1
|
Bacaksiz C, Fyta M. Phthalocyanine Adsorbed on Monolayer CrI 3: Tailoring Their Magnetic Properties. ACS OMEGA 2024; 9:34589-34596. [PMID: 39157117 PMCID: PMC11325395 DOI: 10.1021/acsomega.4c02708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024]
Abstract
Metallo-phthalocyanines molecules, especially ironphthalocyanines (Fe-Pc), are often examined due to their rich chemical, magnetic, and optoelectronic features. Due to these, Fe-Pc molecules are promising for applications in gas sensors, field-effect transistors, organic LEDs, and data storage. Motivated by this potential, this study investigates Fe-Pc molecules adsorbed on a magnetic monolayer, CrI3. Using quantum-mechanical simulations, the aim of this work was to find pathways to selectively tune and engineer the magnetic and electronic properties of the molecules when they form hybrid complexes. The results quantitatively underline how adsorption alters the magnetic properties of the Fe-Pc molecules. Interestingly, the analysis points to changes in the molecular magnetic anisotropy when comparing the magnetic moment of the isolated molecule to that of the molecule/monolayer complex formed after adsorption. The presence of iodine vacancies was shown to enhance the magnetic interactions between the iron of the Fe-Pc molecule and the chromium of the monolayer. Our findings suggest ways to control oxygen capture-release properties through material choice and defect creation. Insights into the stability and charge density depletion on the molecule provide critical information for selective tuning of the magnetic properties and engineering of the functionalities of these molecule/material complexes.
Collapse
Affiliation(s)
- Cihan Bacaksiz
- Department of Physics & NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- Computational Biotechnology, RWTH Aachen University, Worringerweg 3, 70574 Aachen, Germany
| | - Maria Fyta
- Computational Biotechnology, RWTH Aachen University, Worringerweg 3, 70574 Aachen, Germany
| |
Collapse
|
2
|
Aykanat A, Meng Z, Stolz RM, Morrell CT, Mirica KA. Bimetallic Two-Dimensional Metal-Organic Frameworks for the Chemiresistive Detection of Carbon Monoxide. Angew Chem Int Ed Engl 2022; 61:e202113665. [PMID: 34796599 PMCID: PMC8797516 DOI: 10.1002/anie.202113665] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Indexed: 02/03/2023]
Abstract
This paper describes the demonstration of a series of heterobimetallic, isoreticular 2D conductive metal-organic frameworks (MOFs) with metallophthalocyanine (MPc, M=Co and Ni) units interconnected by Cu nodes towards low-power chemiresistive sensing of ppm levels of carbon monoxide (CO). Devices achieve a sub-part-per-million (ppm) limit of detection (LOD) of 0.53 ppm toward CO at a low driving voltage of 0.1 V. MPc-based Cu-linked MOFs can continuously detect CO at 50 ppm, the permissible exposure limit required by the Occupational Safety and Health Administration (OSHA), for multiple exposures, and realize CO detection in air and in humid environment. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), density functional theory (DFT) calculations, and comparison experiments suggest the contribution of Cu nodes to CO binding and the essential role of MPc units in tuning and amplifying the sensing response.
Collapse
Affiliation(s)
- Aylin Aykanat
- Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Zheng Meng
- Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Robert M Stolz
- Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Colin T Morrell
- Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Katherine A Mirica
- Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
3
|
Aykanat A, Meng Z, Stolz RM, Morrell CT, Mirica KA. Bimetallic Two‐Dimensional Metal–Organic Frameworks for the Chemiresistive Detection of Carbon Monoxide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aylin Aykanat
- Laboratory Department of Chemistry Dartmouth College Hanover NH 03755 USA
| | - Zheng Meng
- Laboratory Department of Chemistry Dartmouth College Hanover NH 03755 USA
| | - Robert M. Stolz
- Laboratory Department of Chemistry Dartmouth College Hanover NH 03755 USA
| | - Colin T. Morrell
- Laboratory Department of Chemistry Dartmouth College Hanover NH 03755 USA
| | | |
Collapse
|
4
|
Tao L, Zhang Y, Du S. Structures and electronic properties of functional molecules on metal substrates: From single molecule to self‐assemblies. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lei Tao
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing China
| | - Yu‐yang Zhang
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Topological Quantum Computation Beijing China
| | - Shixuan Du
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Topological Quantum Computation Beijing China
- Beijing National Laboratory for Condensed Matter Physics Beijing China
- Songshan Lake Materials Laboratory Dongguan China
| |
Collapse
|
5
|
Self-Assembly and Magnetic Order of Bi-Molecular 2D Spin Lattices of M(II,III) Phthalocyanines on Au(111). MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7080119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Single layer low-dimensional materials are presently of emerging interest, including in the context of magnetism. In the present report, on-surface supramolecular architecturing was further developed and employed to create surface supported two-dimensional binary spin arrays on atomically clean non-magnetic Au(111). By chemical programming of the modules, different checkerboards were produced combining phthalocyanines containing metals of different oxidation and spin states, diamagnetic zinc, and a metal-free ‘spacer’. In an in-depth, spectro-microscopy and theoretical account, we correlate the structure and the magnetic properties of these tunable systems and discuss the emergence of 2D Kondo magnetism from the spin-bearing components and via the physico-chemical bonding to the underlying substrate. The contributions of the individual elements, as well as the role of the electronic surface state in the bottom substrate, are discussed, also looking towards further in-depth investigations.
Collapse
|
6
|
Knecht P, Reichert J, Deimel PS, Feulner P, Haag F, Allegretti F, Garnica M, Schwarz M, Auwärter W, Ryan PTP, Lee T, Duncan DA, Seitsonen AP, Barth JV, Papageorgiou AC. Conformational Control of Chemical Reactivity for Surface-Confined Ru-Porphyrins. Angew Chem Int Ed Engl 2021; 60:16561-16567. [PMID: 33938629 PMCID: PMC8362151 DOI: 10.1002/anie.202104075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Indexed: 11/24/2022]
Abstract
We assess the crucial role of tetrapyrrole flexibility in the CO ligation to distinct Ru-porphyrins supported on an atomistically well-defined Ag(111) substrate. Our systematic real-space visualisation and manipulation experiments with scanning tunnelling microscopy directly probe the ligation, while bond-resolving atomic force microscopy and X-ray standing-wave measurements characterise the geometry, X-ray and ultraviolet photoelectron spectroscopy the electronic structure, and temperature-programmed desorption the binding strength. Density-functional-theory calculations provide additional insight into the functional interface. We unambiguously demonstrate that the substituents regulate the interfacial conformational adaptability, either promoting or obstructing the uptake of axial CO adducts.
Collapse
Affiliation(s)
- Peter Knecht
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Joachim Reichert
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Peter S. Deimel
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Peter Feulner
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Felix Haag
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Francesco Allegretti
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Manuela Garnica
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
- Current address: Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco28049MadridSpain
| | - Martin Schwarz
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Willi Auwärter
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Paul T. P. Ryan
- Diamond Light SourceDidcotOX11 0DEUK
- Department of MaterialsImperial College LondonExhibition RoadSW7 2AZLondonUK
- Current address: Institute of Applied PhysicsTechnische Universität WienWiedner Hauptstraße 8-10/1341040ViennaAustria
| | | | | | - Ari Paavo Seitsonen
- Département de ChimieEcole Normale Supérieure24 rue Lhomond75005ParisFrance
- Université de recherche Paris-Sciences-et-LettresSorbonne UniversitéCentre National de la Recherche Scientifique75005ParisFrance
| | - Johannes V. Barth
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | | |
Collapse
|
7
|
Knecht P, Reichert J, Deimel PS, Feulner P, Haag F, Allegretti F, Garnica M, Schwarz M, Auwärter W, Ryan PTP, Lee T, Duncan DA, Seitsonen AP, Barth JV, Papageorgiou AC. Conformational Control of Chemical Reactivity for Surface‐Confined Ru‐Porphyrins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peter Knecht
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Joachim Reichert
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Peter S. Deimel
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Peter Feulner
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Felix Haag
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Francesco Allegretti
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Manuela Garnica
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
- Current address: Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco 28049 Madrid Spain
| | - Martin Schwarz
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Willi Auwärter
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Paul T. P. Ryan
- Diamond Light Source Didcot OX11 0DE UK
- Department of Materials Imperial College London Exhibition Road SW7 2AZ London UK
- Current address: Institute of Applied Physics Technische Universität Wien Wiedner Hauptstraße 8-10/134 1040 Vienna Austria
| | | | | | - Ari Paavo Seitsonen
- Département de Chimie Ecole Normale Supérieure 24 rue Lhomond 75005 Paris France
- Université de recherche Paris-Sciences-et-Lettres Sorbonne Université Centre National de la Recherche Scientifique 75005 Paris France
| | - Johannes V. Barth
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Anthoula C. Papageorgiou
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| |
Collapse
|
8
|
Cirera B, Gallego JM, Martínez JI, Miranda R, Écija D. Lanthanide-porphyrin species as Kondo irreversible switches through tip-induced coordination chemistry. NANOSCALE 2021; 13:8600-8606. [PMID: 33913939 PMCID: PMC8118200 DOI: 10.1039/d0nr08992c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Metallosupramolecular chemical protocols are applied to in situ design dysprosium porphyrin complexes on Au(111) by sequential deposition of 2H-4FTPP species and Dy, resulting in the production of premetallated Dy-2H-4FTPP, partially metallated Dy-1H-4FTPP and fully metallated Dy-0H-4FTPP complexes, as determined by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. A zero bias resonance is found in the Dy-2H-4FTPP species which, upon study of its spatial distribution and behavior with temperature, is assigned to a Kondo resonance resulting from an unpaired spin in the molecular backbone, featuring a Kondo temperature (TK) of ≈ 21 K. Notably, the Kondo resonance can be switched off by removing one hydrogen atom of the macrocycle through tip-induced voltage pulses with submolecular precision. The species with this Kondo resonance can be laterally manipulated illustrating the potential to assemble artificial Kondo lattices. Our study demonstrates that the pre-metallation of macrocycles by lanthanides and their controlled manipulation is a novel strategy to engineer in situ tunable Kondo nanoarchitectures, enhancing the potential of coordination chemistry for spintronics.
Collapse
Affiliation(s)
- B. Cirera
- IMDEA NanoscienceCantoblancoMadridSpain
| | - J. M. Gallego
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)c/Sor Juana Inés de la Cruz 328049 MadridSpain
| | - J. I. Martínez
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)c/Sor Juana Inés de la Cruz 328049 MadridSpain
| | - R. Miranda
- IMDEA NanoscienceCantoblancoMadridSpain
- Departamento de Física de la Materia Condensada, Universidad Autónoma de MadridCantoblancoMadridSpain
| | - D. Écija
- IMDEA NanoscienceCantoblancoMadridSpain
| |
Collapse
|
9
|
Guo X, Zhu Q, Zhou L, Yu W, Lu W, Liang W. Evolution and universality of two-stage Kondo effect in single manganese phthalocyanine molecule transistors. Nat Commun 2021; 12:1566. [PMID: 33692347 PMCID: PMC7946881 DOI: 10.1038/s41467-021-21492-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/26/2021] [Indexed: 11/19/2022] Open
Abstract
The Kondo effect offers an important paradigm to understand strongly correlated many-body physics. Although under intensive study, some of the important properties of the Kondo effect, in systems where both itinerant coupling and localized coupling play significant roles, are still elusive. Here we report the evolution and universality of the two-stage Kondo effect, the simplest form where both couplings are important using single molecule transistor devices incorporating Manganese phthalocyanine molecules. The Kondo temperature T* of the two-stage Kondo effect evolves linearly against effective interaction of involved two spins. Observed Kondo resonance shows universal quadratic dependence with all adjustable parameters: temperature, magnetic field and biased voltages. The difference in nonequilibrium conductance of two-stage Kondo effect to spin 1/2 Kondo effect is also identified. Messages learned in this study fill in directive experimental evidence of the evolution of two-stage Kondo resonance near a quantum phase transition point, and help in understanding sophisticated molecular electron spectroscopy in a strong correlation regime. The Kondo effect can serve as a powerful paradigm to understand strongly correlated many-body processes in physics. Here, Guo et al. utilize single molecule transistor devices as a testbed to study multi-level Kondo correlation and show electrical gate evolution and the universality of the two-stage Kondo effect.
Collapse
Affiliation(s)
- Xiao Guo
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China.,Beijing National center for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing, P.R. China.,CAS Center of Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Qiuhao Zhu
- Beijing National center for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing, P.R. China.,CAS Center of Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Liyan Zhou
- Beijing National center for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing, P.R. China.,CAS Center of Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Wei Yu
- Beijing National center for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing, P.R. China.,CAS Center of Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Wengang Lu
- Beijing National center for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing, P.R. China.,CAS Center of Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Wenjie Liang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China. .,Beijing National center for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing, P.R. China. .,CAS Center of Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
10
|
Avvisati G, Gargiani P, Mariani C, Betti MG. Tuning the Magnetic Coupling of a Molecular Spin Interface via Electron Doping. NANO LETTERS 2021; 21:666-672. [PMID: 33356332 DOI: 10.1021/acs.nanolett.0c04256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mastering the magnetic response of molecular spin interfaces by tuning the occupancy of the molecular orbitals, which carry the spin magnetic moment, can be accomplished by electron doping. We propose a viable route to control the magnetization direction and magnitude of a molecular spin network, in a graphene-mediated architecture, achieved via alkali doping of manganese phthalocyanine (MnPc) molecules assembled on cobalt intercalated under a graphene membrane. The antiparallel magnetic alignment of the MnPc molecules with the underlying Co layer can be switched to a ferromagnetic state by electron doping. Multiplet calculations unveil an enhanced magnetic state of the Mn centers with a 3/2 to 5/2 spin transition induced by alkali doping, as confirmed by the steepening of the hysteresis loops, with higher saturation magnetization values. This new molecular spin configuration can be aligned by an external field, almost independently from the hard-magnet substrate effectively behaving as a free magnetic layer.
Collapse
Affiliation(s)
- Giulia Avvisati
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro, 5 00185 Rome, Italy
| | - Pierluigi Gargiani
- ALBA Synchrotron Light Source, Carrer de la Llum, 2-26 08290 Barcelona, Spain
| | - Carlo Mariani
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro, 5 00185 Rome, Italy
| | - Maria Grazia Betti
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro, 5 00185 Rome, Italy
| |
Collapse
|
11
|
Manipulation of Molecular Spin State on Surfaces Studied by Scanning Tunneling Microscopy. NANOMATERIALS 2020; 10:nano10122393. [PMID: 33266045 PMCID: PMC7761235 DOI: 10.3390/nano10122393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022]
Abstract
The adsorbed magnetic molecules with tunable spin states have drawn wide attention for their immense potential in the emerging fields of molecular spintronics and quantum computing. One of the key issues toward their application is the efficient controlling of their spin state. This review briefly summarizes the recent progress in the field of molecular spin state manipulation on surfaces. We focus on the molecular spins originated from the unpaired electrons of which the Kondo effect and spin excitation can be detected by scanning tunneling microscopy and spectroscopy (STM and STS). Studies of the molecular spin-carriers in three categories are overviewed, i.e., the ones solely composed of main group elements, the ones comprising 3d-metals, and the ones comprising 4f-metals. Several frequently used strategies for tuning molecular spin state are exemplified, including chemical reactions, reversible atomic/molecular chemisorption, and STM-tip manipulations. The summary of the successful case studies of molecular spin state manipulation may not only facilitate the fundamental understanding of molecular magnetism and spintronics but also inspire the design of the molecule-based spintronic devices and materials.
Collapse
|
12
|
Wang Y, Wang Z, Yang J, Li X. Precise Spin Manipulation of Single Molecule Positioning on Graphene by Coordination Chemistry. J Phys Chem Lett 2020; 11:9819-9827. [PMID: 33156628 DOI: 10.1021/acs.jpclett.0c03026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precise spin manipulation of single molecules is crucial for future molecular spintronics. However, it has been a formidable challenge due to the complexities of the strong molecule-substrate coupling as well as the response of the molecule to external stimulus. Here we demonstrate by density functional theory calculations that precise spin manipulation can be achieved by extra CO and NO molecules coordination to transition metal phthalocyanine (TMPc) (TM = Co, Fe, Mn) molecules deposited on metal-supported graphene; the spins of TMPc molecules are switched from S to S - 1/2 (|S - 1|) after NO (CO) coordination. With the aid of a combination of molecular orbitals (MO) theory and recently developed principal interacting spin-orbital (PISO) analysis, the impacts of NO and CO coordinations on both adsorption configuration and spin polarization of TMPc are well elucidated. We reveal the different coordination geometries that CO always coordinates axially to the TM center with a linear geometry, while NO prefers a bent geometry, which can be attributed to the competition between the σ- and π-type interactions according to the PISO analysis. Particularly, the NO-MnPc complex adopts a bent geometry deviating from the prediction by the existing Enemark-Feltham formalism. In addition, MO analysis suggests that during the CO coordination, the simultaneous existence of σ-donation and π-back-donation promotes electrons flowing from the dz2 to partially occupied dπ (dxz and dxz) orbitals with subsequent reordering of the TM d-orbitals, resulting in the spin transition of S → |S - 1|. In comparison, given that NO is regarded as NO- when it adopts a bent geometry coordinating to the TM center, the complete (CoPc) or partial (FePc and MnPc) quenching of the molecular spins caused by NO coordination is attributed to the electron transfer from TM to NO. These theoretical findings provide important insights into relevant experiments and offer an effective design strategy to realize underlying single-molecular spintronics devices integrated with two-dimensional materials.
Collapse
Affiliation(s)
- Yu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Zheng Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
13
|
Enhanced magnetic spin-spin interactions observed between porphyrazine derivatives on Au(111). Commun Chem 2020; 3:36. [PMID: 36703412 PMCID: PMC9814269 DOI: 10.1038/s42004-020-0282-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/28/2020] [Indexed: 01/29/2023] Open
Abstract
Magnetic molecules are of interest for application in spintronic and quantum-information processing devices. Therein, control of the interaction between the spins of neighboring molecules is the critical issue. Substitution of outer moieties of the molecule can tune the molecule-molecule interaction. Here we show a novel spin behavior for a magnetic molecule of vanadyl tetrakis (thiadiazole) porphyrazine (abbreviated as VOTTDPz) adsorbed on Au(111), which is modified from vanadyl phthalocyanine (VOPc) by replacing the inert phthalocyanine ligand with a reactive thiadiazole moiety. The magnetic properties of the molecules are examined by observing the Kondo resonance caused by the screening of an isolated spin by conduction electrons using scanning tunneling spectroscopy. The Kondo features are detected at the molecule whose shape and intensity show site-dependent variation, revealing complex spin-spin interactions due to the enhanced interaction between molecules, originating from the functionalization of the ligand with a more reactive moiety.
Collapse
|
14
|
Xie L, Lin H, Zhang C, Li J, Merino-Díez N, Friedrich N, Bouju X, Li Y, Pascual JI, Xu W. Switching the Spin on a Ni Trimer within a Metal-Organic Motif by Controlling the On-Top Bromine Atom. ACS NANO 2019; 13:9936-9943. [PMID: 31381315 DOI: 10.1021/acsnano.9b04715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlling the spin of metal atoms embedded in molecular systems is a key step toward the realization of molecular electronics and spintronics. Many efforts have been devoted to explore the influencing factors dictating the survival or quenching of a magnetic moment in a metal-organic molecule, and among others, the spin control by axial ligand attachments is the most promising. Herein, from the interplay of high-resolution scanning tunneling microscopy imaging/manipulation and scanning tunneling spectroscopy measurements together with density functional theory calculations, we successfully demonstrate that a Ni trimer within a metal-organic motif acquires a net spin promoted by the adsorption of an on-top Br atom. The spin localization in the trimetal centers bonded to Br was monitored via the Kondo effect. The removal of the Br ligand resulted in the switch from a Kondo ON to a Kondo OFF state. The magnetic state induced by the Br ligand is theoretically attributed to the enhanced Br 4pz and Ni 3dz2 states due to the charge redistribution. The manipulation strategy reported here provides the possibility to explore potential applications of spin-tunable structures in spintronic devices.
Collapse
Affiliation(s)
- Lei Xie
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , People's Republic of China
| | - Haiping Lin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , People's Republic of China
| | - Jingcheng Li
- CIC nanoGUNE , 20018 San Sebastián-Donostia , Spain
| | - Nestor Merino-Díez
- CIC nanoGUNE , 20018 San Sebastián-Donostia , Spain
- Donostia International Physics Center (DIPC) , 20018 San Sebastián-Donostia , Spain
| | | | - Xavier Bouju
- CEMES-CNRS, Université de Toulouse , 31000 Toulouse , France
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Jose Ignacio Pascual
- CIC nanoGUNE , 20018 San Sebastián-Donostia , Spain
- Ikerbasque, Basque Foundation for Science , 48013 Bilbao , Spain
| | - Wei Xu
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , People's Republic of China
| |
Collapse
|
15
|
Tunable giant magnetoresistance in a single-molecule junction. Nat Commun 2019; 10:3599. [PMID: 31399599 PMCID: PMC6689026 DOI: 10.1038/s41467-019-11587-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022] Open
Abstract
Controlling electronic transport through a single-molecule junction is crucial for molecular electronics or spintronics. In magnetic molecular devices, the spin degree-of-freedom can be used to this end since the magnetic properties of the magnetic ion centers fundamentally impact the transport through the molecules. Here we demonstrate that the electron pathway in a single-molecule device can be selected between two molecular orbitals by varying a magnetic field, giving rise to a tunable anisotropic magnetoresistance up to 93%. The unique tunability of the electron pathways is due to the magnetic reorientation of the transition metal center, resulting in a re-hybridization of molecular orbitals. We obtain the tunneling electron pathways by Kondo effect, which manifests either as a peak or a dip line shape. The energy changes of these spin-reorientations are remarkably low and less than one millielectronvolt. The large tunable anisotropic magnetoresistance could be used to control electronic transport in molecular spintronics. Molecular electronics or spintronics relies on manipulating the electronic transport through microscopic molecule structures. Here the authors demonstrate the selective electron pathway in single-molecule device by magnetic field which enables a tunable anisotropic magnetoresistance up to 93%.
Collapse
|
16
|
Moro-Lagares M, Korytár R, Piantek M, Robles R, Lorente N, Pascual JI, Ibarra MR, Serrate D. Real space manifestations of coherent screening in atomic scale Kondo lattices. Nat Commun 2019; 10:2211. [PMID: 31101815 PMCID: PMC6525169 DOI: 10.1038/s41467-019-10103-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/18/2019] [Indexed: 11/10/2022] Open
Abstract
The interaction among magnetic moments screened by conduction electrons drives quantum phase transitions between magnetically ordered and heavy-fermion ground states. Here, starting from isolated magnetic impurities in the Kondo regime, we investigate the formation of the finite size analogue of a heavy Fermi liquid. We build regularly-spaced chains of Co adatoms on a metallic surface by atomic manipulation. Scanning tunneling spectroscopy is used to obtain maps of the Kondo resonance intensity with sub-atomic resolution. For sufficiently small interatomic separation, the spatial distribution of Kondo screening does not coincide with the position of the adatoms. It also develops enhancements at both edges of the chains. Since we can rule out any other interaction between Kondo impurities, this is explained in terms of the indirect hybridization of the Kondo orbitals mediated by a coherent electron gas, the mechanism that causes the emergence of heavy quasiparticles in the thermodynamic limit.
Collapse
Affiliation(s)
- María Moro-Lagares
- Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragón, University of Zaragoza, E-50018, Zaragoza, Spain.,Institute of Physics, Academy of Sciences, Prague, 16200, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University, Olomouc, 78371, Czech Republic
| | - Richard Korytár
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, 121 16, Prague 2, Czech Republic
| | - Marten Piantek
- Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragón, University of Zaragoza, E-50018, Zaragoza, Spain.,Dpto.Física Materia Condensada, University of Zaragoza, E-50009, Zaragoza, Spain
| | - Roberto Robles
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018, Donostia-San Sebastián, Spain.,Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastian, Spain
| | - Jose I Pascual
- Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragón, University of Zaragoza, E-50018, Zaragoza, Spain.,CIC NanoGUNE, E-20018, Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, E-48011, Bilbao, Spain
| | - M Ricardo Ibarra
- Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragón, University of Zaragoza, E-50018, Zaragoza, Spain.,Dpto.Física Materia Condensada, University of Zaragoza, E-50009, Zaragoza, Spain
| | - David Serrate
- Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragón, University of Zaragoza, E-50018, Zaragoza, Spain. .,Dpto.Física Materia Condensada, University of Zaragoza, E-50009, Zaragoza, Spain. .,Instituto de Ciencia de Materiales de Aragón, CSIC - Universidad de Zaragoza, 50009, Zaragoza, Spain.
| |
Collapse
|
17
|
Li F, Huang J, Wang J, Li Q. Spin-Transport Tuning of Individual Magnetic Mn-Salophen Molecule via Chemical Adsorption. Molecules 2019; 24:E1747. [PMID: 31064070 PMCID: PMC6539303 DOI: 10.3390/molecules24091747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022] Open
Abstract
Control over spin states at the single molecule level is a key issue in the emerging field of molecular spintronics. Here, we explore the chemical adsorption effect on the magnetic and spin-transport properties of individual magnetic molecule by performing extensive density functional theory calculations in combining with non-equilibrium Green's function method. Theoretical results clearly reveal that the molecular magnetic moment of Mn-salophen can be effectively tuned by adsorbing F and CO on the central Mn cation, while the adsorbed NO molecule quenches the molecular magnetic moment. Without chemical adsorption, the currents through Mn-salophen molecular junction just show a little distinction for two spin channels, which agrees well with previous investigation. Remarkably, the conductive channel can be switched from the spin-up electrons to the spin-down electrons via adsorbing F and CO, respectively, and the corresponding two Mn-salophen molecular junctions with chemical modifications display nearly perfect spin-filtering effect. The observed spin switch and the predicted spin-filtering effect via chemical adsorption indicates that Mn-salophen holds potential applications in molecular spintronic devices.
Collapse
Affiliation(s)
- Feifei Li
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, Anhui, China.
| | - Jing Huang
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, Anhui, China.
| | - Jianing Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Qunxiang Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
18
|
Brumboiu IE, Haldar S, Lüder J, Eriksson O, Herper HC, Brena B, Sanyal B. Ligand Effects on the Linear Response Hubbard U: The Case of Transition Metal Phthalocyanines. J Phys Chem A 2019; 123:3214-3222. [DOI: 10.1021/acs.jpca.8b11940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iulia Emilia Brumboiu
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Korea
| | - Soumyajyoti Haldar
- Institute of Theoretical Physics and Astrophysics, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Johann Lüder
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
| | - Olle Eriksson
- Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Heike C. Herper
- Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Barbara Brena
- Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Biplab Sanyal
- Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| |
Collapse
|
19
|
Wang Y, Li X, Yang J. Electronic and magnetic properties of CoPc and FePc molecules on graphene: the substrate, defect, and hydrogen adsorption effects. Phys Chem Chem Phys 2019; 21:5424-5434. [PMID: 30793133 DOI: 10.1039/c8cp07091a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal phthalocyanines (TMPcs) are particularly appealing for spintronic processing and data storage devices due to their structural simplicity and functional flexibility. To realize effective control of the spins in TMPc-based systems, it is necessary to quantify how the structural and chemical environment of the molecule affects its spin center. Herein we perform a detailed investigation of the electronic and spintronic properties of vertically stacked heterostructures formed by CoPc or FePc adsorbed on a monolayer of graphene under the influences of the gold substrate, vacancies in graphene, and extra atomic hydrogen coordination on the TMPc. By using density functional theory (DFT), we reveal that both the TMPc molecules prefer the carbon-top position on graphene, and the existence of the Au substrate enhances the stability of the adsorption, while this enhanced adsorption will not modify the molecular magnetism, keeping it the same value as in the free standing case. Moreover, with the aid of a combination of DFT and ab initio wavefunction-based calculations, our results indicate that the magnetic anisotropy of the FePc-graphene complex can be actively tuned by the Au substrate. Our calculations also show that defects in graphene including single and double vacancies can modify the magnetism of these heterostructures. In particular, the spin state of FePc can be tuned from S = 1 to S = 2 with such defect engineering. Further spin state tunability can be achieved from a hydrogenation process, with the coordination of one extra hydrogen on the Co-top site for CoPc and the pyridinic N site for FePc, respectively, tuning their spin states from S = 1/2 to S = 0 and from S = 1 to S = 2. These findings may prove to be instrumental for rational design of future molecular spintronics devices integrated with two-dimensional materials.
Collapse
Affiliation(s)
- Yu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | | | | |
Collapse
|
20
|
Vibrational fingerprint of localized excitons in a two-dimensional metal-organic crystal. Nat Commun 2018; 9:4703. [PMID: 30409974 PMCID: PMC6224418 DOI: 10.1038/s41467-018-07190-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 10/16/2018] [Indexed: 11/08/2022] Open
Abstract
Long-lived excitons formed upon visible light absorption play an essential role in photovoltaics, photocatalysis, and even in high-density information storage. Here, we describe a self-assembled two-dimensional metal-organic crystal, composed of graphene-supported macrocycles, each hosting a single FeN4 center, where a single carbon monoxide molecule can adsorb. In this heme-like biomimetic model system, excitons are generated by visible laser light upon a spin transition associated with the layer 2D crystallinity, and are simultaneously detected via the carbon monoxide ligand stretching mode at room temperature and near-ambient pressure. The proposed mechanism is supported by the results of infrared and time-resolved pump-probe spectroscopies, and by ab initio theoretical methods, opening a path towards the handling of exciton dynamics on 2D biomimetic crystals. Long-lived excitons in a two-dimensional metal-organic crystal can be produced by visible light and detected by infrared radiation. Here, the authors show that the excitonic state of a biomimetic macrocycle can be ‘read’ by measuring the vibrations of an adsorbed ligand.
Collapse
|
21
|
Gruber M, Weismann A, Berndt R. The Kondo resonance line shape in scanning tunnelling spectroscopy: instrumental aspects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:424001. [PMID: 30191885 DOI: 10.1088/1361-648x/aadfa3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the scanning tunnelling microscope, the many-body Kondo effect leads to a zero-bias feature of the differential conductance spectra of magnetic adsorbates on surfaces. The intrinsic line shape of this Kondo resonance and its temperature dependence in principle contain valuable information. We use measurements on a molecular Kondo system, all- trans retinoic acid on Au(1 1 1), and model calculations to discuss the role of instrumental broadening. The modulation voltage used for the lock-in detection, noise on the sample voltage, and the temperature of the microscope tip are considered. These sources of broadening affect the apparent line shapes and render difficult a determination of the intrinsic line width, in particular when variable temperatures are involved.
Collapse
Affiliation(s)
- Manuel Gruber
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | | | | |
Collapse
|
22
|
Buimaga-Iarinca L, Morari C. Translation of metal-phthalocyanines adsorbed on Au(111): from van der Waals interaction to strong electronic correlation. Sci Rep 2018; 8:12728. [PMID: 30143696 PMCID: PMC6109120 DOI: 10.1038/s41598-018-31147-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/13/2018] [Indexed: 11/23/2022] Open
Abstract
Using first-principles calculations, we investigate the binding energy for six transition metal - phthalocyanine molecules adsorbed on Au(111). We focus on the effect of translation on molecule - surface physical properties; van der Waals interactions as well as the strong correlation in d orbitals of transition metals are taken into account in all calculations. We found that dispersion interaction and charge transfer have the dominant role in the molecule-surface interaction, while the interaction between the transition metal and gold has a rather indirect influence over the physics of the molecule-surface system. A detailed analysis of the physical properties of the adsorbates at different geometric configurations allows us to propose qualitative models to account for all values of interface dipole charge transfer and magnetic moment of metal-phthalocyanines adsorbed on Au(111).
Collapse
Affiliation(s)
- L Buimaga-Iarinca
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - C Morari
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania.
| |
Collapse
|
23
|
Heinrich BW, Ehlert C, Hatter N, Braun L, Lotze C, Saalfrank P, Franke KJ. Control of Oxidation and Spin State in a Single-Molecule Junction. ACS NANO 2018; 12:3172-3177. [PMID: 29489330 DOI: 10.1021/acsnano.8b00312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The oxidation and spin state of a metal-organic molecule determine its chemical reactivity and magnetic properties. Here, we demonstrate the reversible control of the oxidation and spin state in a single Fe porphyrin molecule in the force field of the tip of a scanning tunneling microscope. Within the regimes of half-integer and integer spin state, we can further track the evolution of the magnetocrystalline anisotropy. Our experimental results are corroborated by density functional theory and wave function theory. This combined analysis allows us to draw a complete picture of the molecular states over a large range of intramolecular deformations.
Collapse
Affiliation(s)
- Benjamin W Heinrich
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Christopher Ehlert
- Institute of Chemistry , Universität Potsdam , Karl-Liebknecht-Strasse 24-25 , 14476 Potsdam , Germany
- Department of Chemistry , Wilfrid Laurier University , 75 University Avenue West , Waterloo , Ontario N2L3C5 , Canada
| | - Nino Hatter
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Lukas Braun
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Christian Lotze
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Peter Saalfrank
- Institute of Chemistry , Universität Potsdam , Karl-Liebknecht-Strasse 24-25 , 14476 Potsdam , Germany
| | - Katharina J Franke
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| |
Collapse
|
24
|
Huang Z, Zhang Y, He Y, Song H, Yin C, Wu K. A chemist's overview of surface electron spins. Chem Soc Rev 2018; 46:1955-1976. [PMID: 28317957 DOI: 10.1039/c6cs00891g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes recent research progress in the measurement and tuning of the electron spins of alien atoms and molecules adsorbed on well-defined substrates. After a brief introduction to the main experimental techniques employed to study surface electron spins, some well-explored systems consisting of atomic and molecular spin-carriers at surfaces are overviewed from a chemist's viewpoint, focusing on the experimental measurements and chemical modifications of the electron spin states of the alien entities at the surfaces on the atomic/molecular level. Finally, personal perspectives have been provided, aiming at describing some of the remaining issues that need to be addressed in the future and proposing potential applications in surface chemistry.
Collapse
Affiliation(s)
- Zhichao Huang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yajie Zhang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yang He
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Huanjun Song
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Cen Yin
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
25
|
Omiya T, Poli P, Arnolds H, Raval R, Persson M, Kim Y. Desorption of CO from individual ruthenium porphyrin molecules on a copper surface via an inelastic tunnelling process. Chem Commun (Camb) 2018; 53:6148-6151. [PMID: 28534586 DOI: 10.1039/c7cc01310h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coordination of CO to metalloporphyrins changes their electronic and magnetic properties. Here we locally desorb CO molecules from a single ruthenium tetraphenylporphyrin carbonyl (CO-RuTPP) on Cu(110) using STM. The desorption is triggered by the injection of holes into the occupied states of the adsorbate using an unusual two-carrier process.
Collapse
Affiliation(s)
- Takuma Omiya
- Surface and Interface Science Laboratory, RIKEN, Wako 351-0198, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Sun X, Li ZY, Jibran M, Pratt A, Yamauchi Y, Wang B. Reversible switching of the spin state in a manganese phthalocyanine molecule by atomic nitrogen. Phys Chem Chem Phys 2017; 19:32655-32662. [PMID: 29192911 DOI: 10.1039/c7cp06641d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible control of the spin state of an organic molecule is significant for the development of molecular spintronic devices. Here, density functional theory calculations have been performed to study the adsorption of atomic nitrogen on a single manganese phthalocyanine (MnPc) molecule, three-layered MnPc, and MnPc on an Fe(100) surface. For all three cases, the N atom strongly adsorbs on top of the Mn atom and induces a significant variation of the geometric, electronic and magnetic properties. After N adsorption, an energy gap appears and the electronic states become unpolarized. Different functionals including three hybrid functionals are used in these calculations, and all yield a switchable spin state.
Collapse
Affiliation(s)
- X Sun
- Key Laboratory of Strong-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | |
Collapse
|
27
|
Sarasola A, Abadía M, Rogero C, Garcia-Lekue A. Theoretical Insights into Unexpected Molecular Core Level Shifts: Chemical and Surface Effects. J Phys Chem Lett 2017; 8:5718-5724. [PMID: 29110481 DOI: 10.1021/acs.jpclett.7b02583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A set of density-functional theory based tools is employed to elucidate the influence of chemical and surface-induced changes on the core level shifts of X-ray photoelectron spectroscopy experiments. The capabilities of our tools are demonstrated by analyzing the origin of an unpredicted component in the N 1s core level spectra of metal phthalocyanine molecules (in particular ZnPc) adsorbed on Cu(110). We address surface induced effects, such as splitting of the lowest unoccupied molecular orbital or local electrostatic effects, demonstrating that these cannot account for the huge core level shift measured experimentally. Our calculations also show that, when adsorbed at low temperatures, these molecules might capture hydrogen atoms from the surface, giving rise to hydrogenated molecular species and, consequently, to an extra component in the molecular core level spectra. Only upon annealing, and subsequent hydrogen release, would the molecules recover their nominal structural and electronic properties.
Collapse
Affiliation(s)
- A Sarasola
- Departamento de Física Aplicada I, UPV/EHU , Plaza Europa 1, E-20018, San Sebastián, Spain
- Donostia International Physics Center (DIPC) , Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| | - M Abadía
- Centro de Física de Materiales (CSIC-UPV/EHU), Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - C Rogero
- Donostia International Physics Center (DIPC) , Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
- Centro de Física de Materiales (CSIC-UPV/EHU), Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - A Garcia-Lekue
- Donostia International Physics Center (DIPC) , Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, E-48011, Bilbao, Spain
| |
Collapse
|
28
|
Knaak T, Gruber M, Lindström C, Bocquet ML, Heck J, Berndt R. Ligand-Induced Energy Shift and Localization of Kondo Resonances in Cobalt-Based Complexes on Cu(111). NANO LETTERS 2017; 17:7146-7151. [PMID: 29045149 DOI: 10.1021/acs.nanolett.7b04181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Magnetic sandwich complexes are of particular interest for molecular spintronics. Using scanning tunneling microscopy, we evidence the successful deposition of 1,3,5-tris(η6-borabenzene-η5-cyclopentadienylcobalt) benzene, a molecule composed of three connected magnetic sandwich units, on Cu(111). Scanning tunneling spectra reveal two distinct spatial-dependent narrow resonances close to the Fermi level for the trimer molecules as well as for molecular fragments composed of one and two magnetic units. With the help of density functional theory, these resonances are interpreted as two Kondo resonances originating from two distinct nondegenerate d-like orbitals. These Kondo resonances are found to have defined spatial extents dictated by the hybridization of the involved orbitals with that of the ligands. These results opens promising perspectives for investigating complex Kondo systems composed of several "Kondo" orbitals.
Collapse
Affiliation(s)
- Thomas Knaak
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel , Leibnizstrasse 19, 24098 Kiel, Germany
| | - Manuel Gruber
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel , Leibnizstrasse 19, 24098 Kiel, Germany
| | - Christoph Lindström
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg , Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Marie-Laure Bocquet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Université Paris 06, CNRS , 75005 Paris, France
| | - Jürgen Heck
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg , Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel , Leibnizstrasse 19, 24098 Kiel, Germany
| |
Collapse
|
29
|
Wang Y, Li X, Zheng X, Yang J. Spin switch in iron phthalocyanine on Au(111) surface by hydrogen adsorption. J Chem Phys 2017; 147:134701. [PMID: 28987089 DOI: 10.1063/1.4996970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The manipulation of spin states at the molecular scale is of fundamental importance for the development of molecular spintronic devices. One of the feasible approaches for the modification of a molecular spin state is through the adsorption of certain specific atoms or molecules including H, NO, CO, NH3, and O2. In this paper, we demonstrate that the local spin state of an individual iron phthalocyanine (FePc) molecule adsorbed on an Au(111) surface exhibits controllable switching by hydrogen adsorption, as evidenced by using first-principles calculations based on density functional theory. Our theoretical calculations indicate that different numbers of hydrogen adsorbed at the pyridinic N sites of the FePc molecule largely modify the structural and electronic properties of the FePc/Au(111) composite by forming extra N-H bonds. In particular, the adsorption of one or up to three hydrogen atoms induces a redistribution of charge (spin) density within the FePc molecule, and hence a switching to a low spin state (S = 1/2) from an intermediate spin state (S = 1) is achieved, while the adsorption of four hydrogen atoms distorts the molecular conformation by increasing Fe-N bond lengths in FePc and thus breaks the ligand field exerted on the Fe 3d orbitals via stronger hybridization with the substrate, leading to an opposite switching to a high-spin state (S = 2). These findings obtained from the theoretical simulations could be useful for experimental manipulation or design of single-molecule spintronic devices.
Collapse
Affiliation(s)
- Yu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xiaoguang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
30
|
Matvija P, Rozbořil F, Sobotík P, Ošťádal I, Pieczyrak B, Jurczyszyn L, Kocán P. Electric-field-controlled phase transition in a 2D molecular layer. Sci Rep 2017; 7:7357. [PMID: 28779091 PMCID: PMC5544747 DOI: 10.1038/s41598-017-07277-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/23/2017] [Indexed: 11/25/2022] Open
Abstract
Self-assembly of organic molecules is a mechanism crucial for design of molecular nanodevices. We demonstrate unprecedented control over the self-assembly, which could allow switching and patterning at scales accessible by lithography techniques. We use the scanning tunneling microscope (STM) to induce a reversible 2D-gas-solid phase transition of copper phthalocyanine molecules on technologically important silicon surface functionalized by a metal monolayer. By means of ab-initio calculations we show that the charge transfer in the system results in a dipole moment carried by the molecules. The dipole moment interacts with a non-uniform electric field of the STM tip and the interaction changes the local density of molecules. To model the transition, we perform kinetic Monte Carlo simulations which reveal that the ordered molecular structures can form even without any attractive intermolecular interaction.
Collapse
Affiliation(s)
- Peter Matvija
- Faculty of Mathematics and Physics, Charles University, Prague, 121 16, Czech Republic.
| | - Filip Rozbořil
- Faculty of Mathematics and Physics, Charles University, Prague, 121 16, Czech Republic
| | - Pavel Sobotík
- Faculty of Mathematics and Physics, Charles University, Prague, 121 16, Czech Republic
| | - Ivan Ošťádal
- Faculty of Mathematics and Physics, Charles University, Prague, 121 16, Czech Republic
| | - Barbara Pieczyrak
- Instytut Fizyki Doswiadczalnej, Universytet Wroclawski, Wroclaw, 50-001, Poland
| | - Leszek Jurczyszyn
- Instytut Fizyki Doswiadczalnej, Universytet Wroclawski, Wroclaw, 50-001, Poland
| | - Pavel Kocán
- Faculty of Mathematics and Physics, Charles University, Prague, 121 16, Czech Republic
| |
Collapse
|
31
|
Li Z, Jibran M, Sun X, Pratt A, Wang B, Yamauchi Y, Ding Z. Influence of electron correlation on the electronic and magnetic structures of nitric-oxide-adsorbed manganese phthalocyanine. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
The geometric phase of Z n- and T-symmetric nanomagnets as a classification toolkit. Sci Rep 2017; 7:46614. [PMID: 28440279 PMCID: PMC5404233 DOI: 10.1038/srep46614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/21/2017] [Indexed: 11/08/2022] Open
Abstract
We derive the general form of the non-trivial geometric phase resulting from the unique combination of point group and time reversal symmetries. This phase arises e.g. when a magnetic adatom is adsorbed on a non-magnetic Cn crystal surface, where n denotes the fold of the principal axis. The energetic ordering and the relevant quantum numbers of the eigenstates are entirely determined by this quantity. Moreover, this phase allows to conveniently predict the protection mechanism of any prepared state, shedding light onto a large number of experiments and allowing a classification scheme. Owing to its robustness this geometric phase also has great relevance for a large number of applications in quantum computing, where topologically protected states bearing long relaxation times are highly desired.
Collapse
|
33
|
Zeng J, Chen KQ. Huge magnetoresistance induced by half-metal-semiconductor phase transition in a one-dimensional spin chain: a first-principles study. Phys Chem Chem Phys 2017; 19:9417-9423. [PMID: 28327774 DOI: 10.1039/c7cp00641a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In experimental studies, magnetoresistance (MR) values of 103 are hard to reach for conventional single-molecule spin-valves. Motivated by a recent experiment [Nano Lett., 2016, 16, 577-582], where tailored Co-salophene-based all-spin molecular devices are successfully realized, we demonstrate the functionality of a Co-salophene-based spin chain without magnetic electrodes. By using nonequilibrium Green's functions in combination with density functional theory, we find that the maximum MR ratio of this spin chain can reach 106 by manipulating its spins in a controlled way, which is several orders of magnitude higher than previously reported experimental values. As the Co-salophene-based spin chain has been successfully synthesized, we are highly expectant of the experimental realization of huge MR ratios.
Collapse
Affiliation(s)
- Jing Zeng
- College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, People's Republic of China. and Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang 421002, People's Republic of China
| | - Ke-Qiu Chen
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China.
| |
Collapse
|
34
|
Pacchioni GE, Pivetta M, Gragnaniello L, Donati F, Autès G, Yazyev OV, Rusponi S, Brune H. Two-Orbital Kondo Screening in a Self-Assembled Metal-Organic Complex. ACS NANO 2017; 11:2675-2681. [PMID: 28234448 DOI: 10.1021/acsnano.6b07431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Iron atoms adsorbed on a Cu(111) surface and buried under polyphenyl dicarbonitrile molecules exhibit strongly spatial anisotropic Kondo features with directionally dependent Kondo temperatures and line shapes, as evidenced by scanning tunneling spectroscopy. First-principles calculations find nearly full polarization for the half-filled Fe 3dxz and 3dyz orbitals, which therefore can give rise to Kondo screening with the experimentally observed directional dependence and distinct Kondo temperatures. X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements confirm that the spin in both channels is effectively Kondo-screened. At ideal Fe coverage, these two-orbital Kondo impurities are arranged in a self-assembled honeycomb superlattice.
Collapse
Affiliation(s)
- Giulia E Pacchioni
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Marina Pivetta
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Luca Gragnaniello
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Fabio Donati
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Gabriel Autès
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Oleg V Yazyev
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Stefano Rusponi
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Harald Brune
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Kuch W, Bernien M. Controlling the magnetism of adsorbed metal-organic molecules. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:023001. [PMID: 27841987 DOI: 10.1088/0953-8984/29/2/023001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gaining control on the size or the direction of the magnetic moment of adsorbed metal-organic molecules constitutes an important step towards the realization of a surface-mounted molecular spin electronics. Such control can be gained by taking advantage of interactions of the molecule's magnetic moment with the environment. The paramagnetic moments of adsorbed metal-organic molecules, for example, can be controlled by the interaction with magnetically ordered substrates. Metalloporphyrins and -phthalocyanines display a quasi-planar geometry, allowing the central metal ion to interact with substrate electronic states. This can lead to magnetic coupling with a ferromagnetic or even antiferromagnetic substrate. The molecule-substrate coupling can be mediated and controlled by insertion layers such as oxygen atoms, graphene, or nonmagnetic metal layers. Control on the magnetic properties of adsorbed metalloporphyrins or -phthalocyanines can also be gained by on-surface chemical modification of the molecules. The magnetic moment or the magnetic coupling to ferromagnetic substrates can be changed by adsorption and thermal desorption of small molecules that interact with the fourfold-coordinated metal center via the remaining axial coordination site. Spin-crossover molecules, which possess a metastable spin state that can be switched by external stimuli such as temperature or light, are another promising class of candidates for control of magnetic properties. However, the immobilization of such molecules on a solid surface often results in a quench of the spin transition due to the interaction with the substrate. We present examples of Fe(II) spin-crossover complexes in direct contact with a solid surface that undergo a reversible spin-crossover transition as a function of temperature, by illumination with visible light, or can be switched by the tip of a scanning tunneling microscope.
Collapse
Affiliation(s)
- Wolfgang Kuch
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | |
Collapse
|
36
|
Wang B. Interfacial engineering of phthalocyanine molecules on graphitic and metal substrates. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1265960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bin Wang
- Center for Interfacial Reaction Engineering and School of Chemical, Biological, and Materials Engineering, Gallogly College of Engineering, The University of Oklahoma, Norman, OK, USA
| |
Collapse
|
37
|
Perfetti M, Serri M, Poggini L, Mannini M, Rovai D, Sainctavit P, Heutz S, Sessoli R. Molecular Order in Buried Layers of TbPc2 Single-Molecule Magnets Detected by Torque Magnetometry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:6946-6951. [PMID: 27232580 DOI: 10.1002/adma.201600791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/17/2016] [Indexed: 06/05/2023]
Abstract
Cantilever torque magnetometry is used to elucidate the orientation of magnetic molecules in thin films. The technique allows depth-resolved investigations by intercalating a layer of anisotropic magnetic molecules in a film of its isotropic analogues. The proof-of-concept is here demonstrated with the single-molecule magnet TbPc2 evidencing also an exceptional long-range templating effect on substrates coated by the organic molecule perylene-3,4,9,10-tetracarboxylic dianhydride.
Collapse
Affiliation(s)
- Mauro Perfetti
- Department of Chemistry "U. Schiff" Università di Firenze & INSTM RU Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Michele Serri
- Department of Chemistry "U. Schiff" Università di Firenze & INSTM RU Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Lorenzo Poggini
- Department of Chemistry "U. Schiff" Università di Firenze & INSTM RU Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Matteo Mannini
- Department of Chemistry "U. Schiff" Università di Firenze & INSTM RU Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Donella Rovai
- Department of Chemistry "U. Schiff" Università di Firenze & INSTM RU Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Philippe Sainctavit
- Institut de Mineralogie, de Physique des Materiaux et de Cosmochimie, UMR 7590, CNRS, UPMC, IRD, MNHN, F-75005, Paris, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48, 91192, Gif-sur-Yvette, France
| | - Sandrine Heutz
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, SW7 2AZ, UK
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff" Università di Firenze & INSTM RU Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
38
|
Knaak T, Gopakumar TG, Schwager B, Tuczek F, Robles R, Lorente N, Berndt R. Surface cis Effect: Influence of an Axial Ligand on Molecular Self-Assembly. J Am Chem Soc 2016; 138:7544-50. [DOI: 10.1021/jacs.6b03710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Knaak
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | | | - Bettina Schwager
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Felix Tuczek
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Roberto Robles
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Richard Berndt
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| |
Collapse
|
39
|
Katoh K, Komeda T, Yamashita M. The Frontier of Molecular Spintronics Based on Multiple-Decker Phthalocyaninato TbIIISingle-Molecule Magnets. CHEM REC 2016; 16:987-1016. [DOI: 10.1002/tcr.201500290] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Keiichi Katoh
- Department of Chemistry Graduate School of Science; Tohoku University; 6-3, Aramaki-Aza-Aoba Aoba-Ku Sendai 980-8578 Japan
| | - Tadahiro Komeda
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen)Tohoku University; 22-1-1, Katahira Aoba-Ku Sendai 980-0877 (Japan)E-mail: Additional Supporting Information may be found in the online version of this article
| | - Masahiro Yamashita
- Department of Chemistry Graduate School of Science; Tohoku University; 6-3, Aramaki-Aza-Aoba Aoba-Ku Sendai 980-8578 Japan
| |
Collapse
|
40
|
Brumboiu IE, Haldar S, Lüder J, Eriksson O, Herper HC, Brena B, Sanyal B. Influence of Electron Correlation on the Electronic Structure and Magnetism of Transition-Metal Phthalocyanines. J Chem Theory Comput 2016; 12:1772-85. [DOI: 10.1021/acs.jctc.6b00091] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Soumyajyoti Haldar
- Department of Physics and
Astronomy, Uppsala University, SE-75120 Uppsala, Sweden
| | - Johann Lüder
- Department of Physics and
Astronomy, Uppsala University, SE-75120 Uppsala, Sweden
| | - Olle Eriksson
- Department of Physics and
Astronomy, Uppsala University, SE-75120 Uppsala, Sweden
| | - Heike C. Herper
- Department of Physics and
Astronomy, Uppsala University, SE-75120 Uppsala, Sweden
| | - Barbara Brena
- Department of Physics and
Astronomy, Uppsala University, SE-75120 Uppsala, Sweden
| | - Biplab Sanyal
- Department of Physics and
Astronomy, Uppsala University, SE-75120 Uppsala, Sweden
| |
Collapse
|
41
|
Li N, Wang H, Song DL, Li C, Li R, Hou SM, Wang YF, Berndt R. Charging single Co atoms on ultrathin NaCl films. Dalton Trans 2016; 45:16566-16569. [DOI: 10.1039/c6dt01963c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Single Co adatoms adsorbed on a double-layer NaCl film were negatively charged after applying a positive voltage pulse by STM.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory for the Physics and Chemistry of Nanodevices
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Hao Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Dao-Liang Song
- Key Laboratory for the Physics and Chemistry of Nanodevices
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Chao Li
- Key Laboratory for the Physics and Chemistry of Nanodevices
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Ruoning Li
- Key Laboratory for the Physics and Chemistry of Nanodevices
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Shi-Min Hou
- Key Laboratory for the Physics and Chemistry of Nanodevices
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Yong-Feng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik
- Christian-Albrechts-Universität zu Kiel
- D-24098 Kiel
- Germany
| |
Collapse
|
42
|
Ara F, Qi ZK, Hou J, Komeda T, Katoh K, Yamashita M. A scanning tunneling microscopy study of the electronic and spin states of bis(phthalocyaninato)terbium(iii) (TbPc2) molecules on Ag(111). Dalton Trans 2016; 45:16644-16652. [DOI: 10.1039/c6dt01967f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we investigate a single molecule magnet bis(phthalocyaninato)terbium(iii) (TbPc2) molecule film by using low temperature STM.
Collapse
Affiliation(s)
- Ferdous Ara
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Zhi Kun Qi
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Jie Hou
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Tadahiro Komeda
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM
- Tagen)
- Tohoku University
- Sendai 980-0877
- Japan
| | - Keiichi Katoh
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Masahiro Yamashita
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| |
Collapse
|
43
|
Andjelković L, Stepanović S, Vlahović F, Zlatar M, Gruden M. Resolving the origin of the multimode Jahn–Teller effect in metallophthalocyanines. Phys Chem Chem Phys 2016; 18:29122-29130. [DOI: 10.1039/c6cp03859j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
What is causing a distortion in phthalocyanines?
Collapse
Affiliation(s)
- Lj. Andjelković
- Department of Chemistry
- IChTM
- University of Belgrade
- 11001 Belgrade
- Republic of Serbia
| | - S. Stepanović
- Department of Chemistry
- IChTM
- University of Belgrade
- 11001 Belgrade
- Republic of Serbia
| | - F. Vlahović
- Innovation Center of the Faculty of Chemistry
- University of Belgrade
- 11001 Belgrade
- Republic of Serbia
| | - M. Zlatar
- Department of Chemistry
- IChTM
- University of Belgrade
- 11001 Belgrade
- Republic of Serbia
| | - M. Gruden
- Center for Computational Chemistry and Bioinformatics
- Faculty of Chemistry
- University of Belgrade
- 11001 Belgrade
- Republic of Serbia
| |
Collapse
|
44
|
Magnetic anisotropy in Shiba bound states across a quantum phase transition. Nat Commun 2015; 6:8988. [PMID: 26603561 PMCID: PMC4674822 DOI: 10.1038/ncomms9988] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/22/2015] [Indexed: 11/08/2022] Open
Abstract
The exchange coupling between magnetic adsorbates and a superconducting substrate leads to Shiba states inside the superconducting energy gap and a Kondo resonance outside the gap. The exchange coupling strength determines whether the quantum many-body ground state is a Kondo singlet or a singlet of the paired superconducting quasiparticles. Here we use scanning tunnelling spectroscopy to identify the different quantum ground states of manganese phthalocyanine on Pb(111). We observe Shiba states, which are split into triplets by magnetocrystalline anisotropy. Their characteristic spectral weight yields an unambiguous proof of the nature of the quantum ground state. Our results provide experimental insights into the phase diagram of a magnetic impurity on a superconducting host and shine light on the effects induced by magnetic anisotropy on many-body interactions. The exchange coupling strength between magnetic adsorbates and a superconducting surface determines the nature of the system's quantum ground state. Here, the authors use scanning tunnelling microscopy to explore the ground state and excited state properties of manganese phthalocyanine adsorbed on a Pb(111) surface.
Collapse
|
45
|
Liu L, Dienel T, Widmer R, Gröning O. Interplay between Energy-Level Position and Charging Effect of Manganese Phthalocyanines on an Atomically Thin Insulator. ACS NANO 2015; 9:10125-32. [PMID: 26390030 DOI: 10.1021/acsnano.5b03741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding the energy-level alignment and charge transfer of organic molecules at large bandgap semiconductors is of crucial importance to optimize device performance in organic electronics. We have studied submonolayer coverage of manganese phthalocyanine (MnPc) on hexagonal boron nitride (h-BN) on Rh(111) as a model system by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). The adsorbed molecules show three distinctly different bias-dependent topographic signatures, which depend on their adsorption positions on the h-BN. Among these three types of MnPc, one shows pronounced charging because of the proximity of the highest occupied molecular orbital (HOMO) to the Fermi level on the decoupling h-BN substrate. The charging of the MnPc from its neutral to the MnPc(+) state leads to a down shift of the Mn 3d-related orbital by 840 meV as determined from the difference in energy position between high- and low-bias charging. We find that the charging field is linearly related to the HOMO position with respect to the Fermi level, with a clear correlation to the adsorption orientations of the MnPc. Our results show how critically energy level alignment and field-induced charge transfer process can depend on adsorption configurations, even on an apparently low-interacting substrate like metal supported monolayer h-BN.
Collapse
Affiliation(s)
- Liwei Liu
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Thomas Dienel
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Roland Widmer
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Oliver Gröning
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
46
|
Kim H, Chang YH, Jang WJ, Lee ES, Kim YH, Kahng SJ. Probing Single-Molecule Dissociations from a Bimolecular Complex NO-Co-Porphyrin. ACS NANO 2015; 9:7722-7728. [PMID: 26172541 DOI: 10.1021/acsnano.5b03466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Axial coordinations of diatomic NO molecules to metalloporphyrins play key roles in dynamic processes of biological functions such as blood pressure control and immune response. Probing such reactions at the single molecule level is essential to understand their physical mechanisms but has been rarely performed. Here we report on our single molecule dissociation experiments of diatomic NO from NO-Co-porphyrin complexes describing its dissociation mechanisms. Under tunneling junctions of scanning tunneling microscope, both positive and negative energy pulses gave rise to dissociations of NO with threshold voltages, +0.68 and -0.74 V at 0.1 nA tunneling current on Au(111). From the observed power law relations between dissociation rate and tunneling current, we argue that the dissociations were inelastically induced with molecular orbital resonances by stochastically tunneling electrons, which is supported with our density functional theory calculations. Our study shows that single molecule dissociation experiments can be used to probe reaction mechanisms in a variety of axial coordinations between small molecules and metalloporphyrins.
Collapse
Affiliation(s)
- Howon Kim
- †Department of Physics, Korea University, 1-5 Anam-dong, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Yun Hee Chang
- ‡Graduate School of Nanoscience and Technology, KAIST, Daejeon 305-701, Republic of Korea
| | - Won-Jun Jang
- †Department of Physics, Korea University, 1-5 Anam-dong, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Eui-Sup Lee
- ‡Graduate School of Nanoscience and Technology, KAIST, Daejeon 305-701, Republic of Korea
| | - Yong-Hyun Kim
- ‡Graduate School of Nanoscience and Technology, KAIST, Daejeon 305-701, Republic of Korea
| | - Se-Jong Kahng
- †Department of Physics, Korea University, 1-5 Anam-dong, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| |
Collapse
|
47
|
Karan S, Jacob D, Karolak M, Hamann C, Wang Y, Weismann A, Lichtenstein AI, Berndt R. Shifting the Voltage Drop in Electron Transport Through a Single Molecule. PHYSICAL REVIEW LETTERS 2015; 115:016802. [PMID: 26182113 DOI: 10.1103/physrevlett.115.016802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 06/04/2023]
Abstract
A Mn-porphyrin was contacted on Au(111) in a low-temperature scanning tunneling microscope (STM). Differential conductance spectra show a zero-bias resonance that is due to an underscreened Kondo effect according to many-body calculations. When the Mn center is contacted by the STM tip, the spectrum appears to invert along the voltage axis. A drastic change in the electrostatic potential of the molecule involving a small geometric relaxation is found to cause this observation.
Collapse
Affiliation(s)
- Sujoy Karan
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - David Jacob
- Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
| | - Michael Karolak
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christian Hamann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Yongfeng Wang
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | | | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
48
|
Heinrich BW, Braun L, Pascual JI, Franke KJ. Tuning the Magnetic Anisotropy of Single Molecules. NANO LETTERS 2015; 15:4024-8. [PMID: 25942560 DOI: 10.1021/acs.nanolett.5b00987] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The magnetism of single atoms and molecules is governed by the atomic scale environment. In general, the reduced symmetry of the surrounding splits the d states and aligns the magnetic moment along certain favorable directions. Here, we show that we can reversibly modify the magnetocrystalline anisotropy by manipulating the environment of single iron(II) porphyrin molecules adsorbed on Pb(111) with the tip of a scanning tunneling microscope. When we decrease the tip-molecule distance, we first observe a small increase followed by an exponential decrease of the axial anisotropy on the molecules. This is in contrast to the monotonous increase observed earlier for the same molecule with an additional axial Cl ligand ( Nat. Phys. 2013 , 9 , 765 ). We ascribe the changes in the anisotropy of both species to a deformation of the molecules in the presence of the attractive force of the tip, which leads to a change in the d level alignment. These experiments demonstrate the feasibility of a precise tuning of the magnetic anisotropy of an individual molecule by mechanical control.
Collapse
Affiliation(s)
- Benjamin W Heinrich
- †Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Lukas Braun
- †Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jose I Pascual
- †Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
- ‡CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain
- §Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Katharina J Franke
- †Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
49
|
Zhang JL, Wang Z, Zhong JQ, Yuan KD, Shen Q, Xu LL, Niu TC, Gu CD, Wright CA, Tadich A, Qi D, Li HX, Wu K, Xu GQ, Li Z, Chen W. Single-molecule imaging of activated nitrogen adsorption on individual manganese phthalocyanine. NANO LETTERS 2015; 15:3181-3188. [PMID: 25906248 DOI: 10.1021/acs.nanolett.5b00290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An atomic-scale understanding of gas adsorption mechanisms on metal-porphyrins or metal-phthalocyanines is essential for their practical application in biological processes, gas sensing, and catalysis. Intensive research efforts have been devoted to the study of coordinative bonding with relatively active small molecules such as CO, NO, NH3, O2, and H2. However, the binding of single nitrogen atoms has never been addressed, which is both of fundamental interest and indeed essential for revealing the elementary chemical binding mechanism in nitrogen reduction processes. Here, we present a simple model system to investigate, at the single-molecule level, the binding of activated nitrogen species on the single Mn atom contained within the manganese phthalocyanine (MnPc) molecule supported on an inert graphite surface. Through the combination of in situ low-temperature scanning tunneling microscopy, scanning tunneling spectroscopy, ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and density functional theory calculations, the active site and the binding configuration between the activated nitrogen species (neutral nitrogen atom) and the Mn center of MnPc are investigated at the atomic scale.
Collapse
Affiliation(s)
- Jia Lin Zhang
- †Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- ‡Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Zhunzhun Wang
- §Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- ⊥Guizhou Provincial Key Laboratory of Computational Nanomaterial Science, Guizhou Normal College, Guiyang 550018, China
| | - Jian Qiang Zhong
- †Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- ‡Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Kai Di Yuan
- ‡Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Qian Shen
- †Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Lei Lei Xu
- †Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Tian Chao Niu
- †Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Cheng Ding Gu
- †Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Christopher A Wright
- ¶Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Anton Tadich
- ¶Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria 3086, Australia
- #Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Dongchen Qi
- ¶Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria 3086, Australia
| | - He Xing Li
- ∥Chinese Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Kai Wu
- ∇Singapore-Peking University Research Center for a Sustainable Low-Carbon Future, 1 CREATE Way, #15-01, CREATE Tower, Singapore 138602, Singapore
- ○College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guo Qin Xu
- †Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- ∇Singapore-Peking University Research Center for a Sustainable Low-Carbon Future, 1 CREATE Way, #15-01, CREATE Tower, Singapore 138602, Singapore
| | - Zhenyu Li
- §Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wei Chen
- †Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- ‡Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- ∇Singapore-Peking University Research Center for a Sustainable Low-Carbon Future, 1 CREATE Way, #15-01, CREATE Tower, Singapore 138602, Singapore
- ◆NUS (Suzhou) Research Institute, National University of Singapore, 377 Lin Quan Street, Suzhou Industrial Park, Jiang Su 215123, China
| |
Collapse
|
50
|
Kantar C, Akal H, Kaya B, Islamoğlu F, Türk M, Şaşmaz S. Novel phthalocyanines containing resorcinol azo dyes; synthesis, determination of pKa values, antioxidant, antibacterial and anticancer activity. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2014.12.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|