1
|
Hildebrand EM, Polovnikov K, Dekker B, Liu Y, Lafontaine DL, Fox AN, Li Y, Venev SV, Mirny LA, Dekker J. Mitotic chromosomes are self-entangled and disentangle through a topoisomerase-II-dependent two-stage exit from mitosis. Mol Cell 2024; 84:1422-1441.e14. [PMID: 38521067 DOI: 10.1016/j.molcel.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/23/2023] [Accepted: 02/24/2024] [Indexed: 03/25/2024]
Abstract
The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations, and multi-contact 3C and find that, by contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a topoisomerase-II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias topoisomerase II activity toward decatenation. At the second stage, the loops are released, and the formation of new entanglements is prevented by lower topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed in experiments and models, a normal interphase state cannot be acquired.
Collapse
Affiliation(s)
- Erica M Hildebrand
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Bastiaan Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yu Liu
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA
| | - Denis L Lafontaine
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - A Nicole Fox
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ying Li
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sergey V Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Remini L, Segers M, Palmeri J, Walter JC, Parmeggiani A, Carlon E. Chromatin structure from high resolution microscopy: Scaling laws and microphase separation. Phys Rev E 2024; 109:024408. [PMID: 38491617 DOI: 10.1103/physreve.109.024408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/11/2024] [Indexed: 03/18/2024]
Abstract
Recent advances in experimental fluorescence microscopy allow high accuracy determination (resolution of 50 nm) of the three-dimensional physical location of multiple (up to ∼10^{2}) tagged regions of the chromosome. We investigate publicly available microscopy data for two loci of the human Chr21 obtained from multiplexed fluorescence in situ hybridization (FISH) methods for different cell lines and treatments. Inspired by polymer physics models, our analysis centers around distance distributions between different tags with the aim being to unravel the chromatin conformational arrangements. We show that for any specific genomic site, there are (at least) two different conformational arrangements of chromatin, implying coexisting distinct topologies which we refer to as phase α and phase β. These two phases show different scaling behaviors: the former is consistent with a crumpled globule, while the latter indicates a confined, but more extended conformation, such as a looped domain. The identification of these distinct phases sheds light on the coexistence of multiple chromatin topologies and provides insights into the effects of cellular context and/or treatments on chromatin structure.
Collapse
Affiliation(s)
- Loucif Remini
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS UMR5221, Montpellier, France
| | - Midas Segers
- Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - John Palmeri
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS UMR5221, Montpellier, France
| | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS UMR5221, Montpellier, France
| | - Andrea Parmeggiani
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS UMR5221, Montpellier, France
| | - Enrico Carlon
- Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| |
Collapse
|
3
|
Polovnikov KE, Slavov B, Belan S, Imakaev M, Brandão HB, Mirny LA. Crumpled polymer with loops recapitulates key features of chromosome organization. PHYSICAL REVIEW. X 2023; 13:041029. [PMID: 38774252 PMCID: PMC11108028 DOI: 10.1103/physrevx.13.041029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Chromosomes are exceedingly long topologically-constrained polymers compacted in a cell nucleus. We recently suggested that chromosomes are organized into loops by an active process of loop extrusion. Yet loops remain elusive to direct observations in living cells; detection and characterization of myriads of such loops is a major challenge. The lack of a tractable physical model of a polymer folded into loops limits our ability to interpret experimental data and detect loops. Here, we introduce a new physical model - a polymer folded into a sequence of loops, and solve it analytically. Our model and a simple geometrical argument show how loops affect statistics of contacts in a polymer across different scales, explaining universally observed shapes of the contact probability. Moreover, we reveal that folding into loops reduces the density of topological entanglements, a novel phenomenon we refer as "the dilution of entanglements". Supported by simulations this finding suggests that up to ~ 1 - 2Mb chromosomes with loops are not topologically constrained, yet become crumpled at larger scales. Our theoretical framework allows inference of loop characteristics, draws a new picture of chromosome organization, and shows how folding into loops affects topological properties of crumpled polymers.
Collapse
Affiliation(s)
- Kirill E. Polovnikov
- Current address: Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Paris, France
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Sergey Belan
- Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- National Research University Higher School of Economics, Faculty of Physics, Moscow, Russia
| | - Maxim Imakaev
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hugo B. Brandão
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Leonid A. Mirny
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
4
|
Polovnikov KE, Nechaev SK, Grosberg AY. Stretching of a Fractal Polymer around a Disc Reveals Kardar-Parisi-Zhang Scaling. PHYSICAL REVIEW LETTERS 2022; 129:097801. [PMID: 36083665 DOI: 10.1103/physrevlett.129.097801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
While stretching of a polymer along a flat surface is hardly different from the classical Pincus problem of pulling chain ends in free space, the role of curved geometry in conformational statistics of the stretched chain is an exciting open question. We use scaling analysis and computer simulations to examine stretching of a fractal polymer chain around a disc in 2D (or a cylinder in 3D) of radius R. We reveal that the typical excursions of the polymer away from the surface and curvature-induced correlation length scale as Δ∼R^{β} and S^{*}∼R^{1/z}, respectively, with the Kardar-Parisi-Zhang (KPZ) growth β=1/3 and dynamic exponents z=3/2. Although probability distribution of excursions does not belong to KPZ universality class, the KPZ scaling is independent of the fractal dimension of the polymer and, thus, is universal across classical polymer models, e.g., SAW, randomly branching polymers, crumpled unknotted rings. Additionally, our Letter establishes a mapping between stretched polymers in curved geometry and the Balagurov-Vaks model of random walks among traps.
Collapse
Affiliation(s)
| | | | - Alexander Y Grosberg
- Department of Physics and Center for Soft Matter Research, New York University, 726 Broadway, New York, New York 10003, USA
| |
Collapse
|
5
|
Liu L, Zhang B, Hyeon C. Extracting multi-way chromatin contacts from Hi-C data. PLoS Comput Biol 2021; 17:e1009669. [PMID: 34871311 PMCID: PMC8675768 DOI: 10.1371/journal.pcbi.1009669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/16/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
There is a growing realization that multi-way chromatin contacts formed in chromosome structures are fundamental units of gene regulation. However, due to the paucity and complexity of such contacts, it is challenging to detect and identify them using experiments. Based on an assumption that chromosome structures can be mapped onto a network of Gaussian polymer, here we derive analytic expressions for n-body contact probabilities (n > 2) among chromatin loci based on pairwise genomic contact frequencies available in Hi-C, and show that multi-way contact probability maps can in principle be extracted from Hi-C. The three-body (triplet) contact probabilities, calculated from our theory, are in good correlation with those from measurements including Tri-C, MC-4C and SPRITE. Maps of multi-way chromatin contacts calculated from our analytic expressions can not only complement experimental measurements, but also can offer better understanding of the related issues, such as cell-line dependent assemblies of multiple genes and enhancers to chromatin hubs, competition between long-range and short-range multi-way contacts, and condensates of multiple CTCF anchors.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bokai Zhang
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, China
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| |
Collapse
|
6
|
Astakhov AM, Avetisov VA, Nechaev SK, Polovnikov KE. Fractal Dimension Meets Topology: Statistical and Topological Properties of Globular Macromolecules with Volume Interactions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexey M. Astakhov
- Physics Department of the Lomonosov Moscow State University, Moscow 119991, Russia
- N.N. Semenov Institute of Chemical Physics RAS, Moscow 119991, Russia
| | | | - Sergei K. Nechaev
- Interdisciplinary Scientific Center Poncelet (CNRS UMI 2615), Moscow 119002, Russia
- P.N. Lebedev Physical Institute RAS, Moscow 119991, Russia
| | - Kirill E. Polovnikov
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia
| |
Collapse
|
7
|
Abstract
Chromatin ‘blobs’ were recently identified by live super-resolution imaging of labeled nucleosomes as pervasive but fleeting structural entities. However, the mechanisms leading to the formation of these blobs and their functional implications are unknown. We explore here whether causal relationships exist between parameters that characterize the chromatin blob dynamics and structure, by adapting a framework for spatio-temporal Granger-causality inference. Our analysis reveals that chromatin dynamics is a key determinant for both blob area and local density. Such causality, however, could be demonstrated only in 10–20% of the nucleus, suggesting that chromatin dynamics and structure at the nanometer scale are dominated by stochasticity. We show that the theory of active semiflexible polymers can be invoked to provide potential mechanisms leading to the organization of chromatin into blobs. Our results represent a first step toward elucidating the mechanisms that govern the dynamic and stochastic organization of chromatin in the cell nucleus.
Collapse
Affiliation(s)
- Roman Barth
- Department of Bionanoscience, Delft University of Technology , Delft, The Netherlands
| | - Genevieve Fourel
- Laboratory of Biology and Modelling of the Cell, University of Lyon, ENS de Lyon, University of Claude Bernard, CNRS UMR 5239, Inserm U1210 , Lyon, France.,Centre Blaise Pascal, ENS de Lyon , Lyon, France
| | - Haitham A Shaban
- Spectroscopy Department, Physics Division, National Research Centre , Cairo, Egypt.,Center for Advanced Imaging, Faculty of Arts and Sciences, Harvard University , Cambridge, MA, USA
| |
Collapse
|
8
|
Janušonis S, Detering N, Metzler R, Vojta T. Serotonergic Axons as Fractional Brownian Motion Paths: Insights Into the Self-Organization of Regional Densities. Front Comput Neurosci 2020; 14:56. [PMID: 32670042 PMCID: PMC7328445 DOI: 10.3389/fncom.2020.00056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/19/2020] [Indexed: 01/03/2023] Open
Abstract
All vertebrate brains contain a dense matrix of thin fibers that release serotonin (5-hydroxytryptamine), a neurotransmitter that modulates a wide range of neural, glial, and vascular processes. Perturbations in the density of this matrix have been associated with a number of mental disorders, including autism and depression, but its self-organization and plasticity remain poorly understood. We introduce a model based on reflected Fractional Brownian Motion (FBM), a rigorously defined stochastic process, and show that it recapitulates some key features of regional serotonergic fiber densities. Specifically, we use supercomputing simulations to model fibers as FBM-paths in two-dimensional brain-like domains and demonstrate that the resultant steady state distributions approximate the fiber distributions in physical brain sections immunostained for the serotonin transporter (a marker for serotonergic axons in the adult brain). We suggest that this framework can support predictive descriptions and manipulations of the serotonergic matrix and that it can be further extended to incorporate the detailed physical properties of the fibers and their environment.
Collapse
Affiliation(s)
- Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Nils Detering
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Thomas Vojta
- Department of Physics, Missouri University of Science and Technology, Rolla, MO, United States
| |
Collapse
|