1
|
Baker CJ, Bertsche W, Capra A, Cesar CL, Charlton M, Mathad AC, Eriksson S, Evans A, Evetts N, Fabbri S, Fajans J, Friesen T, Fujiwara MC, Grandemange P, Granum P, Hangst JS, Hayden ME, Hodgkinson D, Isaac CA, Johnson MA, Jones JM, Jones SA, Jonsell S, Kurchaninov L, Madsen N, Maxwell D, McKenna JTK, Menary S, Momose T, Mullan P, Olchanski K, Olin A, Peszka J, Powell A, Pusa P, Rasmussen CØ, Robicheaux F, Sacramento RL, Sameed M, Sarid E, Silveira DM, Stutter G, So C, Tharp TD, Thompson RI, van der Werf DP, Wurtele JS. Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production. Nat Commun 2021; 12:6139. [PMID: 34686658 PMCID: PMC8536749 DOI: 10.1038/s41467-021-26086-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022] Open
Abstract
The positron, the antiparticle of the electron, predicted by Dirac in 1931 and discovered by Anderson in 1933, plays a key role in many scientific and everyday endeavours. Notably, the positron is a constituent of antihydrogen, the only long-lived neutral antimatter bound state that can currently be synthesized at low energy, presenting a prominent system for testing fundamental symmetries with high precision. Here, we report on the use of laser cooled Be+ ions to sympathetically cool a large and dense plasma of positrons to directly measured temperatures below 7 K in a Penning trap for antihydrogen synthesis. This will likely herald a significant increase in the amount of antihydrogen available for experimentation, thus facilitating further improvements in studies of fundamental symmetries.
Collapse
Affiliation(s)
- C J Baker
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - W Bertsche
- School of Physics and Astronomy, University of Manchester, Manchester, M12 9PL, UK
- Cockcroft Institute, Sci-Tech Daresbury, Warrington, WA4 4AD, UK
| | - A Capra
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
| | - C L Cesar
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil
| | - M Charlton
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - A Cridland Mathad
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - S Eriksson
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - A Evans
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - N Evetts
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - S Fabbri
- School of Physics and Astronomy, University of Manchester, Manchester, M12 9PL, UK
| | - J Fajans
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720-7300, USA
| | - T Friesen
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - M C Fujiwara
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
| | - P Grandemange
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
| | - P Granum
- Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark
| | - J S Hangst
- Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark
| | - M E Hayden
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - D Hodgkinson
- School of Physics and Astronomy, University of Manchester, Manchester, M12 9PL, UK
| | - C A Isaac
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - M A Johnson
- School of Physics and Astronomy, University of Manchester, Manchester, M12 9PL, UK
| | - J M Jones
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - S A Jones
- Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark
| | - S Jonsell
- Department of Physics, Stockholm University, SE-10691, Stockholm, Sweden
| | - L Kurchaninov
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
| | - N Madsen
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK.
| | - D Maxwell
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK.
| | - J T K McKenna
- Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark
| | - S Menary
- Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3, Canada
| | - T Momose
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - P Mullan
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - K Olchanski
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
| | - A Olin
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
| | - J Peszka
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - A Powell
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - P Pusa
- Department of Physics, University of Liverpool, Liverpool, L69 7ZE, UK
| | - C Ø Rasmussen
- Experimental Physics Department, CERN, Geneva, 1211, Switzerland
| | - F Robicheaux
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - R L Sacramento
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil
| | - M Sameed
- School of Physics and Astronomy, University of Manchester, Manchester, M12 9PL, UK
| | - E Sarid
- Soreq NRC, 81800, Yavne, Israel
- Department of Physics, Ben Gurion University, 8410501, Beer Sheva, Israel
| | - D M Silveira
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil
| | - G Stutter
- Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark
| | - C So
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - T D Tharp
- Physics Department, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - R I Thompson
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - D P van der Werf
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - J S Wurtele
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720-7300, USA
| |
Collapse
|
2
|
Doser M, Aghion S, Amsler C, Bonomi G, Brusa RS, Caccia M, Caravita R, Castelli F, Cerchiari G, Comparat D, Consolati G, Demetrio A, Di Noto L, Evans C, Fanì M, Ferragut R, Fesel J, Fontana A, Gerber S, Giammarchi M, Gligorova A, Guatieri F, Haider S, Hinterberger A, Holmestad H, Kellerbauer A, Khalidova O, Krasnický D, Lagomarsino V, Lansonneur P, Lebrun P, Malbrunot C, Mariazzi S, Marton J, Matveev V, Mazzotta Z, Müller SR, Nebbia G, Nedelec P, Oberthaler M, Pacifico N, Pagano D, Penasa L, Petracek V, Prelz F, Prevedelli M, Rienaecker B, Robert J, Røhne OM, Rotondi A, Sandaker H, Santoro R, Smestad L, Sorrentino F, Testera G, Tietje IC, Widmann E, Yzombard P, Zimmer C, Zmeskal J, Zurlo N. AEgIS at ELENA: outlook for physics with a pulsed cold antihydrogen beam. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:20170274. [PMID: 29459413 PMCID: PMC5829176 DOI: 10.1098/rsta.2017.0274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 06/08/2023]
Abstract
The efficient production of cold antihydrogen atoms in particle traps at CERN's Antiproton Decelerator has opened up the possibility of performing direct measurements of the Earth's gravitational acceleration on purely antimatter bodies. The goal of the AEgIS collaboration is to measure the value of g for antimatter using a pulsed source of cold antihydrogen and a Moiré deflectometer/Talbot-Lau interferometer. The same antihydrogen beam is also very well suited to measuring precisely the ground-state hyperfine splitting of the anti-atom. The antihydrogen formation mechanism chosen by AEgIS is resonant charge exchange between cold antiprotons and Rydberg positronium. A series of technical developments regarding positrons and positronium (Ps formation in a dedicated room-temperature target, spectroscopy of the n=1-3 and n=3-15 transitions in Ps, Ps formation in a target at 10 K inside the 1 T magnetic field of the experiment) as well as antiprotons (high-efficiency trapping of [Formula: see text], radial compression to sub-millimetre radii of mixed [Formula: see text] plasmas in 1 T field, high-efficiency transfer of [Formula: see text] to the antihydrogen production trap using an in-flight launch and recapture procedure) were successfully implemented. Two further critical steps that are germane mainly to charge exchange formation of antihydrogen-cooling of antiprotons and formation of a beam of antihydrogen-are being addressed in parallel. The coming of ELENA will allow, in the very near future, the number of trappable antiprotons to be increased by more than a factor of 50. For the antihydrogen production scheme chosen by AEgIS, this will be reflected in a corresponding increase of produced antihydrogen atoms, leading to a significant reduction of measurement times and providing a path towards high-precision measurements.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'.
Collapse
Affiliation(s)
- M Doser
- Physics Department, CERN, 1211 Geneva 23, Switzerland
| | - S Aghion
- Politecnico of Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- INFN Milano, via Celoria 16, 20133 Milano, Italy
| | - C Amsler
- Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - G Bonomi
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy
- INFN Pavia, via Bassi 6, 27100 Pavia, Italy
| | - R S Brusa
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento, Italy
- TIFPA/INFN Trento, via Sommarive 14, 38123 Povo, Trento, Italy
| | - M Caccia
- INFN Milano, via Celoria 16, 20133 Milano, Italy
- Department of Science, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - R Caravita
- Department of Physics, University of Genova, via Dodecaneso 33, 16146 Genova, Italy
- INFN Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - F Castelli
- INFN Milano, via Celoria 16, 20133 Milano, Italy
- Department of Physics, University of Milano, via Celoria 16, 20133 Milano, Italy
| | - G Cerchiari
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - D Comparat
- Laboratoire Aimé Cotton, Université Paris-Sud, ENS Cachan, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - G Consolati
- Politecnico of Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- INFN Milano, via Celoria 16, 20133 Milano, Italy
| | - A Demetrio
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - L Di Noto
- Department of Physics, University of Genova, via Dodecaneso 33, 16146 Genova, Italy
- INFN Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - C Evans
- Politecnico of Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- INFN Milano, via Celoria 16, 20133 Milano, Italy
| | - M Fanì
- Physics Department, CERN, 1211 Geneva 23, Switzerland
- Department of Physics, University of Genova, via Dodecaneso 33, 16146 Genova, Italy
- INFN Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - R Ferragut
- Politecnico of Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- INFN Milano, via Celoria 16, 20133 Milano, Italy
| | - J Fesel
- Physics Department, CERN, 1211 Geneva 23, Switzerland
| | - A Fontana
- INFN Pavia, via Bassi 6, 27100 Pavia, Italy
| | - S Gerber
- Physics Department, CERN, 1211 Geneva 23, Switzerland
| | - M Giammarchi
- INFN Milano, via Celoria 16, 20133 Milano, Italy
| | - A Gligorova
- Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - F Guatieri
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento, Italy
- TIFPA/INFN Trento, via Sommarive 14, 38123 Povo, Trento, Italy
| | - S Haider
- Physics Department, CERN, 1211 Geneva 23, Switzerland
| | | | - H Holmestad
- Department of Physics, University of Oslo, Sem Slandsvei 24, 0371 Oslo, Norway
| | - A Kellerbauer
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - O Khalidova
- Physics Department, CERN, 1211 Geneva 23, Switzerland
| | - D Krasnický
- INFN Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - V Lagomarsino
- Department of Physics, University of Genova, via Dodecaneso 33, 16146 Genova, Italy
- INFN Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - P Lansonneur
- Institute of Nuclear Physics, CNRS/IN2p3, University of Lyon 1, 69622 Villeurbanne, France
| | - P Lebrun
- Institute of Nuclear Physics, CNRS/IN2p3, University of Lyon 1, 69622 Villeurbanne, France
| | - C Malbrunot
- Physics Department, CERN, 1211 Geneva 23, Switzerland
- Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - S Mariazzi
- INFN Padova, via Marzolo 8, 35131 Padova, Italy
| | - J Marton
- Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - V Matveev
- Institute for Nuclear Research of the Russian Academy of Science, Moscow 117312, Russia
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Z Mazzotta
- INFN Milano, via Celoria 16, 20133 Milano, Italy
- Department of Physics, University of Milano, via Celoria 16, 20133 Milano, Italy
| | - S R Müller
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - G Nebbia
- INFN Padova, via Marzolo 8, 35131 Padova, Italy
| | - P Nedelec
- Institute of Nuclear Physics, CNRS/IN2p3, University of Lyon 1, 69622 Villeurbanne, France
| | - M Oberthaler
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - N Pacifico
- Physics Department, CERN, 1211 Geneva 23, Switzerland
| | - D Pagano
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy
- INFN Pavia, via Bassi 6, 27100 Pavia, Italy
| | - L Penasa
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento, Italy
- TIFPA/INFN Trento, via Sommarive 14, 38123 Povo, Trento, Italy
| | - V Petracek
- Czech Technical University in Prague, Brehová 7, 11519 Prague 1, Czech Republic
| | - F Prelz
- INFN Milano, via Celoria 16, 20133 Milano, Italy
| | - M Prevedelli
- University of Bologna, Viale Berti Pichat 6/2, 40126 Bologna, Italy
| | - B Rienaecker
- Physics Department, CERN, 1211 Geneva 23, Switzerland
| | - J Robert
- Laboratoire Aimé Cotton, Université Paris-Sud, ENS Cachan, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - O M Røhne
- Department of Physics, University of Oslo, Sem Slandsvei 24, 0371 Oslo, Norway
| | - A Rotondi
- INFN Pavia, via Bassi 6, 27100 Pavia, Italy
- Department of Physics, University of Pavia, via Bassi 6, 27100 Pavia, Italy
| | - H Sandaker
- Department of Physics, University of Oslo, Sem Slandsvei 24, 0371 Oslo, Norway
| | - R Santoro
- INFN Milano, via Celoria 16, 20133 Milano, Italy
- Department of Science, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - L Smestad
- Physics Department, CERN, 1211 Geneva 23, Switzerland
- The Research Council of Norway, PO Box 564, 1327 Lysaker, Norway
| | - F Sorrentino
- INFN Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - G Testera
- INFN Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - I C Tietje
- Physics Department, CERN, 1211 Geneva 23, Switzerland
| | - E Widmann
- Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - P Yzombard
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - C Zimmer
- Physics Department, CERN, 1211 Geneva 23, Switzerland
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Department of Physics, Heidelberg University, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
| | - J Zmeskal
- Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - N Zurlo
- INFN Pavia, via Bassi 6, 27100 Pavia, Italy
- Department of Civil Engineering, University of Brescia, via Branze 43, 25123 Brescia, Italy
| |
Collapse
|
3
|
Ahmadi M, Alves BXR, Baker CJ, Bertsche W, Butler E, Capra A, Carruth C, Cesar CL, Charlton M, Cohen S, Collister R, Eriksson S, Evans A, Evetts N, Fajans J, Friesen T, Fujiwara MC, Gill DR, Gutierrez A, Hangst JS, Hardy WN, Hayden ME, Isaac CA, Ishida A, Johnson MA, Jones SA, Jonsell S, Kurchaninov L, Madsen N, Mathers M, Maxwell D, McKenna JTK, Menary S, Michan JM, Momose T, Munich JJ, Nolan P, Olchanski K, Olin A, Pusa P, Rasmussen CØ, Robicheaux F, Sacramento RL, Sameed M, Sarid E, Silveira DM, Stracka S, Stutter G, So C, Tharp TD, Thompson JE, Thompson RI, van der Werf DP, Wurtele JS. Antihydrogen accumulation for fundamental symmetry tests. Nat Commun 2017; 8:681. [PMID: 28947794 PMCID: PMC5613003 DOI: 10.1038/s41467-017-00760-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/20/2017] [Indexed: 11/18/2022] Open
Abstract
Antihydrogen, a positron bound to an antiproton, is the simplest anti-atom. Its structure and properties are expected to mirror those of the hydrogen atom. Prospects for precision comparisons of the two, as tests of fundamental symmetries, are driving a vibrant programme of research. In this regard, a limiting factor in most experiments is the availability of large numbers of cold ground state antihydrogen atoms. Here, we describe how an improved synthesis process results in a maximum rate of 10.5 ± 0.6 atoms trapped and detected per cycle, corresponding to more than an order of magnitude improvement over previous work. Additionally, we demonstrate how detailed control of electron, positron and antiproton plasmas enables repeated formation and trapping of antihydrogen atoms, with the simultaneous retention of atoms produced in previous cycles. We report a record of 54 detected annihilation events from a single release of the trapped anti-atoms accumulated from five consecutive cycles. Antihydrogen studies are important in testing the fundamental principles of physics but producing antihydrogen in large amounts is challenging. Here the authors demonstrate an efficient and high-precision method for trapping and stacking antihydrogen by using controlled plasma.
Collapse
Affiliation(s)
- M Ahmadi
- Department of Physics, University of Liverpool, Liverpool, L69 7ZE, UK
| | - B X R Alves
- Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark
| | - C J Baker
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - W Bertsche
- School of Physics and Astronomy, University of Manchester, Manchester, M12 9PL, UK.,Cockcroft Institute, Sci-Tech Daresbury, Warrington, WA4 4AD, UK
| | - E Butler
- Physics Department, CERN, CH-1211, Geneve 23, Switzerland
| | - A Capra
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A3
| | - C Carruth
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720-7300, USA
| | - C L Cesar
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil
| | - M Charlton
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - S Cohen
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - R Collister
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A3
| | - S Eriksson
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - A Evans
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - N Evetts
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| | - J Fajans
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720-7300, USA
| | - T Friesen
- Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark.
| | - M C Fujiwara
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A3
| | - D R Gill
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A3
| | - A Gutierrez
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - J S Hangst
- Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark
| | - W N Hardy
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| | - M E Hayden
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - C A Isaac
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - A Ishida
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - M A Johnson
- School of Physics and Astronomy, University of Manchester, Manchester, M12 9PL, UK.,Cockcroft Institute, Sci-Tech Daresbury, Warrington, WA4 4AD, UK
| | - S A Jones
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - S Jonsell
- Department of Physics, Stockholm University, SE-10691, Stockholm, Sweden
| | - L Kurchaninov
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A3
| | - N Madsen
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK.
| | - M Mathers
- Department of Physics and Astronomy, York University, Toronto, ON, Canada, M3J 1P3
| | - D Maxwell
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - J T K McKenna
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A3
| | - S Menary
- Department of Physics and Astronomy, York University, Toronto, ON, Canada, M3J 1P3
| | - J M Michan
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A3.,École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015, Lausanne, Switzerland
| | - T Momose
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| | - J J Munich
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - P Nolan
- Department of Physics, University of Liverpool, Liverpool, L69 7ZE, UK
| | - K Olchanski
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A3
| | - A Olin
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A3.,Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada, V8P 5C2
| | - P Pusa
- Department of Physics, University of Liverpool, Liverpool, L69 7ZE, UK
| | - C Ø Rasmussen
- Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark
| | - F Robicheaux
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - R L Sacramento
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil
| | - M Sameed
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - E Sarid
- Soreq NRC, Yavne, 81800, Israel
| | - D M Silveira
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil
| | - S Stracka
- Universita di Pisa and Sezione INFN di Pisa, Largo Pontecorvo 3, 56127, Pisa, Italy
| | - G Stutter
- Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark
| | - C So
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - T D Tharp
- Physics Department, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - J E Thompson
- Department of Physics and Astronomy, York University, Toronto, ON, Canada, M3J 1P3
| | - R I Thompson
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - D P van der Werf
- Department of Physics, College of Science, Swansea University, Swansea, SA2 8PP, UK.,IRFU, CEA/Saclay, F-91191, Gif-sur-Yvette, France
| | - J S Wurtele
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720-7300, USA
| |
Collapse
|
4
|
Abstract
The creation of cold antihydrogen atoms by the controlled combination of positrons and antiprotons has opened up a new window on fundamental physics. More recently, techniques have been developed that allow some antihydrogen atoms to be created at low enough kinetic energies that they can be held inside magnetic minimum neutral atom traps. With confinement times of many minutes possible, it has become feasible to perform experiments to probe the properties of the antiatom for the first time. We review the experimental progress in this area, outline some of the motivation for studying basic aspects of antimatter physics and provide an outlook of where we might expect this field to go in the coming years.
Collapse
|
5
|
Andresen GB, Ashkezari MD, Baquero-Ruiz M, Bertsche W, Bowe PD, Butler E, Cesar CL, Chapman S, Charlton M, Deller A, Eriksson S, Fajans J, Friesen T, Fujiwara MC, Gill DR, Gutierrez A, Hangst JS, Hardy WN, Hayden ME, Humphries AJ, Hydomako R, Jonsell S, Madsen N, Menary S, Nolan P, Olin A, Povilus A, Pusa P, Robicheaux F, Sarid E, Silveira DM, So C, Storey JW, Thompson RI, van der Werf DP, Wurtele JS, Yamazaki Y. Centrifugal separation and equilibration dynamics in an electron-antiproton plasma. PHYSICAL REVIEW LETTERS 2011; 106:145001. [PMID: 21561196 DOI: 10.1103/physrevlett.106.145001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Indexed: 05/30/2023]
Abstract
Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of the separation dynamics in any centrifugally separated system. While the observed equilibrium states are expected and in agreement with theory, the equilibration time is approximately constant over a wide range of parameters, a surprising and as yet unexplained result. Electron-antiproton plasmas play a crucial role in antihydrogen trapping experiments.
Collapse
Affiliation(s)
- G B Andresen
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gabrielse G, Kolthammer WS, McConnell R, Richerme P, Wrubel J, Kalra R, Novitski E, Grzonka D, Oelert W, Sefzick T, Zielinski M, Borbely JS, Fitzakerley D, George MC, Hessels EA, Storry CH, Weel M, Müllers A, Walz J, Speck A. Centrifugal separation of antiprotons and electrons. PHYSICAL REVIEW LETTERS 2010; 105:213002. [PMID: 21231298 DOI: 10.1103/physrevlett.105.213002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Indexed: 05/30/2023]
Abstract
Centrifugal separation of antiprotons and electrons is observed, the first such demonstration with particles that cannot be laser cooled or optically imaged. The spatial separation takes place during the electron cooling of trapped antiprotons, the only method available to produce cryogenic antiprotons for precision tests of fundamental symmetries and for cold antihydrogen studies. The centrifugal separation suggests a new approach for isolating low energy antiprotons and for producing a controlled mixture of antiprotons and electrons.
Collapse
Affiliation(s)
- G Gabrielse
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Andresen GB, Ashkezari MD, Baquero-Ruiz M, Bertsche W, Bowe PD, Butler E, Cesar CL, Chapman S, Charlton M, Deller A, Eriksson S, Fajans J, Friesen T, Fujiwara MC, Gill DR, Gutierrez A, Hangst JS, Hardy WN, Hayden ME, Humphries AJ, Hydomako R, Jenkins MJ, Jonsell S, Jørgensen LV, Kurchaninov L, Madsen N, Menary S, Nolan P, Olchanski K, Olin A, Povilus A, Pusa P, Robicheaux F, Sarid E, Nasr SSE, Silveira DM, So C, Storey JW, Thompson RI, van der Werf DP, Wurtele JS, Yamazaki Y. Trapped antihydrogen. Nature 2010; 468:673-6. [DOI: 10.1038/nature09610] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 10/27/2010] [Indexed: 11/09/2022]
|
8
|
Madsen N. Cold antihydrogen: a new frontier in fundamental physics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:3671-3682. [PMID: 20603376 DOI: 10.1098/rsta.2010.0026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The year 2002 heralded a breakthrough in antimatter research when the first low energy antihydrogen atoms were produced. Antimatter has inspired both science and fiction writers for many years, but detailed studies have until now eluded science. Antimatter is notoriously difficult to study as it does not readily occur in nature, even though our current understanding of the laws of physics have us expecting that it should make up half of the universe. The pursuit of cold antihydrogen is driven by a desire to solve this profound mystery. This paper will motivate the current effort to make cold antihydrogen, explain how antihydrogen is currently made, and how and why we are attempting to trap it. It will also discuss what kind of measurements are planned to gain new insights into the unexplained asymmetry between matter and antimatter in the universe.
Collapse
Affiliation(s)
- Niels Madsen
- Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
9
|
Andresen GB, Ashkezari MD, Baquero-Ruiz M, Bertsche W, Bowe PD, Butler E, Cesar CL, Chapman S, Charlton M, Fajans J, Friesen T, Fujiwara MC, Gill DR, Hangst JS, Hardy WN, Hayano RS, Hayden ME, Humphries A, Hydomako R, Jonsell S, Kurchaninov L, Lambo R, Madsen N, Menary S, Nolan P, Olchanski K, Olin A, Povilus A, Pusa P, Robicheaux F, Sarid E, Silveira DM, So C, Storey JW, Thompson RI, van der Werf DP, Wilding D, Wurtele JS, Yamazaki Y. Evaporative cooling of antiprotons to cryogenic temperatures. PHYSICAL REVIEW LETTERS 2010; 105:013003. [PMID: 20867439 DOI: 10.1103/physrevlett.105.013003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Indexed: 05/29/2023]
Abstract
We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.
Collapse
Affiliation(s)
- G B Andresen
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Andresen GB, Bertsche W, Bowe PD, Bray CC, Butler E, Cesar CL, Chapman S, Charlton M, Fajans J, Fujiwara MC, Gill DR, Hangst JS, Hardy WN, Hayano RS, Hayden ME, Humphries AJ, Hydomako R, Jørgensen LV, Kerrigan SJ, Kurchaninov L, Lambo R, Madsen N, Nolan P, Olchanski K, Olin A, Povilus AP, Pusa P, Sarid E, Seif El Nasr S, Silveira DM, Storey JW, Thompson RI, van der Werf DP, Yamazaki Y. Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:123701. [PMID: 20073120 DOI: 10.1063/1.3266967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A microchannel plate (MCP)/phosphor screen assembly has been used to destructively measure the radial profile of cold, confined antiprotons, electrons, and positrons in the ALPHA experiment, with the goal of using these trapped particles for antihydrogen creation and confinement. The response of the MCP to low energy (10-200 eV, <1 eV spread) antiproton extractions is compared to that of electrons and positrons.
Collapse
|
11
|
Scheid M, Kolbe D, Markert F, Hänsch TW, Walz J. Continuous-wave Lyman-alpha generation with solid-state lasers. OPTICS EXPRESS 2009; 17:11274-11280. [PMID: 19582040 DOI: 10.1364/oe.17.011274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A coherent continuous-wave Lyman-alpha source based on four-wave sum-frequency mixing in mercury vapor has been realized with solid-state lasers. The third-order nonlinear susceptibility is enhanced by the 6(1)S - 7(1)S two-photon resonance and the near 6(1)S-6(3)P one-photon resonance. The phase matching curve for this four-wave mixing scheme is observed for the first time. In addition we investigate the two-photon enhancement of the Lyman-alpha yield and observe that the maxima of Lyman-alpha generation are shifted compared to the two-photon resonances of the different isotopes.
Collapse
Affiliation(s)
- Martin Scheid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, D-55128 Mainz, Germany.
| | | | | | | | | |
Collapse
|