1
|
Nwogbaga I, Camley BA. Cell shape and orientation control galvanotactic accuracy. SOFT MATTER 2024; 20:8866-8887. [PMID: 39479920 DOI: 10.1039/d4sm00952e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Eukaryotic cells sense and follow electric fields during wound healing and embryogenesis - this is called galvanotaxis. Galvanotaxis is believed to be driven by the redistribution of "sensors" - potentially transmembrane proteins or other molecules - through electrophoresis and electroosmosis. Here, we update our previous model of the limits of galvanotaxis due to the stochasticity of sensor movements to account for cell shape and orientation. Computing the Fisher information shows that, in principle, cells have more information about the electric field direction when their long axis is parallel to the field. However, for weak fields, maximum-likelihood estimators may have lower variability when the cell's long axis is perpendicular to the field. In an alternate possibility, we find that if cells instead estimate the field direction by taking the average of all the sensor locations as its directional cue ("vector sum"), this introduces a bias towards the short axis, an effect not present for isotropic cells. We also explore the possibility that cell elongation arises downstream of sensor redistribution. We argue that if sensors migrate to the cell's rear, the cell will tend to expand perpendicular the field - as is more commonly observed - but if sensors migrate to the front, the cell will tend to elongate parallel to the field.
Collapse
Affiliation(s)
- Ifunanya Nwogbaga
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Brian A Camley
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Otani S, Ito H, Nomoto T, Fujinami M, Górecki J, Kitahata H. Deformation dynamics of an oil droplet into a crescent shape during intermittent motion. Phys Rev E 2024; 110:044602. [PMID: 39562935 DOI: 10.1103/physreve.110.044602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/11/2024] [Indexed: 11/21/2024]
Abstract
A paraffin droplet containing camphor and oil red O (dye) floating on the water surface shows spontaneous motion and deformation generated by the surface tension gradient around the droplet. We focused on the intermittent motion with a pronounced deformation into a crescent shape observed at specific concentrations of camphor and oil red O. We quantitatively analyzed the time changes in the droplet deformation and investigated the role of the oil red O by measuring the time-dependent paraffin-water interfacial tension with the pendant drop method. The observed effect can be explained by the active role of the oil red O molecules at the paraffin-water interface. The interfacial tension decreases gradually after the interface formation, allowing for the dynamic deformation of the droplet. The combination of the decrease in interfacial tension and the reduction in driving force related to camphor outflow generates intermittent motion with dynamic deformation into a crescent shape.
Collapse
|
3
|
Lequy T, Menzel AM. Stochastic motion under nonlinear friction representing shear thinning. Phys Rev E 2023; 108:064606. [PMID: 38243489 DOI: 10.1103/physreve.108.064606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/12/2023] [Indexed: 01/21/2024]
Abstract
We study stochastic motion under a nonlinear frictional force that levels off with increasing velocity. Specifically, our frictional force is of the so-called Coulomb-tanh type. At small speed, it increases approximately linearly with velocity, while at large speed, it approaches a constant magnitude, similarly to solid (dry, Coulomb) friction. In one spatial dimension, a formal analogy between the associated Fokker-Planck equation and the Schrödinger equation for a quantum mechanical oscillator in a nonharmonic Pöschl-Teller potential is revealed. Then, the stationary velocity statistics can be treated analytically. From such analytical considerations, we determine associated diffusion coefficients, which we confirm by agent-based simulations. Moreover, from such simulations and from numerically solving the associated Fokker-Planck equation, we find that the spatial distribution function, starting from an initial Gaussian shape, develops tails that appear exponential at intermediate timescales. At small magnitudes of stochastic driving, the velocity distribution resembles the case of linear friction, while at large magnitudes, it rather approaches the case of solid (dry, Coulomb) friction. The same is true for diffusion coefficients. In a certain sense thus interpolating between the two extreme cases of linear friction and solid (dry, Coulomb) friction, our approach should be useful to describe several cases of practical relevance. For instance, a reduced increase in friction with increasing relative speed is typical of shear-thinning behavior. Therefore, driven motion in shear-thinning environments is one specific example to which our description may be applied.
Collapse
Affiliation(s)
- Theo Lequy
- Eidgenössische Technische Hochschule Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
4
|
Sato K. A cell membrane model that reproduces cortical flow-driven cell migration and collective movement. Front Cell Dev Biol 2023; 11:1126819. [PMID: 37427380 PMCID: PMC10328438 DOI: 10.3389/fcell.2023.1126819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Many fundamental biological processes are dependent on cellular migration. Although the mechanical mechanisms of single-cell migration are relatively well understood, those underlying migration of multiple cells adhered to each other in a cluster, referred to as cluster migration, are poorly understood. A key reason for this knowledge gap is that many forces-including contraction forces from actomyosin networks, hydrostatic pressure from the cytosol, frictional forces from the substrate, and forces from adjacent cells-contribute to cell cluster movement, making it challenging to model, and ultimately elucidate, the final result of these forces. This paper describes a two-dimensional cell membrane model that represents cells on a substrate with polygons and expresses various mechanical forces on the cell surface, keeping these forces balanced at all times by neglecting cell inertia. The model is discrete but equivalent to a continuous model if appropriate replacement rules for cell surface segments are chosen. When cells are given a polarity, expressed by a direction-dependent surface tension reflecting the location dependence of contraction and adhesion on a cell boundary, the cell surface begins to flow from front to rear as a result of force balance. This flow produces unidirectional cell movement, not only for a single cell but also for multiple cells in a cluster, with migration speeds that coincide with analytical results from a continuous model. Further, if the direction of cell polarity is tilted with respect to the cluster center, surface flow induces cell cluster rotation. The reason why this model moves while keeping force balance on cell surface (i.e., under no net forces from outside) is because of the implicit inflow and outflow of cell surface components through the inside of the cell. An analytical formula connecting cell migration speed and turnover rate of cell surface components is presented.
Collapse
|
5
|
Sakuta H, Nakatani N, Torisawa T, Sumino Y, Tsumoto K, Oiwa K, Yoshikawa K. Self-emergent vortex flow of microtubule and kinesin in cell-sized droplets under water/water phase separation. Commun Chem 2023; 6:80. [PMID: 37100870 PMCID: PMC10133263 DOI: 10.1038/s42004-023-00879-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
By facilitating a water/water phase separation (w/wPS), crowded biopolymers in cells form droplets that contribute to the spatial localization of biological components and their biochemical reactions. However, their influence on mechanical processes driven by protein motors has not been well studied. Here, we show that the w/wPS droplet spontaneously entraps kinesins as well as microtubules (MTs) and generates a micrometre-scale vortex flow inside the droplet. Active droplets with a size of 10-100 µm are generated through w/wPS of dextran and polyethylene glycol mixed with MTs, molecular-engineered chimeric four-headed kinesins and ATP after mechanical mixing. MTs and kinesin rapidly created contractile network accumulated at the interface of the droplet and gradually generated vortical flow, which can drive translational motion of a droplet. Our work reveals that the interface of w/wPS contributes not only to chemical processes but also produces mechanical motion by assembling species of protein motors in a functioning manner.
Collapse
Affiliation(s)
- Hiroki Sakuta
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
- Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
| | - Naoki Nakatani
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Takayuki Torisawa
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Yutaka Sumino
- Department of Applied Physics, Faculty of Advanced Engineering, WaTUS and DCIS, Tokyo University of Science, Katsushika, Tokyo, 125-8585, Japan.
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie, 514-8507, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo, 651-2492, Japan.
- Department of Life Science, Graduate School of Science, University of Hyogo, Ako, Hyogo, 678-1297, Japan.
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| |
Collapse
|
6
|
Tanaka M, Thoma J, Poisa-Beiro L, Wuchter P, Eckstein V, Dietrich S, Pabst C, Müller-Tidow C, Ohta T, Ho AD. Physical biomarkers for human hematopoietic stem and progenitor cells. Cells Dev 2023; 174:203845. [PMID: 37116713 DOI: 10.1016/j.cdev.2023.203845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Adhesion of hematopoietic stem and progenitor cells (HSPCs) to the bone marrow niche plays critical roles in the maintenance of the most primitive HSPCs. The interactions of HSPC-niche interactions are clinically relevant in acute myeloid leukemia (AML), because (i) leukemia-initiating cells adhered to the marrow niche are protected from the cytotoxic effect by chemotherapy and (ii) mobilization of HSPCs from healthy donors' bone marrow is crucial for the effective stem cell transplantation. However, although many clinical agents have been developed for the HSPC mobilization, the effects caused by the extrinsic molecular cues were traditionally evaluated based on phenomenological observations. This review highlights the recent interdisciplinary challenges of hematologists, biophysicists and cell biologists towards the design of defined in vitro niche models and the development of physical biomarkers for quantitative indexing of differential effects of clinical agents on human HSPCs.
Collapse
Affiliation(s)
- Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, INF253, Heidelberg University, 69120 Heidelberg, Germany; Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501 Kyoto, Japan.
| | - Judith Thoma
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, INF253, Heidelberg University, 69120 Heidelberg, Germany
| | - Laura Poisa-Beiro
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Patrick Wuchter
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Volker Eckstein
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Sascha Dietrich
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Caroline Pabst
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany
| | - Takao Ohta
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501 Kyoto, Japan
| | - Anthony D Ho
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501 Kyoto, Japan; Department of Medicine V, Heidelberg University, INF410, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory (EMBL), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Debets VE, Löwen H, Janssen LMC. Glassy Dynamics in Chiral Fluids. PHYSICAL REVIEW LETTERS 2023; 130:058201. [PMID: 36800471 DOI: 10.1103/physrevlett.130.058201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Chiral active matter is enjoying a rapid increase of interest, spurred by the rich variety of asymmetries that can be attained in, e.g., the shape or self-propulsion mechanism of active particles. Though this has already led to the observance of so-called chiral crystals, active chiral glasses remain largely unexplored. A possible reason for this could be the naive expectation that interactions dominate the glassy dynamics and the details of the active motion become increasingly less relevant. Here, we show that quite the opposite is true by studying the glassy dynamics of interacting chiral active Brownian particles. We demonstrate that when our chiral fluid is pushed to glassy conditions, it exhibits highly nontrivial dynamics, especially compared to a standard linear active fluid such as common active Brownian particles. Despite the added complexity, we are still able to present a full rationalization for all identified dynamical regimes. Most notably, we introduce a new "hammering" mechanism, unique to rapidly spinning particles in high-density conditions, that can fluidize a chiral active solid.
Collapse
Affiliation(s)
- Vincent E Debets
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Liesbeth M C Janssen
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
8
|
Nwogbaga I, Camley BA. Coupling cell shape and velocity leads to oscillation and circling in keratocyte galvanotaxis. Biophys J 2023; 122:130-142. [PMID: 36397670 PMCID: PMC9822803 DOI: 10.1016/j.bpj.2022.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/03/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
During wound healing, fish keratocyte cells undergo galvanotaxis where they follow a wound-induced electric field. In addition to their stereotypical persistent motion, keratocytes can develop circular motion without a field or oscillate while crawling in the field direction. We developed a coarse-grained phenomenological model that captures these keratocyte behaviors. We fit this model to experimental data on keratocyte response to an electric field being turned on. A critical element of our model is a tendency for cells to turn toward their long axis, arising from a coupling between cell shape and velocity, which gives rise to oscillatory and circular motion. Galvanotaxis is influenced not only by the field-dependent responses, but also cell speed and cell shape relaxation rate. When the cell reacts to an electric field being turned on, our model predicts that stiff, slow cells react slowly but follow the signal reliably. Cells that polarize and align to the field at a faster rate react more quickly and follow the signal more reliably. When cells are exposed to a field that switches direction rapidly, cells follow the average of field directions, while if the field is switched more slowly, cells follow a "staircase" pattern. Our study indicated that a simple phenomenological model coupling cell speed and shape is sufficient to reproduce a broad variety of different keratocyte behaviors, ranging from circling to oscillation to galvanotactic response, by only varying a few parameters.
Collapse
Affiliation(s)
- Ifunanya Nwogbaga
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Brian A Camley
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland; William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
9
|
Menzel AM. Circular motion subject to external alignment under active driving: Nonlinear dynamics and the circle map. Phys Rev E 2022; 106:064603. [PMID: 36671092 DOI: 10.1103/physreve.106.064603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Hardly any real self-propelling or actively driven object is perfect. Thus, undisturbed motion will generally not follow straight lines but rather bent or circular trajectories. We here address self-propelled or actively driven objects that move in discrete steps and additionally tend to migrate towards a certain direction by discrete angular adjustment. Overreaction in the angular alignment is possible. This competition implies pronounced nonlinear dynamics including period doubling and chaotic behavior in a broad parameter regime. Such behavior directly affects the appearance of the trajectories. Furthermore, we address collective motion and effects of spatial self-concentration.
Collapse
Affiliation(s)
- Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
10
|
Kitahata H, Koyano Y, Löffler RJG, Górecki J. Complexity and bifurcations in the motion of a self-propelled rectangle confined in a circular water chamber. Phys Chem Chem Phys 2022; 24:20326-20335. [PMID: 35980173 DOI: 10.1039/d2cp02456j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We consider the motion of a self-propelled object of rectangular shape inside a circular water chamber. The mathematical model of self-motion includes equations for the orientation and location of the rectangle and reaction-diffusion equation with an effective diffusion coefficient for the time evolution of the surface concentration of active molecules. Numerical simulations of motion were performed for different values of the ratio between the supply rate S and the evaporation rate a of active molecules. Treating S0 = S/a as a control parameter, we found the critical behavior in variables characterizing the trajectory and identified different types of motion. If the value of S0 is small, the rectangle rests at the chamber center. For larger S0, a reciprocal motion during which the rectangle passes through the center is observed. At yet higher supply rates, the star-polygonal motion appears, and the trajectory remains at a distance from the chamber center. In the experiments with a rectangle made of camphor-camphene-polypropylene plastic moving in a Petri dish, we observed the transition from the star-polygonal motion to the reciprocal motion in time. This transition can be understood on the basis of the developed model if we assume that the supply rate decreases in time.
Collapse
Affiliation(s)
- Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan.
| | - Yuki Koyano
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Hyogo 657-0011, Japan
| | - Richard J G Löffler
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Polo Scientifico e Tecnologico Fabio Ferrari, Polo B, Via Sommarive 9, Povo, 38123, Trentino Alto-Adige, Italy.,Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Jerzy Górecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
11
|
Kaiser M, Kantorovich SS. The importance of being a cube: Active cubes in a microchannel. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Menzel AM. Statistics for an object actively driven by spontaneous symmetry breaking into reversible directions. J Chem Phys 2022; 157:011102. [DOI: 10.1063/5.0093598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Propulsion of otherwise passive objects is achieved by mechanisms of active driving. We concentrate on cases in which the direction of active drive is subject to spontaneous symmetry breaking. In our case, this direction will be maintained until a large enough impulse by an additional stochastic force reverses it. Examples may be provided by self-propelled droplets, gliding bacteria stochastically reversing their propulsion direction, or nonpolar vibrated hoppers. The magnitude of active forcing is regarded as constant, and we include the effect of inertial contributions. Interestingly, this situation can formally be mapped to stochastic motion under (dry, solid) Coulomb friction, however, with a negative friction parameter. Diffusion coefficients are calculated by formal mapping to the situation of a quantum-mechanical harmonic oscillator exposed to an additional repulsive delta-potential. Results comprise a ditched or double-peaked velocity distribution and spatial statistics showing outward propagating maxima when starting from initially concentrated arrangements.
Collapse
Affiliation(s)
- Andreas M. Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
13
|
Krause V, Voigt A. Deformable active nematic particles and emerging edge currents in circular confinements. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:14. [PMID: 35175445 PMCID: PMC8854302 DOI: 10.1140/epje/s10189-022-00162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
We consider a microscopic field theoretical approach for interacting active nematic particles. With only steric interactions the self-propulsion strength in such systems can lead to different collective behaviour, e.g. synchronized self-spinning and collective translation. The different behaviour results from the delicate interplay between internal nematic structure, particle shape deformation and particle-particle interaction. For intermediate active strength an asymmetric particle shape emerges and leads to chirality and self-spinning crystals. For larger active strength the shape is symmetric and translational collective motion emerges. Within circular confinements, depending on the packing fraction, the self-spinning regime either stabilizes positional and orientational order or can lead to edge currents and global rotation which destroys the synchronized self-spinning crystalline structure.
Collapse
Affiliation(s)
- Veit Krause
- Institut für Wissenschaftliches Rechnen, TU Dresden, 01062, Dresden, Germany
| | - Axel Voigt
- Institut für Wissenschaftliches Rechnen, TU Dresden, 01062, Dresden, Germany.
- Center for Systems Biology Dresden (CSBD), Pfotenhauerstr. 108, 01307, Dresden, Germany.
- Cluster of Excellence, Physics of Life, TU Dresden, 01062, Dresden, Germany.
| |
Collapse
|
14
|
Sackmann E, Tanaka M. Critical role of lipid membranes in polarization and migration of cells: a biophysical view. Biophys Rev 2021; 13:123-138. [PMID: 33747247 PMCID: PMC7930189 DOI: 10.1007/s12551-021-00781-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Cell migration plays vital roles in many biologically relevant processes such as tissue morphogenesis and cancer metastasis, and it has fascinated biophysicists over the past several decades. However, despite an increasing number of studies highlighting the orchestration of proteins involved in different signaling pathways, the functional roles of lipid membranes have been essentially overlooked. Lipid membranes are generally considered to be a functionless two-dimensional matrix of proteins, although many proteins regulating cell migration gain functions only after they are recruited to the membrane surface and self-organize their functional domains. In this review, we summarize how the logistical recruitment and release of proteins to and from lipid membranes coordinates complex spatiotemporal molecular processes. As predicted from the classical framework of the Smoluchowski equation of diffusion, lipid/protein membranes serve as a 2D reaction hub that contributes to the effective and robust regulation of polarization and migration of cells involving several competing pathways.
Collapse
Affiliation(s)
- Erich Sackmann
- Physics Department E22/E27, Technical University of Munich, James-Franck-Strasse, 85747 Garching, Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany.,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501 Japan
| |
Collapse
|
15
|
Hiraiwa T. Dynamic Self-Organization of Idealized Migrating Cells by Contact Communication. PHYSICAL REVIEW LETTERS 2020; 125:268104. [PMID: 33449791 DOI: 10.1103/physrevlett.125.268104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
This Letter investigates what forms of cellular dynamic self-organization are caused through intercellular contact communication based on a theoretical model in which migrating cells perform contact following and contact inhibition and attraction of locomotion. Tuning those strengths causes varieties of dynamic patterns. This further includes a novel form of collective migration, snakelike dynamic assembly. Scrutinizing this pattern reveals that cells in this state can accurately respond to an external directional cue but have no spontaneous global polar order.
Collapse
Affiliation(s)
- Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, 117411, Singapore and Universal Biology Institute, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Le Goff T, Liebchen B, Marenduzzo D. Actomyosin Contraction Induces In-Bulk Motility of Cells and Droplets. Biophys J 2020; 119:1025-1032. [PMID: 32795395 DOI: 10.1016/j.bpj.2020.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/29/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023] Open
Abstract
Cell crawling on two-dimensional surfaces is a relatively well-understood phenomenon that is based on actin polymerization at a cell's front edge and anchoring on a substrate, allowing the cell to pull itself forward. However, some cells, such as cancer cells invading a three-dimensional matrigel, can also swim in the bulk, where surface adhesion is impossible. Although there is strong evidence that the self-organized engine that drives cells forward in the bulk involves myosin, the specific propulsion mechanism remains largely unclear. Here, we propose a minimal model for in-bulk self-motility of a droplet containing an isotropic and compressible contractile gel, representing a cell extract containing a disordered actomyosin network. In our model, contraction mediates a feedback loop between myosin-induced flow and advection-induced myosin accumulation, which leads to clustering and locally enhanced flow. The symmetry of such flow is then spontaneously broken through actomyosin-membrane interactions, leading to self-organized droplet motility relative to the underlying solvent. Depending on the balance between contraction, diffusion, detachment rate of myosin, and effective surface tension, this motion can be either straight or circular. Our simulations and analytical results shed new light on in-bulk myosin-driven cell motility in living cells and provide a framework to design a novel type of synthetic active matter droplet potentially resembling the motility mechanism of biological cells.
Collapse
Affiliation(s)
| | - Benno Liebchen
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
17
|
Chakrabarti B, Gaillard C, Saintillan D. Trapping, gliding, vaulting: transport of semiflexible polymers in periodic post arrays. SOFT MATTER 2020; 16:5534-5544. [PMID: 32507870 DOI: 10.1039/d0sm00390e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The transport of deformable particles through porous media underlies a wealth of applications ranging from filtration to oil recovery to the transport and spreading of biological agents. Using direct numerical simulations, we analyze the dynamics of semiflexible polymers under the influence of an imposed flow in a structured two-dimensional lattice serving as an idealization of a porous medium. This problem has received much attention in the limit of reptation and for long-chain polymer molecules such as DNA that are transported through micropost arrays for electrophoretic chromatographic separation. In contrast to long entropic molecules, the dynamics of elastic polymers results from a combination of scattering with the obstacles and flow-induced buckling instabilities. We identify three dominant modes of transport that involve trapping, gliding and vaulting of the polymers around the obstacles, and we reveal their essential features using tools from dynamical systems theory. The interplay of these scattering dynamics with transport and deformations in the imposed flow results in the long-time asymptotic dispersion of the center of mass, which we quantify in terms of a hydrodynamic dispersion tensor. We then discuss a simple yet efficient chromatographic device that exploits the competition between different modes of transport to sort filaments in a dilute suspension according to their lengths.
Collapse
Affiliation(s)
- Brato Chakrabarti
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
18
|
Abstract
Several prokaryotes and eukaryotic cells swim in the presence of deformable and rigid surfaces that form confinement. The most commonly observed examples from biological systems are motility of leukocytes and pathogens present within the blood suspension through a microvascular network, and locomotion of eukaryotic cells such as immune system cells and cancerous cells through interstices between soft interstitial cells and the extracellular matrix within the interstitial tissue. This motivated us to investigate numerically the flow dynamics of amoeboid swimming in a flexible channel. The effects of wall stiffness and channel confinement on the flow dynamics and swimmer motion are studied. The swimmer motion through the flexible channel is substantially decelerated compared to the rigid channel. The strong confinement in the amply flexible channel imprisons the swimmer by severely restricting its forward motion. The swimmer velocity in a stiff channel displays nonmonotonic variation with the confinement while it shows monotonic reduction in a highly flexible channel. The physical rationale behind such distinct velocity behaviour in flexible and rigid channels is illustrated using an instantaneous flow field and flow history displayed by the swimmer. This behavior follows from a subtle interplay between the shape changes exhibited by the swimmer and the wall compliance. This study may aid in understanding the influence of elasticity of the surrounding environment on cell motility in immunological surveillance and invasiveness of cancer cells.
Collapse
Affiliation(s)
- Swapnil Dalal
- Univ. Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
| | | | | |
Collapse
|
19
|
Abstract
The diffusion in two dimensions of noninteracting active particles that follow an arbitrary motility pattern is considered for analysis. A Fokker-Planck-like equation is generalized to take into account an arbitrary distribution of scattered angles of the swimming direction, which encompasses the pattern of active motion of particles that move at constant speed. An exact analytical expression for the marginal probability density of finding a particle on a given position at a given instant, independently of its direction of motion, is provided, and a connection with a generalized diffusion equation is unveiled. Exact analytical expressions for the time dependence of the mean-square displacement and of the kurtosis of the distribution of the particle positions are presented. The analysis is focused in the intermediate-time regime, where the effects of the specific pattern of active motion are conspicuous. For this, it is shown that only the expectation value of the first two harmonics of the scattering angle of the direction of motion are needed. The effects of persistence and of circular motion are discussed for different families of distributions of the scattered direction of motion.
Collapse
Affiliation(s)
- Francisco J Sevilla
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000, Ciudad de México, México
| |
Collapse
|
20
|
Koyano Y, Kitahata H, Nakata S, Gorecki J. On a simple model that explains inversion of a self-propelled rotor under periodic stop-and-release-operations. CHAOS (WOODBURY, N.Y.) 2020; 30:023105. [PMID: 32113248 DOI: 10.1063/1.5140626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
We propose a simple mathematical model that describes the time evolution of a self-propelled object on a liquid surface using variables such as object location, surface concentration of active molecules, and hydrodynamic surface flow. The model is applied to simulate the time evolution of a rotor composed of a polygonal plate with camphor pills at its corners. We have qualitatively reproduced results of experiments, in which the inversion of rotational direction under periodic stop-and-release-operations was investigated. The model correctly describes the probability of the inversion as a function of the duration of the phase when the rotor is stopped. Moreover, the model allows to introduce the rotor asymmetry unavoidable in real experiments and study its influence on the studied phenomenon. Our numerical simulations have revealed that the probability of the inversion of rotational direction is determined by the competition among the transport of the camphor molecules by the flow, the intrinsic asymmetry of the rotor, and the noise amplitude.
Collapse
Affiliation(s)
- Yuki Koyano
- Department of Physics, Graduate School of Science, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Jerzy Gorecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
21
|
Chuphal P, P V, Thakur S. Dynamics of diffusiophoretic vesicle under external shear flow. J Chem Phys 2019. [DOI: 10.1063/1.5112808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Prabha Chuphal
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Varun P
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| |
Collapse
|
22
|
Mokhtari Z, Zippelius A. Dynamics of Active Filaments in Porous Media. PHYSICAL REVIEW LETTERS 2019; 123:028001. [PMID: 31386530 DOI: 10.1103/physrevlett.123.028001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Indexed: 06/10/2023]
Abstract
The motion of active polymers in a two-dimensional porous medium is shown to depend critically on flexibility, activity, and degree of polymerization. For a given Péclet number, we observe a transition from localization to diffusion as the stiffness of the chains is increased. Whereas stiff chains move almost unhindered through the porous medium, flexible ones spiral and get stuck. Their motion can be accounted for by the model of a continuous time random walk with a renewal process corresponding to unspiraling. The waiting time distribution is shown to develop heavy tails for decreasing stiffness, resulting in subdiffusive and ultimately caged behavior.
Collapse
Affiliation(s)
- Zahra Mokhtari
- Institute for Theoretical Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Annette Zippelius
- Institute for Theoretical Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
23
|
Campo M, Schnyder SK, Molina JJ, Speck T, Yamamoto R. Spontaneous spatiotemporal ordering of shape oscillations enhances cell migration. SOFT MATTER 2019; 15:4939-4946. [PMID: 31169857 DOI: 10.1039/c9sm00526a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The migration of cells is relevant for processes such as morphogenesis, wound healing, and invasion of cancer cells. In order to move, single cells deform cyclically. However, it is not understood how these shape oscillations influence collective properties. Here we demonstrate, using numerical simulations, that the interplay of directed motion, shape oscillations, and excluded volume enables cells to locally "synchronize" their motion and thus enhance collective migration. Our model captures elongation and contraction of crawling ameboid cells controlled by an internal clock with a fixed period, mimicking the internal cycle of biological cells. We show that shape oscillations are crucial for local rearrangements that induce ordering of neighboring cells according to their internal clocks even in the absence of signaling and regularization. Our findings reveal a novel, purely physical mechanism through which the internal dynamics of cells influences their collective behavior, which is distinct from well known mechanisms like chemotaxis, cell division, and cell-cell adhesion.
Collapse
Affiliation(s)
- Matteo Campo
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany.
| | | | | | | | | |
Collapse
|
24
|
Shan WJ, Zhang F, Tian WD, Chen K. Assembly structures and dynamics of active colloidal cells. SOFT MATTER 2019; 15:4761-4770. [PMID: 31150037 DOI: 10.1039/c9sm00619b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many types of active matter are deformable, such as epithelial cells and bacteria. To mimic the feature of deformability, we built a model called an active colloidal cell (ACC), i.e. a vesicle enclosed with self-propelled particles (SPPs), which as a whole can move actively. Based on the model, we then study the role of deformability in the assembly structures and dynamics of ACCs by Langevin dynamics simulation. We find that deformability weakens the self-trapping effect and hence suppresses the clustering and phase separation of the deformable soft ACCs (sACCs). Instead of forming a large compact cluster like ordinary SPPs, sACCs pack into a loose network or porous structure in the phase-separation region. The condensed phase is liquid-like, in which sACCs are strongly compressed and deformed but still keep high motility. The interface between the gas and the condensed phases is blurry and unstable, and the effective interfacial energy is very low. Our work gives new insights into the role of deformability in the assembly of active matter and also provides a reference for further studies on different types of deformable active matter.
Collapse
Affiliation(s)
- Wen-Jie Shan
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | | | | | | |
Collapse
|
25
|
Shelke Y, Srinivasan NR, Thampi SP, Mani E. Transition from Linear to Circular Motion in Active Spherical-Cap Colloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4718-4725. [PMID: 30865458 DOI: 10.1021/acs.langmuir.9b00081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nonspherical self-propelling colloidal particles offer many possibilities for creating a variety of active motions. In this work, we report on the transition from linear to circular motion of active spherical-cap particles near a substrate. Self-propulsion is induced by self-diffusiophoresis by catalytic decomposition of hydrogen peroxide (H2O2) on one side of the particle. Asymmetric distribution of reaction products combined with the asymmetric shape of the particle gives rise to two types of motions depending upon the relative orientation of the particle with respect to the underlying substrate. At a low concentration of H2O2, linear active motion is observed, whereas increasing the H2O2 concentration leads to persistent circular motion. However, the speed of self-propulsion is nearly independent of the size of the particle. The study demonstrates the use of nonspherical particles to create linear and circular motion by varying the fuel concentration.
Collapse
Affiliation(s)
- Yogesh Shelke
- Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering , Indian Institute of Technology Madras , Chennai 600036 , India
| | - N R Srinivasan
- Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Sumesh P Thampi
- Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Ethayaraja Mani
- Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
26
|
Togashi Y. Modeling of Nanomachine/Micromachine Crowds: Interplay between the Internal State and Surroundings. J Phys Chem B 2019; 123:1481-1490. [PMID: 30681855 DOI: 10.1021/acs.jpcb.8b10633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activity of biological cells is primarily based on chemical reactions and typically modeled as a reaction-diffusion system. Cells are, however, highly crowded with macromolecules, including a variety of molecular machines such as enzymes. The working cycles of these machines are often coupled with their internal motion (conformational changes). In the crowded environment of a cell, motion interference between neighboring molecules is not negligible, and this interference can affect the reaction dynamics through machine operation. To simulate such a situation, we propose a reaction-diffusion model consisting of particles whose shape depends on an internal state variable, for crowds of nano- to micromachines. The interference between nearby particles is naturally introduced through excluded volume repulsion. In the simulations, we observed segregation and flow-like patterns enhanced by crowding out of relevant molecules, as well as molecular synchronization waves and phase transitions. The presented model is simple and extensible for diverse molecular machinery and may serve as a framework to study the interplay between the mechanical stress/strain network and the chemical reaction network in the cell. Applications to more macroscopic systems, e.g., crowds of cells, are also discussed.
Collapse
Affiliation(s)
- Yuichi Togashi
- Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Department of Mathematical and Life Sciences, Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashi-Hiroshima, Hiroshima 739-8526 , Japan.,RIKEN Center for Biosystems Dynamics Research (BDR) , 3-10-23 Kagamiyama , Higashi-Hiroshima, Hiroshima 739-0046 , Japan.,Cybermedia Center , Osaka University , 5-1 Mihogaoka , Ibaraki, Osaka 567-0047 , Japan
| |
Collapse
|
27
|
Hiraiwa T. Two types of exclusion interactions for self-propelled objects and collective motion induced by their combination. Phys Rev E 2019; 99:012614. [PMID: 30780270 DOI: 10.1103/physreve.99.012614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 06/09/2023]
Abstract
Exclusive interactions between self-driven objects may play crucial roles in their collective behavior, e.g., in collective migration of living cells. Here, such collective behavior is studied based on a simple but sufficient model taking account the exclusion effects, which incorporate the following two distinct kinds of exclusion interactions in two dimensions: The first is the mechanical exclusion wherein two objects mechanically repel each other when they overlap. The second is the scattering exclusion, wherein the directions along which each object tries to move are modulated to avoid overlapping. We propose a theoretical model based on two principles: (1) Each object maintains its own polarity with a fixed strength and attempts to move into the polarity direction and (2) objects interact with each other through the abovementioned exclusions. Based on this model, we look at the difference of consequences and combinatory effects of these two kinds of exclusions. Furthermore, we calculate the polar order of polarity directions without an external directional bias. Our results suggest that the combination of these two kinds of exclusions leads to effectively inelastic scattering of two objects, which eventually gives rise to global polar ordering. We also find that the traveling band can arise by this mechanism of alignment at the intermediate density, as generally seen in collective motion with polar alignment and investigated in various earlier works. Characteristics of transitions among disordered, traveling band, and homogeneously ordered states of the presented model are investigated, and their similarities and differences with those given by the explicit alignment interaction are discussed.
Collapse
Affiliation(s)
- Tetsuya Hiraiwa
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
28
|
Narinder N, Bechinger C, Gomez-Solano JR. Memory-Induced Transition from a Persistent Random Walk to Circular Motion for Achiral Microswimmers. PHYSICAL REVIEW LETTERS 2018; 121:078003. [PMID: 30169097 DOI: 10.1103/physrevlett.121.078003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/29/2018] [Indexed: 06/08/2023]
Abstract
We experimentally study the motion of light-activated colloidal microswimmers in a viscoelastic fluid. We find that, in such a non-Newtonian environment, the active colloids undergo an unexpected transition from enhanced angular diffusion to persistent rotational motion above a critical propulsion speed, despite their spherical shape and stiffness. We observe that, in contrast to chiral asymmetric microswimmers, the resulting circular orbits can spontaneously reverse their sense of rotation and exhibit an angular velocity and a radius of curvature that nonlinearly depend on the propulsion speed. By means of a minimal non-Markovian Langevin model for active Brownian motion, we show that these nonequilibrium effects emerge from the delayed response of the fluid with respect to the self-propulsion of the particle without counterpart in Newtonian fluids.
Collapse
Affiliation(s)
- N Narinder
- Fachbereich Physik, Universität Konstanz, Konstanz, D-78457, Germany
| | - Clemens Bechinger
- Fachbereich Physik, Universität Konstanz, Konstanz, D-78457, Germany
| | | |
Collapse
|
29
|
Ebata H, Yamamoto A, Tsuji Y, Sasaki S, Moriyama K, Kuboki T, Kidoaki S. Persistent random deformation model of cells crawling on a gel surface. Sci Rep 2018; 8:5153. [PMID: 29581462 PMCID: PMC5980085 DOI: 10.1038/s41598-018-23540-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
In general, cells move on a substrate through extension and contraction of the cell body. Though cell movement should be explained by taking into account the effect of such shape fluctuations, past approaches to formulate cell-crawling have not sufficiently quantified the relationship between cell movement (velocity and trajectory) and shape fluctuations based on experimental data regarding actual shaping dynamics. To clarify this relationship, we experimentally characterized cell-crawling in terms of shape fluctuations, especially extension and contraction, by using an elasticity-tunable gel substrate to modulate cell shape. As a result, an amoeboid swimmer-like relation was found to arise between the cell velocity and cell-shape dynamics. To formulate this experimentally-obtained relationship between cell movement and shaping dynamics, we established a persistent random deformation (PRD) model based on equations of a deformable self-propelled particle adopting an amoeboid swimmer-like velocity-shape relationship. The PRD model successfully explains the statistical properties of velocity, trajectory and shaping dynamics of the cells including back-and-forth motion, because the velocity equation exhibits time-reverse symmetry, which is essentially different from previous models. We discuss the possible application of this model to classify the phenotype of cell migration based on the characteristic relation between movement and shaping dynamics.
Collapse
Affiliation(s)
- Hiroyuki Ebata
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, CE41-204, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Aki Yamamoto
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, CE41-204, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yukie Tsuji
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, CE41-204, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Saori Sasaki
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, CE41-204, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kousuke Moriyama
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, CE41-204, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Thasaneeya Kuboki
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, CE41-204, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Satoru Kidoaki
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, CE41-204, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
30
|
Yamamoto T, Sano M. Theoretical model of chirality-induced helical self-propulsion. Phys Rev E 2018; 97:012607. [PMID: 29448380 DOI: 10.1103/physreve.97.012607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 06/08/2023]
Abstract
We recently reported the experimental realization of a chiral artificial microswimmer exhibiting helical self-propulsion [T. Yamamoto and M. Sano, Soft Matter 13, 3328 (2017)1744-683X10.1039/C7SM00337D]. In the experiment, cholesteric liquid crystal (CLC) droplets dispersed in surfactant solutions swam spontaneously, driven by the Marangoni flow, in helical paths whose handedness is determined by the chirality of the component molecules of CLC. To study the mechanism of the emergence of the helical self-propelled motion, we propose a phenomenological model of the self-propelled helical motion of the CLC droplets. Our model is constructed by symmetry argument in chiral systems, and it describes the dynamics of CLC droplets with coupled time-evolution equations in terms of a velocity, an angular velocity, and a tensor variable representing the symmetry of the helical director field of the droplet. We found that helical motions as well as other chiral motions appear in our model. By investigating bifurcation behaviors between each chiral motion, we found that the chiral coupling terms between the velocity and the angular velocity, the structural anisotropy of the CLC droplet, and the nonlinearity of model equations play a crucial role in the emergence of the helical motion of the CLC droplet.
Collapse
Affiliation(s)
- Takaki Yamamoto
- Laboratory for Physical Biology, RIKEN Quantitative Biology Center, Kobe 650-0047, Japan
| | - Masaki Sano
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
Tarama M. Swinging motion of active deformable particles in Poiseuille flow. Phys Rev E 2017; 96:022602. [PMID: 28950457 DOI: 10.1103/physreve.96.022602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 11/07/2022]
Abstract
Dynamics of active deformable particles in an external Poiseuille flow is investigated. To make the analysis general, we employ time-evolution equations derived from symmetry considerations that take into account an elliptical shape deformation. First, we clarify the relation of our model to that of rigid active particles. Then, we study the dynamical modes that active deformable particles exhibit by changing the strength of the external flow. We emphasize the difference between the active particles that tend to self-propel parallel to the elliptical shape deformation and those self-propelling perpendicularly. In particular, a swinging motion around the centerline far from the channel walls is discussed in detail.
Collapse
Affiliation(s)
- Mitsusuke Tarama
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan
| |
Collapse
|
32
|
Hakim V, Silberzan P. Collective cell migration: a physics perspective. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:076601. [PMID: 28282028 DOI: 10.1088/1361-6633/aa65ef] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cells have traditionally been viewed either as independently moving entities or as somewhat static parts of tissues. However, it is now clear that in many cases, multiple cells coordinate their motions and move as collective entities. Well-studied examples comprise development events, as well as physiological and pathological situations. Different ex vivo model systems have also been investigated. Several recent advances have taken place at the interface between biology and physics, and have benefitted from progress in imaging and microscopy, from the use of microfabrication techniques, as well as from the introduction of quantitative tools and models. We review these interesting developments in quantitative cell biology that also provide rich examples of collective out-of-equilibrium motion.
Collapse
Affiliation(s)
- Vincent Hakim
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, PSL Research University, UPMC, Paris, France
| | | |
Collapse
|
33
|
Pande J, Merchant L, Krüger T, Harting J, Smith AS. Effect of body deformability on microswimming. SOFT MATTER 2017; 13:3984-3993. [PMID: 28504290 DOI: 10.1039/c7sm00181a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work we consider the following question: given a mechanical microswimming mechanism, does increased deformability of the swimmer body hinder or promote the motility of the swimmer? To answer this we run immersed-boundary-lattice-Boltzmann simulations of a microswimmer composed of deformable beads connected with springs. We find that the same deformations in the beads can result in different effects on the swimming velocity, namely an enhancement or a reduction, depending on the other parameters. To understand this we determine analytically the velocity of the swimmer, starting from the forces driving the motion and assuming that the deformations in the beads are known as functions of time and are much smaller than the beads themselves. We find that to the lowest order, only the driving frequency mode of the surface deformations contributes to the swimming velocity, and comparison to the simulations shows that both the velocity-promoting and velocity-hindering effects of bead deformability are reproduced correctly by the theory in the limit of small bead deformations. For the case of active deformations we show that there are critical values of the spring constant - which for a general swimmer corresponds to its main elastic degree of freedom - which decide whether the body deformability is beneficial for motion or not.
Collapse
Affiliation(s)
- Jayant Pande
- PULS Group, Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstraße 49b, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
34
|
Camley BA, Rappel WJ. Physical models of collective cell motility: from cell to tissue. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:113002. [PMID: 28989187 PMCID: PMC5625300 DOI: 10.1088/1361-6463/aa56fe] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this article, we review physics-based models of collective cell motility. We discuss a range of techniques at different scales, ranging from models that represent cells as simple self-propelled particles to phase field models that can represent a cell's shape and dynamics in great detail. We also extensively review the ways in which cells within a tissue choose their direction, the statistics of cell motion, and some simple examples of how cell-cell signaling can interact with collective cell motility. This review also covers in more detail selected recent works on collective cell motion of small numbers of cells on micropatterns, in wound healing, and the chemotaxis of clusters of cells.
Collapse
|
35
|
Camley BA, Zhao Y, Li B, Levine H, Rappel WJ. Crawling and turning in a minimal reaction-diffusion cell motility model: Coupling cell shape and biochemistry. Phys Rev E 2017; 95:012401. [PMID: 28208438 DOI: 10.1103/physreve.95.012401] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Indexed: 11/07/2022]
Abstract
We study a minimal model of a crawling eukaryotic cell with a chemical polarity controlled by a reaction-diffusion mechanism describing Rho GTPase dynamics. The size, shape, and speed of the cell emerge from the combination of the chemical polarity, which controls the locations where actin polymerization occurs, and the physical properties of the cell, including its membrane tension. We find in our model both highly persistent trajectories, in which the cell crawls in a straight line, and turning trajectories, where the cell transitions from crawling in a line to crawling in a circle. We discuss the controlling variables for this turning instability and argue that turning arises from a coupling between the reaction-diffusion mechanism and the shape of the cell. This emphasizes the surprising features that can arise from simple links between cell mechanics and biochemistry. Our results suggest that similar instabilities may be present in a broad class of biochemical descriptions of cell polarity.
Collapse
Affiliation(s)
- Brian A Camley
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - Yanxiang Zhao
- Department of Mathematics, The George Washington University, Washington, DC 20052, USA
| | - Bo Li
- Department of Mathematics and Graduate Program in Quantitative Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Herbert Levine
- Department of Bioengineering, Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
36
|
Koyano Y, Sakurai T, Kitahata H. Oscillatory motion of a camphor grain in a one-dimensional finite region. Phys Rev E 2016; 94:042215. [PMID: 27841473 DOI: 10.1103/physreve.94.042215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Indexed: 06/06/2023]
Abstract
The motion of a self-propelled particle is affected by its surroundings, such as boundaries or external fields. In this paper, we investigated the bifurcation of the motion of a camphor grain, as a simple actual self-propelled system, confined in a one-dimensional finite region. A camphor grain exhibits oscillatory motion or remains at rest around the center position in a one-dimensional finite water channel, depending on the length of the water channel and the resistance coefficient. A mathematical model including the boundary effect is analytically reduced to an ordinary differential equation. Linear stability analysis reveals that the Hopf bifurcation occurs, reflecting the symmetry of the system.
Collapse
Affiliation(s)
- Yuki Koyano
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Tatsunari Sakurai
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
37
|
Wu H, Farutin A, Hu WF, Thiébaud M, Rafaï S, Peyla P, Lai MC, Misbah C. Amoeboid swimming in a channel. SOFT MATTER 2016; 12:7470-7484. [PMID: 27546154 DOI: 10.1039/c6sm00934d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Several micro-organisms, such as bacteria, algae, or spermatozoa, use flagellar or ciliary activity to swim in a fluid, while many other micro-organisms instead use ample shape deformation, described as amoeboid, to propel themselves either by crawling on a substrate or swimming. Many eukaryotic cells were believed to require an underlying substratum to migrate (crawl) by using membrane deformation (like blebbing or generation of lamellipodia) but there is now increasing evidence that a large variety of cells (including those of the immune system) can migrate without the assistance of focal adhesion, allowing them to swim as efficiently as they can crawl. This paper details the analysis of amoeboid swimming in a confined fluid by modeling the swimmer as an inextensible membrane deploying local active forces (with zero total force and torque). The swimmer displays a rich behavior: it may settle into a straight trajectory in the channel or navigate from one wall to the other depending on its confinement. The nature of the swimmer is also found to be affected by confinement: the swimmer can behave, on average over one swimming cycle, as a pusher at low confinement, and becomes a puller at higher confinement, or vice versa. The swimmer's nature is thus not an intrinsic property. The scaling of the swimmer velocity V with the force amplitude A is analyzed in detail showing that at small enough A, V∼A(2)/η(2) (where η is the viscosity of the ambient fluid), whereas at large enough A, V is independent of the force and is determined solely by the stroke cycle frequency and the swimmer size. This finding starkly contrasts with models where motion is based on ciliary and flagellar activity, where V∼A/η. To conclude, two definitions of efficiency as put forward in the literature are analyzed with distinct outcomes. We find that one type of efficiency has an optimum as a function of confinement while the other does not. Future perspectives are outlined.
Collapse
Affiliation(s)
- Hao Wu
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wen FL, Leung KT, Chen HY. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions. Phys Rev E 2016; 94:012401. [PMID: 27575158 DOI: 10.1103/physreve.94.012401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 11/07/2022]
Abstract
Actin-based motility is important for many cellular processes. In this article we extend our previous studies of an actin-propelled circular disk in two dimensions to an actin-propelled spherical bead in three dimensions. We find that for an achiral load the couplings between the motion of the load and the actin network induce a series of bifurcations, starting with a transition from rest to moving state, followed by a transition from straight to planar curves, and finally a further transition from motion in a plane to one with torsion. To address the intriguing, experimentally observed chiral motility of the bacterium Listeria monocytogenes, we also study the motility of a spherical load with a built-in chirality. For such a chiral load, stable circular trajectories are no longer found in numerical simulations. Instead, helical trajectories with handedness that depends on the chirality of the load are found. Our results reveal the relation between the symmetry of actin network and the trajectories of actin-propelled loads.
Collapse
Affiliation(s)
- Fu-Lai Wen
- Laboratory for Physical Biology, RIKEN Quantitative Biology Center, Kobe 650-0047, Japan
| | - Kwan-Tai Leung
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Department of Physics, National Central University, Taoyuan 32001, Taiwan, R.O.C
| | - Hsuan-Yi Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Department of Physics, National Central University, Taoyuan 32001, Taiwan, R.O.C.,Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan, R.O.C
| |
Collapse
|
39
|
Banno T, Asami A, Ueno N, Kitahata H, Koyano Y, Asakura K, Toyota T. Deformable Self-Propelled Micro-Object Comprising Underwater Oil Droplets. Sci Rep 2016; 6:31292. [PMID: 27503336 PMCID: PMC4977503 DOI: 10.1038/srep31292] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023] Open
Abstract
The self-propelled motion with deformation of micrometer-sized soft matter in water has potential application not only for underwater carriers or probes in very narrow spaces but also for understanding cell locomotion in terms of non-equilibrium physics. As far as we know, there have been no reports about micrometer-sized self-propelled soft matter mimicking amoeboid motion underwater. Here, we report an artificial molecular system of underwater oil droplets exhibiting self-propelled motion with deformation as an initial experimental model. We describe the heterogeneity in a deformable self-propelled oil droplet system in aqueous and oil phases and at their interface based on the behavior and interaction of surfactant and oil molecules. The current results have great importance for scientific frontiers such as developing deformable micro-swimmers and exploring the emergence of self-locomotion of oil droplet-type protocells.
Collapse
Affiliation(s)
- Taisuke Banno
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Arisa Asami
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Naoko Ueno
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yuki Koyano
- Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kouichi Asakura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
40
|
Wen FL, Chen HY, Leung KT. Statistics of actin-propelled trajectories in noisy environments. Phys Rev E 2016; 93:062405. [PMID: 27415296 DOI: 10.1103/physreve.93.062405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 06/06/2023]
Abstract
Actin polymerization is ubiquitously utilized to power the locomotion of eukaryotic cells and pathogenic bacteria in living systems. Inevitably, actin polymerization and depolymerization proceed in a fluctuating environment that renders the locomotion stochastic. Previously, we have introduced a deterministic model that manages to reproduce actin-propelled trajectories in experiments, but not to address fluctuations around them. To remedy this, here we supplement the deterministic model with noise terms. It enables us to compute the effects of fluctuating actin density and forces on the trajectories. Specifically, the mean-squared displacement (MSD) of the trajectories is computed and found to show a super-ballistic scaling with an exponent 3 in the early stage, followed by a crossover to a normal, diffusive scaling of exponent 1 in the late stage. For open-end trajectories such as straights and S-shaped curves, the time of crossover matches the decay time of orientational order of the velocities along trajectories, suggesting that it is the spreading of velocities that leads to the crossover. We show that the super-ballistic scaling of MSD arises from the initial, linearly increasing correlation of velocities, before time translational symmetry is established. When the spreading of velocities reaches a steady state in the long-time limit, short-range correlation then yields a diffusive scaling in MSD. In contrast, close-loop trajectories like circles exhibit localized periodic motion, which inhibits spreading. The initial super-ballistic scaling of MSD arises from velocity correlation that both linearly increases and oscillates in time. Finally, we find that the above statistical features of the trajectories transcend the nature of noises, be it additive or multiplicative, and generalize to other self-propelled systems that are not necessarily actin based.
Collapse
Affiliation(s)
- Fu-Lai Wen
- Laboratory for Physical Biology, RIKEN Quantitative Biology Center, Kobe 650-0047, Japan
| | - Hsuan-Yi Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
- Department of Physics, National Central University, Taoyuan 32001, Taiwan, R.O.C
- Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan, R.O.C
| | - Kwan-Tai Leung
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
- Department of Physics, National Central University, Taoyuan 32001, Taiwan, R.O.C
| |
Collapse
|
41
|
Nagai KH, Tachibana K, Tobe Y, Kazama M, Kitahata H, Omata S, Nagayama M. Mathematical model for self-propelled droplets driven by interfacial tension. J Chem Phys 2016; 144:114707. [PMID: 27004893 DOI: 10.1063/1.4943582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose a model for the spontaneous motion of a droplet induced by inhomogeneity in interfacial tension. The model is derived from a variation of the Lagrangian of the system and we use a time-discretized Morse flow scheme to perform its numerical simulations. Our model can naturally simulate the dynamics of a single droplet, as well as that of multiple droplets, where the volume of each droplet is conserved. We reproduced the ballistic motion and fission of a droplet, and the collision of two droplets was also examined numerically.
Collapse
Affiliation(s)
- Ken H Nagai
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Kunihito Tachibana
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuta Tobe
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Masaki Kazama
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Seiro Omata
- Faculty of Mathematics and Physics, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Hokkaido 060-0812, Japan
| |
Collapse
|
42
|
Sarkar D, Thakur S. Coarse-grained simulations of an active filament propelled by a self-generated solute gradient. Phys Rev E 2016; 93:032508. [PMID: 27078406 DOI: 10.1103/physreve.93.032508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 06/05/2023]
Abstract
A self-propelling semiflexible filament exhibits a variety of dynamical states depending on the flexibility and activity of the filament. Here we investigate the dynamics of such an active filament using a bead-spring model with the explicit hydrodynamic interactions. The activity in the filament is incorporated by inserting chemically active dimers at regular intervals along the chain. The chemical reactions at the catalytic bead of the dimer produces a self-generated concentration gradient and gives sufficient fuel to exhibit self-propulsion for the filament. Depending upon the rigidity and the configuration, the polymeric filament exhibits three distinct types of spontaneous motion, namely, rotational, snaking, and translational motion. The self-propulsion velocity of the filament for various rigidity and sizes has been calculated, and the factors affecting the propulsion are identified.
Collapse
Affiliation(s)
- Debarati Sarkar
- Department of Physics, Indian Institute of Science Education and Research Bhopal, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, India
| |
Collapse
|
43
|
Küchler N, Löwen H, Menzel AM. Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields. Phys Rev E 2016; 93:022610. [PMID: 26986380 DOI: 10.1103/physreve.93.022610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Deformability is a central feature of many types of microswimmers, e.g., for artificially generated self-propelled droplets. Here, we analyze deformable bead-spring microswimmers in an externally imposed solvent flow field as simple theoretical model systems. We focus on their behavior in a circular swirl flow in two spatial dimensions. Linear (straight) two-bead swimmers are found to circle around the swirl with a slight drift to the outside with increasing activity. In contrast to that, we observe for triangular three-bead or squarelike four-bead swimmers a tendency of being drawn into the swirl and finally getting drowned, although a radial inward component is absent in the flow field. During one cycle around the swirl, the self-propulsion direction of an active triangular or squarelike swimmer remains almost constant, while their orbits become deformed exhibiting an "egglike" shape. Over time, the swirl flow induces slight net rotations of these swimmer types, which leads to net rotations of the egg-shaped orbits. Interestingly, in certain cases, the orbital rotation changes sense when the swimmer approaches the flow singularity. Our predictions can be verified in real-space experiments on artificial microswimmers.
Collapse
Affiliation(s)
- Niklas Küchler
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Andreas M Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
44
|
Ai BQ. Ratchet transport powered by chiral active particles. Sci Rep 2016; 6:18740. [PMID: 26795952 PMCID: PMC4726254 DOI: 10.1038/srep18740] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/25/2015] [Indexed: 11/17/2022] Open
Abstract
We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles.
Collapse
Affiliation(s)
- Bao-quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
45
|
Ziebert F, Löber J, Aranson IS. Macroscopic Model of Substrate-Based Cell Motility. PHYSICAL MODELS OF CELL MOTILITY 2016. [DOI: 10.1007/978-3-319-24448-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Ishikawa T, Tanaka T, Imai Y, Omori T, Matsunaga D. Deformation of a micro-torque swimmer. Proc Math Phys Eng Sci 2016; 472:20150604. [PMID: 26997893 PMCID: PMC4786038 DOI: 10.1098/rspa.2015.0604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/15/2015] [Indexed: 11/25/2022] Open
Abstract
The membrane tension of some kinds of ciliates has been suggested to regulate upward and downward swimming velocities under gravity. Despite its biological importance, deformation and membrane tension of a ciliate have not been clarified fully. In this study, we numerically investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modelled as a capsule with a hyperelastic membrane enclosing a Newtonian fluid. Thrust forces due to the ciliary beat were modelled as torques distributed above the cell body. The effects of membrane elasticity, the aspect ratio of the cell's reference shape, and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like a heart shape, when the capillary number was sufficiently large. Under the influence of gravity, the membrane tension at the anterior end decreased in the upward swimming while it increased in the downward swimming. Moreover, gravity-induced deformation caused the cells to move gravitationally downwards or upwards, which resulted in a positive or negative geotaxis-like behaviour with a physical origin. These results are important in understanding the physiology of a ciliate's biological responses to mechanical stimuli.
Collapse
Affiliation(s)
- Takuji Ishikawa
- Department of Bioengineering and Robotics, Tohoku University, 6-6-01, Aoba, Sendai 980-8579, Japan
| | | | | | | | | |
Collapse
|
47
|
Wu H, Thiébaud M, Hu WF, Farutin A, Rafaï S, Lai MC, Peyla P, Misbah C. Amoeboid motion in confined geometry. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:050701. [PMID: 26651631 DOI: 10.1103/physreve.92.050701] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 06/05/2023]
Abstract
Many eukaryotic cells undergo frequent shape changes (described as amoeboid motion) that enable them to move forward. We investigate the effect of confinement on a minimal model of amoeboid swimmer. A complex picture emerges: (i) The swimmer's nature (i.e., either pusher or puller) can be modified by confinement, thus suggesting that this is not an intrinsic property of the swimmer. This swimming nature transition stems from intricate internal degrees of freedom of membrane deformation. (ii) The swimming speed might increase with increasing confinement before decreasing again for stronger confinements. (iii) A straight amoeoboid swimmer's trajectory in the channel can become unstable, and ample lateral excursions of the swimmer prevail. This happens for both pusher- and puller-type swimmers. For weak confinement, these excursions are symmetric, while they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. In this study, we combine numerical and theoretical analyses.
Collapse
Affiliation(s)
- Hao Wu
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - M Thiébaud
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - W-F Hu
- Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan
| | - A Farutin
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - S Rafaï
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - M-C Lai
- Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan
| | - P Peyla
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - C Misbah
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| |
Collapse
|
48
|
Yasui D, Yamashita H, Yamamoto D, Shioi A. Cation-Dependent Emergence of Regular Motion of a Float. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11005-11011. [PMID: 26393274 DOI: 10.1021/acs.langmuir.5b03049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report a unique ion-dependent motion of a float at an oil/water interface. The type of motion depended on the cation species that was dissolved in the water. Irregular vibrations occurred when the water contained Ca(2+), back-and-forth motion occurred when the water contained Fe(2+), a type of motion intermediate between these occurred when the water contained Mn(2+), and intermittent long-distance travel occurred when the water contained Fe(3+). This is one of the simplest systems that can be used to show how macroscopic regular motion emerges depending on specific chemicals, which is one of the central issues in the study of biological and biomimetic motions.
Collapse
Affiliation(s)
- Daisuke Yasui
- Department of Chemical Engineering and Materials Science, Doshisha University , 1-3 Tatara Miyakodani, Kyoto 610-0321, Japan
| | - Hirofumi Yamashita
- Department of Chemical Engineering and Materials Science, Doshisha University , 1-3 Tatara Miyakodani, Kyoto 610-0321, Japan
| | - Daigo Yamamoto
- Department of Chemical Engineering and Materials Science, Doshisha University , 1-3 Tatara Miyakodani, Kyoto 610-0321, Japan
| | - Akihisa Shioi
- Department of Chemical Engineering and Materials Science, Doshisha University , 1-3 Tatara Miyakodani, Kyoto 610-0321, Japan
| |
Collapse
|
49
|
Gupta S, Sreeja KK, Thakur S. Autonomous movement of a chemically powered vesicle. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042703. [PMID: 26565268 DOI: 10.1103/physreve.92.042703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 06/05/2023]
Abstract
We investigate the diffusio-phoretic motion of a deformable vesicle. A vesicle is built from the linked catalytic and noncatalytic vertices that consumes fuel in the environment and utilize the resulting self-generated concentration gradient to exhibit propulsive motion. Under nonequilibrium conditions it is found that the self-propulsion velocity of the vesicle depends on its shape, which in turn is controlled by the bending rigidity of the membrane and solvent density around it. The self-propulsion velocity of the vesicle for different shapes has been calculated and the factors which affect the velocity are identified.
Collapse
Affiliation(s)
- Shivam Gupta
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - K K Sreeja
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
50
|
Nakata S, Nagayama M, Kitahata H, Suematsu NJ, Hasegawa T. Physicochemical design and analysis of self-propelled objects that are characteristically sensitive to environments. Phys Chem Chem Phys 2015; 17:10326-38. [PMID: 25826144 DOI: 10.1039/c5cp00541h] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of self-propelled motors that mimic biological motors is an important challenge for the transport of either themselves or some material in a small space, since biological systems exhibit high autonomy and various types of responses, such as taxis and swarming. In this perspective, we review non-living systems that behave like living matter. We especially focus on nonlinearity to enhance autonomy and the response of the system, since characteristic nonlinear phenomena, such as oscillation, synchronization, pattern formation, bifurcation, and hysteresis, are coupled to self-motion of which driving force is the difference in the interfacial tension. Mathematical modelling based on reaction-diffusion equations and equations of motion as well as physicochemical analysis from the point of view of the molecular structure are also important for the design of non-living motors that mimic living motors.
Collapse
Affiliation(s)
- Satoshi Nakata
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | | | | | | | | |
Collapse
|