1
|
Estarellas M, Huntley J, Bor D. Neural markers of reduced arousal and consciousness in mild cognitive impairment. Int J Geriatr Psychiatry 2024; 39:e6112. [PMID: 38837281 DOI: 10.1002/gps.6112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVES People with Alzheimer's Disease (AD) experience changes in their level and content of consciousness, but there is little research on biomarkers of consciousness in pre-clinical AD and Mild Cognitive Impairment (MCI). This study investigated whether levels of consciousness are decreased in people with MCI. METHODS A multi-site site magnetoencephalography (MEG) dataset, BIOFIND, comprising 83 people with MCI and 83 age matched controls, was analysed. Arousal (and drowsiness) was assessed by computing the theta-alpha ratio (TAR). The Lempel-Ziv algorithm (LZ) was used to quantify the information content of brain activity, with higher LZ values indicating greater complexity and potentially a higher level of consciousness. RESULTS LZ was lower in the MCI group versus controls, indicating a reduced level of consciousness in MCI. TAR was higher in the MCI group versus controls, indicating a reduced level of arousal (i.e. increased drowsiness) in MCI. LZ was also found to be correlated with mini-mental state examination (MMSE) scores, suggesting an association between cognitive impairment and level of consciousness in people with MCI. CONCLUSIONS A decline in consciousness and arousal can be seen in MCI. As cognitive impairment worsens, measured by MMSE scores, levels of consciousness and arousal decrease. These findings highlight how monitoring consciousness using biomarkers could help understand and manage impairments found at the preclinical stages of AD. Further research is needed to explore markers of consciousness between people who progress from MCI to dementia and those who do not, and in people with moderate and severe AD, to promote person-centred care.
Collapse
Affiliation(s)
- Mar Estarellas
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Experimental Psychology Department, University College London, London, UK
- Department of Psychology, Cambridge University, Cambridge, UK
| | - Jonathan Huntley
- Division of Psychiatry, University College London, London, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Daniel Bor
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychology, Cambridge University, Cambridge, UK
| |
Collapse
|
2
|
Curic D, Singh S, Nazari M, Mohajerani MH, Davidsen J. Spatial-Temporal Analysis of Neural Desynchronization in Sleeplike States Reveals Critical Dynamics. PHYSICAL REVIEW LETTERS 2024; 132:218403. [PMID: 38856286 DOI: 10.1103/physrevlett.132.218403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 02/26/2024] [Accepted: 04/10/2024] [Indexed: 06/11/2024]
Abstract
Sleep is characterized by nonrapid eye movement sleep, originating from widespread neuronal synchrony, and rapid eye movement sleep, with neuronal desynchronization akin to waking behavior. While these were thought to be global brain states, recent research suggests otherwise. Using time-frequency analysis of mesoscopic voltage-sensitive dye recordings of mice in a urethane-anesthetized model of sleep, we find transient neural desynchronization occurring heterogeneously across the cortex within a background of synchronized neural activity, in a manner reminiscent of a critical spreading process and indicative of an "edge-of-synchronization" phase transition.
Collapse
Affiliation(s)
- Davor Curic
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Surjeet Singh
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
3
|
Dziego CA, Bornkessel-Schlesewsky I, Schlesewsky M, Sinha R, Immink MA, Cross ZR. Augmenting complex and dynamic performance through mindfulness-based cognitive training: An evaluation of training adherence, trait mindfulness, personality and resting-state EEG. PLoS One 2024; 19:e0292501. [PMID: 38768220 PMCID: PMC11104625 DOI: 10.1371/journal.pone.0292501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Human performance applications of mindfulness-based training have demonstrated its utility in enhancing cognitive functioning. Previous studies have illustrated how these interventions can improve performance on traditional cognitive tests, however, little investigation has explored the extent to which mindfulness-based training can optimise performance in more dynamic and complex contexts. Further, from a neuroscientific perspective, the underlying mechanisms responsible for performance enhancements remain largely undescribed. With this in mind, the following study aimed to investigate how a short-term mindfulness intervention (one week) augments performance on a dynamic and complex task (target motion analyst task; TMA) in young, healthy adults (n = 40, age range = 18-38). Linear mixed effect modelling revealed that increased adherence to the web-based mindfulness-based training regime (ranging from 0-21 sessions) was associated with improved performance in the second testing session of the TMA task, controlling for baseline performance. Analyses of resting-state electroencephalographic (EEG) metrics demonstrated no change across testing sessions. Investigations of additional individual factors demonstrated that enhancements associated with training adherence remained relatively consistent across varying levels of participants' resting-state EEG metrics, personality measures (i.e., trait mindfulness, neuroticism, conscientiousness), self-reported enjoyment and timing of intervention adherence. Our results thus indicate that mindfulness-based cognitive training leads to performance enhancements in distantly related tasks, irrespective of several individual differences. We also revealed nuances in the magnitude of cognitive enhancements contingent on the timing of adherence, regardless of total volume of training. Overall, our findings suggest that mindfulness-based training could be used in a myriad of settings to elicit transferable performance enhancements.
Collapse
Affiliation(s)
- Chloe A. Dziego
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| | - Matthias Schlesewsky
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| | - Ruchi Sinha
- Centre for Workplace Excellence, University of South Australia, Adelaide, South Australia
| | - Maarten A. Immink
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
- Sport, Health, Activity, Performance and Exercise (SHAPE) Research Centre, Flinders University, Adelaide, Australia
| | - Zachariah R. Cross
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
- Department of Medical Social Sciences, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
4
|
Scarpetta S, Morisi N, Mutti C, Azzi N, Trippi I, Ciliento R, Apicella I, Messuti G, Angiolelli M, Lombardi F, Parrino L, Vaudano AE. Criticality of neuronal avalanches in human sleep and their relationship with sleep macro- and micro-architecture. iScience 2023; 26:107840. [PMID: 37766992 PMCID: PMC10520337 DOI: 10.1016/j.isci.2023.107840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Sleep plays a key role in preserving brain function, keeping brain networks in a state that ensures optimal computation. Empirical evidence indicates that this state is consistent with criticality, where scale-free neuronal avalanches emerge. However, the connection between sleep architecture and brain tuning to criticality remains poorly understood. Here, we characterize the critical behavior of avalanches and study their relationship with sleep macro- and micro-architectures, in particular, the cyclic alternating pattern (CAP). We show that avalanches exhibit robust scaling behaviors, with exponents obeying scaling relations consistent with the mean-field directed percolation universality class. We demonstrate that avalanche dynamics is modulated by the NREM-REM cycles and that, within NREM sleep, avalanche occurrence correlates with CAP activation phases-indicating a potential link between CAP and brain tuning to criticality. The results open new perspectives on the collective dynamics underlying CAP function, and on the relationship between sleep architecture, avalanches, and self-organization to criticality.
Collapse
Affiliation(s)
- Silvia Scarpetta
- Department of Physics, University of Salerno, 84084 Fisciano, Italy
- INFN sez. Napoli Gr. Coll. Salerno, 84084 Fisciano, Italy
| | - Niccolò Morisi
- Nephrology, Dialysis and Transplant Unit, University Hospital of Modena, 41121 Modena, Italy
| | - Carlotta Mutti
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Nicoletta Azzi
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Irene Trippi
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Rosario Ciliento
- Department of Neurology, University of Wisconsin, Madison, WI 53705, USA
| | - Ilenia Apicella
- INFN sez. Napoli Gr. Coll. Salerno, 84084 Fisciano, Italy
- Department of Physics, University of Naples “Federico II”, 80126 Napoli, Italy
| | - Giovanni Messuti
- Department of Physics, University of Salerno, 84084 Fisciano, Italy
- INFN sez. Napoli Gr. Coll. Salerno, 84084 Fisciano, Italy
| | - Marianna Angiolelli
- Department of Physics, University of Salerno, 84084 Fisciano, Italy
- INFN sez. Napoli Gr. Coll. Salerno, 84084 Fisciano, Italy
- Engineering Department, University Campus Bio-Medico of Rome, 00128 Roma, Italy
| | - Fabrizio Lombardi
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131 Padova, Italy
| | - Liborio Parrino
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Anna Elisabetta Vaudano
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, OCB Hospital, 41125 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
5
|
Gervais C, Boucher LP, Villar GM, Lee U, Duclos C. A scoping review for building a criticality-based conceptual framework of altered states of consciousness. Front Syst Neurosci 2023; 17:1085902. [PMID: 37304151 PMCID: PMC10248073 DOI: 10.3389/fnsys.2023.1085902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
The healthy conscious brain is thought to operate near a critical state, reflecting optimal information processing and high susceptibility to external stimuli. Conversely, deviations from the critical state are hypothesized to give rise to altered states of consciousness (ASC). Measures of criticality could therefore be an effective way of establishing the conscious state of an individual. Furthermore, characterizing the direction of a deviation from criticality may enable the development of treatment strategies for pathological ASC. The aim of this scoping review is to assess the current evidence supporting the criticality hypothesis, and the use of criticality as a conceptual framework for ASC. Using the PRISMA guidelines, Web of Science and PubMed were searched from inception to February 7th 2022 to find articles relating to measures of criticality across ASC. N = 427 independent papers were initially found on the subject. N = 378 were excluded because they were either: not related to criticality; not related to consciousness; not presenting results from a primary study; presenting model data. N = 49 independent papers were included in the present research, separated in 7 sub-categories of ASC: disorders of consciousness (DOC) (n = 5); sleep (n = 13); anesthesia (n = 18); epilepsy (n = 12); psychedelics and shamanic state of consciousness (n = 4); delirium (n = 1); meditative state (n = 2). Each category included articles suggesting a deviation of the critical state. While most studies were only able to identify a deviation from criticality without being certain of its direction, the preliminary consensus arising from the literature is that non-rapid eye movement (NREM) sleep reflects a subcritical state, epileptic seizures reflect a supercritical state, and psychedelics are closer to the critical state than normal consciousness. This scoping review suggests that, though the literature is limited and methodologically inhomogeneous, ASC are characterized by a deviation from criticality, though its direction is not clearly reported in a majority of studies. Criticality could become, with more extensive research, an effective and objective way to characterize ASC, and help identify therapeutic avenues to improve criticality in pathological brain states. Furthermore, we suggest how anesthesia and psychedelics could potentially be used as neuromodulation techniques to restore criticality in DOC.
Collapse
Affiliation(s)
- Charles Gervais
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
| | - Louis-Philippe Boucher
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Guillermo Martinez Villar
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, QC, Canada
| | - UnCheol Lee
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Catherine Duclos
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Montréal, QC, Canada
- CIFAR Azrieli Global Scholars Program, Toronto, ON, Canada
| |
Collapse
|
6
|
Abstract
Analytical expressions for scaling of brain wave spectra derived from the general non-linear wave Hamiltonian form show excellent agreement with experimental "neuronal avalanche" data. The theory of the weakly evanescent non-linear brain wave dynamics reveals the underlying collective processes hidden behind the phenomenological statistical description of the neuronal avalanches and connects together the whole range of brain activity states, from oscillatory wave-like modes, to neuronal avalanches, to incoherent spiking, showing that the neuronal avalanches are just the manifestation of the different non-linear side of wave processes abundant in cortical tissue. In a more broad way these results show that a system of wave modes interacting through all possible combinations of the third order non-linear terms described by a general wave Hamiltonian necessarily produces anharmonic wave modes with temporal and spatial scaling properties that follow scale free power laws. To the best of our knowledge this has never been reported in the physical literature and may be applicable to many physical systems that involve wave processes and not just to neuronal avalanches.
Collapse
Affiliation(s)
- Vitaly L. Galinsky
- Center for Scientific Computation in Imaging, University of California, San Diego, San Diego, CA, United States
| | - Lawrence R. Frank
- Center for Scientific Computation in Imaging, University of California, San Diego, San Diego, CA, United States
- Center for Functional MRI, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
7
|
Dziego CA, Bornkessel-Schlesewsky I, Jano S, Chatburn A, Schlesewsky M, Immink MA, Sinha R, Irons J, Schmitt M, Chen S, Cross ZR. Neural and cognitive correlates of performance in dynamic multi-modal settings. Neuropsychologia 2023; 180:108483. [PMID: 36638860 DOI: 10.1016/j.neuropsychologia.2023.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The endeavour to understand human cognition has largely relied upon investigation of task-related brain activity. However, resting-state brain activity can also offer insights into individual information processing and performance capabilities. Previous research has identified electroencephalographic resting-state characteristics (most prominently: the individual alpha frequency; IAF) that predict cognitive function. However, it has largely overlooked a second component of electrophysiological signals: aperiodic 1/ƒ activity. The current study examined how both oscillatory and aperiodic resting-state EEG measures, alongside traditional cognitive tests, can predict performance in a dynamic and complex, semi-naturalistic cognitive task. Participants' resting-state EEG was recorded prior to engaging in a Target Motion Analysis (TMA) task in a simulated submarine control room environment (CRUSE), which required participants to integrate dynamically changing information over time. We demonstrated that the relationship between IAF and cognitive performance extends from simple cognitive tasks (e.g., digit span) to complex, dynamic measures of information processing. Further, our results showed that individual 1/ƒ parameters (slope and intercept) differentially predicted performance across practice and testing sessions, whereby flatter slopes and higher intercepts were associated with improved performance during learning. In addition to the EEG predictors, we demonstrate a link between cognitive skills most closely related to the TMA task (i.e., spatial imagery) and subsequent performance. Overall, the current study highlights (1) how resting-state metrics - both oscillatory and aperiodic - have the potential to index higher-order cognitive capacity, while (2) emphasising the importance of examining these electrophysiological components within more dynamic settings and over time.
Collapse
Affiliation(s)
- Chloe A Dziego
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia.
| | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Sophie Jano
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Alex Chatburn
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Matthias Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Maarten A Immink
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia; Sport, Health, Activity, Performance and Exercise (SHAPE) Research Centre, Flinders University, South Australia, Australia
| | - Ruchi Sinha
- Centre for Workplace Excellence, University of South Australia, 61-68 North Terrace, Adelaide, South Australia, Australia
| | - Jessica Irons
- Undersea Command & Control Maritime Division, Defence Science and Technology Group, Australia
| | - Megan Schmitt
- Undersea Command & Control Maritime Division, Defence Science and Technology Group, Australia
| | - Steph Chen
- Human and Decision Sciences Division, Defence Science and Technology Group, Australia
| | - Zachariah R Cross
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Walter N, Hinterberger T. Self-organized criticality as a framework for consciousness: A review study. Front Psychol 2022; 13:911620. [PMID: 35911009 PMCID: PMC9336647 DOI: 10.3389/fpsyg.2022.911620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023] Open
Abstract
Objective No current model of consciousness is univocally accepted on either theoretical or empirical grounds, and the need for a solid unifying framework is evident. Special attention has been given to the premise that self-organized criticality (SOC) is a fundamental property of neural system. SOC provides a competitive model to describe the physical mechanisms underlying spontaneous brain activity, and thus, critical dynamics were proposed as general gauges of information processing representing a strong candidate for a surrogate measure of consciousness. As SOC could be a neurodynamical framework, which may be able to bring together existing theories and experimental evidence, the purpose of this work was to provide a comprehensive overview of progress of research on SOC in association with consciousness. Methods A comprehensive search of publications on consciousness and SOC published between 1998 and 2021 was conducted. The Web of Science database was searched, and annual number of publications and citations, type of articles, and applied methods were determined. Results A total of 71 publications were identified. The annual number of citations steadily increased over the years. Original articles comprised 50.7% and reviews/theoretical articles 43.6%. Sixteen studies reported on human data and in seven studies data were recorded in animals. Computational models were utilized in n = 12 studies. EcoG data were assessed in n = 4 articles, fMRI in n = 4 studies, and EEG/MEG in n = 10 studies. Notably, different analytical tools were applied in the EEG/MEG studies to assess a surrogate measure of criticality such as the detrended fluctuation analysis, the pair correlation function, parameters from the neuronal avalanche analysis and the spectral exponent. Conclusion Recent studies pointed out agreements of critical dynamics with the current most influencing theories in the field of consciousness research, the global workspace theory and the integrated information theory. Thus, the framework of SOC as a neurodynamical parameter for consciousness seems promising. However, identified experimental work was small in numbers, and a heterogeneity of applied analytical tools as a surrogate measure of criticality was observable, which limits the generalizability of findings.
Collapse
|
9
|
Caporale A, Bonomo GB, Tani Raffaelli G, Tata AM, Avallone B, Wehrli FW, Capuani S. Transient Anomalous Diffusion MRI in Excised Mouse Spinal Cord: Comparison Among Different Diffusion Metrics and Validation With Histology. Front Neurosci 2022; 15:797642. [PMID: 35242002 PMCID: PMC8885723 DOI: 10.3389/fnins.2021.797642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Neural tissue is a hierarchical multiscale system with intracellular and extracellular diffusion compartments at different length scales. The normal diffusion of bulk water in tissues is not able to detect the specific features of a complex system, providing nonlocal, diffusion measurement averaged on a 10-20 μm length scale. Being able to probe tissues with sub-micrometric diffusion length and quantify new local parameters, transient anomalous diffusion (tAD) would dramatically increase the diagnostic potential of diffusion MRI (DMRI) in detecting collective and sub-micro architectural changes of human tissues due to pathological damage. In DMRI, the use of tAD parameters quantified using specific DMRI acquisition protocols and their interpretation has often aroused skepticism. Although the derived formulas may accurately fit experimental diffusion-weighted data, the relationships between the postulated dynamical feature and the underlying geometrical structure remains elusive, or at most only suggestive. This work aimed to elucidate and validate the image contrast and information that can be obtained using the tAD model in white matter (WM) through a direct comparison between different diffusion metrics and histology. Towards this goal, we compared tAD metrics extracted from pure subdiffusion (α-imaging) and super-pseudodiffusion (γ-imaging) in excised mouse spinal cord WM, together with T2 and T2* relaxometry, conventional (normal diffusion-based) diffusion tensor imaging (DTI) and q-space imaging (QSI), with morphologic measures obtained by optical microscopy, to determine which structural and topological characteristics of myelinated axons influenced tAD contrast. Axon diameter (AxDiam), the standard deviation of diameters (SDax.diam), axonal density (AxDens) and effective local density (ELD) were extracted from optical images in several WM tracts. Among all the diffusion parameters obtained at 9.4 T, γ-metrics confirmed a strong dependence on magnetic in-homogeneities quantified by R2* = 1/T2* and showed the strongest associations with AxDiam and ELD. On the other hand, α-metrics showed strong associations with SDax.diam and was significantly related to AxDens, suggesting its ability to quantify local heterogeneity degree in neural tissue. These results elucidate the biophysical mechanism underpinning tAD parameters and show the clinical potential of tAD-imaging, considering that both physiologic and pathologic neurodegeneration translate into alterations of WM morphometry and topology.
Collapse
Affiliation(s)
- Alessandra Caporale
- NMR and Medical Physics Laboratory, Institute for Complex Systems of National Research Council (CNR-ISC), Rome, Italy
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | | | | | - Ada Maria Tata
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, Rome, Italy
- Research Center of Neurobiology Daniel Bovet, Rome, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Felix Werner Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Silvia Capuani
- NMR and Medical Physics Laboratory, Institute for Complex Systems of National Research Council (CNR-ISC), Rome, Italy
- Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
- *Correspondence: Silvia Capuani,
| |
Collapse
|
10
|
Sarasso S, Casali AG, Casarotto S, Rosanova M, Sinigaglia C, Massimini M. Consciousness and complexity: a consilience of evidence. Neurosci Conscious 2021; 2021:niab023. [PMID: 38496724 PMCID: PMC10941977 DOI: 10.1093/nc/niab023] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/19/2021] [Accepted: 07/29/2021] [Indexed: 03/19/2024] Open
Abstract
Over the last years, a surge of empirical studies converged on complexity-related measures as reliable markers of consciousness across many different conditions, such as sleep, anesthesia, hallucinatory states, coma, and related disorders. Most of these measures were independently proposed by researchers endorsing disparate frameworks and employing different methods and techniques. Since this body of evidence has not been systematically reviewed and coherently organized so far, this positive trend has remained somewhat below the radar. The aim of this paper is to make this consilience of evidence in the science of consciousness explicit. We start with a systematic assessment of the growing literature on complexity-related measures and identify their common denominator, tracing it back to core theoretical principles and predictions put forward more than 20 years ago. In doing this, we highlight a consistent trajectory spanning two decades of consciousness research and provide a provisional taxonomy of the present literature. Finally, we consider all of the above as a positive ground to approach new questions and devise future experiments that may help consolidate and further develop a promising field where empirical research on consciousness appears to have, so far, naturally converged.
Collapse
Affiliation(s)
- Simone Sarasso
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | - Adenauer Girardi Casali
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Sao Jose dos Campos, 12247-014, Brazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | | | - Marcello Massimini
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| |
Collapse
|
11
|
Heiney K, Huse Ramstad O, Fiskum V, Christiansen N, Sandvig A, Nichele S, Sandvig I. Criticality, Connectivity, and Neural Disorder: A Multifaceted Approach to Neural Computation. Front Comput Neurosci 2021; 15:611183. [PMID: 33643017 PMCID: PMC7902700 DOI: 10.3389/fncom.2021.611183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/18/2021] [Indexed: 01/03/2023] Open
Abstract
It has been hypothesized that the brain optimizes its capacity for computation by self-organizing to a critical point. The dynamical state of criticality is achieved by striking a balance such that activity can effectively spread through the network without overwhelming it and is commonly identified in neuronal networks by observing the behavior of cascades of network activity termed "neuronal avalanches." The dynamic activity that occurs in neuronal networks is closely intertwined with how the elements of the network are connected and how they influence each other's functional activity. In this review, we highlight how studying criticality with a broad perspective that integrates concepts from physics, experimental and theoretical neuroscience, and computer science can provide a greater understanding of the mechanisms that drive networks to criticality and how their disruption may manifest in different disorders. First, integrating graph theory into experimental studies on criticality, as is becoming more common in theoretical and modeling studies, would provide insight into the kinds of network structures that support criticality in networks of biological neurons. Furthermore, plasticity mechanisms play a crucial role in shaping these neural structures, both in terms of homeostatic maintenance and learning. Both network structures and plasticity have been studied fairly extensively in theoretical models, but much work remains to bridge the gap between theoretical and experimental findings. Finally, information theoretical approaches can tie in more concrete evidence of a network's computational capabilities. Approaching neural dynamics with all these facets in mind has the potential to provide a greater understanding of what goes wrong in neural disorders. Criticality analysis therefore holds potential to identify disruptions to healthy dynamics, granted that robust methods and approaches are considered.
Collapse
Affiliation(s)
- Kristine Heiney
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vegard Fiskum
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nicholas Christiansen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Neuroscience, Umeå University Hospital, Umeå, Sweden
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway
| | - Stefano Nichele
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Holistic Systems, Simula Metropolitan, Oslo, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
12
|
Zimmern V. Why Brain Criticality Is Clinically Relevant: A Scoping Review. Front Neural Circuits 2020; 14:54. [PMID: 32982698 PMCID: PMC7479292 DOI: 10.3389/fncir.2020.00054] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
The past 25 years have seen a strong increase in the number of publications related to criticality in different areas of neuroscience. The potential of criticality to explain various brain properties, including optimal information processing, has made it an increasingly exciting area of investigation for neuroscientists. Recent reviews on this topic, sometimes termed brain criticality, make brief mention of clinical applications of these findings to several neurological disorders such as epilepsy, neurodegenerative disease, and neonatal hypoxia. Other clinicallyrelevant domains - including anesthesia, sleep medicine, developmental-behavioral pediatrics, and psychiatry - are seldom discussed in review papers of brain criticality. Thorough assessments of these application areas and their relevance for clinicians have also yet to be published. In this scoping review, studies of brain criticality involving human data of all ages are evaluated for their current and future clinical relevance. To make the results of these studies understandable to a more clinical audience, a review of the key concepts behind criticality (e.g., phase transitions, long-range temporal correlation, self-organized criticality, power laws, branching processes) precedes the discussion of human clinical studies. Open questions and forthcoming areas of investigation are also considered.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
13
|
West BJ, Massari GF, Culbreth G, Failla R, Bologna M, Dunbar RIM, Grigolini P. Relating size and functionality in human social networks through complexity. Proc Natl Acad Sci U S A 2020; 117:18355-18358. [PMID: 32690712 PMCID: PMC7414177 DOI: 10.1073/pnas.2006875117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Extensive empirical evidence suggests that there is a maximal number of people with whom an individual can maintain stable social relationships (the Dunbar number). We argue that this arises as a consequence of a natural phase transition in the dynamic self-organization among N individuals within a social system. We present the calculated size dependence of the scaling properties of complex social network models to argue that this collective behavior is an enhanced form of collective intelligence. Direct calculation establishes that the complexity of social networks as measured by their scaling behavior is nonmonotonic, peaking around 150, thereby providing a theoretical basis for the value of the Dunbar number. Thus, we establish a theory-based bridge spanning the gap between sociology and psychology.
Collapse
Affiliation(s)
- B J West
- Office of the Director, Army Research Office, Research Triangle Park, NC 27709;
| | - G F Massari
- Center for Nonlinear Science, University of North Texas, Denton, TX 76203-1427
| | - G Culbreth
- Center for Nonlinear Science, University of North Texas, Denton, TX 76203-1427
| | - R Failla
- Center for Nonlinear Science, University of North Texas, Denton, TX 76203-1427
| | - M Bologna
- Departamento de Ingeniería Eléctrica-Electrónica, Universidad de Tarapacá, 6-D Arica, Chile
| | - R I M Dunbar
- Department of Experimental Psychology, University of Oxford, OX2 6GG Oxford, United Kingdom
| | - P Grigolini
- Center for Nonlinear Science, University of North Texas, Denton, TX 76203-1427
| |
Collapse
|
14
|
Marhl U, Gosak M. Proper spatial heterogeneities expand the regime of scale-free behavior in a lattice of excitable elements. Phys Rev E 2019; 100:062203. [PMID: 31962506 DOI: 10.1103/physreve.100.062203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Indexed: 06/10/2023]
Abstract
Signatures of criticality, such as power law scaling of observables, have been empirically found in a plethora of real-life settings, including biological systems. The presence of critical states is believed to have many functional advantages and is associated with optimal operational abilities. Typically, critical dynamics arises in the proximity of phase transition points between absorbing disordered states (subcriticality) and ordered active regimes (supercriticality) and requires a high degree of fine tuning to emerge, which is unlikely to occur in real biological systems. In the present study we propose a rather simple, and biologically relevant mechanism that profoundly expands the critical-like region. In particular, by means of numerical simulation we show that incorporating spatial heterogeneities into the square lattice of map-based excitable oscillators broadens the parameter space in which the distribution of excitation wave sizes follows closely a power law. Most importantly, this behavior is only observed if the spatial profile exhibits intermediate-sized patches with similar excitability levels, whereas for large and small spatial clusters only marginal widening of the critical state is detected. Furthermore, it turned out that the presence of spatial disorder in general amplifies the size of excitation waves, whereby the relatively highest contributions are observed in the proximity of the critical point. We argue that the reported mechanism is of particular importance for excitable systems with local interactions between individual elements.
Collapse
Affiliation(s)
- Urban Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
- Institute of Mathematics, Physics and Mechanics, Jadranska ulica 19, SI-1000 Ljubljana, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
- Institute of Physiology, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
15
|
Barcaro U, Paradisi P, Sebastiani L. A Hypothesis About Parallelism vs. Seriality in Dreams. Front Psychol 2019; 10:2299. [PMID: 31649601 PMCID: PMC6795763 DOI: 10.3389/fpsyg.2019.02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/25/2019] [Indexed: 11/23/2022] Open
Affiliation(s)
- Umberto Barcaro
- ISTI-CNR, Institute of Information Science and Technologies "A. Faedo", Pisa, Italy
| | - Paolo Paradisi
- ISTI-CNR, Institute of Information Science and Technologies "A. Faedo", Pisa, Italy.,Basque Center for Applied Mathematics, Bilbao, Spain
| | - Laura Sebastiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Bocaccio H, Pallavicini C, Castro MN, Sánchez SM, De Pino G, Laufs H, Villarreal MF, Tagliazucchi E. The avalanche-like behaviour of large-scale haemodynamic activity from wakefulness to deep sleep. J R Soc Interface 2019; 16:20190262. [PMID: 31506046 PMCID: PMC6769314 DOI: 10.1098/rsif.2019.0262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/08/2019] [Indexed: 02/02/2023] Open
Abstract
Increasing evidence suggests that responsiveness is associated with critical or near-critical cortical dynamics, which exhibit scale-free cascades of spatio-temporal activity. These cascades, or 'avalanches', have been detected at multiple scales, from in vitro and in vivo microcircuits to voltage imaging and brain-wide functional magnetic resonance imaging (fMRI) recordings. Criticality endows the cortex with certain information-processing capacities postulated as necessary for conscious wakefulness, yet it remains unknown how unresponsiveness impacts on the avalanche-like behaviour of large-scale human haemodynamic activity. We observed a scale-free hierarchy of co-activated connected clusters by applying a point-process transformation to fMRI data recorded during wakefulness and non-rapid eye movement (NREM) sleep. Maximum-likelihood estimates revealed a significant effect of sleep stage on the scaling parameters of the cluster size power-law distributions. Post hoc statistical tests showed that differences were maximal between wakefulness and N2 sleep. These results were robust against spatial coarse graining, fitting alternative statistical models and different point-process thresholds, and disappeared upon phase shuffling the fMRI time series. Evoked neural bistabilities preventing arousals during N2 sleep do not suffice to explain these differences, which point towards changes in the intrinsic dynamics of the brain that could be necessary to consolidate a state of deep unresponsiveness.
Collapse
Affiliation(s)
- H. Bocaccio
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Departamento de Física, FCEyN, UBA, e Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - C. Pallavicini
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Departamento de Física, FCEyN, UBA, e Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - M. N. Castro
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, UBA, Buenos Aires, Argentina
- Departamento Salud Mental, Unidad Docente FLENI, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - S. M. Sánchez
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Departamento de Física, FCEyN, UBA, e Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - G. De Pino
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Buenos Aires, Argentina
- Laboratorio de Neuroimágenes, Departamento de Imágenes, FLENI, Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología (ECyT), Universidad Nacional de San Martín, Argentina
| | - H. Laufs
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - M. F. Villarreal
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Departamento de Física, FCEyN, UBA, e Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - E. Tagliazucchi
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Departamento de Física, FCEyN, UBA, e Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| |
Collapse
|
17
|
Ioannides AA, Liu L, Kostopoulos GK. The Emergence of Spindles and K-Complexes and the Role of the Dorsal Caudal Part of the Anterior Cingulate as the Generator of K-Complexes. Front Neurosci 2019; 13:814. [PMID: 31447635 PMCID: PMC6692490 DOI: 10.3389/fnins.2019.00814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
The large multicomponent K-complex (KC) and the rhythmic spindle are the hallmarks of non-rapid eye movement (NREM)-2 sleep stage. We studied with magnetoencephalography (MEG) the progress of light sleep (NREM-1 and NREM-2) and emergence of KCs and spindles. Seven periods of interest (POI) were analyzed: wakefulness, the two quiet "core" periods of light sleep (periods free from any prominent phasic or oscillatory events) and four periods before and during spindles and KCs. For each POI, eight 2-s (1250 time slices) segments were used. We employed magnetic field tomography (MFT) to extract an independent tomographic estimate of brain activity from each MEG data sample. The spectral power was then computed for each voxel in the brain for each segment of each POI. The sets of eight maps from two POIs were contrasted using a voxel-by-voxel t-test. Only increased spectral power was identified in the four key contrasts between POIs before and during spindles and KCs versus the NREM2 core. Common increases were identified for all four subjects, especially within and close to the anterior cingulate cortex (ACC). These common increases were widespread for low frequencies, while for higher frequencies they were focal, confined to specific brain areas. For the pre-KC POI, only one prominent increase was identified, confined to the theta/alpha bands in a small area in the dorsal caudal part of ACC (dcACC). During KCs, the activity in this area grows in intensity and extent (in space and frequency), filling the space between the areas that expanded their low frequency activity (in the delta band) during NREM2 compared to NREM1. Our main finding is that prominent spectral power increases before NREM2 graphoelements are confined to the dcACC, and only for KCs, sharing common features with changes of activity in dcACC of the well-studied error related negativity (ERN). ERN is seen in awake state, in perceptual conflict and situations where there is a difference between expected and actual environmental or internal events. These results suggest that a KC is the sleep side of the awake state ERN, both serving their putative sentinel roles in the frame of the saliency network.
Collapse
Affiliation(s)
- Andreas A. Ioannides
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, Cyprus
| | - Lichan Liu
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, Cyprus
| | - George K. Kostopoulos
- Neurophysiology Unit, Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
18
|
Stožer A, Markovič R, Dolenšek J, Perc M, Marhl M, Slak Rupnik M, Gosak M. Heterogeneity and Delayed Activation as Hallmarks of Self-Organization and Criticality in Excitable Tissue. Front Physiol 2019; 10:869. [PMID: 31333504 PMCID: PMC6624746 DOI: 10.3389/fphys.2019.00869] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Self-organized critical dynamics is assumed to be an attractive mode of functioning for several real-life systems and entails an emergent activity in which the extent of observables follows a power-law distribution. The hallmarks of criticality have recently been observed in a plethora of biological systems, including beta cell populations within pancreatic islets of Langerhans. In the present study, we systematically explored the mechanisms that drive the critical and supercritical behavior in networks of coupled beta cells under different circumstances by means of experimental and computational approaches. Experimentally, we employed high-speed functional multicellular calcium imaging of fluorescently labeled acute mouse pancreas tissue slices to record calcium signals in a large number of beta cells simultaneously, and with a high spatiotemporal resolution. Our experimental results revealed that the cellular responses to stimulation with glucose are biphasic and glucose-dependent. Under physiological as well as under supraphysiological levels of stimulation, an initial activation phase was followed by a supercritical plateau phase with a high number of global intercellular calcium waves. However, the activation phase displayed fingerprints of critical behavior under lower stimulation levels, with a progressive recruitment of cells and a power-law distribution of calcium wave sizes. On the other hand, the activation phase provoked by pathophysiologically high glucose concentrations, differed considerably and was more rapid, less continuous, and supercritical. To gain a deeper insight into the experimentally observed complex dynamical patterns, we built up a phenomenological model of coupled excitable cells and explored empirically the model’s necessities that ensured a good overlap between computational and experimental results. It turned out that such a good agreement between experimental and computational findings was attained when both heterogeneous and stimulus-dependent time lags, variability in excitability levels, as well as a heterogeneous cell-cell coupling were included into the model. Most importantly, since our phenomenological approach involved only a few parameters, it naturally lends itself not only for determining key mechanisms of self-organized criticality at the tissue level, but also points out various features for comprehensive and realistic modeling of different excitable systems in nature.
Collapse
Affiliation(s)
- Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.,Faculty of Education, University of Maribor, Maribor, Slovenia.,Faculty of Energy Technology, University of Maribor, Krško, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.,Center for Applied Mathematics and Theoretical Physics, University of Maribor, Maribor, Slovenia.,Complexity Science Hub Vienna, Vienna, Austria
| | - Marko Marhl
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.,Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Institute of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.,Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
19
|
Liang Z, Li J, Xia X, Wang Y, Li X, He J, Bai Y. Long-Range Temporal Correlations of Patients in Minimally Conscious State Modulated by Spinal Cord Stimulation. Front Physiol 2018; 9:1511. [PMID: 30420813 PMCID: PMC6215825 DOI: 10.3389/fphys.2018.01511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023] Open
Abstract
Spinal cord stimulation (SCS) has been shown to improve the consciousness levels of patients with disorder of consciousness (DOC). However, the underlying mechanisms of SCS remain poorly understood. This study recorded resting-state electroencephalograms (EEG) from 16 patients with minimally conscious state (MCS), before and after SCS, and investigated the mechanisms of SCS on the neuronal dynamics in MCS patients. Detrended fluctuation analysis (DFA), combined with surrogate data method, was employed to measure the long-range temporal correlations (LRTCs) of the EEG signals. A surrogate data method was utilized to acquire the genuine DFA exponents (GDFAE) reflecting the genuine LRTCs of brain activity. We analyzed the GDFAE in four brain regions (frontal, central, posterior, and occipital) at five EEG frequency bands [delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-45 Hz)]. The GDFAE values ranged from 0.5 to 1, and showed temporal and spatial variation between the pre-SCS and the post-SCS states. We found that the channels with GDFAE spread wider after SCS. This phenomenon may indicate that more cortical areas were engaged in the information integration after SCS. In addition, the GDFAE values increased significantly in the frontal area at delta, theta, and alpha bands after SCS. At the theta band, a significant increase in GDFAE was observed in the occipital area. No significant change was found at beta or gamma bands in any brain region. These findings show that the enhanced LRTCs after SCS occurred primarily at low-frequency bands in the frontal and occipital regions. As the LRTCs reflect the long-range temporal integration of EEG signals, our results indicate that information integration became more "complex" after SCS. We concluded that the brain activities at low-frequency oscillations, particularly in the frontal and occipital regions, were improved by SCS.
Collapse
Affiliation(s)
- Zhenhu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Jiani Li
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Xiaoyu Xia
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Yong Wang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Yang Bai
- Department of Basic Medical Science, School of Medicine, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
20
|
Tuladhar R, Bohara G, Grigolini P, West BJ. Meditation-Induced Coherence and Crucial Events. Front Physiol 2018; 9:626. [PMID: 29896114 PMCID: PMC5987187 DOI: 10.3389/fphys.2018.00626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023] Open
Abstract
In this paper we emphasize that 1/f noise has two different origins, one compatible with Laplace determinism and one determined by unpredictable crucial events. The dynamics of heartbeats, manifest as heart rate variability (HRV) time series, are determined by the joint action of these different memory sources with meditation turning the Laplace memory into a strongly coherent process while exerting an action on the crucial events favoring the transition from the condition of ideal 1/f noise to the Gaussian basin of attraction. This theoretical development affords a method of statistical analysis that establishes a quantitative approach to the evaluation of the stress reduction realized by the practice of Chi meditation and Kundalini Yoga.
Collapse
Affiliation(s)
- Rohisha Tuladhar
- Center for Nonlinear Science, University of North Texas, Denton, TX, United States
| | - Gyanendra Bohara
- Center for Nonlinear Science, University of North Texas, Denton, TX, United States
| | - Paolo Grigolini
- Center for Nonlinear Science, University of North Texas, Denton, TX, United States
| | - Bruce J West
- Information Sciences Directorate, Army Research Office, Research Triangle Park, NC, United States
| |
Collapse
|
21
|
Irrmischer M, van der Wal CN, Mansvelder HD, Linkenkaer-Hansen K. Negative mood and mind wandering increase long-range temporal correlations in attention fluctuations. PLoS One 2018; 13:e0196907. [PMID: 29746529 PMCID: PMC5945053 DOI: 10.1371/journal.pone.0196907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/23/2018] [Indexed: 11/24/2022] Open
Abstract
There is growing evidence that the intermittent nature of mind wandering episodes and mood have a pronounced influence on trial-to-trial variability in performance. Nevertheless, the temporal dynamics and significance of such lapses in attention remains inadequately understood. Here, we hypothesize that the dynamics of fluctuations in sustained attention between external and internal sources of information obey so-called critical-state dynamics, characterized by trial-to-trial dependencies with long-range temporal correlations. To test this, we performed behavioral investigations measuring reaction times in a visual sustained attention task and cued introspection in probe-caught reports of mind wandering. We show that trial-to-trial variability in reaction times exhibit long-range temporal correlations in agreement with the criticality hypothesis. Interestingly, we observed the fastest responses in subjects with the weakest long-range temporal correlations and show the vital effect of mind wandering and bad mood on this response variability. The implications of these results stress the importance of future research to increase focus on behavioral variability.
Collapse
Affiliation(s)
- Mona Irrmischer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU Amsterdam, HV Amsterdam, Netherlands
| | - C. Natalie van der Wal
- Vrije Universiteit (VU) Amsterdam, Department Computer Science, Amsterdam, Netherlands
- Centre for Decision Research, University of Leeds Business School, Leeds, United Kingdom
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU Amsterdam, HV Amsterdam, Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU Amsterdam, HV Amsterdam, Netherlands
| |
Collapse
|
22
|
Gosak M, Stožer A, Markovič R, Dolenšek J, Perc M, Rupnik MS, Marhl M. Critical and Supercritical Spatiotemporal Calcium Dynamics in Beta Cells. Front Physiol 2017; 8:1106. [PMID: 29312008 PMCID: PMC5743929 DOI: 10.3389/fphys.2017.01106] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/14/2017] [Indexed: 01/12/2023] Open
Abstract
A coordinated functioning of beta cells within pancreatic islets is mediated by oscillatory membrane depolarization and subsequent changes in cytoplasmic calcium concentration. While gap junctions allow for intraislet information exchange, beta cells within islets form complex syncytia that are intrinsically nonlinear and highly heterogeneous. To study spatiotemporal calcium dynamics within these syncytia, we make use of computational modeling and confocal high-speed functional multicellular imaging. We show that model predictions are in good agreement with experimental data, especially if a high degree of heterogeneity in the intercellular coupling term is assumed. In particular, during the first few minutes after stimulation, the probability distribution of calcium wave sizes is characterized by a power law, thus indicating critical behavior. After this period, the dynamics changes qualitatively such that the number of global intercellular calcium events increases to the point where the behavior becomes supercritical. To better mimic normal in vivo conditions, we compare the described behavior during supraphysiological non-oscillatory stimulation with the behavior during exposure to a slightly lower and oscillatory glucose challenge. In the case of this protocol, we observe only critical behavior in both experiment and model. Our results indicate that the loss of oscillatory changes, along with the rise in plasma glucose observed in diabetes, could be associated with a switch to supercritical calcium dynamics and loss of beta cell functionality.
Collapse
Affiliation(s)
- Marko Gosak
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
- Faculty of Energy Technology, University of Maribor, Krško, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Center for Applied Mathematics and Theoretical Physics, University of Maribor, Maribor, Slovenia
- Complexity Science Hub, Vienna, Austria
| | - Marjan S. Rupnik
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Institute of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| |
Collapse
|
23
|
Piccinini N, Lambert D, West BJ, Bologna M, Grigolini P. Nonergodic complexity management. Phys Rev E 2016; 93:062301. [PMID: 27415274 DOI: 10.1103/physreve.93.062301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 06/06/2023]
Abstract
Linear response theory, the backbone of nonequilibrium statistical physics, has recently been extended to explain how and why nonergodic renewal processes are insensitive to simple perturbations, such as in habituation. It was established that a permanent correlation results between an external stimulus and the response of a complex system generating nonergodic renewal processes, when the stimulus is a similar nonergodic process. This is the principle of complexity management, whose proof relies on ensemble distribution functions. Herein we extend the proof to the nonergodic case using time averages and a single time series, hence making it usable in real life situations where ensemble averages cannot be performed because of the very nature of the complex systems being studied.
Collapse
Affiliation(s)
- Nicola Piccinini
- Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, Texas 76203-1427, USA
| | - David Lambert
- Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, Texas 76203-1427, USA
| | - Bruce J West
- Information Science Directorate, Army Research Office, Research Triangle Park, North Carolina 27709, USA
| | - Mauro Bologna
- Instituto de Alta Investigation, Universidad de Tarapacá, Casilla 6-D, Arica, Chile
| | - Paolo Grigolini
- Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, Texas 76203-1427, USA
| |
Collapse
|