1
|
Guan LY, Lin SZ, Chen PC, Lv JQ, Li B, Feng XQ. Interfacial Organization and Forces Arising from Epithelial-Cancerous Monolayer Interactions. ACS NANO 2023; 17:24668-24684. [PMID: 38091551 DOI: 10.1021/acsnano.3c03990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The interfacial interactions between epithelia and cancer cells have profound relevance for tumor development and metastasis. Through monolayer confrontation of MCF10A (nontumorigenic human breast epithelial cells) and MDA-MB-231 (human epithelial breast cancer cells) cells, we investigate the epithelial-cancerous interfacial interactions at the tissue level. We show that the monolayer interaction leads to competitive interfacial morphodynamics and drives an intricate spatial organization of MCF10A cells into multicellular finger-like structures, which further branch into multiple subfinger-like structures. These hierarchical interfacial structures penetrate the cancer monolayer and can spontaneously segregate or even envelop cancer cell clusters, consistent with our theoretical prediction. By tracking the substrate displacements via embedded fluorescent nanobeads and implementing nanomechanical modeling that combines atomic force microscopy and finite element simulations, we computed mechanical force patterns, including traction forces and monolayer stresses, caused by the monolayer interaction. It is found that the heterogeneous mechanical forces accumulated in the monolayers are able to squeeze cancer cells, leading to three-dimensional interfacial bulges or cell extrusion, initiating the p53 apoptosis signaling pathways of cancer cells. We reveal that intercellular E-cadherin and P-cadherin of epithelial cells differentially regulate the interfacial organization including migration speed, directionality, spatial correlation, F-actin alignment, and subcellular protrusions of MCF10A cells; whereas E-cadherin governs interfacial geometry that is relevant to force localization and cancer cell extrusion, P-cadherin maintains interfacial integrity that enables long-range force transmission. Our findings suggest that the collaborative molecular and mechanical behaviors are crucial for preventing epithelial tissues from undergoing tumor invasion.
Collapse
Affiliation(s)
- Liu-Yuan Guan
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shao-Zhen Lin
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Peng-Cheng Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Jian-Qing Lv
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Yen CH, Lai YC, Wu KA. Morphological instability of solid tumors in a nutrient-deficient environment. Phys Rev E 2023; 107:054405. [PMID: 37329102 DOI: 10.1103/physreve.107.054405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/24/2023] [Indexed: 06/18/2023]
Abstract
A phenomenological reaction-diffusion model that includes a nutrient-regulated growth rate of tumor cells is proposed to investigate the morphological instability of solid tumors during the avascular growth. We find that the surface instability could be induced more easily when tumor cells are placed in a harsher nutrient-deficient environment, while the instability is suppressed for tumor cells in a nutrient-rich environment due to the nutrient-regulated proliferation. In addition, the surface instability is shown to be influenced by the growth moving speed of tumor rims. Our analysis reveals that a larger growth movement of the tumor front results in a closer proximity of tumor cells to a nutrient-rich region, which tends to inhibit the surface instability. A nourished length that represents the proximity is defined to illustrate its close relation to the surface instability.
Collapse
Affiliation(s)
- Chien-Han Yen
- Department of Physics, National Tsing Hua University, 30013 Hsinchu, Taiwan
| | - Yi-Chieh Lai
- Department of Physics, National Tsing Hua University, 30013 Hsinchu, Taiwan
| | - Kuo-An Wu
- Department of Physics, National Tsing Hua University, 30013 Hsinchu, Taiwan
| |
Collapse
|
3
|
Zhang DQ, Li ZY, Li B. Self-rotation regulates interface evolution in biphasic active matter through taming defect dynamics. Phys Rev E 2022; 105:064607. [PMID: 35854599 DOI: 10.1103/physreve.105.064607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Chirality can endow nonequilibrium active matter with unique features and functions. Here, we explore the chiral dynamics in biphasic active nematics composed of self-rotating units that continuously inject energy and angular momentum at the microscale. We show that the self-rotation of units can regularize the boundaries between two phases, rendering sinusoidal-like interfaces, which allow lateral wave propagation and are characterized by chains of ordered antiferromagnetic cross-interface flow vortices. Through the spontaneous coordination of counter-rotating units across the interfaces, topological defects excited by activity are sorted spatiotemporally, where positive defects are locally trapped at the interfaces but, unexpectedly, are transported laterally in a unidirectional rather than wavy mode, whereas inertial negative defects remain spinning in the bulks. Our findings reveal that individual chirality could be harnessed to modulate interfacial morphodynamics in active systems and suggest a potential approach toward controlling topological defects for programmable microfluidics and logic operations.
Collapse
Affiliation(s)
- De-Qing Zhang
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zhong-Yi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Azimzade Y, Saberi AA, Sahimi M. Effect of heterogeneity and spatial correlations on the structure of a tumor invasion front in cellular environments. Phys Rev E 2019; 100:062409. [PMID: 31962455 DOI: 10.1103/physreve.100.062409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Analysis of invasion front has been widely used to decipher biological properties, as well as the growth dynamics of the corresponding populations. Likewise, the invasion front of tumors has been investigated, from which insights into the biological mechanisms of tumor growth have been gained. We develop a model to study how tumors' invasion front depends on the relevant properties of a cellular environment. To do so, we develop a model based on a nonlinear reaction-diffusion equation, the Fisher-Kolmogorov-Petrovsky-Piskunov equation, to model tumor growth. Our study aims to understand how heterogeneity in the cellular environment's stiffness, as well as spatial correlations in its morphology, the existence of both of which has been demonstrated by experiments, affects the properties of tumor invasion front. It is demonstrated that three important factors affect the properties of the front, namely the spatial distribution of the local diffusion coefficients, the spatial correlations between them, and the ratio of the cells' duplication rate and their average diffusion coefficient. Analyzing the scaling properties of tumor invasion front computed by solving the governing equation, we show that, contrary to several previous claims, the invasion front of tumors and cancerous cell colonies cannot be described by the well-known models of kinetic growth, such as the Kardar-Parisi-Zhang equation.
Collapse
Affiliation(s)
- Youness Azimzade
- Department of Physics, University of Tehran, Tehran 14395-547, Iran
| | - Abbas Ali Saberi
- Department of Physics, University of Tehran, Tehran 14395-547, Iran
- Institut für Theoretische Physik, Universitat zu Köln, 50937 Köln, Germany
| | - Muhammad Sahimi
- Mork Family Department of Chemical Engineering Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| |
Collapse
|
5
|
Bellino L, Florio G, Puglisi G. The influence of device handles in single-molecule experiments. SOFT MATTER 2019; 15:8680-8690. [PMID: 31621748 DOI: 10.1039/c9sm01376h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We deduce a fully analytical model to predict the artifacts of the device handles in single molecule force spectroscopy experiments. As we show, neglecting the handle stiffness can lead to crucial overestimation or underestimation of the stability properties and unfolding thresholds of multistable molecules.
Collapse
Affiliation(s)
- Luca Bellino
- Politecnico di Bari, (DMMM) Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Re David 200, 70125, Italy.
| | - Giuseppe Florio
- Politecnico di Bari, (DMMM) Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Re David 200, 70125, Italy. and INFN, Sezione di Bari, I-70126, Italy
| | - Giuseppe Puglisi
- Politecnico di Bari, (DICAR) Dipartimento di Scienza dell'Ingegneria Civile e dell'Architettura, Politecnico di Bari, Via Re David 200, 70126, Italy.
| |
Collapse
|
6
|
Olmeda F, Ben Amar M. Clonal pattern dynamics in tumor: the concept of cancer stem cells. Sci Rep 2019; 9:15607. [PMID: 31666555 PMCID: PMC6821776 DOI: 10.1038/s41598-019-51575-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
We present a multiphase model for solid tumor initiation and progression focusing on the properties of cancer stem cells (CSC). CSCs are a small and singular cell sub-population having outstanding capacities: high proliferation rate, self-renewal and extreme therapy resistance. Our model takes all these factors into account under a recent perspective: the possibility of phenotype switching of differentiated cancer cells (DC) to the stem cell state, mediated by chemical activators. This plasticity of cancerous cells complicates the complete eradication of CSCs and the tumor suppression. The model in itself requires a sophisticated treatment of population dynamics driven by chemical factors. We analytically demonstrate that the rather important number of parameters, inherent to any biological complexity, is reduced to three pivotal quantities.Three fixed points guide the dynamics, and two of them may lead to an optimistic issue, predicting either a control of the cancerous cell population or a complete eradication. The space environment, critical for the tumor outcome, is introduced via a density formalism. Disordered patterns are obtained inside a stable growing contour driven by the CSC. Somewhat surprisingly, despite the patterning instability, the contour maintains its circular shape but ceases to grow for a typical size independently of segregation patterns or obstacles located inside.
Collapse
Affiliation(s)
- Fabrizio Olmeda
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, D-01187, Dresden, Germany
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - Martine Ben Amar
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005, Paris, France.
- Institut Universitaire de Cancérologie, Faculté de médecine, Sorbonne Université, 91 Bd de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
7
|
Fernandez-Oto C, Tzuk O, Meron E. Front Instabilities Can Reverse Desertification. PHYSICAL REVIEW LETTERS 2019; 122:048101. [PMID: 30768298 DOI: 10.1103/physrevlett.122.048101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Degradation processes in living systems often take place gradually by front propagation. An important context of such processes is loss of biological productivity in drylands or desertification. Using a dryland-vegetation model, we analyze the stability and dynamics of desertification fronts, identify linear and nonlinear front instabilities, and highlight the significance of these instabilities in inducing self-recovery. The results are based on the derivation and analysis of a universal amplitude equation for pattern-forming living systems for which nonuniform instabilities cannot emerge from the nonviable (zero) state. The results may therefore be applicable to other contexts of animate matter where degradation processes occur by front propagation.
Collapse
Affiliation(s)
- Cristian Fernandez-Oto
- Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Israel
- Complex Systems Group, Facultad de Ingenieria y Ciencias Aplicadas, Universidad de los Andes, Av. Mon. Alvaro del Portillo 12.455 Santiago, Chile
| | - Omer Tzuk
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ehud Meron
- Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Israel
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
8
|
Williamson JJ, Salbreux G. Stability and Roughness of Interfaces in Mechanically Regulated Tissues. PHYSICAL REVIEW LETTERS 2018; 121:238102. [PMID: 30576196 PMCID: PMC6420071 DOI: 10.1103/physrevlett.121.238102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 07/03/2018] [Indexed: 05/26/2023]
Abstract
Cell division and death can be regulated by the mechanical forces within a tissue. We study the consequences for the stability and roughness of a propagating interface by analyzing a model of mechanically regulated tissue growth in the regime of small driving forces. For an interface driven by homeostatic pressure imbalance or leader-cell motility, long and intermediate-wavelength instabilities arise, depending, respectively, on an effective viscosity of cell number change, and on substrate friction. A further mechanism depends on the strength of directed motility forces acting in the bulk. We analyze the fluctuations of a stable interface subjected to cell-level stochasticity, and find that mechanical feedback can help preserve reproducibility at the tissue scale. Our results elucidate mechanisms that could be important for orderly interface motion in developing tissues.
Collapse
Affiliation(s)
- John J Williamson
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Guillaume Salbreux
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| |
Collapse
|
9
|
Pham K, Turian E, Liu K, Li S, Lowengrub J. Nonlinear studies of tumor morphological stability using a two-fluid flow model. J Math Biol 2018; 77:671-709. [PMID: 29546457 DOI: 10.1007/s00285-018-1212-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/31/2018] [Indexed: 01/08/2023]
Abstract
We consider the nonlinear dynamics of an avascular tumor at the tissue scale using a two-fluid flow Stokes model, where the viscosity of the tumor and host microenvironment may be different. The viscosities reflect the combined properties of cell and extracellular matrix mixtures. We perform a linear morphological stability analysis of the tumors, and we investigate the role of nonlinearity using boundary-integral simulations in two dimensions. The tumor is non-necrotic, although cell death may occur through apoptosis. We demonstrate that tumor evolution is regulated by a reduced set of nondimensional parameters that characterize apoptosis, cell-cell/cell-extracellular matrix adhesion, vascularization and the ratio of tumor and host viscosities. A novel reformulation of the equations enables the use of standard boundary integral techniques to solve the equations numerically. Nonlinear simulation results are consistent with linear predictions for nearly circular tumors. As perturbations develop and grow, the linear and nonlinear results deviate and linear theory tends to underpredict the growth of perturbations. Simulations reveal two basic types of tumor shapes, depending on the viscosities of the tumor and microenvironment. When the tumor is more viscous than its environment, the tumors tend to develop invasive fingers and a branched-like structure. As the relative ratio of the tumor and host viscosities decreases, the tumors tend to grow with a more compact shape and develop complex invaginations of healthy regions that may become encapsulated in the tumor interior. Although our model utilizes a simplified description of the tumor and host biomechanics, our results are consistent with experiments in a variety of tumor types that suggest that there is a positive correlation between tumor stiffness and tumor aggressiveness.
Collapse
Affiliation(s)
- Kara Pham
- Department of Mathematics, University of California at Irvine, Irvine, CA, 92697-3875, USA
- Department of Mathematics, Fullerton College, Fullerton, CA, 92832, USA
| | - Emma Turian
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL, 60616, USA
- Department of Mathematics, Northeastern Illinois University, Chicago, IL, 60625, USA
| | - Kai Liu
- Department of Mathematics, University of California at Irvine, Irvine, CA, 92697-3875, USA
| | - Shuwang Li
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| | - John Lowengrub
- Departments of Mathematics and Biomedical Engineering, Center for Complex Biological Systems, Chao Family Comprehensive Cancer Center, University of California at Irvine, Irvine, CA, 92697-3875, USA.
| |
Collapse
|
10
|
Role of the Interplay Between the Internal and External Conditions in Invasive Behavior of Tumors. Sci Rep 2018; 8:5968. [PMID: 29654275 PMCID: PMC5899171 DOI: 10.1038/s41598-018-24418-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Tumor growth, which plays a central role in cancer evolution, depends on both the internal features of the cells, such as their ability for unlimited duplication, and the external conditions, e.g., supply of nutrients, as well as the dynamic interactions between the two. A stem cell theory of cancer has recently been developed that suggests the existence of a subpopulation of self-renewing tumor cells to be responsible for tumorigenesis, and is able to initiate metastatic spreading. The question of abundance of the cancer stem cells (CSCs) and its relation to tumor malignancy has, however, remained an unsolved problem and has been a subject of recent debates. In this paper we propose a novel model beyond the standard stochastic models of tumor development, in order to explore the effect of the density of the CSCs and oxygen on the tumor's invasive behavior. The model identifies natural selection as the underlying process for complex morphology of tumors, which has been observed experimentally, and indicates that their invasive behavior depends on both the number of the CSCs and the oxygen density in the microenvironment. The interplay between the external and internal conditions may pave the way for a new cancer therapy.
Collapse
|
11
|
Limbert G. Mathematical and computational modelling of skin biophysics: a review. Proc Math Phys Eng Sci 2017; 473:20170257. [PMID: 28804267 PMCID: PMC5549575 DOI: 10.1098/rspa.2017.0257] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/21/2017] [Indexed: 01/05/2023] Open
Abstract
The objective of this paper is to provide a review on some aspects of the mathematical and computational modelling of skin biophysics, with special focus on constitutive theories based on nonlinear continuum mechanics from elasticity, through anelasticity, including growth, to thermoelasticity. Microstructural and phenomenological approaches combining imaging techniques are also discussed. Finally, recent research applications on skin wrinkles will be presented to highlight the potential of physics-based modelling of skin in tackling global challenges such as ageing of the population and the associated skin degradation, diseases and traumas.
Collapse
Affiliation(s)
- Georges Limbert
- National Centre for Advanced Tribology at Southampton (nCATS), Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
- Biomechanics and Mechanobiology Laboratory, Biomedical Engineering Division, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| |
Collapse
|
12
|
Sewalt L, Harley K, van Heijster P, Balasuriya S. Influences of Allee effects in the spreading of malignant tumours. J Theor Biol 2016; 394:77-92. [DOI: 10.1016/j.jtbi.2015.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 11/10/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022]
|
13
|
Costa FHS, Campos M, da Silva MAA. The universal growth rate behavior and regime transition in adherent cell colonies. J Theor Biol 2015; 387:181-8. [PMID: 26471071 DOI: 10.1016/j.jtbi.2015.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 09/17/2015] [Accepted: 09/25/2015] [Indexed: 11/16/2022]
Abstract
In this work, we used five cell lineages, cultivated in vitro, to show they follow a common functional form to the growth rate: a sigmoidal curve, suggesting that competition and cooperation (usual mechanisms for systems with this behavior) might be present. Both theoretical and experimental investigations, on the causes of this behavior, are challenging for the research field; since the sigmoidal form to the growth rate seems to absorb important properties of such systems, e.g., cell deformation and statistical interactions. We shed some light on this subject by showing how cell spreading affects the radius behavior of the growing colonies. Doing numerical time derivatives of the experimental data, we obtained the growth rates. Using reduced variables for the time and rates, we obtained the collapse of all colonies growth rates onto one curve with sigmoidal shape. This suggests a universal-type behavior, with regime transition related to a morphological transition of adherent cell colonies.
Collapse
Affiliation(s)
- F H S Costa
- Departamento de Física, FFCLRP; Universidade de São Paulo, 14040-901; Ribeirão Preto, São Paulo, Brazil.
| | - M Campos
- Departamento de Química e Ciências Ambientais, IBILCE, Universidade Estadual Paulista Júlio de Mesquita Filho, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - M A A da Silva
- Departamento de Física, FFCLRP; Universidade de São Paulo, 14040-901; Ribeirão Preto, São Paulo, Brazil; Departamento de Física e Química, FCFRP; Universidade de São Paulo, 14040-903; Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
14
|
Giverso C, Verani M, Ciarletta P. Branching instability in expanding bacterial colonies. J R Soc Interface 2015; 12:20141290. [PMID: 25652464 DOI: 10.1098/rsif.2014.1290] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Self-organization in developing living organisms relies on the capability of cells to duplicate and perform a collective motion inside the surrounding environment. Chemical and mechanical interactions coordinate such a cooperative behaviour, driving the dynamical evolution of the macroscopic system. In this work, we perform an analytical and computational analysis to study pattern formation during the spreading of an initially circular bacterial colony on a Petri dish. The continuous mathematical model addresses the growth and the chemotactic migration of the living monolayer, together with the diffusion and consumption of nutrients in the agar. The governing equations contain four dimensionless parameters, accounting for the interplay among the chemotactic response, the bacteria-substrate interaction and the experimental geometry. The spreading colony is found to be always linearly unstable to perturbations of the interface, whereas branching instability arises in finite-element numerical simulations. The typical length scales of such fingers, which align in the radial direction and later undergo further branching, are controlled by the size parameters of the problem, whereas the emergence of branching is favoured if the diffusion is dominant on the chemotaxis. The model is able to predict the experimental morphologies, confirming that compact (resp. branched) patterns arise for fast (resp. slow) expanding colonies. Such results, while providing new insights into pattern selection in bacterial colonies, may finally have important applications for designing controlled patterns.
Collapse
Affiliation(s)
- Chiara Giverso
- MOX, Politecnico di Milano, P.za Leonardo da Vinci, 32, 20133 Milan, Italy Fondazione CEN, P.za Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Marco Verani
- MOX, Politecnico di Milano, P.za Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Pasquale Ciarletta
- Fondazione CEN, P.za Leonardo da Vinci, 32, 20133 Milan, Italy CNRS and Sorbonne Universités, Institut Jean le Rond d'Alembert, UPMC Univ Paris 06, UMR 7190, 4 place Jussieu case 162, 75005 Paris, France
| |
Collapse
|
15
|
Emerging morphologies in round bacterial colonies: comparing volumetric versus chemotactic expansion. Biomech Model Mechanobiol 2015; 15:643-61. [PMID: 26296713 DOI: 10.1007/s10237-015-0714-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
Abstract
Biological experiments performed on living bacterial colonies have demonstrated the microbial capability to develop finger-like shapes and highly irregular contours, even starting from an homogeneous inoculum. In this work, we study from the continuum mechanics viewpoint the emergence of such branched morphologies in an initially circular colony expanding on the top of a Petri dish coated with agar. The bacterial colony expansion, based on either a source term, representing volumetric mitotic processes, or a nonconvective mass flux, describing chemotactic expansion, is modeled at the continuum scale. We demonstrate that the front of the colony is always linearly unstable, having similar dispersion curves to the ones characterizing branching instabilities. We also perform finite element simulations, which not only prove the emergence of branching, but also highlight dramatic differences between the two mechanisms of colony expansion in the nonlinear regime. Furthermore, the proposed combination of analytical and numerical analysis allowed studying the influence of different model parameters on the selection of specific patterns. A very good agreement has been found between the resulting simulations and the typical structures observed in biological assays. Finally, this work provides a new interpretation of the emergence of branched patterns in living aggregates, depicted as the results of a complex interplay among chemical, mechanical and size effects.
Collapse
|
16
|
Giverso C, Verani M, Ciarletta P. Mechanically driven branching of bacterial colonies. J Biomech Eng 2015; 137:2212354. [PMID: 25806474 DOI: 10.1115/1.4030176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Indexed: 11/08/2022]
Abstract
A continuum mathematical model with sharp interface is proposed for describing the occurrence of patterns in initially circular and homogeneous bacterial colonies. The mathematical model encapsulates the evolution of the chemical field characterized by a Monod-like uptake term, the chemotactic response of bacteria, the viscous interaction between the colony and the underlying culture medium and the effects of the surface tension at the boundary. The analytical analysis demonstrates that the front of the colony is linearly unstable for a proper choice of the parameters. The simulation of the model in the nonlinear regime confirms the development of fingers with typical wavelength controlled by the size parameters of the problem, whilst the emergence of branches is favored if the diffusion is dominant on the chemotaxis or for high values of the friction parameter. Such results provide new insights on pattern selection in bacterial colonies and may be applied for designing engineered patterns.
Collapse
|
17
|
Balois T, Chatelain C, Ben Amar M. Patterns in melanocytic lesions: impact of the geometry on growth and transport inside the epidermis. J R Soc Interface 2015; 11:20140339. [PMID: 24872499 PMCID: PMC4208365 DOI: 10.1098/rsif.2014.0339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In glabrous skin, nevi and melanomas exhibit pigmented stripes during clinical dermoscopic examination. They find their origin in the basal layer geometry which periodically exhibits ridges, alternatively large (limiting ridges) and thin (intermediate ridges). However, nevus and melanoma lesions differ by the localization of the pigmented stripes along furrows or ridges of the epidermis surface. Here, we propose a biomechanical model of avascular tumour growth which takes into account this specific geometry in the epidermis where both kinds of lesions first appear. Simulations show a periodic distribution of tumour cells inside the lesion, with a global contour stretched out along the ridges. In order to be as close as possible to clinical observations, we also consider the melanin transport by the keratinocytes. Our simulations show that reasonable assumptions on melanocytic cell repartition in the ridges favour the limiting ridges of the basal compared with the intermediate ones in agreement with nevus observations but not really with melanomas. It raises the question of cell aggregation and repartition of melanocytic cells in acral melanomas and requires further biological studies of these cells in situ.
Collapse
Affiliation(s)
- Thibaut Balois
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Univ Paris 06, Université Paris Diderot, CNRS, 24 rue Lhomond, Paris 75005, France Faculté de médecine, Institut Universitaire de Cancérologie, Université Pierre et Marie Curie-Paris 6, 91 Boulevard de l'hôpital, Paris 75013, France
| | - Clément Chatelain
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Univ Paris 06, Université Paris Diderot, CNRS, 24 rue Lhomond, Paris 75005, France Faculté de médecine, Institut Universitaire de Cancérologie, Université Pierre et Marie Curie-Paris 6, 91 Boulevard de l'hôpital, Paris 75013, France
| | - Martine Ben Amar
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Univ Paris 06, Université Paris Diderot, CNRS, 24 rue Lhomond, Paris 75005, France Faculté de médecine, Institut Universitaire de Cancérologie, Université Pierre et Marie Curie-Paris 6, 91 Boulevard de l'hôpital, Paris 75013, France
| |
Collapse
|
18
|
Jia F, Li B, Cao YP, Xie WH, Feng XQ. Wrinkling pattern evolution of cylindrical biological tissues with differential growth. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:012403. [PMID: 25679624 DOI: 10.1103/physreve.91.012403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Indexed: 06/04/2023]
Abstract
Three-dimensional surface wrinkling of soft cylindrical tissues induced by differential growth is explored. Differential volumetric growth can cause their morphological stability, leading to the formation of hexagonal and labyrinth wrinkles. During postbuckling, multiple bifurcations and morphological transitions may occur as a consequence of continuous growth in the surface layer. The physical mechanisms underpinning the morphological evolution are examined from the viewpoint of energy. Surface curvature is found to play a regulatory role in the pattern evolution. This study may not only help understand the morphogenesis of soft biological tissues, but also inspire novel routes for creating desired surface patterns of soft materials.
Collapse
Affiliation(s)
- Fei Jia
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, AML, Tsinghua University, Beijing 100084, China and School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, China
| | - Bo Li
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, AML, Tsinghua University, Beijing 100084, China
| | - Yan-Ping Cao
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, AML, Tsinghua University, Beijing 100084, China
| | - Wei-Hua Xie
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, AML, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, AML, Tsinghua University, Beijing 100084, China and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Mkrtchyan A, Åström J, Karttunen M. A new model for cell division and migration with spontaneous topology changes. SOFT MATTER 2014; 10:4332-4339. [PMID: 24793724 DOI: 10.1039/c4sm00489b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tissue topology, in particular proliferating epithelium topology, is remarkably similar between various species. Understanding the mechanisms that result in the observed topologies is needed for better insight into the processes governing tissue formation. We present a two-dimensional single-cell based model for cell divisions and tissue growth. The model accounts for cell mechanics and allows cell migration. Cells do not have pre-existing shapes or topologies. Shape changes and local rearrangements occur naturally as a response to the evolving cellular environment and cell-cell interactions. We show that the commonly observed tissue topologies arise spontaneously from this model. We consider different cellular rearrangements that accompany tissue growth and study their effects on tissue topology.
Collapse
Affiliation(s)
- Anna Mkrtchyan
- Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
20
|
Abstract
Branched structures are ubiquitous in nature, both in living and non-living systems. While the functional benefits of branching organogenesis are straightforward, the developmental mechanisms leading to the repeated branching of epithelia in surrounding mesoderm remain unclear. Both molecular and physical aspects of growth control seem to play a critical role in shape emergence and maintenance. On the molecular side, the existence of a gradient of growth-promoting ligand between epithelial tips and distal mesenchyme seems to be common to branched organs. On the physical side, the branching process seems to require a mechanism of real-time adaptation to local geometry, as suggested by the self-avoiding nature of branching events. In this paper, we investigate the outcomes of a general three-dimensional growth model, in which epithelial growth is implemented as a function of ligand income, while the mesenchyme is considered as a proliferating viscous medium. Our results suggest that the existence of a gradient of growth-promoting ligand between distal and proximal mesenchyme implies a growth instability of the epithelial sheet, resulting in spontaneous self-avoiding branching morphogenesis. While the general nature of the model prevents one from fitting the development of specific organs, it suggests that few ingredients are actually required to achieve branching organogenesis.
Collapse
Affiliation(s)
- Raphaël Clément
- Laboratoire J-A Dieudonné - UMR CNRS 7531, Parc Valrose - University Nice Sophia Antipolis, F-06100 Nice, France
| | | |
Collapse
|
21
|
Abstract
Melanoma is a solid tumour with its own specificity from the biological and morphological viewpoint. On one hand, numerous mutations are already known affecting different pathways. They usually concern proliferation rate, apoptosis, cell senescence and cell behaviour. On the other hand, several visual criteria at the tissue level are used by physicians in order to diagnose skin lesions. Nevertheless, the mechanisms between the changes from the mutations at the cell level to the morphology exhibited at the tissue level are still not fully understood. Using physical tools, we develop a simple model. We demonstrate analytically that it contains the necessary ingredients to understand several specificities of melanoma such as the presence of microstructures inside a skin lesion or the absence of a necrotic core. We also explain the importance of senescence for growth arrest in benign skin lesions. Thanks to numerical simulations, we successfully compare this model to biological data.
Collapse
|
22
|
Wang MX, Li YJ, Lai PY, Chan CK. Model on cell movement, growth, differentiation and de-differentiation: reaction-diffusion equation and wave propagation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:65. [PMID: 23807466 DOI: 10.1140/epje/i2013-13065-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 04/17/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
We construct a model for cell proliferation with differentiation into different cell types, allowing backward de-differentiation and cell movement. With different cell types labeled by state variables, the model can be formulated in terms of the associated transition probabilities between various states. The cell population densities can be described by coupled reaction-diffusion partial differential equations, allowing steady wavefront propagation solutions. The wavefront profile is calculated analytically for the simple pure growth case (2-states), and analytic expressions for the steady wavefront propagating speeds and population growth rates are obtained for the simpler cases of 2-, 3- and 4-states systems. These analytic results are verified by direct numerical solutions of the reaction-diffusion PDEs. Furthermore, in the absence of de-differentiation, it is found that, as the mobility and/or self-proliferation rate of the down-lineage descendant cells become sufficiently large, the propagation dynamics can switch from a steady propagating wavefront to the interesting situation of propagation of a faster wavefront with a slower waveback. For the case of a non-vanishing de-differentiation probability, the cell growth rate and wavefront propagation speed are both enhanced, and the wavefront speeds can be obtained analytically and confirmed by numerical solution of the reaction-diffusion equations.
Collapse
Affiliation(s)
- Mao-Xiang Wang
- Department of Physics, Graduate Institute of Biophysics, and Center for Complex Systems, National Central University, Chungli, Taiwan, 320, ROC
| | | | | | | |
Collapse
|
23
|
Ciarletta P. Buckling instability in growing tumor spheroids. PHYSICAL REVIEW LETTERS 2013; 110:158102. [PMID: 25167314 DOI: 10.1103/physrevlett.110.158102] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Indexed: 05/28/2023]
Abstract
A growing tumor is subjected to intrinsic physical forces, arising from the cellular turnover in a spatially constrained environment. This work demonstrates that such residual solid stresses can provoke a buckling instability in heterogeneous tumor spheroids. The growth rate ratio between the outer shell of proliferative cells and the inner necrotic core is the control parameter of this instability. The buckled morphology is found to depend both on the elastic and the geometric properties of the tumor components, suggesting a key role of residual stresses for promoting tumor invasiveness.
Collapse
Affiliation(s)
- P Ciarletta
- CNRS and Institut Jean le Rond d'Alembert, UMR 7190, Université Paris 6, 4 place Jussieu case 162, 75005 Paris, France and MOX-Politecnico di Milano and Fondazione CEN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
24
|
Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth. J Math Biol 2012; 67:1457-85. [PMID: 23053536 DOI: 10.1007/s00285-012-0595-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/07/2012] [Indexed: 11/26/2022]
Abstract
The idea that one can possibly develop computational models that predict the emergence, growth, or decline of tumors in living tissue is enormously intriguing as such predictions could revolutionize medicine and bring a new paradigm into the treatment and prevention of a class of the deadliest maladies affecting humankind. But at the heart of this subject is the notion of predictability itself, the ambiguity involved in selecting and implementing effective models, and the acquisition of relevant data, all factors that contribute to the difficulty of predicting such complex events as tumor growth with quantifiable uncertainty. In this work, we attempt to lay out a framework, based on Bayesian probability, for systematically addressing the questions of Validation, the process of investigating the accuracy with which a mathematical model is able to reproduce particular physical events, and Uncertainty quantification, developing measures of the degree of confidence with which a computer model predicts particular quantities of interest. For illustrative purposes, we exercise the process using virtual data for models of tumor growth based on diffuse-interface theories of mixtures utilizing virtual data.
Collapse
|
25
|
Ciarletta P. Free boundary morphogenesis in living matter. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:681-6. [DOI: 10.1007/s00249-012-0833-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/06/2012] [Accepted: 06/13/2012] [Indexed: 11/29/2022]
|
26
|
Chang JY, Lai PY. Uncontrolled growth resulting from dedifferentiation in a skin cell proliferation model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041926. [PMID: 22680517 DOI: 10.1103/physreve.85.041926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/20/2012] [Indexed: 06/01/2023]
Abstract
By introducing a small backward dedifferentiation probability of postmitotic cells to progenitor cells in a recently proposed skin cell proliferation model, the homeostasis of the system can be disrupted resulting in uncontrolled growth. It is found that when the dedifferentiation probability exceeds a small critical value, the stable fixed point of the system vanishes leading to unlimited cell growth resembling scenarios in carcinogenesis. Explicit expression for the critical dedifferentiation probability and phase diagram are calculated analytically and the associated nonlinear dynamics is analyzed. In the presence of stochastic fluctuations, our model predicts that the escape rate from homeostatic growth to uncontrolled growth is greatly enhanced by a small but finite dedifferentiation probability. These results are verified by numerical solutions of the dynamical system and chemical Langevin equations.
Collapse
Affiliation(s)
- J Y Chang
- Department of Physics, Graduate Institute of Biophysics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, Republic of China
| | | |
Collapse
|
27
|
Chatelain C, Ciarletta P, Ben Amar M. Morphological changes in early melanoma development: influence of nutrients, growth inhibitors and cell-adhesion mechanisms. J Theor Biol 2011; 290:46-59. [PMID: 21903099 DOI: 10.1016/j.jtbi.2011.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 01/26/2023]
Abstract
Current diagnostic methods for skin cancers are based on some morphological characteristics of the pigmented skin lesions, including the geometry of their contour. The aim of this article is to model the early growth of melanoma accounting for the biomechanical characteristics of the tumor micro-environment, and evaluating their influence on the tumor morphology and its evolution. The spatial distribution of tumor cells and diffusing molecules are explicitly described in a three-dimensional multiphase model, which incorporates general cell-to-cell mechanical interactions, a dependence of cell proliferation on contact inhibition, as well as a local diffusion of nutrients and inhibiting molecules. A two-dimensional model is derived in a lubrication limit accounting for the thin geometry of the epidermis. First, the dynamical and spatial properties of planar and circular tumor fronts are studied, with both numerical and analytical techniques. A WKB method is then developed in order to analyze the solution of the governing partial differential equations and to derive the threshold conditions for a contour instability of the growing tumor. A control parameter and a critical wavelength are identified, showing that high cell proliferation, high cell adhesion, large tumor radius and slow tumor growth correlate with the occurrence of a contour instability. Finally, comparing the theoretical results with a large amount of clinical data we show that our predictions describe accurately both the morphology of melanoma observed in vivo and its variations with the tumor growth rate. This study represents a fundamental step to understand more complex microstructural patterns observed during skin tumor growth. Its results have important implications for the improvement of the diagnostic methods for melanoma, possibly driving progress towards a personalized screening.
Collapse
Affiliation(s)
- Clément Chatelain
- Laboratoire de Physique Statistique, Ecole Normale Superieure, UPMC Université Paris 06, Université Paris Diderot, CNRS, Paris, France
| | | | | |
Collapse
|
28
|
Bose T, Trimper S. Noise-assisted interactions of tumor and immune cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:021927. [PMID: 21929038 DOI: 10.1103/physreve.84.021927] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/01/2011] [Indexed: 05/31/2023]
Abstract
We consider a three-state model comprising tumor cells, effector cells, and tumor-detecting cells under the influence of noises. It is demonstrated that inevitable stochastic forces existing in all three cell species are able to suppress tumor cell growth completely. Whereas the deterministic model does not reveal a stable tumor-free state, the auto-correlated noise combined with cross-correlation functions can either lead to tumor-dormant states, tumor progression, as well as to an elimination of tumor cells. The auto-correlation function exhibits a finite correlation time τ, while the cross-correlation functions shows a white-noise behavior. The evolution of each of the three kinds of cells leads to a multiplicative noise coupling. The model is investigated by means of a multivariate Fokker-Planck equation for small τ. The different behavior of the system is, above all, determined by the variation of the correlation time and the strength of the cross-correlation between tumor and tumor-detecting cells. The theoretical model is based on a biological background discussed in detail, and the results are tested using realistic parameters from experimental observations.
Collapse
Affiliation(s)
- Thomas Bose
- Institute of Physics, Martin-Luther-University, D-06099 Halle, Germany.
| | | |
Collapse
|