1
|
Escamilla-Herrera LF, López-Picón JL, Torres-Arenas J, Gil-Villegas A. Semiclassical thermodynamic geometry. Phys Rev E 2024; 109:064145. [PMID: 39020900 DOI: 10.1103/physreve.109.064145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
In this work the thermodynamic geometry (TG) of semiclassical fluids is analyzed. We present results for two models. The first one is a semiclassical hard-sphere (SCHS) fluid whose Helmholtz free energy is obtained from path-integral Monte Carlo simulations. It is found that, due to quantum contributions in the thermodynamic potential, the anomaly found in TG for the classical hard-sphere fluid related to the sign of the scalar curvature is now avoided in a considerable region of the thermodynamic space. The second model is a semiclassical square-well fluid, described by a SCHS repulsive interaction coupled with a classical attractive square-well contribution. The behavior of the semiclassical curvature scalar as a function of the thermal de Broglie wavelength λ_{B} is analyzed for several attractive-potential ranges. A description of the semiclassical R Widom lines, defined by the maxima of the curvature scalar, is also obtained and results are compared with the corresponding classical systems for different square-well ranges.
Collapse
Affiliation(s)
- L F Escamilla-Herrera
- División de Ciencias e Ingenierías Campus León, Universidad de Guanajuato, AP E-143, CP 37150, León, Guanajuato, México
| | - J L López-Picón
- División de Ciencias e Ingenierías Campus León, Universidad de Guanajuato, AP E-143, CP 37150, León, Guanajuato, México
| | - José Torres-Arenas
- División de Ciencias e Ingenierías Campus León, Universidad de Guanajuato, AP E-143, CP 37150, León, Guanajuato, México
| | - Alejandro Gil-Villegas
- División de Ciencias e Ingenierías Campus León, Universidad de Guanajuato, AP E-143, CP 37150, León, Guanajuato, México
| |
Collapse
|
2
|
Li X, Jin Y. Thermodynamic crossovers in supercritical fluids. Proc Natl Acad Sci U S A 2024; 121:e2400313121. [PMID: 38652745 PMCID: PMC11067041 DOI: 10.1073/pnas.2400313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Can liquid-like and gas-like states be distinguished beyond the critical point, where the liquid-gas phase transition no longer exists and conventionally only a single supercritical fluid phase is defined? Recent experiments and simulations report strong evidence of dynamical crossovers above the critical temperature and pressure. Despite using different criteria, many existing theoretical explanations consider a single crossover line separating liquid-like and gas-like states in the supercritical fluid phase. We argue that such a single-line scenario is inconsistent with the supercritical behavior of the Ising model, which has two crossover lines due to its symmetry, violating the universality principle of critical phenomena. To reconcile the inconsistency, we define two thermodynamic crossover lines in supercritical fluids as boundaries of liquid-like, indistinguishable, and gas-like states. Near the critical point, the two crossover lines follow critical scalings with exponents of the Ising universality class, supported by calculations of theoretical models and analyses of experimental data from the standard database. The upper line agrees with crossovers independently estimated from the inelastic X-ray scattering data of supercritical argon, and from the small-angle neutron scattering data of supercritical carbon dioxide. The lower line is verified by the equation of states for the compressibility factor. This work provides a fundamental framework for understanding supercritical physics in general phase transitions.
Collapse
Affiliation(s)
- Xinyang Li
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yuliang Jin
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325001, China
| |
Collapse
|
3
|
Lundin AA, Chaikina YA, Shushin AI, Umanskii SY. On the Capabilities of Optical Diagnostics Methods to Monitor the State of Supercritical Fluids near the Widom Line. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122080115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
López-Picón J, Escamilla-Herrera L, Torres-Arenas J. The square-well fluid: A thermodynamic geometric view. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
de Leon K, Vega I. Phase boundaries and the Widom line from the Ruppeiner geometry of fluids. Phys Rev E 2022; 106:054141. [PMID: 36559360 DOI: 10.1103/physreve.106.054141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
The Ruppeiner geometry has been shown to provide novel ways for constructing the phase boundaries and the Widom line of certain fluids. This paper examines the applicability of these geometric constructions to more general fluids. We develop a general equation-of-state expansion for fluids near a critical point that mainly assumes analyticity with respect to the number density. Based on this general parametrization of fluids, we prove the equivalence of the Ruppeiner geometric construction and the standard Maxwell construction of phase boundaries near the critical point. In contrast, we find that the usual prescription based on the Ruppeiner geometry for the Widom line does not produce the expected Widom line for arbitrary cases of our general fluid equation of state. This usual prescription relies on the Ruppeiner metric induced on a particular hypersurface of the thermodynamic manifold. We show that by choosing a different hypersurface, which we call the Ruppeiner-N surface, and using its associated induced metric, the Ruppeiner construction generates the entire Widom line of the van der Waals fluid exactly, even away from the critical point. Interestingly, this alternative hypersurface yields another benefit. It improves the classification scheme originally proposed by Diósi et al. for partitioning the van der Waals state space into its different phases using geodesics of a thermodynamic metric. We argue that, whereas the original Diósi boundaries did not correspond to any clear thermodynamic lines, the corresponding boundaries based on the Ruppeiner-N metric become sensitive to the presence of the van der Waals Widom line and provide the correct classification of all van der Waals states. These results suggest that the Ruppeiner-N surface may be the more appropriate hypersurface to use when studying phase diagrams with thermodynamic geometry.
Collapse
Affiliation(s)
- Karlo de Leon
- Graduate School of Arts and Science, New York University, New York, New York 10003, USA
| | - Ian Vega
- National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101, Philippines
| |
Collapse
|
6
|
Mausbach P, Fingerhut R, Vrabec J. Thermodynamic metric geometry and the Fisher-Widom line of simple fluids. Phys Rev E 2022; 106:034136. [PMID: 36266912 DOI: 10.1103/physreve.106.034136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
Two boundary lines are frequently discussed in the literature, separating state regions dominated by repulsion or attraction. The Fisher-Widom line indicates where the longest-range decay of the total pair correlation function crosses from monotonic to exponentially damped oscillatory. In the context of thermodynamic metric geometry, such a transition exists where the Ricci curvature scalar vanishes, R=0. To establish a possible relation between these two lines, R is worked out for four simple fluids. The truncated and shifted Lennard-Jones, a colloid-like and the square-well potential are analyzed to investigate the influence of the repulsive nature on the location of the R=0 line. For the longer-ranged Lennard-Jones potential, the influence of the cutoff radius on the R=0 line is studied. The results are compared with literature data on the Fisher-Widom line. Since such data are rare for the longer-ranged Lennard-Jones potential, dedicated simulations are carried out to determine the number of zeros of the total correlation function, which may provide approximate information about the position of the Fisher-Widom line. An increase of the repulsive strength toward hard sphere interaction leads to the disappearance of the R=0 line in the fluid phase. A rising attraction range results in the nonexistence of the Fisher-Widom line, while it has little effect on the R=0 line as long as it is present in the fluid state.
Collapse
Affiliation(s)
- Peter Mausbach
- Plant and Process Engineering, Technical University of Cologne, 50678 Cologne, Germany
| | - Robin Fingerhut
- Thermodynamics and Process Engineering, Technical University of Berlin, 10587 Berlin, Germany
| | - Jadran Vrabec
- Thermodynamics and Process Engineering, Technical University of Berlin, 10587 Berlin, Germany
| |
Collapse
|
7
|
Widom line of supercritical CO2 calculated by equations of state and molecular dynamics simulation. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Sanwari R, Sahay A. Thermodynamic geometry of spin-one lattice models. II. Criticality and coexistence in the mean-field approximation. Phys Rev E 2022; 105:034135. [PMID: 35428126 DOI: 10.1103/physreve.105.034135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
We continue our study of the thermodynamic geometry of the spin one model from A. Sahay and R. Sanwari, Phys. Rev. E 105, 034134 (2022)10.1103/PhysRevE.105.034134. by probing the state space geometry of the Blume-Emery-Griffiths model and the Blume-Capel model in their mean-field approximation. By accounting for the stochastic variables involved we construct from the thermodynamic state space two complementary two-dimensional geometries with curvatures R_{m} and R_{q} which are shown to encode correlations in the model's two order parameters, the magnetization m and the quadrupole moment q. The geometry is investigated in the zero as well as the nonzero magnetic field region. We find that the relevant scalar curvatures diverge to negative infinity along the critical lines with the correct scaling and amplitude. We then probe the geometry of phase coexistence and find that the relevant curvatures predict the coexistence curve remarkably well via their respective R-crossing diagrams. We also briefly comment on the effectiveness of the geometric correlation length compared to the commonly used Ginzburg-Landau correlation length vis-à-vis their scaling properties.
Collapse
Affiliation(s)
- Riekshika Sanwari
- Department of Physics, National Institute of Technology Patna, Patna 800005, India
| | - Anurag Sahay
- Department of Physics, National Institute of Technology Patna, Patna 800005, India
| |
Collapse
|
9
|
Sanwari R, Sahay A. Thermodynamic geometry of spin-one lattice models. I. Spin and quadrupolar orders and critical scaling functions in one dimension. Phys Rev E 2022; 105:034134. [PMID: 35428127 DOI: 10.1103/physreve.105.034134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
State space Riemannian geometry is obtained for the one-dimensional Blume-Emery-Griffiths model and its Blume-Capel and Griffiths model limits, and its (pseudo)critical as well as noncritical parameter regimes are extensively investigated. Two codimension one geometries are obtained by taking suitable hypersurfaces in the three-dimensional state space manifold, and the induced thermal metrics are accordingly interpreted in terms of constrained fluctuations. The three-dimensional scalar curvature and the two two-dimensional curvatures are shown to be consistent with Ruppeiner's conjecture relating the inverse of the singular free energy to the thermodynamic scalar curvature. Moreover, they are found to be in an excellent agreement over a greater part of the noncritical region with the corresponding correlation lengths for the spin and the quadrupolar order parameters. The scaling function for the free energy near the pseudocritical and tricritical points is obtained thermodynamically by using Ruppeiner's conjecture. A connection is made between the sign change in the curvatures and the change in fluctuation patterns of the order parameters. In the accompanying paper we shall analyze the geometry of the spin-one model in its mean field approximation.
Collapse
Affiliation(s)
- Riekshika Sanwari
- Department of Physics, National Institute of Technology Patna, Patna 800005, India
| | - Anurag Sahay
- Department of Physics, National Institute of Technology Patna, Patna 800005, India
| |
Collapse
|
10
|
|
11
|
The Anomalous Behavior of Thermodynamic Parameters in the Three Widom Deltas of Carbon Dioxide-Ethanol Mixture. Int J Mol Sci 2021; 22:ijms22189813. [PMID: 34575970 PMCID: PMC8472178 DOI: 10.3390/ijms22189813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Using molecular dynamics, we demonstrated that in the mixture of carbon dioxide and ethanol (25% molar fraction) there are three pronounced regions on the p-T diagram characterized by not only high-density fluctuations but also anomalous behavior of thermodynamic parameters. The regions are interpreted as Widom deltas. The regions were identified as a result of analyzing the dependences of density, density fluctuations, isobaric thermal conductivity, and clustering of a mixture of carbon dioxide and ethanol in a wide range of pressures and temperatures. Two of the regions correspond to the Widom delta for pure supercritical carbon dioxide and ethanol, while the third region is in the immediate vicinity of the critical point of the binary mixture. The origin of these Widom deltas is a result of the large mixed linear clusters formation.
Collapse
|
12
|
van Westen T. Algebraic second virial coefficient of the Mie m - 6 intermolecular potential based on perturbation theory. J Chem Phys 2021; 154:234502. [PMID: 34241261 DOI: 10.1063/5.0050659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We propose several simple algebraic approximations for the second virial coefficient of fluids whose molecules interact by a generic Mie m - 6 intermolecular pair potential. In line with a perturbation theory, the parametric equations are formulated as the sum of a contribution due to a reference part of the intermolecular potential and a perturbation. Thereby, the equations provide a convenient (low-density) starting point for developing equation-of-state models of fluids or for developing similar approximations for the virial coefficient of (polymeric-)chain fluids. The choice of Barker and Henderson [J. Chem. Phys. 47, 4714 (1967)] and Weeks, Chandler, and Andersen [Phys. Rev. Lett. 25, 149 (1970); J. Chem. Phys. 54, 5237 (1971); and Phys. Rev. A 4, 1597 (1971)] for the reference part of the potential is considered. Our analytic approximations correctly recover the virial coefficient of the inverse-power potential of exponent m in the high-temperature limit and provide accurate estimates of the temperatures for which the virial coefficient equals zero or takes on its maximum value. Our description of the reference contribution to the second virial coefficient follows from an exact mapping onto the second virial coefficient of hard spheres; we propose a simple algebraic equation for the corresponding effective diameter of the hard spheres, which correctly recovers the low- and high-temperature scaling and limits of the reference fluid's second virial coefficient.
Collapse
Affiliation(s)
- Thijs van Westen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| |
Collapse
|
13
|
Abdulagatov IM, Skripov PV. Thermodynamic and Transport Properties of Supercritical Fluids: Review of Thermodynamic Properties (Part 1). RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [DOI: 10.1134/s1990793120070192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Mareev E, Semenov T, Lazarev A, Minaev N, Sviridov A, Potemkin F, Gordienko V. Optical Diagnostics of Supercritical CO 2 and CO 2-Ethanol Mixture in the Widom Delta. Molecules 2020; 25:molecules25225424. [PMID: 33228172 PMCID: PMC7699601 DOI: 10.3390/molecules25225424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
The supercritical CO2 (scCO2) is widely used as solvent and transport media in different technologies. The technological aspects of scCO2 fluid applications strongly depend on spatial–temporal fluctuations of its thermodynamic parameters. The region of these parameters’ maximal fluctuations on the p-T (pressure-temperature) diagram is called Widom delta. It has significant practical and fundamental interest. We offer an approach that combines optical measurements and molecular dynamics simulation in a wide range of pressures and temperatures. We studied the microstructure of supercritical CO2 fluid and its binary mixture with ethanol in a wide range of temperatures and pressures using molecular dynamics (MD) simulation. MD is used to retrieve a set of optical characteristics such as Raman spectra, refractive indexes and molecular refraction and was verified by appropriate experimental measurements. We demonstrated that in the Widom delta the monotonic dependence of the optical properties on the CO2 density is violated. It is caused by the rapid increase of density fluctuations and medium-sized (20–30 molecules) cluster formation. We identified the correlation between cluster parameters and optical properties of the media; in particular, it is established that the clusters in the Widom delta acts as a seed for clustering in molecular jets. MD demonstrates that the cluster formation is stronger in the supercritical CO2-ethanol mixture, where the extended binary clusters are formed; that is, the nonlinear refractive index significantly increased. The influence of the supercritical state in the cell on the formation of supersonic cluster jets is studied using the Mie scattering technique.
Collapse
Affiliation(s)
- Evgenii Mareev
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (N.M.); (A.S.); (V.G.)
- Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory bld.1/2, 119991 Moscow, Russia; (T.S.); (F.P.)
- Correspondence:
| | - Timur Semenov
- Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory bld.1/2, 119991 Moscow, Russia; (T.S.); (F.P.)
- Institute on Laser and Information Technologies—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Svyatoozerskaya 1, Shatura, 140700 Moscow, Russia
| | - Alexander Lazarev
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory bld.1/2, 119991 Moscow, Russia;
| | - Nikita Minaev
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (N.M.); (A.S.); (V.G.)
| | - Alexander Sviridov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (N.M.); (A.S.); (V.G.)
| | - Fedor Potemkin
- Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory bld.1/2, 119991 Moscow, Russia; (T.S.); (F.P.)
| | - Vyacheslav Gordienko
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (N.M.); (A.S.); (V.G.)
- Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory bld.1/2, 119991 Moscow, Russia; (T.S.); (F.P.)
| |
Collapse
|
15
|
Stephan S, Deiters UK. Characteristic Curves of the Lennard-Jones Fluid. INTERNATIONAL JOURNAL OF THERMOPHYSICS 2020; 41:147. [PMID: 32863513 PMCID: PMC7441092 DOI: 10.1007/s10765-020-02721-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/25/2020] [Indexed: 05/25/2023]
Abstract
Equations of state based on intermolecular potentials are often developed about the Lennard-Jones (LJ) potential. Many of such EOS have been proposed in the past. In this work, 20 LJ EOS were examined regarding their performance on Brown's characteristic curves and characteristic state points. Brown's characteristic curves are directly related to the virial coefficients at specific state points, which can be computed exactly from the intermolecular potential. Therefore, also the second and third virial coefficient of the LJ fluid were investigated. This approach allows a comparison of available LJ EOS at extreme conditions. Physically based, empirical, and semi-theoretical LJ EOS were examined. Most investigated LJ EOS exhibit some unphysical artifacts.
Collapse
Affiliation(s)
- Simon Stephan
- Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, Erwin-Schrödinger-Straße 44, 67663 Kaiserslautern, Germany
| | - Ulrich K. Deiters
- Institute of Physical Chemistry, University of Cologne, Greinstraße 4-6, 50939 Cologne, Germany
| |
Collapse
|
16
|
Bell IH, Galliero G, Delage-Santacreu S, Costigliola L. An entropy scaling demarcation of gas- and liquid-like fluid behaviors. J Chem Phys 2020; 152:191102. [PMID: 33687260 DOI: 10.1063/1.5143854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we propose a generic and simple definition of a line separating gas-like and liquid-like fluid behaviors from the standpoint of shear viscosity. This definition is valid even for fluids such as the hard sphere and the inverse power law that exhibit a unique fluid phase. We argue that this line is defined by the location of the minimum of the macroscopically scaled viscosity when plotted as a function of the excess entropy, which differs from the popular Widom lines. For hard sphere, Lennard-Jones, and inverse-power-law fluids, such a line is located at an excess entropy approximately equal to -2/3 times Boltzmann's constant and corresponds to points in the thermodynamic phase diagram for which the kinetic contribution to viscosity is approximately half of the total viscosity. For flexible Lennard-Jones chains, the excess entropy at the minimum is a linear function of the chain length. This definition opens a straightforward route to classify the dynamical behavior of fluids from a single thermodynamic quantity obtainable from high-accuracy thermodynamic models.
Collapse
Affiliation(s)
- Ian H Bell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Guillaume Galliero
- Universite de Pau et des Pays de l'Adour, e2s UPPA, TOTAL, CNRS, LFCR, UMR 5150, Laboratoire des fluides complexes et leurs reservoirs, Pau, France
| | - Stéphanie Delage-Santacreu
- Universite de Pau et des Pays de l'Adour, e2s UPPA, Laboratoire de Mathematiques et de leurs Applications de Pau (IPRA, CNRS UMR5142), Pau, France
| | - Lorenzo Costigliola
- Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
17
|
Alsaifi NM. Simulation‐based
equations of state for the
Lennard‐Jones
fluid: Apparent success and hidden failure. AIChE J 2020. [DOI: 10.1002/aic.16244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nayef M. Alsaifi
- Chemical Engineering DepartmentKing Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
| |
Collapse
|
18
|
Jaramillo-Gutiérrez J, López JL, Torres-Arenas J. R -crossing method applied to fluids interacting through variable range potentials. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Zerón I, Torres-Arenas J, de Jesús E, Ramírez B, Benavides A. Discrete potential fluids in the supercritical region. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Stephan S, Thol M, Vrabec J, Hasse H. Thermophysical Properties of the Lennard-Jones Fluid: Database and Data Assessment. J Chem Inf Model 2019; 59:4248-4265. [DOI: 10.1021/acs.jcim.9b00620] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simon Stephan
- Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Monika Thol
- Thermodynamics, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jadran Vrabec
- Thermodynamics and Process Engineering, TU Berlin, 10587 Berlin, Germany
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
21
|
Affiliation(s)
- James Losey
- Centre for Computational Innovations, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia
| | - Richard J. Sadus
- Centre for Computational Innovations, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
22
|
Mausbach P, May HO, Ruppeiner G. Thermodynamic metric geometry of the two-state ST2 model for supercooled water. J Chem Phys 2019. [DOI: 10.1063/1.5101075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Sun Z, Kang Y, Kang Y. Density Functional Study on Enhancement of Modulus of Confined Fluid in Nanopores. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zongli Sun
- Science and Technology College, North China Electric Power University, Baoding 071051, P. R. China
| | - Yanshuang Kang
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yanmei Kang
- University of International Relations, Beijing 100091, P. R. China
| |
Collapse
|
24
|
Bell IH, Messerly R, Thol M, Costigliola L, Dyre JC. Modified Entropy Scaling of the Transport Properties of the Lennard-Jones Fluid. J Phys Chem B 2019; 123:6345-6363. [PMID: 31241958 DOI: 10.1021/acs.jpcb.9b05808] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rosenfeld proposed two different scaling approaches to model the transport properties of fluids, separated by 22 years, one valid in the dilute gas, and another in the liquid phase. In this work, we demonstrate that these two limiting cases can be connected through the use of a novel approach to scaling transport properties and a bridging function. This approach, which is empirical and not derived from theory, is used to generate reference correlations for the transport properties of the Lennard-Jones 12-6 fluid of viscosity, thermal conductivity, and self-diffusion. This approach, with a very simple functional form, allows for the reproduction of the most accurate simulation data to within nearly their statistical uncertainty. The correlations are used to confirm that for the Lennard-Jones fluid the appropriately scaled transport properties are nearly monovariate functions of the excess entropy from low-density gases into the supercooled phase and up to extreme temperatures. This study represents the most comprehensive metastudy of the transport properties of the Lennard-Jones fluid to date.
Collapse
Affiliation(s)
- Ian H Bell
- Applied Chemicals and Materials Division , National Institute of Standards and Technology , Boulder , Colorado 80305 , United States
| | - Richard Messerly
- Applied Chemicals and Materials Division , National Institute of Standards and Technology , Boulder , Colorado 80305 , United States
| | - Monika Thol
- Thermodynamics , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany
| | - Lorenzo Costigliola
- DNRF Centre "Glass and Time," IMFUFA, Department of Science and Environment , Roskilde University , Postbox 260, DK-4000 Roskilde , Denmark
| | - Jeppe C Dyre
- DNRF Centre "Glass and Time," IMFUFA, Department of Science and Environment , Roskilde University , Postbox 260, DK-4000 Roskilde , Denmark
| |
Collapse
|
25
|
Yoon TJ, Ha MY, Lee WB, Lee YW. A corresponding-state framework for the structural transition of supercritical fluids across the Widom delta. J Chem Phys 2019; 150:154503. [DOI: 10.1063/1.5086467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Tae Jun Yoon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, South Korea
| | - Min Young Ha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, South Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, South Korea
| | - Youn-Woo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
26
|
Takemoto A, Kinugawa K. Quantumness and state boundaries hidden in supercritical helium-4: A path integral centroid molecular dynamics study. J Chem Phys 2018; 149:204504. [DOI: 10.1063/1.5053988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ayumi Takemoto
- Division of Chemistry, Graduate School of Humanities and Sciences, Nara Women’s University, Nara 630-8506, Japan
| | - Kenichi Kinugawa
- Division of Chemistry, Graduate School of Humanities and Sciences, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
27
|
Schienbein P, Marx D. Investigation concerning the uniqueness of separatrix lines separating liquidlike from gaslike regimes deep in the supercritical phase of water with a focus on Widom line concepts. Phys Rev E 2018; 98:022104. [PMID: 30253513 DOI: 10.1103/physreve.98.022104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 06/08/2023]
Abstract
The supercritical phase of fluids has long been known to feature significantly different liquidlike and gaslike regimes. However, it is textbook knowledge that the supercritical state is a homogeneous fluid phase where properties change continuously. Nevertheless, there has been an increasing amount of evidence published that suggests that there might exist a unique line that rigorously separates different regimes in supercritical phases, particularly in the case of water. Here, we use the quasiexact IAPWS95 equation of state to rigorously assess the macroscopic thermodynamic properties of supercritical water without invoking any water model or related approximations. We focus on how these properties change deep in the supercritical phase, in particular if they allow one to introduce a unique "thermodynamic separatrix." Our rigorous thermodynamic analysis, which relies exclusively on accurate experimental data, makes clear that there is no unique separatrix in real supercritical water-such as the recently much-invoked "Widom line." A comparison to the van der Waals equation of state reproduces qualitatively all our findings for real water, thereby suggesting that our analysis should be transferable to other fluids and critical points. Topological analysis of the H-bond network structure of supercritical water, as obtained from molecular-dynamics simulations using a standard water model, demonstrates that also the percolation line does not provide a meaningful separatrix to rigorously distinguish liquidlike from gaslike regimes.
Collapse
Affiliation(s)
- Philipp Schienbein
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
28
|
Sadus RJ. Intermolecular Potential-Based Equations of State from Molecular Simulation and Second Virial Coefficient Properties. J Phys Chem B 2018; 122:7757-7763. [DOI: 10.1021/acs.jpcb.8b05725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Richard J. Sadus
- Computational Science Laboratory, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
29
|
Yoon TJ, Ha MY, Lee WB, Lee YW. Probabilistic characterization of the Widom delta in supercritical region. J Chem Phys 2018; 149:014502. [DOI: 10.1063/1.5035106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Tae Jun Yoon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, South Korea
| | - Min Young Ha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, South Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, South Korea
| | - Youn-Woo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
30
|
Mausbach P, Köster A, Vrabec J. Liquid state isomorphism, Rosenfeld-Tarazona temperature scaling, and Riemannian thermodynamic geometry. Phys Rev E 2018; 97:052149. [PMID: 29906919 DOI: 10.1103/physreve.97.052149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 11/07/2022]
Abstract
Aspects of isomorph theory, Rosenfeld-Tarazona temperature scaling, and thermodynamic geometry are comparatively discussed on the basis of the Lennard-Jones potential. The first two approaches approximate the high-density fluid state well when the repulsive interparticle interactions become dominant, which is typically the case close to the freezing line. However, previous studies of Rosenfeld-Tarazona scaling for the isochoric heat capacity and its relation to isomorph theory reveal deviations for the temperature dependence. It turns out that a definition of a state region in which repulsive interactions dominate is required for achieving consistent results. The Riemannian thermodynamic scalar curvature R allows for such a classification, indicating predominantly repulsive interactions by R>0. An analysis of the isomorphic character of the freezing line and the validity of Rosenfeld-Tarazona temperature scaling show that these approaches are consistent only in a small state region.
Collapse
Affiliation(s)
| | - Andreas Köster
- Thermodynamics and Energy Technology, University of Paderborn, 33098 Paderborn, Germany
| | - Jadran Vrabec
- Thermodynamics and Energy Technology, University of Paderborn, 33098 Paderborn, Germany
| |
Collapse
|
31
|
Ruppeiner G. Thermodynamic Black Holes. ENTROPY 2018; 20:e20060460. [PMID: 33265550 PMCID: PMC7512979 DOI: 10.3390/e20060460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022]
Abstract
Black holes pose great difficulties for theory since gravity and quantum theory must be combined in some as yet unknown way. An additional difficulty is that detailed black hole observational data to guide theorists is lacking. In this paper, I sidestep the difficulties of combining gravity and quantum theory by employing black hole thermodynamics augmented by ideas from the information geometry of thermodynamics. I propose a purely thermodynamic agenda for choosing correct candidate black hole thermodynamic scaled equations of state, parameterized by two exponents. These two adjustable exponents may be set to accommodate additional black hole information, either from astrophysical observations or from some microscopic theory, such as string theory. My approach assumes implicitly that the as yet unknown microscopic black hole constituents have strong effective interactions between them, of a type found in critical phenomena. In this picture, the details of the microscopic interaction forces are not important, and the essential macroscopic picture emerges from general assumptions about the number of independent thermodynamic variables, types of critical points, boundary conditions, and analyticity. I use the simple Kerr and Reissner-Nordström black holes for guidance, and find candidate equations of state that embody several the features of these purely gravitational models. My approach may offer a productive new way to select black hole thermodynamic equations of state representing both gravitational and quantum properties.
Collapse
Affiliation(s)
- George Ruppeiner
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL 34243, USA
| |
Collapse
|
32
|
Yoon TJ, Lee YW. Current theoretical opinions and perspectives on the fundamental description of supercritical fluids. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Pieprzyk S, Brańka AC, Maćkowiak S, Heyes DM. Comprehensive representation of the Lennard-Jones equation of state based on molecular dynamics simulation data. J Chem Phys 2018; 148:114505. [DOI: 10.1063/1.5021560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- S. Pieprzyk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - A. C. Brańka
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Sz. Maćkowiak
- Institute of Physics, Poznań University of Technology, Piotrowo 3, 60-965 Poznań, Poland
| | - D. M. Heyes
- Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| |
Collapse
|
34
|
Heier M, Stephan S, Liu J, Chapman WG, Hasse H, Langenbach K. Equation of state for the Lennard-Jones truncated and shifted fluid with a cut-off radius of 2.5 σ based on perturbation theory and its applications to interfacial thermodynamics. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1447153] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Michaela Heier
- Laboratory of Engineering Thermodynamics, University of Kaiserslautern , Kaiserslautern, Germany
| | - Simon Stephan
- Laboratory of Engineering Thermodynamics, University of Kaiserslautern , Kaiserslautern, Germany
| | - Jinlu Liu
- Chemical and Biomolecular Engineering Department, Rice University , Houston, TX, USA
| | - Walter G. Chapman
- Chemical and Biomolecular Engineering Department, Rice University , Houston, TX, USA
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics, University of Kaiserslautern , Kaiserslautern, Germany
| | - Kai Langenbach
- Laboratory of Engineering Thermodynamics, University of Kaiserslautern , Kaiserslautern, Germany
- Chemical and Biomolecular Engineering Department, Rice University , Houston, TX, USA
| |
Collapse
|
35
|
Lamorgese A, Ambrosini W, Mauri R. Widom line prediction by the Soave–Redlich–Kwong and Peng–Robinson equations of state. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Brańka AC, Pieprzyk S, Heyes DM. Thermodynamic curvature of soft-sphere fluids and solids. Phys Rev E 2018; 97:022119. [PMID: 29548097 DOI: 10.1103/physreve.97.022119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 06/08/2023]
Abstract
The influence of the strength of repulsion between particles on the thermodynamic curvature scalar R for the fluid and solid states is investigated for particles interacting with the inverse power (r^{-n}) potential, where r is the pair separation and 1/n is the softness. Exact results are obtained for R in certain limiting cases, and the R behavior determined for the systems in the fluid and solid phases. It is found that in such systems the thermodynamic curvature can be positive for very soft particles, negative for steeply repulsive (or large n) particles across almost the entire density range, and can change sign between negative and positive at a certain density. The relationship between R and the form of the interaction potential is more complex than previously suggested, and it may be that R is an indicator of the relative importance of energy and entropy contributions to the thermodynamic properties of the system.
Collapse
Affiliation(s)
- A C Brańka
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - S Pieprzyk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - D M Heyes
- Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| |
Collapse
|
37
|
Köster A, Mausbach P, Vrabec J. Premelting, solid-fluid equilibria, and thermodynamic properties in the high density region based on the Lennard-Jones potential. J Chem Phys 2017; 147:144502. [DOI: 10.1063/1.4990667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Ruppeiner G, Dyjack N, McAloon A, Stoops J. Solid-like features in dense vapors near the fluid critical point. J Chem Phys 2017; 146:224501. [DOI: 10.1063/1.4984915] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- George Ruppeiner
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, Florida 34243, USA
| | - Nathan Dyjack
- Center for Genes, Environment & Health, National Jewish Health, 1400 S Jackson St., Denver, Colorado 80206, USA
| | - Abigail McAloon
- Oak Hill School, 86397 Eldon Schafer Dr, Eugene, Oregon 97405, USA
| | - Jerry Stoops
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, Florida 34243, USA
| |
Collapse
|
39
|
Raju M, Banuti DT, Ma PC, Ihme M. Widom Lines in Binary Mixtures of Supercritical Fluids. Sci Rep 2017; 7:3027. [PMID: 28596591 PMCID: PMC5465206 DOI: 10.1038/s41598-017-03334-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/26/2017] [Indexed: 12/02/2022] Open
Abstract
Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.
Collapse
Affiliation(s)
- Muralikrishna Raju
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Daniel T Banuti
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Peter C Ma
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Matthias Ihme
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
40
|
Banuti DT, Raju M, Ihme M. Similarity law for Widom lines and coexistence lines. Phys Rev E 2017; 95:052120. [PMID: 28618508 DOI: 10.1103/physreve.95.052120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 06/07/2023]
Abstract
The coexistence line of a fluid separates liquid and gaseous states at subcritical pressures, ending at the critical point. Only recently, it became clear that the supercritical state space can likewise be divided into regions with liquidlike and gaslike properties, separated by an extension to the coexistence line. This crossover line is commonly referred to as the Widom line, and is characterized by large changes in density or enthalpy, manifesting as maxima in the thermodynamic response functions. Thus, a reliable representation of the coexistence line and the Widom line is important for sub- and supercritical applications that depend on an accurate prediction of fluid properties. While it is known for subcritical pressures that nondimensionalization with the respective species critical pressures p_{cr} and temperatures T_{cr} only collapses coexistence line data for simple fluids, this approach is used for Widom lines of all fluids. However, we show here that the Widom line does not adhere to the corresponding states principle, but instead to the extended corresponding states principle. We resolve this problem in two steps. First, we propose a Widom line functional based on the Clapeyron equation and derive an analytical, species specific expression for the only parameter from the Soave-Redlich-Kwong equation of state. This parameter is a function of the acentric factor ω and compares well with experimental data. Second, we introduce the scaled reduced pressure p_{r}^{*} to replace the previously used reduced pressure p_{r}=p/p_{cr}. We show that p_{r}^{*} is a function of the acentric factor only and can thus be readily determined from fluid property tables. It collapses both subcritical coexistence line and supercritical Widom line data over a wide range of species with acentric factors ranging from -0.38 (helium) to 0.34 (water), including alkanes up to n-hexane. By using p_{r}^{*}, the extended corresponding states principle can be applied within corresponding states principle formalism. Furthermore, p_{r}^{*} provides a theoretical foundation to compare Widom lines of different fluids.
Collapse
Affiliation(s)
- D T Banuti
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - M Raju
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - M Ihme
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
41
|
Affiliation(s)
- Rolf Lustig
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
42
|
Mihara A. Thermodynamic geometry and critical aspects of bifurcations. Phys Rev E 2016; 94:012144. [PMID: 27575113 DOI: 10.1103/physreve.94.012144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 11/07/2022]
Abstract
This work presents an exploratory study of the critical aspects of some well-known bifurcations in the context of thermodynamic geometry. For each bifurcation its normal form is regarded as a geodesic equation of some model analogous to a thermodynamic system. From this hypothesis it is possible to calculate the corresponding metric and curvature and analyze the critical behavior of the bifurcation.
Collapse
Affiliation(s)
- A Mihara
- Universidade Federal de S. Paulo, campus Diadema, Sao Paulo, Brazil
| |
Collapse
|
43
|
Heyes DM, Rickayzen G, Pieprzyk S, Brańka AC. The second virial coefficient and critical point behavior of the Mie Potential. J Chem Phys 2016; 145:084505. [DOI: 10.1063/1.4961653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
44
|
Mausbach P, Köster A, Rutkai G, Thol M, Vrabec J. Comparative study of the Grüneisen parameter for 28 pure fluids. J Chem Phys 2016; 144:244505. [DOI: 10.1063/1.4954282] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Abstract
Dynamical crossover in water is studied by means of computer simulation. The crossover temperature is calculated from the behavior of velocity autocorrelation functions. The results are compared with experimental data. It is shown that the qualitative behavior of the dynamical crossover line is similar to the melting curve behavior. Importantly, the crossover line belongs to experimentally achievable (P, T) region which stimulates the experimental investigation in this field.
Collapse
|
46
|
Luo J, Xu L, Angell CA, Stanley HE, Buldyrev SV. Physics of the Jagla model as the liquid-liquid coexistence line slope varies. J Chem Phys 2015; 142:224501. [DOI: 10.1063/1.4921559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jiayuan Luo
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - Limei Xu
- International Center for Quantum Materials, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
| | - C. Austen Angell
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| | - H. Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - Sergey V. Buldyrev
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
- Department of Physics, Yeshiva University, 500 West 185th Street, New York, New York 10033, USA
| |
Collapse
|
47
|
|
48
|
May HO, Mausbach P, Ruppeiner G. Thermodynamic geometry of supercooled water. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032141. [PMID: 25871088 DOI: 10.1103/physreve.91.032141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Indexed: 06/04/2023]
Abstract
The thermodynamic curvature scalar R is evaluated for supercooled water with a two-state equation of state correlated with the most recent available experimental data. This model assumes a liquid-liquid critical point. Our investigation extends the understanding of the thermodynamic behavior of R considerably. We show that R diverges to -∞ when approaching the assumed liquid-liquid critical point. This limit is consistent with all of the fluid critical point models known so far. In addition, we demonstrate a sign change of R along the liquid-liquid line from negative near the critical point to positive on moving away from the critical point in the low density "ice-like" liquid phase. We also trace out the Widom line in phase space. In addition, we investigate increasing correlation length in supercooled water and compare our results with recent published small angle x-ray scattering measurements.
Collapse
Affiliation(s)
| | - Peter Mausbach
- Cologne University of Applied Sciences, Cologne, Germany
| | - George Ruppeiner
- Division of Natural Sciences, New College of Florida, Sarasota, Florida USA
| |
Collapse
|
49
|
|
50
|
Fomin YD, Ryzhov VN, Tsiok EN, Brazhkin VV. Thermodynamic properties of supercritical carbon dioxide: Widom and Frenkel lines. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022111. [PMID: 25768462 DOI: 10.1103/physreve.91.022111] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Indexed: 06/04/2023]
Abstract
Supercritical fluids are widely used in a number of important technological applications, yet the theoretical progress in the field has been rather moderate. Fairly recently, a new understanding of the liquidlike and gaslike properties of supercritical fluids has come to the fore, particularly with the advent of the Widom and Frenkel lines that aim to demarcate different physical properties on the phase diagram. Here, we report the results of a computational study of supercritical carbon dioxide, one of the most important fluids in the chemical industry. We study the response functions of CO_{2} in the supercritical state and calculate the locations of their maxima (Widom lines). We also report the preliminary calculations of the Frenkel line, the line of crossover of microscopic dynamics of particles. Our insights are relevant to physical processes in the atmosphere of Venus and its evolution.
Collapse
Affiliation(s)
- Yu D Fomin
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow, Russia and Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - V N Ryzhov
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow, Russia and Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - E N Tsiok
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow, Russia
| | - V V Brazhkin
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow, Russia
| |
Collapse
|