at the intersection of basic neuroscience and healthcare applications because they allow researchers to test hypotheses in silico and predict the outcome of experiments and interactions that are very hard to test in reality. Yet, what is meant by “computational model” is understood in many different ways by researchers in different fields of neuroscience and psychology, hindering communication and collaboration. In this review, we point out the state of the art of computational modeling in Electroencephalography (EEG) and outline how these models can be used to integrate findings from electrophysiology, network-level models, and behavior. On the one hand, computational models serve to investigate the mechanisms that generate brain activity, for example measured with EEG, such as the transient emergence of oscillations at different frequency bands and/or with different spatial topographies. On the other hand, computational models serve to design experiments and test hypotheses in silico. The final purpose of computational models of EEG is to obtain a comprehensive understanding of the mechanisms that underlie the EEG signal. This is crucial for an accurate interpretation of EEG measurements that may ultimately serve in the development of novel clinical applications.
Collapse
Affiliation(s)
- Katharina Glomb
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
| | - Anna Cattani
- Department of Psychiatry, University of Wisconsin-Madison, Madison, USA.,Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ashish Raj
- School of Medicine, UCSF, San Francisco, USA
| | - Benedetta Franceschiello
- Department of Ophthalmology, Hopital Ophthalmic Jules Gonin, FAA, Lausanne, Switzerland.,CIBM Centre for Biomedical Imaging, EEG Section CHUV-UNIL, Lausanne, Switzerland.,Laboratory for Investigative Neurophysiology, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| |
Collapse
|
21
|
Mukta KN, Robinson PA, Pagès JC, Gabay NC, Gao X. Evoked response activity eigenmode analysis in a convoluted cortex via neural field theory. Phys Rev E 2020; 102:062303. [PMID: 33466049 DOI: 10.1103/physreve.102.062303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/15/2020] [Indexed: 11/07/2022]
Abstract
Neural field theory of the corticothalamic system is used to explore evoked response potentials (ERPs) caused by spatially localized impulse stimuli on the convoluted cortex and on a spherical cortex. Eigenfunctions are calculated analytically on the spherical cortex and numerically on the convoluted cortex via eigenfunction expansions. Eigenmodes on a convoluted cortex are similar to those of the spherical cortex, and a few such modes are found to be sufficient to reproduce the main ERP features. It is found that the ERP peak is stronger in spherical cortex than convoluted cortex, but in both cases the peak decreases monotonically with increasing distance from the stimulus point. In the convoluted case, cortical folding causes ERPs to differ between locations at the same distance from the stimulus point and spherical symmetries are only approximately preserved.
Collapse
Affiliation(s)
- K N Mukta
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - J C Pagès
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
- School of Physics, University of Zurich, Zürich, Canton of Zürich, Switzerland
| | - N C Gabay
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - Xiao Gao
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
22
|
Zalewska E. Is So Called "Split Alpha" in EEG Spectral Analysis a Result of Methodological and Interpretation Errors? Front Neurosci 2020; 14:608453. [PMID: 33324157 PMCID: PMC7726354 DOI: 10.3389/fnins.2020.608453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
This paper attempts to explain some methodological issues regarding EEG signal analysis which might lead to misinterpretation and therefore to unsubstantiated conclusions. The so called “split-alpha,” a “new phenomenon” in EEG spectral analysis described lately in few papers is such a case. We have shown that spectrum feature presented as a “split alpha” can be the result of applying improper means of analysis of the spectrum of the EEG signal that did not take into account the significant properties of the applied Fast Fourier Transform (FFT) method. Analysis of the shortcomings of the FFT method applied to EEG signal such as limited duration of analyzed signal, dependence of frequency resolution on time window duration, influence of window duration and shape, overlapping and spectral leakage was performed. Our analyses of EEG data as well as simulations indicate that double alpha spectra called as “split alpha” can appear, as spurious peaks, for short signal window when the EEG signal being studied shows multiple frequencies and frequency bands. These peaks have no relation to any frequencies of the signal and are an effect of spectrum leakage. Our paper is intended to explain the reasons underlying a spectrum pattern called as a “split alpha” and give some practical indications for using spectral analysis of EEG signal that might be useful for readers and allow to avoid EEG spectrum misinterpretation in further studies and publications as well as in clinical practice.
Collapse
Affiliation(s)
- Ewa Zalewska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
23
|
Tuncel Y, Başaklar T, Ider YZ. A model based investigation of the period doubling behavior in human steady-state visual evoked potentials. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab2d0b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Mukta KN, Gao X, Robinson PA. Neural field theory of evoked response potentials in a spherical brain geometry. Phys Rev E 2019; 99:062304. [PMID: 31330724 DOI: 10.1103/physreve.99.062304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 11/07/2022]
Abstract
Evoked response potentials (ERPs) are calculated in spherical and planar geometries using neural field theory of the corticothalamic system. The ERP is modeled as an impulse response and the resulting modal effects of spherical corticothalamic dynamics are explored, showing that results for spherical and planar geometries converge in the limit of large brain size. Cortical modal effects can lead to a double-peak structure in the ERP time series. It is found that the main difference between infinite planar geometry and spherical geometry is that the ERP peak is sharper and stronger in the spherical geometry. It is also found that the magnitude of the response decreases with increasing spatial width of the stimulus at the cortex. The peak is slightly delayed at large angles from the stimulus point, corresponding to group velocities of 6-10 m s^{-1}. Strong modal effects are found in the spherical geometry, with the lowest few modes sufficing to describe the main features of ERPs, except very near to spatially narrow stimuli.
Collapse
Affiliation(s)
- K N Mukta
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - Xiao Gao
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
25
|
Robinson PA. Neural field theory of effects of brain modifications and lesions on functional connectivity: Acute effects, short-term homeostasis, and long-term plasticity. Phys Rev E 2019; 99:042407. [PMID: 31108595 DOI: 10.1103/physreve.99.042407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 11/07/2022]
Abstract
Neural field theory is used to predict the functional connectivity effects of lesions or other modifications to effective connectivity. Widespread initial changes are predicted after localized or diffuse changes to white or gray matter, consistent with observations, and enabling lesion severity indexes to be defined. It is shown how short-term homeostasis and longer-term plasticity can reduce perturbations while maintaining brain criticality under conditions where some connections remain fixed because of damage in the lesion core. The extent to which such effects can compensate for initial connectivity changes is then explored, showing that the strongest corrective changes are concentrated toward the edges of the perturbation if it is localized and its core is fixed. The results are applicable to inferring underlying connectivity changes and to interpreting and monitoring functional connectivity modifications after lesions, injury, surgery, drugs, or brain stimulation.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
26
|
Abstract
Brain connectivity and structure-function relationships are analyzed from a physical perspective in place of common graph-theoretic and statistical approaches that overwhelmingly ignore the brain's physical structure and geometry. Field theory is used to define connectivity tensors in terms of bare and dressed propagators, and discretized representations are implemented that respect the physical nature and dimensionality of the quantities involved, retain the correct continuum limit, and enable diagrammatic analysis. Eigenfunction analysis is used to simultaneously characterize and probe patterns of brain connectivity and activity, in place of statistical or phenomenological patterns. Physically based measures that characterize the connectivity are then developed in coordinate and spectral domains; some of which generalize or rectify graph-theoretic measures to implement correct dimensionality and continuum limits, and some replace graph-theoretic quantities. Traditional graph-based measures are shown to be highly prone to artifacts introduced by discretization and threshold, often because essential physical constraints have not been imposed, dimensionality has not been included, and/or distinctions between scalar, vector, and tensor quantities have not been considered. The results can replace them in ways that converge correctly and measure properties of brain structure, rather than of its discretization, and thus potentially enable physical interpretation of the many phenomenological results in the literature. Geometric effects are shown to dominate in determining many brain properties and care must be taken not to interpret geometric differences as differences in intrinsic neural connectivity. The results demonstrate the need to use systematic physical methods to analyze the brain and the potential of such methods to obtain new insights from data, make new predictions for experimental test, and go beyond phenomenological classification to dynamics and mechanisms.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
27
|
Optimal Model Parameter Estimation from EEG Power Spectrum Features Observed during General Anesthesia. Neuroinformatics 2019. [PMID: 29516302 DOI: 10.1007/s12021-018-9369-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mathematical modeling is a powerful tool that enables researchers to describe the experimentally observed dynamics of complex systems. Starting with a robust model including model parameters, it is necessary to choose an appropriate set of model parameters to reproduce experimental data. However, estimating an optimal solution of the inverse problem, i.e., finding a set of model parameters that yields the best possible fit to the experimental data, is a very challenging problem. In the present work, we use different optimization algorithms based on a frequentist approach, as well as Monte Carlo Markov Chain methods based on Bayesian inference techniques to solve the considered inverse problems. We first probe two case studies with synthetic data and study models described by a stochastic non-delayed linear second-order differential equation and a stochastic linear delay differential equation. In a third case study, a thalamo-cortical neural mass model is fitted to the EEG spectral power measured during general anesthesia induced by anesthetics propofol and desflurane. We show that the proposed neural mass model fits very well to the observed EEG power spectra, particularly to the power spectral peaks within δ - (0 - 4 Hz) and α - (8 - 13 Hz) frequency ranges. Furthermore, for each case study, we perform a practical identifiability analysis by estimating the confidence regions of the parameter estimates and interpret the corresponding correlation and sensitivity matrices. Our results indicate that estimating the model parameters from analytically computed spectral power, we are able to accurately estimate the unknown parameters while avoiding the computational costs due to numerical integration of the model equations.
Collapse
|
28
|
Ferdousi M, Babaie Janvier T, Robinson P. Nonlinear harmonic generation in the corticothalamic system. J Theor Biol 2019; 460:184-194. [DOI: 10.1016/j.jtbi.2018.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/24/2018] [Accepted: 10/04/2018] [Indexed: 11/30/2022]
|
29
|
Zobaer MS, Robinson PA, Kerr CC. Physiology-based ERPs in normal and abnormal states. BIOLOGICAL CYBERNETICS 2018; 112:465-482. [PMID: 30019237 DOI: 10.1007/s00422-018-0766-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
Evoked response potentials (ERPs) and other transients are modeled as impulse responses using physiology-based neural field theory (NFT) of the corticothalamic system of neural activity in the human brain that incorporates synaptic and dendritic dynamics, firing response, axonal propagation, and corticocortical and corticothalamic pathways. The properties of model-predicted ERPs are explored throughout the stability zone of the corticothalamic system, and predicted time series and wavelet spectra are also analyzed. This provides a unified treatment of predicted ERPs for both normal and abnormal states within the brain's stability zone, including likely parameters to represent abnormal states of reduced arousal.
Collapse
Affiliation(s)
- M S Zobaer
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia.
- Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2006, Australia.
- Center for Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, NSW, 2037, Australia.
- Department of Physics, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh.
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, NSW, 2037, Australia
| | - C C Kerr
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2006, Australia
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, USA
| |
Collapse
|
30
|
Roy N, Sanz-Leon P, Robinson PA. Spectrum of connectivity fluctuations including the effect of activity-dependent feedback. Phys Rev E 2018; 98:022319. [PMID: 30253627 DOI: 10.1103/physreve.98.022319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Indexed: 11/07/2022]
Abstract
The spatiotemporal spectrum of feedback-driven fluctuations of brain connectivity is investigated using nonlinear neural field theory of the corticothalamic system. Weakly nonlinear dynamics of neural feedbacks are expanded in terms of first order perturbations of neural activity relative to a fixed point. Susceptibilities are used to quantify the change in connectivity per unit change in presynaptic or postsynaptic activity caused by nonlinear feedbacks such as facilitation, depression, sensitization, potentiation, and the effects of discrete eigenmode structure are included for a spherical brain geometry. Spectral signatures such as resonances are identified that allow the presence of particular presynaptic and postsynaptic feedback effects to be inferred. These include additional resonances at high frequencies and shifts of existing spectral peaks, mostly visible in the lowest spatial modes of the response.
Collapse
Affiliation(s)
- N Roy
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P Sanz-Leon
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
31
|
Sanz-Leon P, Robinson PA, Knock SA, Drysdale PM, Abeysuriya RG, Fung FK, Rennie CJ, Zhao X. NFTsim: Theory and Simulation of Multiscale Neural Field Dynamics. PLoS Comput Biol 2018; 14:e1006387. [PMID: 30133448 PMCID: PMC6122812 DOI: 10.1371/journal.pcbi.1006387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/04/2018] [Accepted: 07/22/2018] [Indexed: 01/02/2023] Open
Abstract
A user ready, portable, documented software package, NFTsim, is presented to facilitate numerical simulations of a wide range of brain systems using continuum neural field modeling. NFTsim enables users to simulate key aspects of brain activity at multiple scales. At the microscopic scale, it incorporates characteristics of local interactions between cells, neurotransmitter effects, synaptodendritic delays and feedbacks. At the mesoscopic scale, it incorporates information about medium to large scale axonal ranges of fibers, which are essential to model dissipative wave transmission and to produce synchronous oscillations and associated cross-correlation patterns as observed in local field potential recordings of active tissue. At the scale of the whole brain, NFTsim allows for the inclusion of long range pathways, such as thalamocortical projections, when generating macroscopic activity fields. The multiscale nature of the neural activity produced by NFTsim has the potential to enable the modeling of resulting quantities measurable via various neuroimaging techniques. In this work, we give a comprehensive description of the design and implementation of the software. Due to its modularity and flexibility, NFTsim enables the systematic study of an unlimited number of neural systems with multiple neural populations under a unified framework and allows for direct comparison with analytic and experimental predictions. The code is written in C++ and bundled with Matlab routines for a rapid quantitative analysis and visualization of the outputs. The output of NFTsim is stored in plain text file enabling users to select from a broad range of tools for offline analysis. This software enables a wide and convenient use of powerful physiologically-based neural field approaches to brain modeling. NFTsim is distributed under the Apache 2.0 license.
Collapse
Affiliation(s)
- Paula Sanz-Leon
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
| | - Peter A. Robinson
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
| | - Stuart A. Knock
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
| | | | - Romesh G. Abeysuriya
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Felix K. Fung
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
- Downstate Medical Center, State University of New York, Brooklyn, New York, United States of America
| | | | - Xuelong Zhao
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
| |
Collapse
|
32
|
González-Ramírez LR, Kramer MA. The effect of inhibition on the existence of traveling wave solutions for a neural field model of human seizure termination. J Comput Neurosci 2018; 44:393-409. [PMID: 29797294 DOI: 10.1007/s10827-018-0685-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 03/27/2018] [Accepted: 04/25/2018] [Indexed: 11/28/2022]
Abstract
In this paper we study the influence of inhibition on an activity-based neural field model consisting of an excitatory population with a linear adaptation term that directly regulates the activity of the excitatory population. Such a model has been used to replicate traveling wave data as observed in high density local field potential recordings (González-Ramírez et al. PLoS Computational Biology, 11(2), e1004065, 2015). In this work, we show that by adding an inhibitory population to this model we can still replicate wave properties as observed in human clinical data preceding seizure termination, but the parameter range over which such waves exist becomes more restricted. This restriction depends on the strength of the inhibition and the timescale at which the inhibition acts. In particular, if inhibition acts on a slower timescale relative to excitation then it is possible to still replicate traveling wave patterns as observed in the clinical data even with a relatively strong effect of inhibition. However, if inhibition acts on the same timescale as the excitation, or faster, then traveling wave patterns with the desired characteristics cease to exist when the inhibition becomes sufficiently strong.
Collapse
Affiliation(s)
- L R González-Ramírez
- Departamento de Formación Básica Disciplinaria, Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo del Instituto Politécnico Nacional, San Agustín Tlaxiaca, Hidalgo, México.
| | - M A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| |
Collapse
|
33
|
Robinson PA, Pagès JC, Gabay NC, Babaie T, Mukta KN. Neural field theory of perceptual echo and implications for estimating brain connectivity. Phys Rev E 2018; 97:042418. [PMID: 29758729 DOI: 10.1103/physreve.97.042418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 06/08/2023]
Abstract
Neural field theory is used to predict and analyze the phenomenon of perceptual echo in which random input stimuli at one location are correlated with electroencephalographic responses at other locations. It is shown that this echo correlation (EC) yields an estimate of the transfer function from the stimulated point to other locations. Modal analysis then explains the observed spatiotemporal structure of visually driven EC and the dominance of the alpha frequency; two eigenmodes of similar amplitude dominate the response, leading to temporal beating and a line of low correlation that runs from the crown of the head toward the ears. These effects result from mode splitting and symmetry breaking caused by interhemispheric coupling and cortical folding. It is shown how eigenmodes obtained from functional magnetic resonance imaging experiments can be combined with temporal dynamics from EC or other evoked responses to estimate the spatiotemporal transfer function between any two points and hence their effective connectivity.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, NSW 2006, Australia and Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| | - J C Pagès
- School of Physics, University of Sydney, NSW 2006, Australia and Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| | - N C Gabay
- School of Physics, University of Sydney, NSW 2006, Australia and Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| | - T Babaie
- School of Physics, University of Sydney, NSW 2006, Australia and Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| | - K N Mukta
- School of Physics, University of Sydney, NSW 2006, Australia and Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| |
Collapse
|
34
|
Tewarie P, Steenwijk MD, Brookes MJ, Uitdehaag BMJ, Geurts JJG, Stam CJ, Schoonheim MM. Explaining the heterogeneity of functional connectivity findings in multiple sclerosis: An empirically informed modeling study. Hum Brain Mapp 2018; 39:2541-2548. [PMID: 29468785 PMCID: PMC5969233 DOI: 10.1002/hbm.24020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
To understand the heterogeneity of functional connectivity results reported in the literature, we analyzed the separate effects of grey and white matter damage on functional connectivity and networks in multiple sclerosis. For this, we employed a biophysical thalamo‐cortical model consisting of interconnected cortical and thalamic neuronal populations, informed and amended by empirical diffusion MRI tractography data, to simulate functional data that mimic neurophysiological signals. Grey matter degeneration was simulated by decreasing within population connections and white matter degeneration by lowering between population connections, based on lesion predilection sites in multiple sclerosis. For all simulations, functional connectivity and functional network organization are quantified by phase synchronization and network integration, respectively. Modeling results showed that both cortical and thalamic grey matter damage induced a global increase in functional connectivity, whereas white matter damage induced an initially increased connectivity followed by a global decrease. Both white and especially grey matter damage, however, induced a decrease in network integration. These empirically informed simulations show that specific topology and timing of structural damage are nontrivial aspects in explaining functional abnormalities in MS. Insufficient attention to these aspects likely explains contradictory findings in multiple sclerosis functional imaging studies so far.
Collapse
Affiliation(s)
- Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Martijn D Steenwijk
- Department of Neurology, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Bernard M J Uitdehaag
- Department of Neurology, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Mukta KN, MacLaurin JN, Robinson PA. Theory of corticothalamic brain activity in a spherical geometry: Spectra, coherence, and correlation. Phys Rev E 2017; 96:052410. [PMID: 29347754 DOI: 10.1103/physreve.96.052410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Indexed: 11/07/2022]
Abstract
Corticothalamic neural field theory is applied to a spherical geometry to better model neural activity in the human brain and is also compared with planar approximations. The frequency power spectrum, correlation, and coherence functions are computed analytically and numerically. The effects of cortical boundary conditions and resulting modal aspects of spherical corticothalamic dynamics are explored, showing that the results of spherical and finite planar geometries converge to those for the infinite planar geometry in the limit of large brain size. Estimates are made of the point at which modal series can be truncated and it is found that for physiologically plausible parameters only the lowest few spatial eigenmodes are needed for an accurate representation of macroscopic brain activity. A difference between the geometries is that there is a low-frequency 1/f spectrum in the infinite planar geometry, whereas in the spherical geometry it is 1/f^{2}. Another difference is that the alpha peak in the spherical geometry is sharper and stronger than in the planar geometry. Cortical modal effects can lead to a double alpha peak structure in the power spectrum, although the main determinant of the alpha peak is corticothalamic feedback. In the spherical geometry, the cross spectrum between two points is found to only depend on their relative distance apart. At small spatial separations the low-frequency cross spectrum is stronger than for an infinite planar geometry and the alpha peak is sharper and stronger due to the partitioning of the energy into discrete modes. In the spherical geometry, the coherence function between points decays monotonically as their separation increases at a fixed frequency, but persists further at resonant frequencies. The correlation between two points is found to be positive, regardless of the time lag and spatial separation, but decays monotonically as the separation increases at fixed time lag. At fixed distance the correlation has peaks at multiples of the period of the dominant frequency of system activity.
Collapse
Affiliation(s)
- K N Mukta
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - J N MacLaurin
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
36
|
Roy N, Sanz-Leon P, Robinson PA. Spectral signatures of activity-dependent neural feedback in the corticothalamic system. Phys Rev E 2017; 96:052310. [PMID: 29347805 DOI: 10.1103/physreve.96.052310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Indexed: 11/07/2022]
Abstract
The modulation of neural quantities by presynaptic and postsynaptic activities via local feedback processes is investigated by incorporating nonlinear phenomena such as relative refractory period, synaptic enhancement, synaptic depression, and habituation. This is done by introducing susceptibilities, which quantify the response in either firing threshold or synaptic strength to unit change in either presynaptic or postsynaptic activity. Effects on the power spectra are then analyzed for a realistic corticothalamic model to determine the spectral signatures of various nonlinear processes and to what extent these are distinct. Depending on the feedback processes, there can be enhancements or reductions in low-frequency and/or alpha power, splitting of the alpha resonance, and/or appearance of new resonances at high frequencies. These features in the power spectra allow processes to be fully distinguished where they are unique, or partly distinguished if they are common to only a subset of feedbacks, and can potentially be used to constrain the types, strengths, and dynamics of feedbacks present.
Collapse
Affiliation(s)
- N Roy
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P Sanz-Leon
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
37
|
Gabay NC, Robinson PA. Cortical geometry as a determinant of brain activity eigenmodes: Neural field analysis. Phys Rev E 2017; 96:032413. [PMID: 29347046 DOI: 10.1103/physreve.96.032413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 12/22/2022]
Abstract
Perturbation analysis of neural field theory is used to derive eigenmodes of neural activity on a cortical hemisphere, which have previously been calculated numerically and found to be close analogs of spherical harmonics, despite heavy cortical folding. The present perturbation method treats cortical folding as a first-order perturbation from a spherical geometry. The first nine spatial eigenmodes on a population-averaged cortical hemisphere are derived and compared with previous numerical solutions. These eigenmodes contribute most to brain activity patterns such as those seen in electroencephalography and functional magnetic resonance imaging. The eigenvalues of these eigenmodes are found to agree with the previous numerical solutions to within their uncertainties. Also in agreement with the previous numerics, all eigenmodes are found to closely resemble spherical harmonics. The first seven eigenmodes exhibit a one-to-one correspondence with their numerical counterparts, with overlaps that are close to unity. The next two eigenmodes overlap the corresponding pair of numerical eigenmodes, having been rotated within the subspace spanned by that pair, likely due to second-order effects. The spatial orientations of the eigenmodes are found to be fixed by gross cortical shape rather than finer-scale cortical properties, which is consistent with the observed intersubject consistency of functional connectivity patterns. However, the eigenvalues depend more sensitively on finer-scale cortical structure, implying that the eigenfrequencies and consequent dynamical properties of functional connectivity depend more strongly on details of individual cortical folding. Overall, these results imply that well-established tools from perturbation theory and spherical harmonic analysis can be used to calculate the main properties and dynamics of low-order brain eigenmodes.
Collapse
Affiliation(s)
- Natasha C Gabay
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
38
|
Olejarczyk E, Bogucki P, Sobieszek A. The EEG Split Alpha Peak: Phenomenological Origins and Methodological Aspects of Detection and Evaluation. Front Neurosci 2017; 11:506. [PMID: 28955192 PMCID: PMC5601034 DOI: 10.3389/fnins.2017.00506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/28/2017] [Indexed: 11/13/2022] Open
Abstract
Electroencephalographic (EEG) patterns were analyzed in a group of ambulatory patients who ranged in age and sex using spectral analysis as well as Directed Transfer Function, a method used to evaluate functional brain connectivity. We tested the impact of window size and choice of reference electrode on the identification of two or more peaks with close frequencies in the spectral power distribution, so called "split alpha." Together with the connectivity analysis, examination of spatiotemporal maps showing the distribution of amplitudes of EEG patterns allowed for better explanation of the mechanisms underlying the generation of split alpha peaks. It was demonstrated that the split alpha spectrum can be generated by two or more independent and interconnected alpha wave generators located in different regions of the cerebral cortex, but not necessarily in the occipital cortex. We also demonstrated the importance of appropriate reference electrode choice during signal recording. In addition, results obtained using the original data were compared with results obtained using re-referenced data, using average reference electrode and reference electrode standardization techniques.
Collapse
Affiliation(s)
- Elzbieta Olejarczyk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of SciencesWarsaw, Poland
| | - Piotr Bogucki
- Department of Neurology and Epileptology, Medical Center for Postgraduate EducationWarsaw, Poland
| | - Aleksander Sobieszek
- Department of Neurology and Epileptology, Medical Center for Postgraduate EducationWarsaw, Poland
| |
Collapse
|
39
|
Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role. Prog Neurobiol 2017. [DOI: 10.1016/j.pneurobio.2017.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Sanz-Leon P, Robinson PA. Multistability in the corticothalamic system. J Theor Biol 2017; 432:141-156. [PMID: 28830686 DOI: 10.1016/j.jtbi.2017.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/26/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022]
Abstract
Neural field theory of the corticothalamic system is used to analyze the properties of its steady-state solutions, including their linear stability, in the parameter space of synaptic couplings for physiological parameter ranges representing normal arousal waking states in adult humans. The independent connections of the corticothalamic model define an eight-dimensional parameter space, while specific combinations of these connections parameterize intracortical, corticothalamic, and intrathalamic loops. Multistable regions are systematically identified and the existence of up to five steady-state solutions is confirmed, up to three of which are linearly stable. A key determinant for the existence of five steady states is found to be the number of nonzero connections. This finding had not been previously proposed as the determining factor of high multiplicities of multistability in mesoscopic models of the brain. In the corticothalamic model presented here, multistability occurs when the intrathalamic loop is present (i.e., the reticular nucleus inhibits the relay nuclei), and when the net synaptic effect of the intracortical loop is inhibitory. The signature of these additional waking states is an overall increased level of thalamic activity. It is argued that the additional steady states found may represent hyperarousal states which occur when the corticothalamic projections do not attenuate the activity of the cortex.
Collapse
Affiliation(s)
- Paula Sanz-Leon
- School of Physics, University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia.
| | - P A Robinson
- School of Physics, University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| |
Collapse
|
41
|
Hashemi M, Hutt A, Hight D, Sleigh J. Anesthetic action on the transmission delay between cortex and thalamus explains the beta-buzz observed under propofol anesthesia. PLoS One 2017; 12:e0179286. [PMID: 28622355 PMCID: PMC5473556 DOI: 10.1371/journal.pone.0179286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 05/26/2017] [Indexed: 11/18/2022] Open
Abstract
In recent years, more and more surgeries under general anesthesia have been performed with the assistance of electroencephalogram (EEG) monitors. An increase in anesthetic concentration leads to characteristic changes in the power spectra of the EEG. Although tracking the anesthetic-induced changes in EEG rhythms can be employed to estimate the depth of anesthesia, their precise underlying mechanisms are still unknown. A prominent feature in the EEG of some patients is the emergence of a strong power peak in the β-frequency band, which moves to the α-frequency band while increasing the anesthetic concentration. This feature is called the beta-buzz. In the present study, we use a thalamo-cortical neural population feedback model to reproduce observed characteristic features in frontal EEG power obtained experimentally during propofol general anesthesia, such as this beta-buzz. First, we find that the spectral power peak in the α- and δ-frequency ranges depend on the decay rate constant of excitatory and inhibitory synapses, but the anesthetic action on synapses does not explain the beta-buzz. Moreover, considering the action of propofol on the transmission delay between cortex and thalamus, the model reveals that the beta-buzz may result from a prolongation of the transmission delay by increasing propofol concentration. A corresponding relationship between transmission delay and anesthetic blood concentration is derived. Finally, an analytical stability study demonstrates that increasing propofol concentration moves the systems resting state towards its stability threshold.
Collapse
Affiliation(s)
- Meysam Hashemi
- INRIA Grand Est - Nancy, Team NEUROSYS, Villers-lès-Nancy, France
- CNRS, Loria, UMR nō 7503, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Loria, UMR nō 7503, Vandoeuvre-lès-Nancy, France
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Axel Hutt
- German Meteorology Service, Offenbach am Main, Germany
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | | | | |
Collapse
|
42
|
Yang DP, Robinson PA. Critical dynamics of Hopf bifurcations in the corticothalamic system: Transitions from normal arousal states to epileptic seizures. Phys Rev E 2017; 95:042410. [PMID: 28505725 DOI: 10.1103/physreve.95.042410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Indexed: 06/07/2023]
Abstract
A physiologically based corticothalamic model of large-scale brain activity is used to analyze critical dynamics of transitions from normal arousal states to epileptic seizures, which correspond to Hopf bifurcations. This relates an abstract normal form quantitatively to underlying physiology that includes neural dynamics, axonal propagation, and time delays. Thus, a bridge is constructed that enables normal forms to be used to interpret quantitative data. The normal form of the Hopf bifurcations with delays is derived using Hale's theory, the center manifold theorem, and normal form analysis, and it is found to be explicitly expressed in terms of transfer functions and the sensitivity matrix of a reduced open-loop system. It can be applied to understand the effect of each physiological parameter on the critical dynamics and determine whether the Hopf bifurcation is supercritical or subcritical in instabilities that lead to absence and tonic-clonic seizures. Furthermore, the effects of thalamic and cortical nonlinearities on the bifurcation type are investigated, with implications for the roles of underlying physiology. The theoretical predictions about the bifurcation type and the onset dynamics are confirmed by numerical simulations and provide physiologically based criteria for determining bifurcation types from first principles. The results are consistent with experimental data from previous studies, imply that new regimes of seizure transitions may exist in clinical settings, and provide a simplified basis for control-systems interventions. Using the normal form, and the full equations from which it is derived, more complex dynamics, such as quasiperiodic cycles and saddle cycles, are discovered near the critical points of the subcritical Hopf bifurcations.
Collapse
Affiliation(s)
- Dong-Ping Yang
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
43
|
Zobaer MS, Anderson RM, Kerr CC, Robinson PA, Wong KKH, D'Rozario AL. K-complexes, spindles, and ERPs as impulse responses: unification via neural field theory. BIOLOGICAL CYBERNETICS 2017; 111:149-164. [PMID: 28251306 DOI: 10.1007/s00422-017-0713-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
To interrelate K-complexes, spindles, evoked response potentials (ERPs), and spontaneous electroencephalography (EEG) using neural field theory (NFT), physiology-based NFT of the corticothalamic system is used to model cortical excitatory and inhibitory populations and thalamic relay and reticular nuclei. The impulse response function of the model is used to predict the responses to impulses, which are compared with transient waveforms in sleep studies. Fits to empirical data then allow underlying brain physiology to be inferred and compared with other waves. Spontaneous K-complexes, spindles, and other transient waveforms can be reproduced using NFT by treating them as evoked responses to impulsive stimuli with brain parameters appropriate to spontaneous EEG in sleep stage 2. Using this approach, spontaneous K-complexes and sleep spindles can be analyzed using the same single theory as previously been used to account for waking ERPs and other EEG phenomena. As a result, NFT can explain a wide variety of transient waveforms that have only been phenomenologically classified to date. This enables noninvasive fitting to be used to infer underlying physiological parameters. This physiology-based model reproduces the time series of different transient EEG waveforms; it has previously reproduced experimental EEG spectra, and waking ERPs, and many other observations, thereby unifying transient sleep waveforms with these phenomena.
Collapse
Affiliation(s)
- M S Zobaer
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia.
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, 2006, Australia.
- Center for Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, NSW, 2037, Australia.
- Department of Physics, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh.
| | - R M Anderson
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - C C Kerr
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, USA
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, 2006, Australia
- Center for Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, NSW, 2037, Australia
| | - K K H Wong
- CIRUS, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
- Respiratory and Sleep Disorders Department, Royal Prince Alfred Hospital and Sydney Local Health District, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - A L D'Rozario
- CIRUS, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
- Respiratory and Sleep Disorders Department, Royal Prince Alfred Hospital and Sydney Local Health District, Sydney, NSW, Australia
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
44
|
Robinson PA, Zhao X, Aquino KM, Griffiths JD, Sarkar S, Mehta-Pandejee G. Eigenmodes of brain activity: Neural field theory predictions and comparison with experiment. Neuroimage 2016; 142:79-98. [PMID: 27157788 DOI: 10.1016/j.neuroimage.2016.04.050] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 03/13/2016] [Accepted: 04/21/2016] [Indexed: 12/20/2022] Open
Abstract
Neural field theory of the corticothalamic system is applied to predict and analyze the activity eigenmodes of the bihemispheric brain, focusing particularly on their spatial structure. The eigenmodes of a single brain hemisphere are found to be close analogs of spherical harmonics, which are the natural modes of the sphere. Instead of multiple eigenvalues being equal, as in the spherical case, cortical folding splits them to have distinct values. Inclusion of interhemispheric connections between homologous regions via the corpus callosum leads to further splitting that depends on symmetry or antisymmetry of activity between brain hemispheres, and the strength and sign of the interhemispheric connections. Symmetry properties of the lowest observed eigenmodes strongly constrain the interhemispheric connectivity strengths and unihemispheric mode spectra, and it is predicted that most spontaneous brain activity will be symmetric between hemispheres, consistent with observations. Comparison with the eigenmodes of an experimental anatomical connectivity matrix confirms these results, permits the relative strengths of intrahemispheric and interhemispheric connectivities to be approximately inferred from their eigenvalues, and lays the foundation for further experimental tests. The results are consistent with brain activity being in corticothalamic eigenmodes, rather than discrete "networks" and open the way to new approaches to brain analysis.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia.
| | - X Zhao
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - K M Aquino
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Sir Peter Mansfield Imaging Center, University of Nottingham, Nottingham NG7 2RD, UK, EU
| | - J D Griffiths
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Rotman Research Institute at Baycrest, 3560 Bathurst St, Toronto, Ontario, M6A 2E1, Canada
| | - S Sarkar
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Design Lab, School of Architecture, Design, and Planning, University of Sydney, New South Wales 2006, Australia
| | - Grishma Mehta-Pandejee
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
45
|
Abeysuriya RG, Robinson PA. Real-time automated EEG tracking of brain states using neural field theory. J Neurosci Methods 2015; 258:28-45. [PMID: 26523766 DOI: 10.1016/j.jneumeth.2015.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 12/01/2022]
Abstract
A real-time fitting system is developed and used to fit the predictions of an established physiologically-based neural field model to electroencephalographic spectra, yielding a trajectory in a physiological parameter space that parametrizes intracortical, intrathalamic, and corticothalamic feedbacks as the arousal state evolves continuously over time. This avoids traditional sleep/wake staging (e.g., using Rechtschaffen-Kales stages), which is fundamentally limited because it forces classification of continuous dynamics into a few discrete categories that are neither physiologically informative nor individualized. The classification is also subject to substantial interobserver disagreement because traditional staging relies in part on subjective evaluations. The fitting routine objectively and robustly tracks arousal parameters over the course of a full night of sleep, and runs in real-time on a desktop computer. The system developed here supersedes discrete staging systems by representing arousal states in terms of physiology, and provides an objective measure of arousal state which solves the problem of interobserver disagreement. Discrete stages from traditional schemes can be expressed in terms of model parameters for backward compatibility with prior studies.
Collapse
Affiliation(s)
- R G Abeysuriya
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia.
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
46
|
How the cortico-thalamic feedback affects the EEG power spectrum over frontal and occipital regions during propofol-induced sedation. J Comput Neurosci 2015; 39:155-79. [PMID: 26256583 DOI: 10.1007/s10827-015-0569-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022]
Abstract
Increasing concentrations of the anaesthetic agent propofol initially induces sedation before achieving full general anaesthesia. During this state of anaesthesia, the observed specific changes in electroencephalographic (EEG) rhythms comprise increased activity in the δ- (0.5-4 Hz) and α- (8-13 Hz) frequency bands over the frontal region, but increased δ- and decreased α-activity over the occipital region. It is known that the cortex, the thalamus, and the thalamo-cortical feedback loop contribute to some degree to the propofol-induced changes in the EEG power spectrum. However the precise role of each structure to the dynamics of the EEG is unknown. In this paper we apply a thalamo-cortical neuronal population model to reproduce the power spectrum changes in EEG during propofol-induced anaesthesia sedation. The model reproduces the power spectrum features observed experimentally both in frontal and occipital electrodes. Moreover, a detailed analysis of the model indicates the importance of multiple resting states in brain activity. The work suggests that the α-activity originates from the cortico-thalamic relay interaction, whereas the emergence of δ-activity results from the full cortico-reticular-relay-cortical feedback loop with a prominent enforced thalamic reticular-relay interaction. This model suggests an important role for synaptic GABAergic receptors at relay neurons and, more generally, for the thalamus in the generation of both the δ- and the α- EEG patterns that are seen during propofol anaesthesia sedation.
Collapse
|
47
|
Robinson PA, Roy N. Neural field theory of nonlinear wave-wave and wave-neuron processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062719. [PMID: 26172747 DOI: 10.1103/physreve.91.062719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 06/04/2023]
Abstract
Systematic expansion of neural field theory equations in terms of nonlinear response functions is carried out to enable a wide variety of nonlinear wave-wave and wave-neuron processes to be treated systematically in systems involving multiple neural populations. The results are illustrated by analyzing second-harmonic generation, and they can also be applied to wave-wave coalescence, multiharmonic generation, facilitation, depression, refractoriness, and other nonlinear processes.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
- Neurosleep, 431 Glebe Point Road, Glebe, New South Wales 2037, Australia
| | - N Roy
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
48
|
Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. Mathematical framework for large-scale brain network modeling in The Virtual Brain. Neuroimage 2015; 111:385-430. [PMID: 25592995 DOI: 10.1016/j.neuroimage.2015.01.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 12/29/2014] [Accepted: 01/01/2015] [Indexed: 12/19/2022] Open
|
49
|
Abstract
Rhythmic activity plays a central role in neural computations and brain functions ranging from homeostasis to attention, as well as in neurological and neuropsychiatric disorders. Despite this pervasiveness, little is known about the mechanisms whereby the frequency and power of oscillatory activity are modulated, and how they reflect the inputs received by neurons. Numerous studies have reported input-dependent fluctuations in peak frequency and power (as well as couplings across these features). However, it remains unresolved what mediates these spectral shifts among neural populations. Extending previous findings regarding stochastic nonlinear systems and experimental observations, we provide analytical insights regarding oscillatory responses of neural populations to stimulation from either endogenous or exogenous origins. Using a deceptively simple yet sparse and randomly connected network of neurons, we show how spiking inputs can reliably modulate the peak frequency and power expressed by synchronous neural populations without any changes in circuitry. Our results reveal that a generic, non-nonlinear and input-induced mechanism can robustly mediate these spectral fluctuations, and thus provide a framework in which inputs to the neurons bidirectionally regulate both the frequency and power expressed by synchronous populations. Theoretical and computational analysis of the ensuing spectral fluctuations was found to reflect the underlying dynamics of the input stimuli driving the neurons. Our results provide insights regarding a generic mechanism supporting spectral transitions observed across cortical networks and spanning multiple frequency bands.
Collapse
|
50
|
Saggar M, Zanesco AP, King BG, Bridwell DA, MacLean KA, Aichele SR, Jacobs TL, Wallace BA, Saron CD, Miikkulainen R. Mean-field thalamocortical modeling of longitudinal EEG acquired during intensive meditation training. Neuroimage 2015; 114:88-104. [PMID: 25862265 DOI: 10.1016/j.neuroimage.2015.03.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/10/2014] [Accepted: 03/27/2015] [Indexed: 12/18/2022] Open
Abstract
Meditation training has been shown to enhance attention and improve emotion regulation. However, the brain processes associated with such training are poorly understood and a computational modeling framework is lacking. Modeling approaches that can realistically simulate neurophysiological data while conforming to basic anatomical and physiological constraints can provide a unique opportunity to generate concrete and testable hypotheses about the mechanisms supporting complex cognitive tasks such as meditation. Here we applied the mean-field computational modeling approach using the scalp-recorded electroencephalogram (EEG) collected at three assessment points from meditating participants during two separate 3-month-long shamatha meditation retreats. We modeled cortical, corticothalamic, and intrathalamic interactions to generate a simulation of EEG signals recorded across the scalp. We also present two novel extensions to the mean-field approach that allow for: (a) non-parametric analysis of changes in model parameter values across all channels and assessments; and (b) examination of variation in modeled thalamic reticular nucleus (TRN) connectivity over the retreat period. After successfully fitting whole-brain EEG data across three assessment points within each retreat, two model parameters were found to replicably change across both meditation retreats. First, after training, we observed an increased temporal delay between modeled cortical and thalamic cells. This increase provides a putative neural mechanism for a previously observed reduction in individual alpha frequency in these same participants. Second, we found decreased inhibitory connection strength between the TRN and secondary relay nuclei (SRN) of the modeled thalamus after training. This reduction in inhibitory strength was found to be associated with increased dynamical stability of the model. Altogether, this paper presents the first computational approach, taking core aspects of physiology and anatomy into account, to formally model brain processes associated with intensive meditation training. The observed changes in model parameters inform theoretical accounts of attention training through meditation, and may motivate future study on the use of meditation in a variety of clinical populations.
Collapse
Affiliation(s)
- Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Department of Computer Science, University of Texas at Austin, TX, USA.
| | - Anthony P Zanesco
- Department of Psychology, University of California, Davis, CA, USA; Center for Mind and Brain, University of California, Davis, CA, USA
| | - Brandon G King
- Department of Psychology, University of California, Davis, CA, USA; Center for Mind and Brain, University of California, Davis, CA, USA
| | | | - Katherine A MacLean
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen R Aichele
- Department of Psychology, University of California, Davis, CA, USA; Center for Mind and Brain, University of California, Davis, CA, USA
| | - Tonya L Jacobs
- Center for Mind and Brain, University of California, Davis, CA, USA
| | - B Alan Wallace
- Santa Barbara Institute for Consciousness Studies, Santa Barbara, CA, USA
| | - Clifford D Saron
- Center for Mind and Brain, University of California, Davis, CA, USA; The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, USA
| | | |
Collapse
|